1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. (since 61# 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. (since 141# 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover-setup: setup phase for a postcopy recovery 146# process, preparing for a recovery phase to start. (since 9.1) 147# 148# @postcopy-recover: trying to recover from a paused postcopy. (since 149# 3.0) 150# 151# @completed: migration is finished. 152# 153# @failed: some error occurred during migration process. 154# 155# @colo: VM is in the process of fault tolerance, VM can not get into 156# this state unless colo capability is enabled for migration. 157# (since 2.8) 158# 159# @pre-switchover: Paused before device serialisation. (since 2.11) 160# 161# @device: During device serialisation (also known as switchover phase). 162# Before 9.2, this is only used when (1) in precopy, and (2) when 163# pre-switchover capability is enabled. After 10.0, this state will 164# always be present for every migration procedure as the switchover 165# phase. (since 2.11) 166# 167# @wait-unplug: wait for device unplug request by guest OS to be 168# completed. (since 4.2) 169# 170# Since: 2.3 171## 172{ 'enum': 'MigrationStatus', 173 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 174 'active', 'postcopy-active', 'postcopy-paused', 175 'postcopy-recover-setup', 176 'postcopy-recover', 'completed', 'failed', 'colo', 177 'pre-switchover', 'device', 'wait-unplug' ] } 178## 179# @VfioStats: 180# 181# Detailed VFIO devices migration statistics 182# 183# @transferred: amount of bytes transferred to the target VM by VFIO 184# devices 185# 186# Since: 5.2 187## 188{ 'struct': 'VfioStats', 189 'data': {'transferred': 'int' } } 190 191## 192# @MigrationInfo: 193# 194# Information about current migration process. 195# 196# @status: @MigrationStatus describing the current migration status. 197# If this field is not returned, no migration process has been 198# initiated 199# 200# @ram: @MigrationStats containing detailed migration status, only 201# returned if status is 'active' or 'completed'(since 1.2) 202# 203# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 204# migration statistics, only returned if XBZRLE feature is on and 205# status is 'active' or 'completed' (since 1.2) 206# 207# @total-time: total amount of milliseconds since migration started. 208# If migration has ended, it returns the total migration time. 209# (since 1.2) 210# 211# @downtime: only present when migration finishes correctly total 212# downtime in milliseconds for the guest. (since 1.3) 213# 214# @expected-downtime: only present while migration is active expected 215# downtime in milliseconds for the guest in last walk of the dirty 216# bitmap. (since 1.3) 217# 218# @setup-time: amount of setup time in milliseconds *before* the 219# iterations begin but *after* the QMP command is issued. This is 220# designed to provide an accounting of any activities (such as 221# RDMA pinning) which may be expensive, but do not actually occur 222# during the iterative migration rounds themselves. (since 1.6) 223# 224# @cpu-throttle-percentage: percentage of time guest cpus are being 225# throttled during auto-converge. This is only present when 226# auto-converge has started throttling guest cpus. (Since 2.7) 227# 228# @error-desc: the human readable error description string. Clients 229# should not attempt to parse the error strings. (Since 2.7) 230# 231# @postcopy-blocktime: total time when all vCPU were blocked during 232# postcopy live migration. This is only present when the 233# postcopy-blocktime migration capability is enabled. (Since 3.0) 234# 235# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 236# This is only present when the postcopy-blocktime migration 237# capability is enabled. (Since 3.0) 238# 239# @socket-address: Only used for tcp, to know what the real port is 240# (Since 4.0) 241# 242# @vfio: @VfioStats containing detailed VFIO devices migration 243# statistics, only returned if VFIO device is present, migration 244# is supported by all VFIO devices and status is 'active' or 245# 'completed' (since 5.2) 246# 247# @blocked-reasons: A list of reasons an outgoing migration is 248# blocked. Present and non-empty when migration is blocked. 249# (since 6.0) 250# 251# @dirty-limit-throttle-time-per-round: Maximum throttle time (in 252# microseconds) of virtual CPUs each dirty ring full round, which 253# shows how MigrationCapability dirty-limit affects the guest 254# during live migration. (Since 8.1) 255# 256# @dirty-limit-ring-full-time: Estimated average dirty ring full time 257# (in microseconds) for each dirty ring full round. The value 258# equals the dirty ring memory size divided by the average dirty 259# page rate of the virtual CPU, which can be used to observe the 260# average memory load of the virtual CPU indirectly. Note that 261# zero means guest doesn't dirty memory. (Since 8.1) 262# 263# Since: 0.14 264## 265{ 'struct': 'MigrationInfo', 266 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 267 '*vfio': 'VfioStats', 268 '*xbzrle-cache': 'XBZRLECacheStats', 269 '*total-time': 'int', 270 '*expected-downtime': 'int', 271 '*downtime': 'int', 272 '*setup-time': 'int', 273 '*cpu-throttle-percentage': 'int', 274 '*error-desc': 'str', 275 '*blocked-reasons': ['str'], 276 '*postcopy-blocktime': 'uint32', 277 '*postcopy-vcpu-blocktime': ['uint32'], 278 '*socket-address': ['SocketAddress'], 279 '*dirty-limit-throttle-time-per-round': 'uint64', 280 '*dirty-limit-ring-full-time': 'uint64'} } 281 282## 283# @query-migrate: 284# 285# Returns information about current migration process. If migration 286# is active there will be another json-object with RAM migration 287# status. 288# 289# Returns: @MigrationInfo 290# 291# Since: 0.14 292# 293# .. qmp-example:: 294# :title: Before the first migration 295# 296# -> { "execute": "query-migrate" } 297# <- { "return": {} } 298# 299# .. qmp-example:: 300# :title: Migration is done and has succeeded 301# 302# -> { "execute": "query-migrate" } 303# <- { "return": { 304# "status": "completed", 305# "total-time":12345, 306# "setup-time":12345, 307# "downtime":12345, 308# "ram":{ 309# "transferred":123, 310# "remaining":123, 311# "total":246, 312# "duplicate":123, 313# "normal":123, 314# "normal-bytes":123456, 315# "dirty-sync-count":15 316# } 317# } 318# } 319# 320# .. qmp-example:: 321# :title: Migration is done and has failed 322# 323# -> { "execute": "query-migrate" } 324# <- { "return": { "status": "failed" } } 325# 326# .. qmp-example:: 327# :title: Migration is being performed 328# 329# -> { "execute": "query-migrate" } 330# <- { 331# "return":{ 332# "status":"active", 333# "total-time":12345, 334# "setup-time":12345, 335# "expected-downtime":12345, 336# "ram":{ 337# "transferred":123, 338# "remaining":123, 339# "total":246, 340# "duplicate":123, 341# "normal":123, 342# "normal-bytes":123456, 343# "dirty-sync-count":15 344# } 345# } 346# } 347# 348# .. qmp-example:: 349# :title: Migration is being performed and XBZRLE is active 350# 351# -> { "execute": "query-migrate" } 352# <- { 353# "return":{ 354# "status":"active", 355# "total-time":12345, 356# "setup-time":12345, 357# "expected-downtime":12345, 358# "ram":{ 359# "total":1057024, 360# "remaining":1053304, 361# "transferred":3720, 362# "duplicate":10, 363# "normal":3333, 364# "normal-bytes":3412992, 365# "dirty-sync-count":15 366# }, 367# "xbzrle-cache":{ 368# "cache-size":67108864, 