xref: /qemu/rust/hw/char/pl011/src/lib.rs (revision 08916fd4b6b308941568ecd7305455121ce7c267)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 //
5 // PL011 QEMU Device Model
6 //
7 // This library implements a device model for the PrimeCell® UART (PL011)
8 // device in QEMU.
9 //
10 #![doc = include_str!("../README.md")]
11 //! # Library crate
12 //!
13 //! See [`PL011State`](crate::device::PL011State) for the device model type and
14 //! the [`registers`] module for register types.
15 
16 #![deny(
17     clippy::correctness,
18     clippy::suspicious,
19     clippy::complexity,
20     clippy::perf,
21     clippy::cargo,
22     clippy::nursery,
23     clippy::style
24 )]
25 #![allow(clippy::upper_case_acronyms)]
26 #![allow(clippy::result_unit_err)]
27 
28 use qemu_api::c_str;
29 
30 mod device;
31 mod device_class;
32 mod memory_ops;
33 
34 pub use device::pl011_create;
35 
36 pub const TYPE_PL011: &::std::ffi::CStr = c_str!("pl011");
37 pub const TYPE_PL011_LUMINARY: &::std::ffi::CStr = c_str!("pl011_luminary");
38 
39 /// Offset of each register from the base memory address of the device.
40 ///
41 /// # Source
42 /// ARM DDI 0183G, Table 3-1 p.3-3
43 #[doc(alias = "offset")]
44 #[allow(non_camel_case_types)]
45 #[repr(u64)]
46 #[derive(Debug, Eq, PartialEq, qemu_api_macros::TryInto)]
47 enum RegisterOffset {
48     /// Data Register
49     ///
50     /// A write to this register initiates the actual data transmission
51     #[doc(alias = "UARTDR")]
52     DR = 0x000,
53     /// Receive Status Register or Error Clear Register
54     #[doc(alias = "UARTRSR")]
55     #[doc(alias = "UARTECR")]
56     RSR = 0x004,
57     /// Flag Register
58     ///
59     /// A read of this register shows if transmission is complete
60     #[doc(alias = "UARTFR")]
61     FR = 0x018,
62     /// Fractional Baud Rate Register
63     ///
64     /// responsible for baud rate speed
65     #[doc(alias = "UARTFBRD")]
66     FBRD = 0x028,
67     /// `IrDA` Low-Power Counter Register
68     #[doc(alias = "UARTILPR")]
69     ILPR = 0x020,
70     /// Integer Baud Rate Register
71     ///
72     /// Responsible for baud rate speed
73     #[doc(alias = "UARTIBRD")]
74     IBRD = 0x024,
75     /// line control register (data frame format)
76     #[doc(alias = "UARTLCR_H")]
77     LCR_H = 0x02C,
78     /// Toggle UART, transmission or reception
79     #[doc(alias = "UARTCR")]
80     CR = 0x030,
81     /// Interrupt FIFO Level Select Register
82     #[doc(alias = "UARTIFLS")]
83     FLS = 0x034,
84     /// Interrupt Mask Set/Clear Register
85     #[doc(alias = "UARTIMSC")]
86     IMSC = 0x038,
87     /// Raw Interrupt Status Register
88     #[doc(alias = "UARTRIS")]
89     RIS = 0x03C,
90     /// Masked Interrupt Status Register
91     #[doc(alias = "UARTMIS")]
92     MIS = 0x040,
93     /// Interrupt Clear Register
94     #[doc(alias = "UARTICR")]
95     ICR = 0x044,
96     /// DMA control Register
97     #[doc(alias = "UARTDMACR")]
98     DMACR = 0x048,
99     ///// Reserved, offsets `0x04C` to `0x07C`.
100     //Reserved = 0x04C,
101 }
102 
103 mod registers {
104     //! Device registers exposed as typed structs which are backed by arbitrary
105     //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
106     use bilge::prelude::*;
107     use qemu_api::impl_vmstate_bitsized;
108 
109     /// Receive Status Register / Data Register common error bits
110     ///
111     /// The `UARTRSR` register is updated only when a read occurs
112     /// from the `UARTDR` register with the same status information
113     /// that can also be obtained by reading the `UARTDR` register
114     #[bitsize(8)]
115     #[derive(Clone, Copy, Default, DebugBits, FromBits)]
116     pub struct Errors {
117         pub framing_error: bool,
118         pub parity_error: bool,
119         pub break_error: bool,
120         pub overrun_error: bool,
121         _reserved_unpredictable: u4,
122     }
123 
124     // TODO: FIFO Mode has different semantics
125     /// Data Register, `UARTDR`
126     ///
127     /// The `UARTDR` register is the data register.
