xref: /qemu/rust/qemu-api/src/cell.rs (revision b134a09ffab3b918979007cf40f603e5b54ed597)
1 // SPDX-License-Identifier: MIT
2 //
3 // This file is based on library/core/src/cell.rs from
4 // Rust 1.82.0.
5 //
6 // Permission is hereby granted, free of charge, to any
7 // person obtaining a copy of this software and associated
8 // documentation files (the "Software"), to deal in the
9 // Software without restriction, including without
10 // limitation the rights to use, copy, modify, merge,
11 // publish, distribute, sublicense, and/or sell copies of
12 // the Software, and to permit persons to whom the Software
13 // is furnished to do so, subject to the following
14 // conditions:
15 //
16 // The above copyright notice and this permission notice
17 // shall be included in all copies or substantial portions
18 // of the Software.
19 //
20 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
21 // ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
22 // TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
23 // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
24 // SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
25 // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
26 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
27 // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 // DEALINGS IN THE SOFTWARE.
29 
30 //! QEMU-specific mutable containers
31 //!
32 //! Rust memory safety is based on this rule: Given an object `T`, it is only
33 //! possible to have one of the following:
34 //!
35 //! - Having several immutable references (`&T`) to the object (also known as
36 //!   **aliasing**).
37 //! - Having one mutable reference (`&mut T`) to the object (also known as
38 //!   **mutability**).
39 //!
40 //! This is enforced by the Rust compiler. However, there are situations where
41 //! this rule is not flexible enough. Sometimes it is required to have multiple
42 //! references to an object and yet mutate it. In particular, QEMU objects
43 //! usually have their pointer shared with the "outside world very early in
44 //! their lifetime", for example when they create their
45 //! [`MemoryRegion`s](crate::bindings::MemoryRegion).  Therefore, individual
46 //! parts of a  device must be made mutable in a controlled manner; this module
47 //! provides the tools to do so.
48 //!
49 //! ## Cell types
50 //!
51 //! [`BqlCell<T>`] and [`BqlRefCell<T>`] allow doing this via the Big QEMU Lock.
52 //! While they are essentially the same single-threaded primitives that are
53 //! available in `std::cell`, the BQL allows them to be used from a
54 //! multi-threaded context and to share references across threads, while
55 //! maintaining Rust's safety guarantees.  For this reason, unlike
56 //! their `std::cell` counterparts, `BqlCell` and `BqlRefCell` implement the
57 //! `Sync` trait.
58 //!
59 //! BQL checks are performed in debug builds but can be optimized away in
60 //! release builds, providing runtime safety during development with no overhead
61 //! in production.
62 //!
63 //! The two provide different ways of handling interior mutability.
64 //! `BqlRefCell` is best suited for data that is primarily accessed by the
65 //! device's own methods, where multiple reads and writes can be grouped within
66 //! a single borrow and a mutable reference can be passed around.  Instead,
67 //! [`BqlCell`] is a better choice when sharing small pieces of data with
68 //! external code (especially C code), because it provides simple get/set
69 //! operations that can be used one at a time.
70 //!
71 //! Warning: While `BqlCell` and `BqlRefCell` are similar to their `std::cell`
72 //! counterparts, they are not interchangeable. Using `std::cell` types in
73 //! QEMU device implementations is usually incorrect and can lead to
74 //! thread-safety issues.
75 //!
76 //! ### Example
77 //!
78 //! ```
79 //! # use qemu_api::prelude::*;
80 //! # use qemu_api::{c_str, cell::BqlRefCell, irq::InterruptSource, irq::IRQState};
81 //! # use qemu_api::{sysbus::SysBusDevice, qom::Owned, qom::ParentField};
82 //! # const N_GPIOS: usize = 8;
83 //! # struct PL061Registers { /* ... */ }
84 //! # unsafe impl ObjectType for PL061State {
85 //! #     type Class = <SysBusDevice as ObjectType>::Class;
86 //! #     const TYPE_NAME: &'static std::ffi::CStr = c_str!("pl061");
87 //! # }
88 //! struct PL061State {
89 //!     parent_obj: ParentField<SysBusDevice>,
90 //!
91 //!     // Configuration is read-only after initialization
92 //!     pullups: u32,
93 //!     pulldowns: u32,
94 //!
95 //!     // Single values shared with C code use BqlCell, in this case via InterruptSource
96 //!     out: [InterruptSource; N_GPIOS],
97 //!     interrupt: InterruptSource,
98 //!
99 //!     // Larger state accessed by device methods uses BqlRefCell or Mutex
100 //!     registers: BqlRefCell<PL061Registers>,
101 //! }
102 //! ```
103 //!
104 //! ### `BqlCell<T>`
105 //!
106 //! [`BqlCell<T>`] implements interior mutability by moving values in and out of
107 //! the cell. That is, an `&mut T` to the inner value can never be obtained as
108 //! long as the cell is shared. The value itself cannot be directly obtained
109 //! without copying it, cloning it, or replacing it with something else. This
110 //! type provides the following methods, all of which can be called only while
111 //! the BQL is held:
112 //!
113 //!  - For types that implement [`Copy`], the [`get`](BqlCell::get) method
114 //!    retrieves the current interior value by duplicating it.
