xref: /qemu/rust/hw/char/pl011/src/lib.rs (revision 476d6e4c9c4965734d6f47ee299ac9f84440a9b3)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! PL011 QEMU Device Model
6 //!
7 //! This library implements a device model for the PrimeCell® UART (PL011)
8 //! device in QEMU.
9 //!
10 //! # Library crate
11 //!
12 //! See [`PL011State`](crate::device::PL011State) for the device model type and
13 //! the [`registers`] module for register types.
14 
15 #![allow(clippy::upper_case_acronyms)]
16 
17 use qemu_api::c_str;
18 
19 mod device;
20 mod device_class;
21 mod memory_ops;
22 
23 pub use device::pl011_create;
24 
25 pub const TYPE_PL011: &::std::ffi::CStr = c_str!("pl011");
26 pub const TYPE_PL011_LUMINARY: &::std::ffi::CStr = c_str!("pl011_luminary");
27 
28 /// Offset of each register from the base memory address of the device.
29 ///
30 /// # Source
31 /// ARM DDI 0183G, Table 3-1 p.3-3
32 #[doc(alias = "offset")]
33 #[allow(non_camel_case_types)]
34 #[repr(u64)]
35 #[derive(Debug, Eq, PartialEq, qemu_api_macros::TryInto)]
36 enum RegisterOffset {
37     /// Data Register
38     ///
39     /// A write to this register initiates the actual data transmission
40     #[doc(alias = "UARTDR")]
41     DR = 0x000,
42     /// Receive Status Register or Error Clear Register
43     #[doc(alias = "UARTRSR")]
44     #[doc(alias = "UARTECR")]
45     RSR = 0x004,
46     /// Flag Register
47     ///
48     /// A read of this register shows if transmission is complete
49     #[doc(alias = "UARTFR")]
50     FR = 0x018,
51     /// Fractional Baud Rate Register
52     ///
53     /// responsible for baud rate speed
54     #[doc(alias = "UARTFBRD")]
55     FBRD = 0x028,
56     /// `IrDA` Low-Power Counter Register
57     #[doc(alias = "UARTILPR")]
58     ILPR = 0x020,
59     /// Integer Baud Rate Register
60     ///
61     /// Responsible for baud rate speed
62     #[doc(alias = "UARTIBRD")]
63     IBRD = 0x024,
64     /// line control register (data frame format)
65     #[doc(alias = "UARTLCR_H")]
66     LCR_H = 0x02C,
67     /// Toggle UART, transmission or reception
68     #[doc(alias = "UARTCR")]
69     CR = 0x030,
70     /// Interrupt FIFO Level Select Register
71     #[doc(alias = "UARTIFLS")]
72     FLS = 0x034,
73     /// Interrupt Mask Set/Clear Register
74     #[doc(alias = "UARTIMSC")]
75     IMSC = 0x038,
76     /// Raw Interrupt Status Register
77     #[doc(alias = "UARTRIS")]
78     RIS = 0x03C,
79     /// Masked Interrupt Status Register
80     #[doc(alias = "UARTMIS")]
81     MIS = 0x040,
82     /// Interrupt Clear Register
83     #[doc(alias = "UARTICR")]
84     ICR = 0x044,
85     /// DMA control Register
86     #[doc(alias = "UARTDMACR")]
87     DMACR = 0x048,
88     ///// Reserved, offsets `0x04C` to `0x07C`.
89     //Reserved = 0x04C,
90 }
91 
92 mod registers {
93     //! Device registers exposed as typed structs which are backed by arbitrary
94     //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
95     use bilge::prelude::*;
96     use qemu_api::impl_vmstate_bitsized;
97 
98     /// Receive Status Register / Data Register common error bits
99     ///
100     /// The `UARTRSR` register is updated only when a read occurs
101     /// from the `UARTDR` register with the same status information
102     /// that can also be obtained by reading the `UARTDR` register
103     #[bitsize(8)]
104     #[derive(Clone, Copy, Default, DebugBits, FromBits)]
105     pub struct Errors {
106         pub framing_error: bool,
107         pub parity_error: bool,
108         pub break_error: bool,
109         pub overrun_error: bool,
110         _reserved_unpredictable: u4,
111     }
112 
113     // TODO: FIFO Mode has different semantics
114     /// Data Register, `UARTDR`
115     ///
116     /// The `UARTDR` register is the data register.