128     ///
129     /// For words to be transmitted:
130     ///
131     /// - if the FIFOs are enabled, data written to this location is pushed onto
132     ///   the transmit
133     /// FIFO
134     /// - if the FIFOs are not enabled, data is stored in the transmitter
135     ///   holding register (the
136     /// bottom word of the transmit FIFO).
137     ///
138     /// The write operation initiates transmission from the UART. The data is
139     /// prefixed with a start bit, appended with the appropriate parity bit
140     /// (if parity is enabled), and a stop bit. The resultant word is then
141     /// transmitted.
142     ///
143     /// For received words:
144     ///
145     /// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
146     ///   frame, parity,
147     /// and overrun) is pushed onto the 12-bit wide receive FIFO
148     /// - if the FIFOs are not enabled, the data byte and status are stored in
149     ///   the receiving
150     /// holding register (the bottom word of the receive FIFO).
151     ///
152     /// The received data byte is read by performing reads from the `UARTDR`
153     /// register along with the corresponding status information. The status
154     /// information can also be read by a read of the `UARTRSR/UARTECR`
155     /// register.
156     ///
157     /// # Note
158     ///
159     /// You must disable the UART before any of the control registers are
160     /// reprogrammed. When the UART is disabled in the middle of
161     /// transmission or reception, it completes the current character before
162     /// stopping.
163     ///
164     /// # Source
165     /// ARM DDI 0183G 3.3.1 Data Register, UARTDR
166     #[bitsize(32)]
167     #[derive(Clone, Copy, Default, DebugBits, FromBits)]
168     #[doc(alias = "UARTDR")]
169     pub struct Data {
170         pub data: u8,
171         pub errors: Errors,
172         _reserved: u16,
173     }
174     impl_vmstate_bitsized!(Data);
175 
176     impl Data {
177         // bilge is not very const-friendly, unfortunately
178         pub const BREAK: Self = Self { value: 1 << 10 };
179     }
180 
181     // TODO: FIFO Mode has different semantics
182     /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
183     ///
184     /// The UARTRSR/UARTECR register is the receive status register/error clear
185     /// register. Receive status can also be read from the `UARTRSR`
186     /// register. If the status is read from this register, then the status
187     /// information for break, framing and parity corresponds to the
188     /// data character read from the [Data register](Data), `UARTDR` prior to
189     /// reading the UARTRSR register. The status information for overrun is
190     /// set immediately when an overrun condition occurs.
191     ///
192     ///
193     /// # Note
194     /// The received data character must be read first from the [Data
195     /// Register](Data), `UARTDR` before reading the error status associated
196     /// with that data character from the `UARTRSR` register. This read
197     /// sequence cannot be reversed, because the `UARTRSR` register is
198     /// updated only when a read occurs from the `UARTDR` register. However,
199     /// the status information can also be obtained by reading the `UARTDR`
200     /// register
201     ///
202     /// # Source
203     /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
204     /// UARTRSR/UARTECR
205     #[bitsize(32)]
206     #[derive(Clone, Copy, DebugBits, FromBits)]
207     pub struct ReceiveStatusErrorClear {
208         pub errors: Errors,
209         _reserved_unpredictable: u24,
210     }
211     impl_vmstate_bitsized!(ReceiveStatusErrorClear);
212 
213     impl ReceiveStatusErrorClear {
214         pub fn set_from_data(&mut self, data: Data) {
215             self.set_errors(data.errors());
216         }
217 
218         pub fn reset(&mut self) {
219             // All the bits are cleared to 0 on reset.
220             *self = Self::default();
221         }
222     }
223 
224     impl Default for ReceiveStatusErrorClear {
225         fn default() -> Self {
226             0.into()
227         }
228     }
229 
230     #[bitsize(32)]
231     #[derive(Clone, Copy, DebugBits, FromBits)]
232     /// Flag Register, `UARTFR`
233     #[doc(alias = "UARTFR")]
234     pub struct Flags {
235         /// CTS Clear to send. This bit is the complement of the UART clear to
236         /// send, `nUARTCTS`, modem status input. That is, the bit is 1
237         /// when `nUARTCTS` is LOW.