115 //!  - For types that implement [`Default`], the [`take`](BqlCell::take) method
116 //!    replaces the current interior value with [`Default::default()`] and
117 //!    returns the replaced value.
118 //!  - All types have:
119 //!    - [`replace`](BqlCell::replace): replaces the current interior value and
120 //!      returns the replaced value.
121 //!    - [`set`](BqlCell::set): this method replaces the interior value,
122 //!      dropping the replaced value.
123 //!
124 //! ### `BqlRefCell<T>`
125 //!
126 //! [`BqlRefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a
127 //! process whereby one can claim temporary, exclusive, mutable access to the
128 //! inner value:
129 //!
130 //! ```ignore
131 //! fn clear_interrupts(&self, val: u32) {
132 //!     // A mutable borrow gives read-write access to the registers
133 //!     let mut regs = self.registers.borrow_mut();
134 //!     let old = regs.interrupt_status();
135 //!     regs.update_interrupt_status(old & !val);
136 //! }
137 //! ```
138 //!
139 //! Borrows for `BqlRefCell<T>`s are tracked at _runtime_, unlike Rust's native
140 //! reference types which are entirely tracked statically, at compile time.
141 //! Multiple immutable borrows are allowed via [`borrow`](BqlRefCell::borrow),
142 //! or a single mutable borrow via [`borrow_mut`](BqlRefCell::borrow_mut).  The
143 //! thread will panic if these rules are violated or if the BQL is not held.
144 //!
145 //! ## Opaque wrappers
146 //!
147 //! The cell types from the previous section are useful at the boundaries
148 //! of code that requires interior mutability.  When writing glue code that
149 //! interacts directly with C structs, however, it is useful to operate
150 //! at a lower level.
151 //!
152 //! C functions often violate Rust's fundamental assumptions about memory
153 //! safety by modifying memory even if it is shared.  Furthermore, C structs
154 //! often start their life uninitialized and may be populated lazily.
155 //!
156 //! For this reason, this module provides the [`Opaque<T>`] type to opt out
157 //! of Rust's usual guarantees about the wrapped type. Access to the wrapped
158 //! value is always through raw pointers, obtained via methods like
159 //! [`as_mut_ptr()`](Opaque::as_mut_ptr) and [`as_ptr()`](Opaque::as_ptr). These
160 //! pointers can then be passed to C functions or dereferenced; both actions
161 //! require `unsafe` blocks, making it clear where safety guarantees must be
162 //! manually verified. For example
163 //!
164 //! ```ignore
165 //! unsafe {
166 //!     let state = Opaque::<MyStruct>::uninit();
167 //!     qemu_struct_init(state.as_mut_ptr());
168 //! }
169 //! ```
170 //!
171 //! [`Opaque<T>`] will usually be wrapped one level further, so that
172 //! bridge methods can be added to the wrapper:
173 //!
174 //! ```ignore
175 //! pub struct MyStruct(Opaque<bindings::MyStruct>);
176 //!
177 //! impl MyStruct {
178 //!     fn new() -> Pin<Box<MyStruct>> {
179 //!         let result = Box::pin(unsafe { Opaque::uninit() });
180 //!         unsafe { qemu_struct_init(result.as_mut_ptr()) };
181 //!         result
182 //!     }
183 //! }
184 //! ```
185 //!
186 //! This pattern of wrapping bindgen-generated types in [`Opaque<T>`] provides
187 //! several advantages:
188 //!
189 //! * The choice of traits to be implemented is not limited by the
190 //!   bindgen-generated code.  For example, [`Drop`] can be added without
191 //!   disabling [`Copy`] on the underlying bindgen type
192 //!
193 //! * [`Send`] and [`Sync`] implementations can be controlled by the wrapper
194 //!   type rather than being automatically derived from the C struct's layout
195 //!
196 //! * Methods can be implemented in a separate crate from the bindgen-generated
197 //!   bindings
198 //!
199 //! * [`Debug`](std::fmt::Debug) and [`Display`](std::fmt::Display)
200 //!   implementations can be customized to be more readable than the raw C
201 //!   struct representation
202 //!
203 //! The [`Opaque<T>`] type does not include BQL validation; it is possible to
204 //! assert in the code that the right lock is taken, to use it together
205 //! with a custom lock guard type, or to let C code take the lock, as
206 //! appropriate.  It is also possible to use it with non-thread-safe
207 //! types, since by default (unlike [`BqlCell`] and [`BqlRefCell`]
208 //! it is neither `Sync` nor `Send`.
209 //!
210 //! While [`Opaque<T>`] is necessary for C interop, it should be used sparingly
211 //! and only at FFI boundaries. For QEMU-specific types that need interior
212 //! mutability, prefer [`BqlCell`] or [`BqlRefCell`].
213 
214 use std::{
215     cell::{Cell, UnsafeCell},
216     cmp::Ordering,
217     fmt,
218     marker::{PhantomData, PhantomPinned},
219     mem::{self, MaybeUninit},
220     ops::{Deref, DerefMut},
221     ptr::NonNull,
222 };
223 
224 use crate::bindings;
225 
226 /// An internal function that is used by doctests.