117     ///
118     /// For words to be transmitted:
119     ///
120     /// - if the FIFOs are enabled, data written to this location is pushed onto
121     ///   the transmit
122     /// FIFO
123     /// - if the FIFOs are not enabled, data is stored in the transmitter
124     ///   holding register (the
125     /// bottom word of the transmit FIFO).
126     ///
127     /// The write operation initiates transmission from the UART. The data is
128     /// prefixed with a start bit, appended with the appropriate parity bit
129     /// (if parity is enabled), and a stop bit. The resultant word is then
130     /// transmitted.
131     ///
132     /// For received words:
133     ///
134     /// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
135     ///   frame, parity,
136     /// and overrun) is pushed onto the 12-bit wide receive FIFO
137     /// - if the FIFOs are not enabled, the data byte and status are stored in
138     ///   the receiving
139     /// holding register (the bottom word of the receive FIFO).
140     ///
141     /// The received data byte is read by performing reads from the `UARTDR`
142     /// register along with the corresponding status information. The status
143     /// information can also be read by a read of the `UARTRSR/UARTECR`
144     /// register.
145     ///
146     /// # Note
147     ///
148     /// You must disable the UART before any of the control registers are
149     /// reprogrammed. When the UART is disabled in the middle of
150     /// transmission or reception, it completes the current character before
151     /// stopping.
152     ///
153     /// # Source
154     /// ARM DDI 0183G 3.3.1 Data Register, UARTDR
155     #[bitsize(32)]
156     #[derive(Clone, Copy, Default, DebugBits, FromBits)]
157     #[doc(alias = "UARTDR")]
158     pub struct Data {
159         pub data: u8,
160         pub errors: Errors,
161         _reserved: u16,
162     }
163     impl_vmstate_bitsized!(Data);
164 
165     impl Data {
166         // bilge is not very const-friendly, unfortunately
167         pub const BREAK: Self = Self { value: 1 << 10 };
168     }
169 
170     // TODO: FIFO Mode has different semantics
171     /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
172     ///
173     /// The UARTRSR/UARTECR register is the receive status register/error clear
174     /// register. Receive status can also be read from the `UARTRSR`
175     /// register. If the status is read from this register, then the status
176     /// information for break, framing and parity corresponds to the
177     /// data character read from the [Data register](Data), `UARTDR` prior to
178     /// reading the UARTRSR register. The status information for overrun is
179     /// set immediately when an overrun condition occurs.
180     ///
181     ///
182     /// # Note
183     /// The received data character must be read first from the [Data
184     /// Register](Data), `UARTDR` before reading the error status associated
185     /// with that data character from the `UARTRSR` register. This read
186     /// sequence cannot be reversed, because the `UARTRSR` register is
187     /// updated only when a read occurs from the `UARTDR` register. However,
188     /// the status information can also be obtained by reading the `UARTDR`
189     /// register
190     ///
191     /// # Source
192     /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
193     /// UARTRSR/UARTECR
194     #[bitsize(32)]
195     #[derive(Clone, Copy, DebugBits, FromBits)]
196     pub struct ReceiveStatusErrorClear {
197         pub errors: Errors,
198         _reserved_unpredictable: u24,
199     }
200     impl_vmstate_bitsized!(ReceiveStatusErrorClear);
201 
202     impl ReceiveStatusErrorClear {
203         pub fn set_from_data(&mut self, data: Data) {
204             self.set_errors(data.errors());
205         }
206 
207         pub fn reset(&mut self) {
208             // All the bits are cleared to 0 on reset.
209             *self = Self::default();
210         }
211     }
212 
213     impl Default for ReceiveStatusErrorClear {
214         fn default() -> Self {
215             0.into()
216         }
217     }
218 
219     #[bitsize(32)]
220     #[derive(Clone, Copy, DebugBits, FromBits)]
221     /// Flag Register, `UARTFR`
222     #[doc(alias = "UARTFR")]
223     pub struct Flags {
224         /// CTS Clear to send. This bit is the complement of the UART clear to
225         /// send, `nUARTCTS`, modem status input. That is, the bit is 1
226         /// when `nUARTCTS` is LOW.