369# "bytes":20971520, 370# "pages":2444343, 371# "cache-miss":2244, 372# "cache-miss-rate":0.123, 373# "encoding-rate":80.1, 374# "overflow":34434 375# } 376# } 377# } 378## 379{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 380 381## 382# @MigrationCapability: 383# 384# Migration capabilities enumeration 385# 386# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 387# Encoding). This feature allows us to minimize migration traffic 388# for certain work loads, by sending compressed difference of the 389# pages 390# 391# @rdma-pin-all: Controls whether or not the entire VM memory 392# footprint is mlock()'d on demand or all at once. Refer to 393# docs/rdma.txt for usage. Disabled by default. (since 2.0) 394# 395# @zero-blocks: During storage migration encode blocks of zeroes 396# efficiently. This essentially saves 1MB of zeroes per block on 397# the wire. Enabling requires source and target VM to support 398# this feature. To enable it is sufficient to enable the 399# capability on the source VM. The feature is disabled by 400# default. (since 1.6) 401# 402# @events: generate events for each migration state change (since 2.4) 403# 404# @auto-converge: If enabled, QEMU will automatically throttle down 405# the guest to speed up convergence of RAM migration. (since 1.6) 406# 407# @postcopy-ram: Start executing on the migration target before all of 408# RAM has been migrated, pulling the remaining pages along as 409# needed. The capacity must have the same setting on both source 410# and target or migration will not even start. NOTE: If the 411# migration fails during postcopy the VM will fail. (since 2.6) 412# 413# @x-colo: If enabled, migration will never end, and the state of the 414# VM on the primary side will be migrated continuously to the VM 415# on secondary side, this process is called COarse-Grain LOck 416# Stepping (COLO) for Non-stop Service. (since 2.8) 417# 418# @release-ram: if enabled, qemu will free the migrated ram pages on 419# the source during postcopy-ram migration. (since 2.9) 420# 421# @return-path: If enabled, migration will use the return path even 422# for precopy. (since 2.10) 423# 424# @pause-before-switchover: Pause outgoing migration before 425# serialising device state and before disabling block IO (since 426# 2.11) 427# 428# @multifd: Use more than one fd for migration (since 4.0) 429# 430# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 431# (since 2.12) 432# 433# @postcopy-blocktime: Calculate downtime for postcopy live migration 434# (since 3.0) 435# 436# @late-block-activate: If enabled, the destination will not activate 437# block devices (and thus take locks) immediately at the end of 438# migration. (since 3.0) 439# 440# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 441# that is accessible on the destination machine. (since 4.0) 442# 443# @validate-uuid: Send the UUID of the source to allow the destination 444# to ensure it is the same. (since 4.2) 445# 446# @background-snapshot: If enabled, the migration stream will be a 447# snapshot of the VM exactly at the point when the migration 448# procedure starts. The VM RAM is saved with running VM. 449# (since 6.0) 450# 451# @zero-copy-send: Controls behavior on sending memory pages on 452# migration. When true, enables a zero-copy mechanism for sending 453# memory pages, if host supports it. Requires that QEMU be 454# permitted to use locked memory for guest RAM pages. (since 7.1) 455# 456# @postcopy-preempt: If enabled, the migration process will allow 457# postcopy requests to preempt precopy stream, so postcopy 458# requests will be handled faster. This is a performance feature 459# and should not affect the correctness of postcopy migration. 460# (since 7.1) 461# 462# @switchover-ack: If enabled, migration will not stop the source VM 463# and complete the migration until an ACK is received from the 464# destination that it's OK to do so. Exactly when this ACK is 465# sent depends on the migrated devices that use this feature. For 466# example, a device can use it to make sure some of its data is 467# sent and loaded in the destination before doing switchover. 468# This can reduce downtime if devices that support this capability 469# are present. 'return-path' capability must be enabled to use 470# it. (since 8.1) 471# 472# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 473# keep their dirty page rate within @vcpu-dirty-limit. This can 474# improve responsiveness of large guests during live migration, 475# and can result in more stable read performance. Requires KVM 476# with accelerator property "dirty-ring-size" set. (Since 8.1) 477# 478# @mapped-ram: Migrate using fixed offsets in the migration file for 479# each RAM page. Requires a migration URI that supports seeking, 480# such as a file. (since 9.0) 481# 482# Features: 483# 484# @unstable: Members @x-colo and @x-ignore-shared are experimental. 485# @deprecated: Member @zero-blocks is deprecated as being part of 486# block migration which was already removed. 487# 488# Since: 1.2 489## 490{ 'enum': 'MigrationCapability', 491 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 492 { 'name': 'zero-blocks', 'features': [ 'deprecated' ] }, 493 'events', 'postcopy-ram', 494 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 495 'release-ram', 496 'return-path', 'pause-before-switchover', 'multifd', 497 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 498 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 499 'validate-uuid', 'background-snapshot', 500 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 501 'dirty-limit', 'mapped-ram'] } 502 503## 504# @MigrationCapabilityStatus: 505# 506# Migration capability information 507# 508# @capability: capability enum 509# 510# @state: capability state bool 511# 512# Since: 1.2 513## 514{ 'struct': 'MigrationCapabilityStatus', 515 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 516 517## 518# @migrate-set-capabilities: 519# 520# Enable/Disable the following migration capabilities (like xbzrle) 521# 522# @capabilities: json array of capability modifications to make 523# 524# Since: 1.2 525# 526# .. qmp-example:: 527# 528# -> { "execute": "migrate-set-capabilities" , "arguments": 529# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 530# <- { "return": {} } 531## 532{ 'command': 'migrate-set-capabilities', 533 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 534 535## 536# @query-migrate-capabilities: 537# 538# Returns information about the current migration capabilities status 539# 540# Returns: @MigrationCapabilityStatus 541# 542# Since: 1.2 543# 544# .. qmp-example:: 545# 546# -> { "execute": "query-migrate-capabilities" } 547# <- { "return": [ 548# {"state": false, "capability": "xbzrle"}, 549# {"state": false, "capability": "rdma-pin-all"}, 550# {"state": false, "capability": "auto-converge"}, 551# {"state": false, "capability": "zero-blocks"}, 552# {"state": true, "capability": "events"}, 553# {"state": false, "capability": "postcopy-ram"}, 554# {"state": false, "capability": "x-colo"} 555# ]} 556## 557{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 558 559## 560# @MultiFDCompression: 561# 562# An enumeration of multifd compression methods. 563# 564# @none: no compression. 565# 566# @zlib: use zlib compression method. 567# 568# @zstd: use zstd compression method. 