227 pub fn bql_start_test() {
228     if cfg!(MESON) {
229         // SAFETY: integration tests are run with --test-threads=1, while
230         // unit tests and doctests are not multithreaded and do not have
231         // any BQL-protected data.  Just set bql_locked to true.
232         unsafe {
233             bindings::rust_bql_mock_lock();
234         }
235     }
236 }
237 
238 pub fn bql_locked() -> bool {
239     // SAFETY: the function does nothing but return a thread-local bool
240     !cfg!(MESON) || unsafe { bindings::bql_locked() }
241 }
242 
243 fn bql_block_unlock(increase: bool) {
244     if cfg!(MESON) {
245         // SAFETY: this only adjusts a counter
246         unsafe {
247             bindings::bql_block_unlock(increase);
248         }
249     }
250 }
251 
252 /// A mutable memory location that is protected by the Big QEMU Lock.
253 ///
254 /// # Memory layout
255 ///
256 /// `BqlCell<T>` has the same in-memory representation as its inner type `T`.
257 #[repr(transparent)]
258 pub struct BqlCell<T> {
259     value: UnsafeCell<T>,
260 }
261 
262 // SAFETY: Same as for std::sync::Mutex.  In the end this *is* a Mutex,
263 // except it is stored out-of-line
264 unsafe impl<T: Send> Send for BqlCell<T> {}
265 unsafe impl<T: Send> Sync for BqlCell<T> {}
266 
267 impl<T: Copy> Clone for BqlCell<T> {
268     #[inline]
269     fn clone(&self) -> BqlCell<T> {
270         BqlCell::new(self.get())
271     }
272 }
273 
274 impl<T: Default> Default for BqlCell<T> {
275     /// Creates a `BqlCell<T>`, with the `Default` value for T.
276     #[inline]
277     fn default() -> BqlCell<T> {
278         BqlCell::new(Default::default())
279     }
280 }
281 
282 impl<T: PartialEq + Copy> PartialEq for BqlCell<T> {
283     #[inline]
284     fn eq(&self, other: &BqlCell<T>) -> bool {
285         self.get() == other.get()
286     }
287 }
288 
289 impl<T: Eq + Copy> Eq for BqlCell<T> {}
290 
291 impl<T: PartialOrd + Copy> PartialOrd for BqlCell<T> {
292     #[inline]
293     fn partial_cmp(&self, other: &BqlCell<T>) -> Option<Ordering> {
294         self.get().partial_cmp(&other.get())
295     }
296 }
297 
298 impl<T: Ord + Copy> Ord for BqlCell<T> {
299     #[inline]
300     fn cmp(&self, other: &BqlCell<T>) -> Ordering {
301         self.get().cmp(&other.get())
302     }
303 }
304 
305 impl<T> From<T> for BqlCell<T> {
306     /// Creates a new `BqlCell<T>` containing the given value.
307     fn from(t: T) -> BqlCell<T> {
308         BqlCell::new(t)
309     }
310 }
311 
312 impl<T: fmt::Debug + Copy> fmt::Debug for BqlCell<T> {
313     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
314         self.get().fmt(f)
315     }
316 }
317 
318 impl<T: fmt::Display + Copy> fmt::Display for BqlCell<T> {
319     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
320         self.get().fmt(f)
321     }
322 }
323 
324 impl<T> BqlCell<T> {
325     /// Creates a new `BqlCell` containing the given value.
326     ///
327     /// # Examples
328     ///
329     /// ```
330     /// use qemu_api::cell::BqlCell;
331     /// # qemu_api::cell::bql_start_test();
332     ///
333     /// let c = BqlCell::new(5);
334     /// ```
335     #[inline]
336     pub const fn new(value: T) -> BqlCell<T> {
337         BqlCell {
338             value: UnsafeCell::new(value),
339         }
340     }
341 
342     /// Sets the contained value.
343     ///
344     /// # Examples
345     ///
346     /// ```
347     /// use qemu_api::cell::BqlCell;
348     /// # qemu_api::cell::bql_start_test();
349     ///
350     /// let c = BqlCell::new(5);
351     ///
352     /// c.set(10);
353     /// ```
354     #[inline]
355     pub fn set(&self, val: T) {
356         self.replace(val);
357     }
358 
359     /// Replaces the contained value with `val`, and returns the old contained
360     /// value.
361     ///
362     /// # Examples
363     ///
364     /// ```
365     /// use qemu_api::cell::BqlCell;
366     /// # qemu_api::cell::bql_start_test();
367     ///
368     /// let cell = BqlCell::new(5);
369     /// assert_eq!(cell.get(), 5);
370     /// assert_eq!(cell.replace(10), 5);
371     /// assert_eq!(cell.get(), 10);
372     /// ```
373     #[inline]
374     pub fn replace(&self, val: T) -> T {
375         assert!(bql_locked());
376         // SAFETY: This can cause data races if called from multiple threads,
377         // but it won't happen as long as C code accesses the value
378         // under BQL protection only.
379         mem::replace(unsafe { &mut *self.value.get() }, val)
380     }
381 
382     /// Unwraps the value, consuming the cell.