227         pub clear_to_send: bool,
228         /// DSR Data set ready. This bit is the complement of the UART data set
229         /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
230         /// `nUARTDSR` is LOW.
231         pub data_set_ready: bool,
232         /// DCD Data carrier detect. This bit is the complement of the UART data
233         /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
234         /// 1 when `nUARTDCD` is LOW.
235         pub data_carrier_detect: bool,
236         /// BUSY UART busy. If this bit is set to 1, the UART is busy
237         /// transmitting data. This bit remains set until the complete
238         /// byte, including all the stop bits, has been sent from the
239         /// shift register. This bit is set as soon as the transmit FIFO
240         /// becomes non-empty, regardless of whether the UART is enabled
241         /// or not.
242         pub busy: bool,
243         /// RXFE Receive FIFO empty. The meaning of this bit depends on the
244         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
245         /// is disabled, this bit is set when the receive holding
246         /// register is empty. If the FIFO is enabled, the RXFE bit is
247         /// set when the receive FIFO is empty.
248         pub receive_fifo_empty: bool,
249         /// TXFF Transmit FIFO full. The meaning of this bit depends on the
250         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
251         /// is disabled, this bit is set when the transmit holding
252         /// register is full. If the FIFO is enabled, the TXFF bit is
253         /// set when the transmit FIFO is full.
254         pub transmit_fifo_full: bool,
255         /// RXFF Receive FIFO full. The meaning of this bit depends on the state
256         /// of the FEN bit in the UARTLCR_H register. If the FIFO is
257         /// disabled, this bit is set when the receive holding register
258         /// is full. If the FIFO is enabled, the RXFF bit is set when
259         /// the receive FIFO is full.
260         pub receive_fifo_full: bool,
261         /// Transmit FIFO empty. The meaning of this bit depends on the state of
262         /// the FEN bit in the [Line Control register](LineControl),
263         /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
264         /// transmit holding register is empty. If the FIFO is enabled,
265         /// the TXFE bit is set when the transmit FIFO is empty. This
266         /// bit does not indicate if there is data in the transmit shift
267         /// register.
268         pub transmit_fifo_empty: bool,
269         /// `RI`, is `true` when `nUARTRI` is `LOW`.
270         pub ring_indicator: bool,
271         _reserved_zero_no_modify: u23,
272     }
273     impl_vmstate_bitsized!(Flags);
274 
275     impl Flags {
276         pub fn reset(&mut self) {
277             *self = Self::default();
278         }
279     }
280 
281     impl Default for Flags {
282         fn default() -> Self {
283             let mut ret: Self = 0.into();
284             // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
285             ret.set_receive_fifo_empty(true);
286             ret.set_transmit_fifo_empty(true);
287             ret
288         }
289     }
290 
291     #[bitsize(32)]
292     #[derive(Clone, Copy, DebugBits, FromBits)]
293     /// Line Control Register, `UARTLCR_H`
294     #[doc(alias = "UARTLCR_H")]
295     pub struct LineControl {
296         /// BRK Send break.
297         ///
298         /// If this bit is set to `1`, a low-level is continually output on the
299         /// `UARTTXD` output, after completing transmission of the
300         /// current character. For the proper execution of the break command,
301         /// the software must set this bit for at least two complete
302         /// frames. For normal use, this bit must be cleared to `0`.
303         pub send_break: bool,
304         /// 1 PEN Parity enable:
305         ///
306         /// - 0 = parity is disabled and no parity bit added to the data frame
307         /// - 1 = parity checking and generation is enabled.
308         ///
309         /// See Table 3-11 on page 3-14 for the parity truth table.
310         pub parity_enabled: bool,
311         /// EPS Even parity select. Controls the type of parity the UART uses
312         /// during transmission and reception:
313         /// - 0 = odd parity. The UART generates or checks for an odd number of
314         ///   1s in the data and parity bits.
315         /// - 1 = even parity. The UART generates or checks for an even number
316         ///   of 1s in the data and parity bits.
317         /// This bit has no effect when the `PEN` bit disables parity checking
318         /// and generation. See Table 3-11 on page 3-14 for the parity
319         /// truth table.
320         pub parity: Parity,
321         /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
322         /// are transmitted at the end of the frame. The receive
323         /// logic does not check for two stop bits being received.