569# 570# @qatzip: use qatzip compression method. (Since 9.2) 571# 572# @qpl: use qpl compression method. Query Processing Library(qpl) is 573# based on the deflate compression algorithm and use the Intel 574# In-Memory Analytics Accelerator(IAA) accelerated compression and 575# decompression. (Since 9.1) 576# 577# @uadk: use UADK library compression method. (Since 9.1) 578# 579# Since: 5.0 580## 581{ 'enum': 'MultiFDCompression', 582 'prefix': 'MULTIFD_COMPRESSION', 583 'data': [ 'none', 'zlib', 584 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 585 { 'name': 'qatzip', 'if': 'CONFIG_QATZIP'}, 586 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 587 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 588 589## 590# @MigMode: 591# 592# @normal: the original form of migration. (since 8.2) 593# 594# @cpr-reboot: The migrate command stops the VM and saves state to the 595# URI. After quitting QEMU, the user resumes by running QEMU 596# -incoming. 597# 598# This mode allows the user to quit QEMU, optionally update and 599# reboot the OS, and restart QEMU. If the user reboots, the URI 600# must persist across the reboot, such as by using a file. 601# 602# Unlike normal mode, the use of certain local storage options 603# does not block the migration, but the user must not modify the 604# contents of guest block devices between the quit and restart. 605# 606# This mode supports VFIO devices provided the user first puts the 607# guest in the suspended runstate, such as by issuing 608# guest-suspend-ram to the QEMU guest agent. 609# 610# Best performance is achieved when the memory backend is shared 611# and the @x-ignore-shared migration capability is set, but this 612# is not required. Further, if the user reboots before restarting 613# such a configuration, the shared memory must persist across the 614# reboot, such as by backing it with a dax device. 615# 616# @cpr-reboot may not be used with postcopy, background-snapshot, 617# or COLO. 618# 619# (since 8.2) 620# 621# @cpr-transfer: This mode allows the user to transfer a guest to a 622# new QEMU instance on the same host with minimal guest pause 623# time by preserving guest RAM in place. Devices and their pinned 624# pages will also be preserved in a future QEMU release. 625# 626# The user starts new QEMU on the same host as old QEMU, with 627# command-line arguments to create the same machine, plus the 628# -incoming option for the main migration channel, like normal 629# live migration. In addition, the user adds a second -incoming 630# option with channel type "cpr". This CPR channel must support 631# file descriptor transfer with SCM_RIGHTS, i.e. it must be a 632# UNIX domain socket. 633# 634# To initiate CPR, the user issues a migrate command to old QEMU, 635# adding a second migration channel of type "cpr" in the channels 636# argument. Old QEMU stops the VM, saves state to the migration 637# channels, and enters the postmigrate state. Execution resumes 638# in new QEMU. 639# 640# New QEMU reads the CPR channel before opening a monitor, hence 641# the CPR channel cannot be specified in the list of channels for 642# a migrate-incoming command. It may only be specified on the 643# command line. 644# 645# The main channel address cannot be a file type, and for an 646# inet socket, the port cannot be 0 (meaning dynamically choose 647# a port). 648# 649# Memory-backend objects must have the share=on attribute, but 650# memory-backend-epc is not supported. The VM must be started 651# with the '-machine aux-ram-share=on' option. 652# 653# When using -incoming defer, you must issue the migrate command 654# to old QEMU before issuing any monitor commands to new QEMU. 655# However, new QEMU does not open and read the migration stream 656# until you issue the migrate incoming command. 657# 658# (since 10.0) 659## 660{ 'enum': 'MigMode', 661 'data': [ 'normal', 'cpr-reboot', 'cpr-transfer' ] } 662 663## 664# @ZeroPageDetection: 665# 666# @none: Do not perform zero page checking. 667# 668# @legacy: Perform zero page checking in main migration thread. 669# 670# @multifd: Perform zero page checking in multifd sender thread if 671# multifd migration is enabled, else in the main migration thread 672# as for @legacy. 673# 674# Since: 9.0 675## 676{ 'enum': 'ZeroPageDetection', 677 'data': [ 'none', 'legacy', 'multifd' ] } 678 679## 680# @BitmapMigrationBitmapAliasTransform: 681# 682# @persistent: If present, the bitmap will be made persistent or 683# transient depending on this parameter. 684# 685# Since: 6.0 686## 687{ 'struct': 'BitmapMigrationBitmapAliasTransform', 688 'data': { 689 '*persistent': 'bool' 690 } } 691 692## 693# @BitmapMigrationBitmapAlias: 694# 695# @name: The name of the bitmap. 696# 697# @alias: An alias name for migration (for example the bitmap name on 698# the opposite site). 699# 700# @transform: Allows the modification of the migrated bitmap. (since 701# 6.0) 702# 703# Since: 5.2 704## 705{ 'struct': 'BitmapMigrationBitmapAlias', 706 'data': { 707 'name': 'str', 708 'alias': 'str', 709 '*transform': 'BitmapMigrationBitmapAliasTransform' 710 } } 711 712## 713# @BitmapMigrationNodeAlias: 714# 715# Maps a block node name and the bitmaps it has to aliases for dirty 716# bitmap migration. 717# 718# @node-name: A block node name. 719# 720# @alias: An alias block node name for migration (for example the node 721# name on the opposite site). 722# 723# @bitmaps: Mappings for the bitmaps on this node. 724# 725# Since: 5.2 726## 727{ 'struct': 'BitmapMigrationNodeAlias', 728 'data': { 729 'node-name': 'str', 730 'alias': 'str', 731 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 732 } } 733 734## 735# @MigrationParameter: 736# 737# Migration parameters enumeration 738# 739# @announce-initial: Initial delay (in milliseconds) before sending 740# the first announce (Since 4.0) 741# 742# @announce-max: Maximum delay (in milliseconds) between packets in 743# the announcement (Since 4.0) 744# 745# @announce-rounds: Number of self-announce packets sent after 746# migration (Since 4.0) 747# 748# @announce-step: Increase in delay (in milliseconds) between 749# subsequent packets in the announcement (Since 4.0) 750# 751# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 752# bytes_xfer_period to trigger throttling. It is expressed as 753# percentage. The default value is 50. (Since 5.0) 754# 755# @cpu-throttle-initial: Initial percentage of time guest cpus are 756# throttled when migration auto-converge is activated. The 757# default value is 20. (Since 2.7) 758# 759# @cpu-throttle-increment: throttle percentage increase each time 760# auto-converge detects that migration is not making progress. 761# The default value is 10. (Since 2.7) 762# 763# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 764# the tail stage of throttling, the Guest is very sensitive to CPU 765# percentage while the @cpu-throttle -increment is excessive 766# usually at tail stage. If this parameter is true, we will 767# compute the ideal CPU percentage used by the Guest, which may 768# exactly make the dirty rate match the dirty rate threshold. 