383     ///
384     /// # Examples
385     ///
386     /// ```
387     /// use qemu_api::cell::BqlCell;
388     /// # qemu_api::cell::bql_start_test();
389     ///
390     /// let c = BqlCell::new(5);
391     /// let five = c.into_inner();
392     ///
393     /// assert_eq!(five, 5);
394     /// ```
395     pub fn into_inner(self) -> T {
396         assert!(bql_locked());
397         self.value.into_inner()
398     }
399 }
400 
401 impl<T: Copy> BqlCell<T> {
402     /// Returns a copy of the contained value.
403     ///
404     /// # Examples
405     ///
406     /// ```
407     /// use qemu_api::cell::BqlCell;
408     /// # qemu_api::cell::bql_start_test();
409     ///
410     /// let c = BqlCell::new(5);
411     ///
412     /// let five = c.get();
413     /// ```
414     #[inline]
415     pub fn get(&self) -> T {
416         assert!(bql_locked());
417         // SAFETY: This can cause data races if called from multiple threads,
418         // but it won't happen as long as C code accesses the value
419         // under BQL protection only.
420         unsafe { *self.value.get() }
421     }
422 }
423 
424 impl<T> BqlCell<T> {
425     /// Returns a raw pointer to the underlying data in this cell.
426     ///
427     /// # Examples
428     ///
429     /// ```
430     /// use qemu_api::cell::BqlCell;
431     /// # qemu_api::cell::bql_start_test();
432     ///
433     /// let c = BqlCell::new(5);
434     ///
435     /// let ptr = c.as_ptr();
436     /// ```
437     #[inline]
438     pub const fn as_ptr(&self) -> *mut T {
439         self.value.get()
440     }
441 }
442 
443 impl<T: Default> BqlCell<T> {
444     /// Takes the value of the cell, leaving `Default::default()` in its place.
445     ///
446     /// # Examples
447     ///
448     /// ```
449     /// use qemu_api::cell::BqlCell;
450     /// # qemu_api::cell::bql_start_test();
451     ///
452     /// let c = BqlCell::new(5);
453     /// let five = c.take();
454     ///
455     /// assert_eq!(five, 5);
456     /// assert_eq!(c.into_inner(), 0);
457     /// ```
458     pub fn take(&self) -> T {
459         self.replace(Default::default())
460     }
461 }
462 
463 /// A mutable memory location with dynamically checked borrow rules,
464 /// protected by the Big QEMU Lock.
465 ///
466 /// See the [module-level documentation](self) for more.
467 ///
468 /// # Memory layout
469 ///
470 /// `BqlRefCell<T>` starts with the same in-memory representation as its
471 /// inner type `T`.
472 #[repr(C)]
473 pub struct BqlRefCell<T> {
474     // It is important that this is the first field (which is not the case
475     // for std::cell::BqlRefCell), so that we can use offset_of! on it.
476     // UnsafeCell and repr(C) both prevent usage of niches.
477     value: UnsafeCell<T>,
478     borrow: Cell<BorrowFlag>,
479     // Stores the location of the earliest currently active borrow.
480     // This gets updated whenever we go from having zero borrows
481     // to having a single borrow. When a borrow occurs, this gets included
482     // in the panic message
483     #[cfg(feature = "debug_cell")]
484     borrowed_at: Cell<Option<&'static std::panic::Location<'static>>>,
485 }
486 
487 // Positive values represent the number of `BqlRef` active. Negative values
488 // represent the number of `BqlRefMut` active. Right now QEMU's implementation
489 // does not allow to create `BqlRefMut`s that refer to distinct, nonoverlapping
490 // components of a `BqlRefCell` (e.g., different ranges of a slice).
491 //
492 // `BqlRef` and `BqlRefMut` are both two words in size, and so there will likely
493 // never be enough `BqlRef`s or `BqlRefMut`s in existence to overflow half of
494 // the `usize` range. Thus, a `BorrowFlag` will probably never overflow or
495 // underflow. However, this is not a guarantee, as a pathological program could
496 // repeatedly create and then mem::forget `BqlRef`s or `BqlRefMut`s. Thus, all
497 // code must explicitly check for overflow and underflow in order to avoid
498 // unsafety, or at least behave correctly in the event that overflow or
499 // underflow happens (e.g., see BorrowRef::new).
500 type BorrowFlag = isize;
501 const UNUSED: BorrowFlag = 0;
502 
503 #[inline(always)]
504 const fn is_writing(x: BorrowFlag) -> bool {
505     x < UNUSED
506 }
507 
508 #[inline(always)]
509 const fn is_reading(x: BorrowFlag) -> bool {
510     x > UNUSED
511 }
512 
513 impl<T> BqlRefCell<T> {
514     /// Creates a new `BqlRefCell` containing `value`.
515     ///
516     /// # Examples
517     ///
518     /// ```
519     /// use qemu_api::cell::BqlRefCell;
520     ///
521     /// let c = BqlRefCell::new(5);
522     /// ```
523     #[inline]
524     pub const fn new(value: T) -> BqlRefCell<T> {
525         BqlRefCell {
526             value: UnsafeCell::new(value),
527             borrow: Cell::new(UNUSED),
528             #[cfg(feature = "debug_cell")]
529             borrowed_at: Cell::new(None),
530         }
531     }
532 }
533 
534 // This ensures the panicking code is outlined from `borrow_mut` for
535 // `BqlRefCell`.