238         pub clear_to_send: bool,
239         /// DSR Data set ready. This bit is the complement of the UART data set
240         /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
241         /// `nUARTDSR` is LOW.
242         pub data_set_ready: bool,
243         /// DCD Data carrier detect. This bit is the complement of the UART data
244         /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
245         /// 1 when `nUARTDCD` is LOW.
246         pub data_carrier_detect: bool,
247         /// BUSY UART busy. If this bit is set to 1, the UART is busy
248         /// transmitting data. This bit remains set until the complete
249         /// byte, including all the stop bits, has been sent from the
250         /// shift register. This bit is set as soon as the transmit FIFO
251         /// becomes non-empty, regardless of whether the UART is enabled
252         /// or not.
253         pub busy: bool,
254         /// RXFE Receive FIFO empty. The meaning of this bit depends on the
255         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
256         /// is disabled, this bit is set when the receive holding
257         /// register is empty. If the FIFO is enabled, the RXFE bit is
258         /// set when the receive FIFO is empty.
259         pub receive_fifo_empty: bool,
260         /// TXFF Transmit FIFO full. The meaning of this bit depends on the
261         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
262         /// is disabled, this bit is set when the transmit holding
263         /// register is full. If the FIFO is enabled, the TXFF bit is
264         /// set when the transmit FIFO is full.
265         pub transmit_fifo_full: bool,
266         /// RXFF Receive FIFO full. The meaning of this bit depends on the state
267         /// of the FEN bit in the UARTLCR_H register. If the FIFO is
268         /// disabled, this bit is set when the receive holding register
269         /// is full. If the FIFO is enabled, the RXFF bit is set when
270         /// the receive FIFO is full.
271         pub receive_fifo_full: bool,
272         /// Transmit FIFO empty. The meaning of this bit depends on the state of
273         /// the FEN bit in the [Line Control register](LineControl),
274         /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
275         /// transmit holding register is empty. If the FIFO is enabled,
276         /// the TXFE bit is set when the transmit FIFO is empty. This
277         /// bit does not indicate if there is data in the transmit shift
278         /// register.
279         pub transmit_fifo_empty: bool,
280         /// `RI`, is `true` when `nUARTRI` is `LOW`.
281         pub ring_indicator: bool,
282         _reserved_zero_no_modify: u23,
283     }
284     impl_vmstate_bitsized!(Flags);
285 
286     impl Flags {
287         pub fn reset(&mut self) {
288             *self = Self::default();
289         }
290     }
291 
292     impl Default for Flags {
293         fn default() -> Self {
294             let mut ret: Self = 0.into();
295             // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
296             ret.set_receive_fifo_empty(true);
297             ret.set_transmit_fifo_empty(true);
298             ret
299         }
300     }
301 
302     #[bitsize(32)]
303     #[derive(Clone, Copy, DebugBits, FromBits)]
304     /// Line Control Register, `UARTLCR_H`
305     #[doc(alias = "UARTLCR_H")]
306     pub struct LineControl {
307         /// BRK Send break.
308         ///
309         /// If this bit is set to `1`, a low-level is continually output on the
310         /// `UARTTXD` output, after completing transmission of the
311         /// current character. For the proper execution of the break command,
312         /// the software must set this bit for at least two complete
313         /// frames. For normal use, this bit must be cleared to `0`.
314         pub send_break: bool,
315         /// 1 PEN Parity enable:
316         ///
317         /// - 0 = parity is disabled and no parity bit added to the data frame
318         /// - 1 = parity checking and generation is enabled.
319         ///
320         /// See Table 3-11 on page 3-14 for the parity truth table.
321         pub parity_enabled: bool,
322         /// EPS Even parity select. Controls the type of parity the UART uses
323         /// during transmission and reception:
324         /// - 0 = odd parity. The UART generates or checks for an odd number of
325         ///   1s in the data and parity bits.
326         /// - 1 = even parity. The UART generates or checks for an even number
327         ///   of 1s in the data and parity bits.
328         /// This bit has no effect when the `PEN` bit disables parity checking
329         /// and generation. See Table 3-11 on page 3-14 for the parity
330         /// truth table.