769# Then we will choose a smaller throttle increment between the one 770# specified by @cpu-throttle-increment and the one generated by 771# ideal CPU percentage. Therefore, it is compatible to 772# traditional throttling, meanwhile the throttle increment won't 773# be excessive at tail stage. The default value is false. (Since 774# 5.1) 775# 776# @tls-creds: ID of the 'tls-creds' object that provides credentials 777# for establishing a TLS connection over the migration data 778# channel. On the outgoing side of the migration, the credentials 779# must be for a 'client' endpoint, while for the incoming side the 780# credentials must be for a 'server' endpoint. Setting this to a 781# non-empty string enables TLS for all migrations. An empty 782# string means that QEMU will use plain text mode for migration, 783# rather than TLS. (Since 2.7) 784# 785# @tls-hostname: migration target's hostname for validating the 786# server's x509 certificate identity. If empty, QEMU will use the 787# hostname from the migration URI, if any. A non-empty value is 788# required when using x509 based TLS credentials and the migration 789# URI does not include a hostname, such as fd: or exec: based 790# migration. (Since 2.7) 791# 792# Note: empty value works only since 2.9. 793# 794# @tls-authz: ID of the 'authz' object subclass that provides access 795# control checking of the TLS x509 certificate distinguished name. 796# This object is only resolved at time of use, so can be deleted 797# and recreated on the fly while the migration server is active. 798# If missing, it will default to denying access (Since 4.0) 799# 800# @max-bandwidth: maximum speed for migration, in bytes per second. 801# (Since 2.8) 802# 803# @avail-switchover-bandwidth: to set the available bandwidth that 804# migration can use during switchover phase. NOTE! This does not 805# limit the bandwidth during switchover, but only for calculations 806# when making decisions to switchover. By default, this value is 807# zero, which means QEMU will estimate the bandwidth 808# automatically. This can be set when the estimated value is not 809# accurate, while the user is able to guarantee such bandwidth is 810# available when switching over. When specified correctly, this 811# can make the switchover decision much more accurate. 812# (Since 8.2) 813# 814# @downtime-limit: set maximum tolerated downtime for migration. 815# maximum downtime in milliseconds (Since 2.8) 816# 817# @x-checkpoint-delay: The delay time (in ms) between two COLO 818# checkpoints in periodic mode. (Since 2.8) 819# 820# @multifd-channels: Number of channels used to migrate data in 821# parallel. This is the same number that the number of sockets 822# used for migration. The default value is 2 (since 4.0) 823# 824# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 825# needs to be a multiple of the target page size and a power of 2 826# (Since 2.11) 827# 828# @max-postcopy-bandwidth: Background transfer bandwidth during 829# postcopy. Defaults to 0 (unlimited). In bytes per second. 830# (Since 3.0) 831# 832# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 833# (Since 3.1) 834# 835# @multifd-compression: Which compression method to use. Defaults to 836# none. (Since 5.0) 837# 838# @multifd-zlib-level: Set the compression level to be used in live 839# migration, the compression level is an integer between 0 and 9, 840# where 0 means no compression, 1 means the best compression 841# speed, and 9 means best compression ratio which will consume 842# more CPU. Defaults to 1. (Since 5.0) 843# 844# @multifd-qatzip-level: Set the compression level to be used in live 845# migration. The level is an integer between 1 and 9, where 1 means 846# the best compression speed, and 9 means the best compression 847# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 848# 849# @multifd-zstd-level: Set the compression level to be used in live 850# migration, the compression level is an integer between 0 and 20, 851# where 0 means no compression, 1 means the best compression 852# speed, and 20 means best compression ratio which will consume 853# more CPU. Defaults to 1. (Since 5.0) 854# 855# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 856# aliases for the purpose of dirty bitmap migration. Such aliases 857# may for example be the corresponding names on the opposite site. 858# The mapping must be one-to-one, but not necessarily complete: On 859# the source, unmapped bitmaps and all bitmaps on unmapped nodes 860# will be ignored. On the destination, encountering an unmapped 861# alias in the incoming migration stream will result in a report, 862# and all further bitmap migration data will then be discarded. 863# Note that the destination does not know about bitmaps it does 864# not receive, so there is no limitation or requirement regarding 865# the number of bitmaps received, or how they are named, or on 866# which nodes they are placed. By default (when this parameter 867# has never been set), bitmap names are mapped to themselves. 868# Nodes are mapped to their block device name if there is one, and 869# to their node name otherwise. (Since 5.2) 870# 871# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 872# limit during live migration. Should be in the range 1 to 873# 1000ms. Defaults to 1000ms. (Since 8.1) 874# 875# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 876# Defaults to 1. (Since 8.1) 877# 878# @mode: Migration mode. See description in @MigMode. Default is 879# 'normal'. (Since 8.2) 880# 881# @zero-page-detection: Whether and how to detect zero pages. 882# See description in @ZeroPageDetection. Default is 'multifd'. 883# (since 9.0) 884# 885# @direct-io: Open migration files with O_DIRECT when possible. This 886# only has effect if the @mapped-ram capability is enabled. 887# (Since 9.1) 888# 889# Features: 890# 891# @unstable: Members @x-checkpoint-delay and 892# @x-vcpu-dirty-limit-period are experimental. 893# 894# Since: 2.4 895## 896{ 'enum': 'MigrationParameter', 897 'data': ['announce-initial', 'announce-max', 898 'announce-rounds', 'announce-step', 899 'throttle-trigger-threshold', 900 'cpu-throttle-initial', 'cpu-throttle-increment', 901 'cpu-throttle-tailslow', 902 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 903 'avail-switchover-bandwidth', 'downtime-limit', 904 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 905 'multifd-channels', 906 'xbzrle-cache-size', 'max-postcopy-bandwidth', 907 'max-cpu-throttle', 'multifd-compression', 908 'multifd-zlib-level', 'multifd-zstd-level', 909 'multifd-qatzip-level', 910 'block-bitmap-mapping', 911 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 912 'vcpu-dirty-limit', 913 'mode', 914 'zero-page-detection', 915 'direct-io'] } 916 917## 918# @MigrateSetParameters: 919# 920# @announce-initial: Initial delay (in milliseconds) before sending 921# the first announce (Since 4.0) 922# 923# @announce-max: Maximum delay (in milliseconds) between packets in 924# the announcement (Since 4.0) 925# 926# @announce-rounds: Number of self-announce packets sent after 927# migration (Since 4.0) 928# 929# @announce-step: Increase in delay (in milliseconds) between 930# subsequent packets in the announcement (Since 4.0) 931# 932# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 933# bytes_xfer_period to trigger throttling. It is expressed as 934# percentage. The default value is 50. (Since 5.0) 935# 936# @cpu-throttle-initial: Initial percentage of time guest cpus are 937# throttled when migration auto-converge is activated. The 938# default value is 20. (Since 2.7) 939# 940# @cpu-throttle-increment: throttle percentage increase each time 941# auto-converge detects that migration is not making progress. 942# The default value is 10. (Since 2.7) 943# 944# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 945# the tail stage of throttling, the Guest is very sensitive to CPU 946# percentage while the @cpu-throttle -increment is excessive 947# usually at tail stage. If this parameter is true, we will 948# compute the ideal CPU percentage used by the Guest, which may 949# exactly make the dirty rate match the dirty rate threshold. 