536 #[inline(never)]
537 #[cold]
538 #[cfg(feature = "debug_cell")]
539 fn panic_already_borrowed(source: &Cell<Option<&'static std::panic::Location<'static>>>) -> ! {
540     // If a borrow occurred, then we must already have an outstanding borrow,
541     // so `borrowed_at` will be `Some`
542     panic!("already borrowed at {:?}", source.take().unwrap())
543 }
544 
545 #[inline(never)]
546 #[cold]
547 #[cfg(not(feature = "debug_cell"))]
548 fn panic_already_borrowed() -> ! {
549     panic!("already borrowed")
550 }
551 
552 impl<T> BqlRefCell<T> {
553     #[inline]
554     #[allow(clippy::unused_self)]
555     fn panic_already_borrowed(&self) -> ! {
556         #[cfg(feature = "debug_cell")]
557         {
558             panic_already_borrowed(&self.borrowed_at)
559         }
560         #[cfg(not(feature = "debug_cell"))]
561         {
562             panic_already_borrowed()
563         }
564     }
565 
566     /// Immutably borrows the wrapped value.
567     ///
568     /// The borrow lasts until the returned `BqlRef` exits scope. Multiple
569     /// immutable borrows can be taken out at the same time.
570     ///
571     /// # Panics
572     ///
573     /// Panics if the value is currently mutably borrowed.
574     ///
575     /// # Examples
576     ///
577     /// ```
578     /// use qemu_api::cell::BqlRefCell;
579     /// # qemu_api::cell::bql_start_test();
580     ///
581     /// let c = BqlRefCell::new(5);
582     ///
583     /// let borrowed_five = c.borrow();
584     /// let borrowed_five2 = c.borrow();
585     /// ```
586     ///
587     /// An example of panic:
588     ///
589     /// ```should_panic
590     /// use qemu_api::cell::BqlRefCell;
591     /// # qemu_api::cell::bql_start_test();
592     ///
593     /// let c = BqlRefCell::new(5);
594     ///
595     /// let m = c.borrow_mut();
596     /// let b = c.borrow(); // this causes a panic
597     /// ```
598     #[inline]
599     #[track_caller]
600     pub fn borrow(&self) -> BqlRef<'_, T> {
601         if let Some(b) = BorrowRef::new(&self.borrow) {
602             // `borrowed_at` is always the *first* active borrow
603             if b.borrow.get() == 1 {
604                 #[cfg(feature = "debug_cell")]
605                 self.borrowed_at.set(Some(std::panic::Location::caller()));
606             }
607 
608             bql_block_unlock(true);
609 
610             // SAFETY: `BorrowRef` ensures that there is only immutable access
611             // to the value while borrowed.
612             let value = unsafe { NonNull::new_unchecked(self.value.get()) };
613             BqlRef { value, borrow: b }
614         } else {
615             self.panic_already_borrowed()
616         }
617     }
618 
619     /// Mutably borrows the wrapped value.
620     ///
621     /// The borrow lasts until the returned `BqlRefMut` or all `BqlRefMut`s
622     /// derived from it exit scope. The value cannot be borrowed while this
623     /// borrow is active.
624     ///
625     /// # Panics
626     ///
627     /// Panics if the value is currently borrowed.
628     ///
629     /// # Examples
630     ///
631     /// ```
632     /// use qemu_api::cell::BqlRefCell;
633     /// # qemu_api::cell::bql_start_test();
634     ///
635     /// let c = BqlRefCell::new("hello".to_owned());
636     ///
637     /// *c.borrow_mut() = "bonjour".to_owned();
638     ///
639     /// assert_eq!(&*c.borrow(), "bonjour");
640     /// ```
641     ///
642     /// An example of panic:
643     ///
644     /// ```should_panic
645     /// use qemu_api::cell::BqlRefCell;
646     /// # qemu_api::cell::bql_start_test();
647     ///
648     /// let c = BqlRefCell::new(5);
649     /// let m = c.borrow();
650     ///
651     /// let b = c.borrow_mut(); // this causes a panic
652     /// ```
653     #[inline]
654     #[track_caller]
655     pub fn borrow_mut(&self) -> BqlRefMut<'_, T> {
656         if let Some(b) = BorrowRefMut::new(&self.borrow) {
657             #[cfg(feature = "debug_cell")]
658             {
659                 self.borrowed_at.set(Some(std::panic::Location::caller()));
660             }
661 
662             // SAFETY: this only adjusts a counter
663             bql_block_unlock(true);
664 
665             // SAFETY: `BorrowRefMut` guarantees unique access.
666             let value = unsafe { NonNull::new_unchecked(self.value.get()) };
667             BqlRefMut {
668                 value,
669                 _borrow: b,
670                 marker: PhantomData,
671             }
672         } else {
673             self.panic_already_borrowed()
674         }
675     }
676 
677     /// Returns a raw pointer to the underlying data in this cell.