331         pub parity: Parity,
332         /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
333         /// are transmitted at the end of the frame. The receive
334         /// logic does not check for two stop bits being received.
335         pub two_stops_bits: bool,
336         /// FEN Enable FIFOs:
337         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
338         /// 1-byte-deep holding registers 1 = transmit and receive FIFO
339         /// buffers are enabled (FIFO mode).
340         pub fifos_enabled: Mode,
341         /// WLEN Word length. These bits indicate the number of data bits
342         /// transmitted or received in a frame as follows: b11 = 8 bits
343         /// b10 = 7 bits
344         /// b01 = 6 bits
345         /// b00 = 5 bits.
346         pub word_length: WordLength,
347         /// 7 SPS Stick parity select.
348         /// 0 = stick parity is disabled
349         /// 1 = either:
350         /// • if the EPS bit is 0 then the parity bit is transmitted and checked
351         /// as a 1 • if the EPS bit is 1 then the parity bit is
352         /// transmitted and checked as a 0. This bit has no effect when
353         /// the PEN bit disables parity checking and generation. See Table 3-11
354         /// on page 3-14 for the parity truth table.
355         pub sticky_parity: bool,
356         /// 31:8 - Reserved, do not modify, read as zero.
357         _reserved_zero_no_modify: u24,
358     }
359     impl_vmstate_bitsized!(LineControl);
360 
361     impl LineControl {
362         pub fn reset(&mut self) {
363             // All the bits are cleared to 0 when reset.
364             *self = 0.into();
365         }
366     }
367 
368     impl Default for LineControl {
369         fn default() -> Self {
370             0.into()
371         }
372     }
373 
374     #[bitsize(1)]
375     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
376     /// `EPS` "Even parity select", field of [Line Control
377     /// register](LineControl).
378     pub enum Parity {
379         /// - 0 = odd parity. The UART generates or checks for an odd number of
380         ///   1s in the data and parity bits.
381         Odd = 0,
382         /// - 1 = even parity. The UART generates or checks for an even number
383         ///   of 1s in the data and parity bits.
384         Even = 1,
385     }
386 
387     #[bitsize(1)]
388     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
389     /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
390     /// register](LineControl).
391     pub enum Mode {
392         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
393         /// 1-byte-deep holding registers
394         Character = 0,
395         /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
396         FIFO = 1,
397     }
398 
399     #[bitsize(2)]
400     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
401     /// `WLEN` Word length, field of [Line Control register](LineControl).
402     ///
403     /// These bits indicate the number of data bits transmitted or received in a
404     /// frame as follows:
405     pub enum WordLength {
406         /// b11 = 8 bits
407         _8Bits = 0b11,
408         /// b10 = 7 bits
409         _7Bits = 0b10,
410         /// b01 = 6 bits
411         _6Bits = 0b01,
412         /// b00 = 5 bits.
413         _5Bits = 0b00,
414     }
415 
416     /// Control Register, `UARTCR`
417     ///
418     /// The `UARTCR` register is the control register. All the bits are cleared
419     /// to `0` on reset except for bits `9` and `8` that are set to `1`.
420     ///
421     /// # Source
422     /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
423     #[bitsize(32)]
424     #[doc(alias = "UARTCR")]
425     #[derive(Clone, Copy, DebugBits, FromBits)]
426     pub struct Control {
427         /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
428         /// in the middle of transmission or reception, it completes the current
429         /// character before stopping. 1 = the UART is enabled. Data
430         /// transmission and reception occurs for either UART signals or SIR
431         /// signals depending on the setting of the SIREN bit.
432         pub enable_uart: bool,
433         /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
434         /// remains LOW (no light pulse generated), and signal transitions on
435         /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
436         /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH,
437         /// in the marking state. Signal transitions on UARTRXD or modem status
438         /// inputs have no effect. This bit has no effect if the UARTEN bit
439         /// disables the UART.
440         pub enable_sir: bool,
441         /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
442         /// mode. If this bit is cleared to 0, low-level bits are transmitted as
443         /// an active high pulse with a width of 3/ 16th of the bit period. If
444         /// this bit is set to 1, low-level bits are transmitted with a pulse
445         /// width that is 3 times the period of the IrLPBaud16 input signal,
446         /// regardless of the selected bit rate. Setting this bit uses less
447         /// power, but might reduce transmission distances.