950# Then we will choose a smaller throttle increment between the one 951# specified by @cpu-throttle-increment and the one generated by 952# ideal CPU percentage. Therefore, it is compatible to 953# traditional throttling, meanwhile the throttle increment won't 954# be excessive at tail stage. The default value is false. (Since 955# 5.1) 956# 957# @tls-creds: ID of the 'tls-creds' object that provides credentials 958# for establishing a TLS connection over the migration data 959# channel. On the outgoing side of the migration, the credentials 960# must be for a 'client' endpoint, while for the incoming side the 961# credentials must be for a 'server' endpoint. Setting this to a 962# non-empty string enables TLS for all migrations. An empty 963# string means that QEMU will use plain text mode for migration, 964# rather than TLS. This is the default. (Since 2.7) 965# 966# @tls-hostname: migration target's hostname for validating the 967# server's x509 certificate identity. If empty, QEMU will use the 968# hostname from the migration URI, if any. A non-empty value is 969# required when using x509 based TLS credentials and the migration 970# URI does not include a hostname, such as fd: or exec: based 971# migration. (Since 2.7) 972# 973# Note: empty value works only since 2.9. 974# 975# @tls-authz: ID of the 'authz' object subclass that provides access 976# control checking of the TLS x509 certificate distinguished name. 977# This object is only resolved at time of use, so can be deleted 978# and recreated on the fly while the migration server is active. 979# If missing, it will default to denying access (Since 4.0) 980# 981# @max-bandwidth: maximum speed for migration, in bytes per second. 982# (Since 2.8) 983# 984# @avail-switchover-bandwidth: to set the available bandwidth that 985# migration can use during switchover phase. NOTE! This does not 986# limit the bandwidth during switchover, but only for calculations 987# when making decisions to switchover. By default, this value is 988# zero, which means QEMU will estimate the bandwidth 989# automatically. This can be set when the estimated value is not 990# accurate, while the user is able to guarantee such bandwidth is 991# available when switching over. When specified correctly, this 992# can make the switchover decision much more accurate. 993# (Since 8.2) 994# 995# @downtime-limit: set maximum tolerated downtime for migration. 996# maximum downtime in milliseconds (Since 2.8) 997# 998# @x-checkpoint-delay: The delay time (in ms) between two COLO 999# checkpoints in periodic mode. (Since 2.8) 1000# 1001# @multifd-channels: Number of channels used to migrate data in 1002# parallel. This is the same number that the number of sockets 1003# used for migration. The default value is 2 (since 4.0) 1004# 1005# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1006# needs to be a multiple of the target page size and a power of 2 1007# (Since 2.11) 1008# 1009# @max-postcopy-bandwidth: Background transfer bandwidth during 1010# postcopy. Defaults to 0 (unlimited). In bytes per second. 1011# (Since 3.0) 1012# 1013# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1014# (Since 3.1) 1015# 1016# @multifd-compression: Which compression method to use. Defaults to 1017# none. (Since 5.0) 1018# 1019# @multifd-zlib-level: Set the compression level to be used in live 1020# migration, the compression level is an integer between 0 and 9, 1021# where 0 means no compression, 1 means the best compression 1022# speed, and 9 means best compression ratio which will consume 1023# more CPU. Defaults to 1. (Since 5.0) 1024# 1025# @multifd-qatzip-level: Set the compression level to be used in live 1026# migration. The level is an integer between 1 and 9, where 1 means 1027# the best compression speed, and 9 means the best compression 1028# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1029# 1030# @multifd-zstd-level: Set the compression level to be used in live 1031# migration, the compression level is an integer between 0 and 20, 1032# where 0 means no compression, 1 means the best compression 1033# speed, and 20 means best compression ratio which will consume 1034# more CPU. Defaults to 1. (Since 5.0) 1035# 1036# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1037# aliases for the purpose of dirty bitmap migration. Such aliases 1038# may for example be the corresponding names on the opposite site. 1039# The mapping must be one-to-one, but not necessarily complete: On 1040# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1041# will be ignored. On the destination, encountering an unmapped 1042# alias in the incoming migration stream will result in a report, 1043# and all further bitmap migration data will then be discarded. 1044# Note that the destination does not know about bitmaps it does 1045# not receive, so there is no limitation or requirement regarding 1046# the number of bitmaps received, or how they are named, or on 1047# which nodes they are placed. By default (when this parameter 1048# has never been set), bitmap names are mapped to themselves. 1049# Nodes are mapped to their block device name if there is one, and 1050# to their node name otherwise. (Since 5.2) 1051# 1052# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1053# limit during live migration. Should be in the range 1 to 1054# 1000ms. Defaults to 1000ms. (Since 8.1) 1055# 1056# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1057# Defaults to 1. (Since 8.1) 1058# 1059# @mode: Migration mode. See description in @MigMode. Default is 1060# 'normal'. (Since 8.2) 1061# 1062# @zero-page-detection: Whether and how to detect zero pages. 1063# See description in @ZeroPageDetection. Default is 'multifd'. 1064# (since 9.0) 1065# 1066# @direct-io: Open migration files with O_DIRECT when possible. This 1067# only has effect if the @mapped-ram capability is enabled. 1068# (Since 9.1) 1069# 1070# Features: 1071# 1072# @unstable: Members @x-checkpoint-delay and 1073# @x-vcpu-dirty-limit-period are experimental. 1074# 1075# TODO: either fuse back into MigrationParameters, or make 1076# MigrationParameters members mandatory 1077# 1078# Since: 2.4 1079## 1080{ 'struct': 'MigrateSetParameters', 1081 'data': { '*announce-initial': 'size', 1082 '*announce-max': 'size', 1083 '*announce-rounds': 'size', 1084 '*announce-step': 'size', 1085 '*throttle-trigger-threshold': 'uint8', 1086 '*cpu-throttle-initial': 'uint8', 1087 '*cpu-throttle-increment': 'uint8', 1088 '*cpu-throttle-tailslow': 'bool', 1089 '*tls-creds': 'StrOrNull', 1090 '*tls-hostname': 'StrOrNull', 1091 '*tls-authz': 'StrOrNull', 1092 '*max-bandwidth': 'size', 1093 '*avail-switchover-bandwidth': 'size', 1094 '*downtime-limit': 'uint64', 1095 '*x-checkpoint-delay': { 'type': 'uint32', 1096 'features': [ 'unstable' ] }, 1097 '*multifd-channels': 'uint8', 1098 '*xbzrle-cache-size': 'size', 1099 '*max-postcopy-bandwidth': 'size', 1100 '*max-cpu-throttle': 'uint8', 1101 '*multifd-compression': 'MultiFDCompression', 1102 '*multifd-zlib-level': 'uint8', 1103 '*multifd-qatzip-level': 'uint8', 1104 '*multifd-zstd-level': 'uint8', 1105 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1106 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1107 'features': [ 'unstable' ] }, 1108 '*vcpu-dirty-limit': 'uint64', 1109 '*mode': 'MigMode', 1110 '*zero-page-detection': 'ZeroPageDetection', 1111 '*direct-io': 'bool' } } 1112 1113## 1114# @migrate-set-parameters: 1115# 1116# Set various migration parameters. 