678     ///
679     /// # Examples
680     ///
681     /// ```
682     /// use qemu_api::cell::BqlRefCell;
683     ///
684     /// let c = BqlRefCell::new(5);
685     ///
686     /// let ptr = c.as_ptr();
687     /// ```
688     #[inline]
689     pub const fn as_ptr(&self) -> *mut T {
690         self.value.get()
691     }
692 }
693 
694 // SAFETY: Same as for std::sync::Mutex.  In the end this is a Mutex that is
695 // stored out-of-line.  Even though BqlRefCell includes Cells, they are
696 // themselves protected by the Big QEMU Lock.  Furtheremore, the Big QEMU
697 // Lock cannot be released while any borrows is active.
698 unsafe impl<T> Send for BqlRefCell<T> where T: Send {}
699 unsafe impl<T> Sync for BqlRefCell<T> {}
700 
701 impl<T: Clone> Clone for BqlRefCell<T> {
702     /// # Panics
703     ///
704     /// Panics if the value is currently mutably borrowed.
705     #[inline]
706     #[track_caller]
707     fn clone(&self) -> BqlRefCell<T> {
708         BqlRefCell::new(self.borrow().clone())
709     }
710 
711     /// # Panics
712     ///
713     /// Panics if `source` is currently mutably borrowed.
714     #[inline]
715     #[track_caller]
716     fn clone_from(&mut self, source: &Self) {
717         self.value.get_mut().clone_from(&source.borrow())
718     }
719 }
720 
721 impl<T: Default> Default for BqlRefCell<T> {
722     /// Creates a `BqlRefCell<T>`, with the `Default` value for T.
723     #[inline]
724     fn default() -> BqlRefCell<T> {
725         BqlRefCell::new(Default::default())
726     }
727 }
728 
729 impl<T: PartialEq> PartialEq for BqlRefCell<T> {
730     /// # Panics
731     ///
732     /// Panics if the value in either `BqlRefCell` is currently mutably
733     /// borrowed.
734     #[inline]
735     fn eq(&self, other: &BqlRefCell<T>) -> bool {
736         *self.borrow() == *other.borrow()
737     }
738 }
739 
740 impl<T: Eq> Eq for BqlRefCell<T> {}
741 
742 impl<T: PartialOrd> PartialOrd for BqlRefCell<T> {
743     /// # Panics
744     ///
745     /// Panics if the value in either `BqlRefCell` is currently mutably
746     /// borrowed.
747     #[inline]
748     fn partial_cmp(&self, other: &BqlRefCell<T>) -> Option<Ordering> {
749         self.borrow().partial_cmp(&*other.borrow())
750     }
751 }
752 
753 impl<T: Ord> Ord for BqlRefCell<T> {
754     /// # Panics
755     ///
756     /// Panics if the value in either `BqlRefCell` is currently mutably
757     /// borrowed.
758     #[inline]
759     fn cmp(&self, other: &BqlRefCell<T>) -> Ordering {
760         self.borrow().cmp(&*other.borrow())
761     }
762 }
763 
764 impl<T> From<T> for BqlRefCell<T> {
765     /// Creates a new `BqlRefCell<T>` containing the given value.
766     fn from(t: T) -> BqlRefCell<T> {
767         BqlRefCell::new(t)
768     }
769 }
770 
771 struct BorrowRef<'b> {
772     borrow: &'b Cell<BorrowFlag>,
773 }
774 
775 impl<'b> BorrowRef<'b> {
776     #[inline]
777     fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
778         let b = borrow.get().wrapping_add(1);
779         if !is_reading(b) {
780             // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
781             // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read
782             //    borrow due to Rust's reference aliasing rules
783             // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
784             //    into isize::MIN (the max amount of writing borrows) so we can't allow an
785             //    additional read borrow because isize can't represent so many read borrows
786             //    (this can only happen if you mem::forget more than a small constant amount
787             //    of `BqlRef`s, which is not good practice)
788             None
789         } else {
790             // Incrementing borrow can result in a reading value (> 0) in these cases:
791             // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read
792             //    borrow
793             // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize is
794             //    large enough to represent having one more read borrow
795             borrow.set(b);
796             Some(BorrowRef { borrow })
797         }
798     }
799 }
800 
801 impl Drop for BorrowRef<'_> {
802     #[inline]
803     fn drop(&mut self) {
804         let borrow = self.borrow.get();
805         debug_assert!(is_reading(borrow));
806         self.borrow.set(borrow - 1);
807         bql_block_unlock(false)
808     }
809 }
810 
811 impl Clone for BorrowRef<'_> {
812     #[inline]
813     fn clone(&self) -> Self {
814         BorrowRef::new(self.borrow).unwrap()
815     }
816 }
817 
818 /// Wraps a borrowed reference to a value in a `BqlRefCell` box.
819 /// A wrapper type for an immutably borrowed value from a `BqlRefCell<T>`.
820 ///
821 /// See the [module-level documentation](self) for more.
822 pub struct BqlRef<'b, T: 'b> {
823     // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
824     // `BqlRef` argument doesn't hold immutability for its whole scope, only until it drops.
825     // `NonNull` is also covariant over `T`, just like we would have with `&T`.