324         pub two_stops_bits: bool,
325         /// FEN Enable FIFOs:
326         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
327         /// 1-byte-deep holding registers 1 = transmit and receive FIFO
328         /// buffers are enabled (FIFO mode).
329         pub fifos_enabled: Mode,
330         /// WLEN Word length. These bits indicate the number of data bits
331         /// transmitted or received in a frame as follows: b11 = 8 bits
332         /// b10 = 7 bits
333         /// b01 = 6 bits
334         /// b00 = 5 bits.
335         pub word_length: WordLength,
336         /// 7 SPS Stick parity select.
337         /// 0 = stick parity is disabled
338         /// 1 = either:
339         /// • if the EPS bit is 0 then the parity bit is transmitted and checked
340         /// as a 1 • if the EPS bit is 1 then the parity bit is
341         /// transmitted and checked as a 0. This bit has no effect when
342         /// the PEN bit disables parity checking and generation. See Table 3-11
343         /// on page 3-14 for the parity truth table.
344         pub sticky_parity: bool,
345         /// 31:8 - Reserved, do not modify, read as zero.
346         _reserved_zero_no_modify: u24,
347     }
348     impl_vmstate_bitsized!(LineControl);
349 
350     impl LineControl {
351         pub fn reset(&mut self) {
352             // All the bits are cleared to 0 when reset.
353             *self = 0.into();
354         }
355     }
356 
357     impl Default for LineControl {
358         fn default() -> Self {
359             0.into()
360         }
361     }
362 
363     #[bitsize(1)]
364     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
365     /// `EPS` "Even parity select", field of [Line Control
366     /// register](LineControl).
367     pub enum Parity {
368         /// - 0 = odd parity. The UART generates or checks for an odd number of
369         ///   1s in the data and parity bits.
370         Odd = 0,
371         /// - 1 = even parity. The UART generates or checks for an even number
372         ///   of 1s in the data and parity bits.
373         Even = 1,
374     }
375 
376     #[bitsize(1)]
377     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
378     /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
379     /// register](LineControl).
380     pub enum Mode {
381         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
382         /// 1-byte-deep holding registers
383         Character = 0,
384         /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
385         FIFO = 1,
386     }
387 
388     #[bitsize(2)]
389     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
390     /// `WLEN` Word length, field of [Line Control register](LineControl).
391     ///
392     /// These bits indicate the number of data bits transmitted or received in a
393     /// frame as follows:
394     pub enum WordLength {
395         /// b11 = 8 bits
396         _8Bits = 0b11,
397         /// b10 = 7 bits
398         _7Bits = 0b10,
399         /// b01 = 6 bits
400         _6Bits = 0b01,
401         /// b00 = 5 bits.
402         _5Bits = 0b00,
403     }
404 
405     /// Control Register, `UARTCR`
406     ///
407     /// The `UARTCR` register is the control register. All the bits are cleared
408     /// to `0` on reset except for bits `9` and `8` that are set to `1`.
409     ///
410     /// # Source
411     /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
412     #[bitsize(32)]
413     #[doc(alias = "UARTCR")]
414     #[derive(Clone, Copy, DebugBits, FromBits)]
415     pub struct Control {
416         /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
417         /// in the middle of transmission or reception, it completes the current
418         /// character before stopping. 1 = the UART is enabled. Data
419         /// transmission and reception occurs for either UART signals or SIR
420         /// signals depending on the setting of the SIREN bit.
421         pub enable_uart: bool,
422         /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
423         /// remains LOW (no light pulse generated), and signal transitions on
424         /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
425         /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH,
426         /// in the marking state. Signal transitions on UARTRXD or modem status
427         /// inputs have no effect. This bit has no effect if the UARTEN bit
428         /// disables the UART.
429         pub enable_sir: bool,
430         /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
431         /// mode. If this bit is cleared to 0, low-level bits are transmitted as
432         /// an active high pulse with a width of 3/ 16th of the bit period. If
433         /// this bit is set to 1, low-level bits are transmitted with a pulse
434         /// width that is 3 times the period of the IrLPBaud16 input signal,
435         /// regardless of the selected bit rate. Setting this bit uses less
436         /// power, but might reduce transmission distances.
437         pub sir_lowpower_irda_mode: u1,
438         /// Reserved, do not modify, read as zero.