448         pub sir_lowpower_irda_mode: u1,
449         /// Reserved, do not modify, read as zero.
450         _reserved_zero_no_modify: u4,
451         /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
452         /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
453         /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
454         /// through to the SIRIN path. The SIRTEST bit in the test register must
455         /// be set to 1 to override the normal half-duplex SIR operation. This
456         /// must be the requirement for accessing the test registers during
457         /// normal operation, and SIRTEST must be cleared to 0 when loopback
458         /// testing is finished. This feature reduces the amount of external
459         /// coupling required during system test. If this bit is set to 1, and
460         /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
461         /// UARTRXD path. In either SIR mode or UART mode, when this bit is set,
462         /// the modem outputs are also fed through to the modem inputs. This bit
463         /// is cleared to 0 on reset, to disable loopback.
464         pub enable_loopback: bool,
465         /// `TXE` Transmit enable. If this bit is set to 1, the transmit section
466         /// of the UART is enabled. Data transmission occurs for either UART
467         /// signals, or SIR signals depending on the setting of the SIREN bit.
468         /// When the UART is disabled in the middle of transmission, it
469         /// completes the current character before stopping.
470         pub enable_transmit: bool,
471         /// `RXE` Receive enable. If this bit is set to 1, the receive section
472         /// of the UART is enabled. Data reception occurs for either UART
473         /// signals or SIR signals depending on the setting of the SIREN bit.
474         /// When the UART is disabled in the middle of reception, it completes
475         /// the current character before stopping.
476         pub enable_receive: bool,
477         /// `DTR` Data transmit ready. This bit is the complement of the UART
478         /// data transmit ready, `nUARTDTR`, modem status output. That is, when
479         /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
480         pub data_transmit_ready: bool,
481         /// `RTS` Request to send. This bit is the complement of the UART
482         /// request to send, `nUARTRTS`, modem status output. That is, when the
483         /// bit is programmed to a 1 then `nUARTRTS` is LOW.
484         pub request_to_send: bool,
485         /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
486         /// modem status output. That is, when the bit is programmed to a 1 the
487         /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
488         pub out_1: bool,
489         /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
490         /// modem status output. That is, when the bit is programmed to a 1, the
491         /// output is 0. For DTE this can be used as Ring Indicator (RI).
492         pub out_2: bool,
493         /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
494         /// RTS hardware flow control is enabled. Data is only requested when
495         /// there is space in the receive FIFO for it to be received.
496         pub rts_hardware_flow_control_enable: bool,
497         /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
498         /// CTS hardware flow control is enabled. Data is only transmitted when
499         /// the `nUARTCTS` signal is asserted.
500         pub cts_hardware_flow_control_enable: bool,
501         /// 31:16 - Reserved, do not modify, read as zero.
502         _reserved_zero_no_modify2: u16,
503     }
504     impl_vmstate_bitsized!(Control);
505 
506     impl Control {
507         pub fn reset(&mut self) {
508             *self = 0.into();
509             self.set_enable_receive(true);
510             self.set_enable_transmit(true);
511         }
512     }
513 
514     impl Default for Control {
515         fn default() -> Self {
516             let mut ret: Self = 0.into();
517             ret.reset();
518             ret
519         }
520     }
521 
522     /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
523     pub struct Interrupt(pub u32);
524 
525     impl Interrupt {
526         pub const OE: Self = Self(1 << 10);
527         pub const BE: Self = Self(1 << 9);
528         pub const PE: Self = Self(1 << 8);
529         pub const FE: Self = Self(1 << 7);
530         pub const RT: Self = Self(1 << 6);
531         pub const TX: Self = Self(1 << 5);
532         pub const RX: Self = Self(1 << 4);
533         pub const DSR: Self = Self(1 << 3);
534         pub const DCD: Self = Self(1 << 2);
535         pub const CTS: Self = Self(1 << 1);
536         pub const RI: Self = Self(1 << 0);
537 
538         pub const E: Self = Self(Self::OE.0 | Self::BE.0 | Self::PE.0 | Self::FE.0);
539         pub const MS: Self = Self(Self::RI.0 | Self::DSR.0 | Self::DCD.0 | Self::CTS.0);
540     }
541 }
542 
543 // TODO: You must disable the UART before any of the control registers are
544 // reprogrammed. When the UART is disabled in the middle of transmission or
545 // reception, it completes the current character before stopping
546