826     value: NonNull<T>,
827     borrow: BorrowRef<'b>,
828 }
829 
830 impl<T> Deref for BqlRef<'_, T> {
831     type Target = T;
832 
833     #[inline]
834     fn deref(&self) -> &T {
835         // SAFETY: the value is accessible as long as we hold our borrow.
836         unsafe { self.value.as_ref() }
837     }
838 }
839 
840 impl<'b, T> BqlRef<'b, T> {
841     /// Copies a `BqlRef`.
842     ///
843     /// The `BqlRefCell` is already immutably borrowed, so this cannot fail.
844     ///
845     /// This is an associated function that needs to be used as
846     /// `BqlRef::clone(...)`. A `Clone` implementation or a method would
847     /// interfere with the widespread use of `r.borrow().clone()` to clone
848     /// the contents of a `BqlRefCell`.
849     #[must_use]
850     #[inline]
851     #[allow(clippy::should_implement_trait)]
852     pub fn clone(orig: &BqlRef<'b, T>) -> BqlRef<'b, T> {
853         BqlRef {
854             value: orig.value,
855             borrow: orig.borrow.clone(),
856         }
857     }
858 }
859 
860 impl<T: fmt::Debug> fmt::Debug for BqlRef<'_, T> {
861     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
862         (**self).fmt(f)
863     }
864 }
865 
866 impl<T: fmt::Display> fmt::Display for BqlRef<'_, T> {
867     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
868         (**self).fmt(f)
869     }
870 }
871 
872 struct BorrowRefMut<'b> {
873     borrow: &'b Cell<BorrowFlag>,
874 }
875 
876 impl<'b> BorrowRefMut<'b> {
877     #[inline]
878     fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
879         // There must currently be no existing references when borrow_mut() is
880         // called, so we explicitly only allow going from UNUSED to UNUSED - 1.
881         match borrow.get() {
882             UNUSED => {
883                 borrow.set(UNUSED - 1);
884                 Some(BorrowRefMut { borrow })
885             }
886             _ => None,
887         }
888     }
889 }
890 
891 impl Drop for BorrowRefMut<'_> {
892     #[inline]
893     fn drop(&mut self) {
894         let borrow = self.borrow.get();
895         debug_assert!(is_writing(borrow));
896         self.borrow.set(borrow + 1);
897         bql_block_unlock(false)
898     }
899 }
900 
901 /// A wrapper type for a mutably borrowed value from a `BqlRefCell<T>`.
902 ///
903 /// See the [module-level documentation](self) for more.
904 pub struct BqlRefMut<'b, T: 'b> {
905     // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
906     // `BqlRefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
907     value: NonNull<T>,
908     _borrow: BorrowRefMut<'b>,
909     // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
910     marker: PhantomData<&'b mut T>,
911 }
912 
913 impl<T> Deref for BqlRefMut<'_, T> {
914     type Target = T;
915 
916     #[inline]
917     fn deref(&self) -> &T {
918         // SAFETY: the value is accessible as long as we hold our borrow.
919         unsafe { self.value.as_ref() }
920     }
921 }
922 
923 impl<T> DerefMut for BqlRefMut<'_, T> {
924     #[inline]
925     fn deref_mut(&mut self) -> &mut T {
926         // SAFETY: the value is accessible as long as we hold our borrow.
927         unsafe { self.value.as_mut() }
928     }
929 }
930 
931 impl<T: fmt::Debug> fmt::Debug for BqlRefMut<'_, T> {
932     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
933         (**self).fmt(f)
934     }
935 }
936 
937 impl<T: fmt::Display> fmt::Display for BqlRefMut<'_, T> {
938     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
939         (**self).fmt(f)
940     }
941 }
942 
943 /// Stores an opaque value that is shared with C code.
944 ///
945 /// Often, C structs can changed when calling a C function even if they are
946 /// behind a shared Rust reference, or they can be initialized lazily and have
947 /// invalid bit patterns (e.g. `3` for a [`bool`]).  This goes against Rust's
948 /// strict aliasing rules, which normally prevent mutation through shared
949 /// references.
950 ///
951 /// Wrapping the struct with `Opaque<T>` ensures that the Rust compiler does not
952 /// assume the usual constraints that Rust structs require, and allows using
953 /// shared references on the Rust side.
954 ///
955 /// `Opaque<T>` is `#[repr(transparent)]`, so that it matches the memory layout
956 /// of `T`.
957 #[repr(transparent)]
958 pub struct Opaque<T> {
959     value: UnsafeCell<MaybeUninit<T>>,
960     // PhantomPinned also allows multiple references to the `Opaque<T>`, i.e.
961     // one `&mut Opaque<T>` can coexist with a `&mut T` or any number of `&T`;
962     // see https://docs.rs/pinned-aliasable/latest/pinned_aliasable/.
963     _pin: PhantomPinned,
964 }
965 
966 impl<T> Opaque<T> {
967     /// Creates a new shared reference from a C pointer
968     ///
969     /// # Safety
970     ///
971     /// The pointer must be valid, though it need not point to a valid value.