439         _reserved_zero_no_modify: u4,
440         /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
441         /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
442         /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
443         /// through to the SIRIN path. The SIRTEST bit in the test register must
444         /// be set to 1 to override the normal half-duplex SIR operation. This
445         /// must be the requirement for accessing the test registers during
446         /// normal operation, and SIRTEST must be cleared to 0 when loopback
447         /// testing is finished. This feature reduces the amount of external
448         /// coupling required during system test. If this bit is set to 1, and
449         /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
450         /// UARTRXD path. In either SIR mode or UART mode, when this bit is set,
451         /// the modem outputs are also fed through to the modem inputs. This bit
452         /// is cleared to 0 on reset, to disable loopback.
453         pub enable_loopback: bool,
454         /// `TXE` Transmit enable. If this bit is set to 1, the transmit section
455         /// of the UART is enabled. Data transmission occurs for either UART
456         /// signals, or SIR signals depending on the setting of the SIREN bit.
457         /// When the UART is disabled in the middle of transmission, it
458         /// completes the current character before stopping.
459         pub enable_transmit: bool,
460         /// `RXE` Receive enable. If this bit is set to 1, the receive section
461         /// of the UART is enabled. Data reception occurs for either UART
462         /// signals or SIR signals depending on the setting of the SIREN bit.
463         /// When the UART is disabled in the middle of reception, it completes
464         /// the current character before stopping.
465         pub enable_receive: bool,
466         /// `DTR` Data transmit ready. This bit is the complement of the UART
467         /// data transmit ready, `nUARTDTR`, modem status output. That is, when
468         /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
469         pub data_transmit_ready: bool,
470         /// `RTS` Request to send. This bit is the complement of the UART
471         /// request to send, `nUARTRTS`, modem status output. That is, when the
472         /// bit is programmed to a 1 then `nUARTRTS` is LOW.
473         pub request_to_send: bool,
474         /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
475         /// modem status output. That is, when the bit is programmed to a 1 the
476         /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
477         pub out_1: bool,
478         /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
479         /// modem status output. That is, when the bit is programmed to a 1, the
480         /// output is 0. For DTE this can be used as Ring Indicator (RI).
481         pub out_2: bool,
482         /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
483         /// RTS hardware flow control is enabled. Data is only requested when
484         /// there is space in the receive FIFO for it to be received.
485         pub rts_hardware_flow_control_enable: bool,
486         /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
487         /// CTS hardware flow control is enabled. Data is only transmitted when
488         /// the `nUARTCTS` signal is asserted.
489         pub cts_hardware_flow_control_enable: bool,
490         /// 31:16 - Reserved, do not modify, read as zero.
491         _reserved_zero_no_modify2: u16,
492     }
493     impl_vmstate_bitsized!(Control);
494 
495     impl Control {
496         pub fn reset(&mut self) {
497             *self = 0.into();
498             self.set_enable_receive(true);
499             self.set_enable_transmit(true);
500         }
501     }
502 
503     impl Default for Control {
504         fn default() -> Self {
505             let mut ret: Self = 0.into();
506             ret.reset();
507             ret
508         }
509     }
510 
511     /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
512     pub struct Interrupt(pub u32);
513 
514     impl Interrupt {
515         pub const OE: Self = Self(1 << 10);
516         pub const BE: Self = Self(1 << 9);
517         pub const PE: Self = Self(1 << 8);
518         pub const FE: Self = Self(1 << 7);
519         pub const RT: Self = Self(1 << 6);
520         pub const TX: Self = Self(1 << 5);
521         pub const RX: Self = Self(1 << 4);
522         pub const DSR: Self = Self(1 << 3);
523         pub const DCD: Self = Self(1 << 2);
524         pub const CTS: Self = Self(1 << 1);
525         pub const RI: Self = Self(1 << 0);
526 
527         pub const E: Self = Self(Self::OE.0 | Self::BE.0 | Self::PE.0 | Self::FE.0);
528         pub const MS: Self = Self(Self::RI.0 | Self::DSR.0 | Self::DCD.0 | Self::CTS.0);
529     }
530 }
531 
532 // TODO: You must disable the UART before any of the control registers are
533 // reprogrammed. When the UART is disabled in the middle of transmission or
534 // reception, it completes the current character before stopping
535