1117# 1118# Since: 2.4 1119# 1120# .. qmp-example:: 1121# 1122# -> { "execute": "migrate-set-parameters" , 1123# "arguments": { "multifd-channels": 5 } } 1124# <- { "return": {} } 1125## 1126{ 'command': 'migrate-set-parameters', 'boxed': true, 1127 'data': 'MigrateSetParameters' } 1128 1129## 1130# @MigrationParameters: 1131# 1132# The optional members aren't actually optional. 1133# 1134# @announce-initial: Initial delay (in milliseconds) before sending 1135# the first announce (Since 4.0) 1136# 1137# @announce-max: Maximum delay (in milliseconds) between packets in 1138# the announcement (Since 4.0) 1139# 1140# @announce-rounds: Number of self-announce packets sent after 1141# migration (Since 4.0) 1142# 1143# @announce-step: Increase in delay (in milliseconds) between 1144# subsequent packets in the announcement (Since 4.0) 1145# 1146# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1147# bytes_xfer_period to trigger throttling. It is expressed as 1148# percentage. The default value is 50. (Since 5.0) 1149# 1150# @cpu-throttle-initial: Initial percentage of time guest cpus are 1151# throttled when migration auto-converge is activated. (Since 1152# 2.7) 1153# 1154# @cpu-throttle-increment: throttle percentage increase each time 1155# auto-converge detects that migration is not making progress. 1156# (Since 2.7) 1157# 1158# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1159# the tail stage of throttling, the Guest is very sensitive to CPU 1160# percentage while the @cpu-throttle -increment is excessive 1161# usually at tail stage. If this parameter is true, we will 1162# compute the ideal CPU percentage used by the Guest, which may 1163# exactly make the dirty rate match the dirty rate threshold. 1164# Then we will choose a smaller throttle increment between the one 1165# specified by @cpu-throttle-increment and the one generated by 1166# ideal CPU percentage. Therefore, it is compatible to 1167# traditional throttling, meanwhile the throttle increment won't 1168# be excessive at tail stage. The default value is false. (Since 1169# 5.1) 1170# 1171# @tls-creds: ID of the 'tls-creds' object that provides credentials 1172# for establishing a TLS connection over the migration data 1173# channel. On the outgoing side of the migration, the credentials 1174# must be for a 'client' endpoint, while for the incoming side the 1175# credentials must be for a 'server' endpoint. An empty string 1176# means that QEMU will use plain text mode for migration, rather 1177# than TLS. (Since 2.7) 1178# 1179# Note: 2.8 omits empty @tls-creds instead. 1180# 1181# @tls-hostname: migration target's hostname for validating the 1182# server's x509 certificate identity. If empty, QEMU will use the 1183# hostname from the migration URI, if any. (Since 2.7) 1184# 1185# Note: 2.8 omits empty @tls-hostname instead. 1186# 1187# @tls-authz: ID of the 'authz' object subclass that provides access 1188# control checking of the TLS x509 certificate distinguished name. 1189# (Since 4.0) 1190# 1191# @max-bandwidth: maximum speed for migration, in bytes per second. 1192# (Since 2.8) 1193# 1194# @avail-switchover-bandwidth: to set the available bandwidth that 1195# migration can use during switchover phase. NOTE! This does not 1196# limit the bandwidth during switchover, but only for calculations 1197# when making decisions to switchover. By default, this value is 1198# zero, which means QEMU will estimate the bandwidth 1199# automatically. This can be set when the estimated value is not 1200# accurate, while the user is able to guarantee such bandwidth is 1201# available when switching over. When specified correctly, this 1202# can make the switchover decision much more accurate. 1203# (Since 8.2) 1204# 1205# @downtime-limit: set maximum tolerated downtime for migration. 1206# maximum downtime in milliseconds (Since 2.8) 1207# 1208# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1209# (Since 2.8) 1210# 1211# @multifd-channels: Number of channels used to migrate data in 1212# parallel. This is the same number that the number of sockets 1213# used for migration. The default value is 2 (since 4.0) 1214# 1215# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1216# needs to be a multiple of the target page size and a power of 2 1217# (Since 2.11) 1218# 1219# @max-postcopy-bandwidth: Background transfer bandwidth during 1220# postcopy. Defaults to 0 (unlimited). In bytes per second. 1221# (Since 3.0) 1222# 1223# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1224# (Since 3.1) 1225# 1226# @multifd-compression: Which compression method to use. Defaults to 1227# none. (Since 5.0) 1228# 1229# @multifd-zlib-level: Set the compression level to be used in live 1230# migration, the compression level is an integer between 0 and 9, 1231# where 0 means no compression, 1 means the best compression 1232# speed, and 9 means best compression ratio which will consume 1233# more CPU. Defaults to 1. (Since 5.0) 1234# 1235# @multifd-qatzip-level: Set the compression level to be used in live 1236# migration. The level is an integer between 1 and 9, where 1 means 1237# the best compression speed, and 9 means the best compression 1238# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1239# 1240# @multifd-zstd-level: Set the compression level to be used in live 1241# migration, the compression level is an integer between 0 and 20, 1242# where 0 means no compression, 1 means the best compression 1243# speed, and 20 means best compression ratio which will consume 1244# more CPU. Defaults to 1. (Since 5.0) 1245# 1246# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1247# aliases for the purpose of dirty bitmap migration. Such aliases 1248# may for example be the corresponding names on the opposite site. 1249# The mapping must be one-to-one, but not necessarily complete: On 1250# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1251# will be ignored. On the destination, encountering an unmapped 1252# alias in the incoming migration stream will result in a report, 1253# and all further bitmap migration data will then be discarded. 1254# Note that the destination does not know about bitmaps it does 1255# not receive, so there is no limitation or requirement regarding 1256# the number of bitmaps received, or how they are named, or on 1257# which nodes they are placed. By default (when this parameter 1258# has never been set), bitmap names are mapped to themselves. 1259# Nodes are mapped to their block device name if there is one, and 1260# to their node name otherwise. (Since 5.2) 1261# 1262# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1263# limit during live migration. Should be in the range 1 to 1264# 1000ms. Defaults to 1000ms. (Since 8.1) 1265# 1266# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1267# Defaults to 1. (Since 8.1) 1268# 1269# @mode: Migration mode. See description in @MigMode. Default is 1270# 'normal'. (Since 8.2) 1271# 1272# @zero-page-detection: Whether and how to detect zero pages. 1273# See description in @ZeroPageDetection. Default is 'multifd'. 1274# (since 9.0) 1275# 1276# @direct-io: Open migration files with O_DIRECT when possible. This 1277# only has effect if the @mapped-ram capability is enabled. 