972     pub unsafe fn from_raw<'a>(ptr: *mut T) -> &'a Self {
973         let ptr = NonNull::new(ptr).unwrap().cast::<Self>();
974         // SAFETY: Self is a transparent wrapper over T
975         unsafe { ptr.as_ref() }
976     }
977 
978     /// Creates a new opaque object with uninitialized contents.
979     ///
980     /// # Safety
981     ///
982     /// Ultimately the pointer to the returned value will be dereferenced
983     /// in another `unsafe` block, for example when passing it to a C function,
984     /// but the functions containing the dereference are usually safe.  The
985     /// value returned from `uninit()` must be initialized and pinned before
986     /// calling them.
987     #[allow(clippy::missing_const_for_fn)]
988     pub unsafe fn uninit() -> Self {
989         Self {
990             value: UnsafeCell::new(MaybeUninit::uninit()),
991             _pin: PhantomPinned,
992         }
993     }
994 
995     /// Creates a new opaque object with zeroed contents.
996     ///
997     /// # Safety
998     ///
999     /// Ultimately the pointer to the returned value will be dereferenced
1000     /// in another `unsafe` block, for example when passing it to a C function,
1001     /// but the functions containing the dereference are usually safe.  The
1002     /// value returned from `uninit()` must be pinned (and possibly initialized)
1003     /// before calling them.
1004     #[allow(clippy::missing_const_for_fn)]
1005     pub unsafe fn zeroed() -> Self {
1006         Self {
1007             value: UnsafeCell::new(MaybeUninit::zeroed()),
1008             _pin: PhantomPinned,
1009         }
1010     }
1011 
1012     /// Returns a raw mutable pointer to the opaque data.
1013     pub const fn as_mut_ptr(&self) -> *mut T {
1014         UnsafeCell::get(&self.value).cast()
1015     }
1016 
1017     /// Returns a raw pointer to the opaque data.
1018     pub const fn as_ptr(&self) -> *const T {
1019         self.as_mut_ptr().cast_const()
1020     }
1021 
1022     /// Returns a raw pointer to the opaque data that can be passed to a
1023     /// C function as `void *`.
1024     pub const fn as_void_ptr(&self) -> *mut std::ffi::c_void {
1025         UnsafeCell::get(&self.value).cast()
1026     }
1027 
1028     /// Converts a raw pointer to the wrapped type.
1029     pub const fn raw_get(slot: *mut Self) -> *mut T {
1030         // Compare with Linux's raw_get method, which goes through an UnsafeCell
1031         // because it takes a *const Self instead.
1032         slot.cast()
1033     }
1034 }
1035 
1036 impl<T> fmt::Debug for Opaque<T> {
1037     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1038         let mut name: String = "Opaque<".to_string();
1039         name += std::any::type_name::<T>();
1040         name += ">";
1041         f.debug_tuple(&name).field(&self.as_ptr()).finish()
1042     }
1043 }
1044 
1045 impl<T: Default> Opaque<T> {
1046     /// Creates a new opaque object with default contents.
1047     ///
1048     /// # Safety
1049     ///
1050     /// Ultimately the pointer to the returned value will be dereferenced
1051     /// in another `unsafe` block, for example when passing it to a C function,
1052     /// but the functions containing the dereference are usually safe.  The
1053     /// value returned from `uninit()` must be pinned before calling them.
1054     pub unsafe fn new() -> Self {
1055         Self {
1056             value: UnsafeCell::new(MaybeUninit::new(T::default())),
1057             _pin: PhantomPinned,
1058         }
1059     }
1060 }
1061 
1062 /// Annotates [`Self`] as a transparent wrapper for another type.
1063 ///
1064 /// Usually defined via the [`qemu_api_macros::Wrapper`] derive macro.
1065 ///
1066 /// # Examples
1067 ///
1068 /// ```
1069 /// # use std::mem::ManuallyDrop;
1070 /// # use qemu_api::cell::Wrapper;
1071 /// #[repr(transparent)]
1072 /// pub struct Example {
1073 ///     inner: ManuallyDrop<String>,
1074 /// }
1075 ///
1076 /// unsafe impl Wrapper for Example {
1077 ///     type Wrapped = String;
1078 /// }
1079 /// ```
1080 ///
1081 /// # Safety
1082 ///
1083 /// `Self` must be a `#[repr(transparent)]` wrapper for the `Wrapped` type,
1084 /// whether directly or indirectly.
1085 ///
1086 /// # Methods
1087 ///
1088 /// By convention, types that implement Wrapper also implement the following
1089 /// methods:
1090 ///
1091 /// ```ignore
1092 /// pub const unsafe fn from_raw<'a>(value: *mut Self::Wrapped) -> &'a Self;
1093 /// pub const unsafe fn as_mut_ptr(&self) -> *mut Self::Wrapped;
1094 /// pub const unsafe fn as_ptr(&self) -> *const Self::Wrapped;
1095 /// pub const unsafe fn raw_get(slot: *mut Self) -> *const Self::Wrapped;
1096 /// ```
1097 ///
1098 /// They are not defined here to allow them to be `const`.
1099 pub unsafe trait Wrapper {
1100     type Wrapped;
1101 }
1102 
1103 unsafe impl<T> Wrapper for Opaque<T> {
1104     type Wrapped = T;
1105 }
1106