1278# (Since 9.1) 1279# 1280# Features: 1281# 1282# @unstable: Members @x-checkpoint-delay and 1283# @x-vcpu-dirty-limit-period are experimental. 1284# 1285# Since: 2.4 1286## 1287{ 'struct': 'MigrationParameters', 1288 'data': { '*announce-initial': 'size', 1289 '*announce-max': 'size', 1290 '*announce-rounds': 'size', 1291 '*announce-step': 'size', 1292 '*throttle-trigger-threshold': 'uint8', 1293 '*cpu-throttle-initial': 'uint8', 1294 '*cpu-throttle-increment': 'uint8', 1295 '*cpu-throttle-tailslow': 'bool', 1296 '*tls-creds': 'str', 1297 '*tls-hostname': 'str', 1298 '*tls-authz': 'str', 1299 '*max-bandwidth': 'size', 1300 '*avail-switchover-bandwidth': 'size', 1301 '*downtime-limit': 'uint64', 1302 '*x-checkpoint-delay': { 'type': 'uint32', 1303 'features': [ 'unstable' ] }, 1304 '*multifd-channels': 'uint8', 1305 '*xbzrle-cache-size': 'size', 1306 '*max-postcopy-bandwidth': 'size', 1307 '*max-cpu-throttle': 'uint8', 1308 '*multifd-compression': 'MultiFDCompression', 1309 '*multifd-zlib-level': 'uint8', 1310 '*multifd-qatzip-level': 'uint8', 1311 '*multifd-zstd-level': 'uint8', 1312 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1313 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1314 'features': [ 'unstable' ] }, 1315 '*vcpu-dirty-limit': 'uint64', 1316 '*mode': 'MigMode', 1317 '*zero-page-detection': 'ZeroPageDetection', 1318 '*direct-io': 'bool' } } 1319 1320## 1321# @query-migrate-parameters: 1322# 1323# Returns information about the current migration parameters 1324# 1325# Returns: @MigrationParameters 1326# 1327# Since: 2.4 1328# 1329# .. qmp-example:: 1330# 1331# -> { "execute": "query-migrate-parameters" } 1332# <- { "return": { 1333# "multifd-channels": 2, 1334# "cpu-throttle-increment": 10, 1335# "cpu-throttle-initial": 20, 1336# "max-bandwidth": 33554432, 1337# "downtime-limit": 300 1338# } 1339# } 1340## 1341{ 'command': 'query-migrate-parameters', 1342 'returns': 'MigrationParameters' } 1343 1344## 1345# @migrate-start-postcopy: 1346# 1347# Followup to a migration command to switch the migration to postcopy 1348# mode. The postcopy-ram capability must be set on both source and 1349# destination before the original migration command. 1350# 1351# Since: 2.5 1352# 1353# .. qmp-example:: 1354# 1355# -> { "execute": "migrate-start-postcopy" } 1356# <- { "return": {} } 1357## 1358{ 'command': 'migrate-start-postcopy' } 1359 1360## 1361# @MIGRATION: 1362# 1363# Emitted when a migration event happens 1364# 1365# @status: @MigrationStatus describing the current migration status. 1366# 1367# Since: 2.4 1368# 1369# .. qmp-example:: 1370# 1371# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1372# "event": "MIGRATION", 1373# "data": {"status": "completed"} } 1374## 1375{ 'event': 'MIGRATION', 1376 'data': {'status': 'MigrationStatus'}} 1377 1378## 1379# @MIGRATION_PASS: 1380# 1381# Emitted from the source side of a migration at the start of each 1382# pass (when it syncs the dirty bitmap) 1383# 1384# @pass: An incrementing count (starting at 1 on the first pass) 1385# 1386# Since: 2.6 1387# 1388# .. qmp-example:: 1389# 1390# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1391# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1392## 1393{ 'event': 'MIGRATION_PASS', 1394 'data': { 'pass': 'int' } } 1395 1396## 1397# @COLOMessage: 1398# 1399# The message transmission between Primary side and Secondary side. 1400# 1401# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1402# 1403# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1404# checkpointing 1405# 1406# @checkpoint-reply: SVM gets PVM's checkpoint request 1407# 1408# @vmstate-send: VM's state will be sent by PVM. 1409# 1410# @vmstate-size: The total size of VMstate. 1411# 1412# @vmstate-received: VM's state has been received by SVM. 1413# 1414# @vmstate-loaded: VM's state has been loaded by SVM. 1415# 1416# Since: 2.8 1417## 1418{ 'enum': 'COLOMessage', 1419 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1420 'vmstate-send', 'vmstate-size', 'vmstate-received', 1421 'vmstate-loaded' ] } 1422 1423## 1424# @COLOMode: 1425# 1426# The COLO current mode. 1427# 1428# @none: COLO is disabled. 1429# 1430# @primary: COLO node in primary side. 1431# 1432# @secondary: COLO node in slave side. 1433# 1434# Since: 2.8 1435## 1436{ 'enum': 'COLOMode', 1437 'data': [ 'none', 'primary', 'secondary'] } 1438 1439## 1440# @FailoverStatus: 1441# 1442# An enumeration of COLO failover status 1443# 1444# @none: no failover has ever happened 1445# 1446# @require: got failover requirement but not handled 1447# 1448# @active: in the process of doing failover 1449# 1450# @completed: finish the process of failover 1451# 1452# @relaunch: restart the failover process, from 'none' -> 'completed' 1453# (Since 2.9) 1454# 1455# Since: 2.8 1456## 1457{ 'enum': 'FailoverStatus', 1458 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1459 1460## 1461# @COLO_EXIT: 1462# 1463# Emitted when VM finishes COLO mode due to some errors happening or 1464# at the request of users. 1465# 1466# @mode: report COLO mode when COLO exited. 1467# 1468# @reason: describes the reason for the COLO exit. 1469# 1470# Since: 3.1 1471# 1472# .. qmp-example:: 1473# 1474# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1475# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1476## 1477{ 'event': 'COLO_EXIT', 1478 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1479 1480## 1481# @COLOExitReason: 1482# 1483# The reason for a COLO exit. 1484# 1485# @none: failover has never happened. This state does not occur in 1486# the COLO_EXIT event, and is only visible in the result of 1487# query-colo-status. 1488# 1489# @request: COLO exit is due to an external request. 1490# 1491# @error: COLO exit is due to an internal error. 1492# 1493# @processing: COLO is currently handling a failover (since 4.0). 1494# 1495# Since: 3.1 1496## 1497{ 'enum': 'COLOExitReason', 1498 'data': [ 'none', 'request', 'error' , 'processing' ] } 1499 1500## 1501# @x-colo-lost-heartbeat: 1502# 1503# Tell qemu that heartbeat is lost, request it to do takeover 1504# procedures. If this command is sent to the PVM, the Primary side 1505# will exit COLO mode. If sent to the Secondary, the Secondary side 1506# will run failover work, then takes over server operation to become 1507# the service VM. 1508# 1509# Features: 1510# 1511# @unstable: This command is experimental. 1512# 1513# Since: 2.8 1514# 1515# .. qmp-example:: 1516# 1517# -> { "execute": "x-colo-lost-heartbeat" } 1518# <- { "return": {} } 1519## 1520{ 'command': 'x-colo-lost-heartbeat', 1521 'features': [ 'unstable' ], 1522 'if': 'CONFIG_REPLICATION' } 1523 1524## 1525# @migrate_cancel: 1526# 1527# Cancel the currently executing migration process. Allows a new 1528# migration to be started right after. When postcopy-ram is in use, 1529# cancelling is not allowed after the postcopy phase has started. 1530# 1531# .. note:: This command succeeds even if there is no migration 1532# process running. 1533# 1534# Since: 0.14 1535# 1536# .. qmp-example:: 1537# 1538# -> { "execute": "migrate_cancel" } 1539# <- { "return": {} } 1540## 1541{ 'command': 'migrate_cancel' } 1542 1543## 1544# @migrate-continue: 1545# 1546# Continue migration when it's in a paused state. 1547# 1548# @state: The state the migration is currently expected to be in 1549# 1550# Since: 2.11 1551# 1552# .. qmp-example:: 1553# 1554# -> { "execute": "migrate-continue" , "arguments": 1555# { "state": "pre-switchover" } } 1556# <- { "return": {} } 1557## 1558{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1559 1560## 1561# @MigrationAddressType: 1562# 1563# The migration stream transport mechanisms. 1564# 1565# @socket: Migrate via socket. 1566# 1567# @exec: Direct the migration stream to another process. 1568# 1569# @rdma: Migrate via RDMA. 1570# 1571# @file: Direct the migration stream to a file. 1572# 1573# Since: 8.2 1574## 1575{ 'enum': 'MigrationAddressType', 1576 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1577 1578## 1579# @FileMigrationArgs: 1580# 1581# @filename: The file to receive the migration stream 1582# 1583# @offset: The file offset where the migration stream will start 1584# 1585# Since: 8.2 1586## 1587{ 'struct': 'FileMigrationArgs', 1588 'data': { 'filename': 'str', 1589 'offset': 'uint64' } } 1590 1591## 1592# @MigrationExecCommand: 1593# 1594# @args: command (list head) and arguments to execute. 1595# 1596# Since: 8.2 1597## 1598{ 'struct': 'MigrationExecCommand', 1599 'data': {'args': [ 'str' ] } } 1600 1601## 1602# @MigrationAddress: 1603# 1604# Migration endpoint configuration. 1605# 1606# @transport: The migration stream transport mechanism 1607# 1608# Since: 8.2 1609## 1610{ 'union': 'MigrationAddress', 1611 'base': { 'transport' : 'MigrationAddressType'}, 1612 'discriminator': 'transport', 1613 'data': { 1614 'socket': 'SocketAddress', 1615 'exec': 'MigrationExecCommand', 1616 'rdma': 'InetSocketAddress', 1617 'file': 'FileMigrationArgs' } } 1618 1619## 1620# @MigrationChannelType: 1621# 1622# The migration channel-type request options. 1623# 1624# @main: Main outbound migration channel. 1625# @cpr: Checkpoint and restart state channel. 1626# 1627# Since: 8.1 1628## 1629{ 'enum': 'MigrationChannelType', 1630 'data': [ 'main', 'cpr' ] } 1631 1632## 1633# @MigrationChannel: 1634# 1635# Migration stream channel parameters. 1636# 1637# @channel-type: Channel type for transferring packet information. 1638# 1639# @addr: Migration endpoint configuration on destination interface. 1640# 1641# Since: 8.1 1642## 1643{ 'struct': 'MigrationChannel', 1644 'data': { 1645 'channel-type': 'MigrationChannelType', 1646 'addr': 'MigrationAddress' } } 1647 1648## 1649# @migrate: 1650# 1651# Migrates the current running guest to another Virtual Machine. 1652# 1653# @uri: the Uniform Resource Identifier of the destination VM 1654# 1655# @channels: list of migration stream channels with each stream in the 1656# list connected to a destination interface endpoint. 1657# 1658# @detach: this argument exists only for compatibility reasons and is 1659# ignored by QEMU 1660# 1661# @resume: resume one paused migration, default "off". (since 3.0) 1662# 1663# Since: 0.14 1664# 1665# .. admonition:: Notes 1666# 1667# 1. The 'query-migrate' command should be used to check 1668# migration's progress and final result (this information is 1669# provided by the 'status' member). 1670# 1671# 2. All boolean arguments default to false. 1672# 1673# 3. The user Monitor's "detach" argument is invalid in QMP and 1674# should not be used. 1675# 1676# 4. The uri argument should have the Uniform Resource Identifier 1677# of default destination VM. This connection will be bound to 1678# default network. 1679# 1680# 5. For now, number of migration streams is restricted to one, 1681# i.e. number of items in 'channels' list is just 1. 1682# 1683# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1684# exactly one of the two should be present. 1685# 1686# .. qmp-example:: 1687# 1688# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1689# <- { "return": {} } 1690# 1691# -> { "execute": "migrate", 1692# "arguments": { 1693# "channels": [ { "channel-type": "main", 1694# "addr": { "transport": "socket", 1695# "type": "inet", 1696# "host": "10.12.34.9", 1697# "port": "1050" } } ] } } 1698# <- { "return": {} } 1699# 1700# -> { "execute": "migrate", 1701# "arguments": { 1702# "channels": [ { "channel-type": "main", 1703# "addr": { "transport": "exec", 1704# "args": [ "/bin/nc", "-p", "6000", 1705# "/some/sock" ] } } ] } } 1706# <- { "return": {} } 1707# 1708# -> { "execute": "migrate", 1709# "arguments": { 1710# "channels": [ { "channel-type": "main", 1711# "addr": { "transport": "rdma", 1712# "host": "10.12.34.9", 1713# "port": "1050" } } ] } } 1714# <- { "return": {} } 1715# 1716# -> { "execute": "migrate", 1717# "arguments": { 1718# "channels": [ { "channel-type": "main", 1719# "addr": { "transport": "file", 1720# "filename": "/tmp/migfile", 1721# "offset": "0x1000" } } ] } } 1722# <- { "return": {} } 1723## 1724{ 'command': 'migrate', 1725 'data': {'*uri': 'str', 1726 '*channels': [ 'MigrationChannel' ], 1727 '*detach': 'bool', '*resume': 'bool' } } 1728 1729## 1730# @migrate-incoming: 1731# 1732# Start an incoming migration, the qemu must have been started with 1733# -incoming defer 1734# 1735# @uri: The Uniform Resource Identifier identifying the source or 1736# address to listen on 1737# 1738# @channels: list of migration stream channels with each stream in the 1739# list connected to a destination interface endpoint. 1740# 1741# @exit-on-error: Exit on incoming migration failure. Default true. 1742# When set to false, the failure triggers a MIGRATION event, and 1743# error details could be retrieved with query-migrate. 1744# (since 9.1) 1745# 1746# Since: 2.3 1747# 1748# .. admonition:: Notes 1749# 1750# 1. It's a bad idea to use a string for the uri, but it needs to 1751# stay compatible with -incoming and the format of the uri is 1752# already exposed above libvirt. 1753# 1754# 2. QEMU must be started with -incoming defer to allow 1755# migrate-incoming to be used. 1756# 1757# 3. The uri format is the same as for -incoming 1758# 1759# 4. For now, number of migration streams is restricted to one, 1760# i.e. number of items in 'channels' list is just 1. 1761# 1762# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1763# exactly one of the two should be present. 1764# 1765# .. qmp-example:: 1766# 1767# -> { "execute": "migrate-incoming", 1768# "arguments": { "uri": "tcp:0:4446" } } 1769# <- { "return": {} } 1770# 1771# -> { "execute": "migrate-incoming", 1772# "arguments": { 1773# "channels": [ { "channel-type": "main", 1774# "addr": { "transport": "socket", 1775# "type": "inet", 1776# "host": "10.12.34.9", 1777# "port": "1050" } } ] } } 1778# <- { "return": {} } 1779# 1780# -> { "execute": "migrate-incoming", 1781# "arguments": { 1782# "channels": [ { "channel-type": "main", 1783# "addr": { "transport": "exec", 1784# "args": [ "/bin/nc", "-p", "6000", 1785# "/some/sock" ] } } ] } } 1786# <- { "return": {} } 1787# 1788# -> { "execute": "migrate-incoming", 1789# "arguments": { 1790# "channels": [ { "channel-type": "main", 1791# "addr": { "transport": "rdma", 1792# "host": "10.12.34.9", 1793# "port": "1050" } } ] } } 1794# <- { "return": {} } 1795## 1796{ 'command': 'migrate-incoming', 1797 'data': {'*uri': 'str', 1798 '*channels': [ 'MigrationChannel' ], 1799 '*exit-on-error': 'bool' } } 1800 1801## 1802# @xen-save-devices-state: 1803# 1804# Save the state of all devices to file. The RAM and the block 1805# devices of the VM are not saved by this command. 1806# 1807# @filename: the file to save the state of the devices to as binary 1808# data. See xen-save-devices-state.txt for a description of the 1809# binary format. 1810# 1811# @live: Optional argument to ask QEMU to treat this command as part 1812# of a live migration. Default to true. (since 2.11) 1813# 1814# Since: 1.1 1815# 1816# .. qmp-example:: 1817# 1818# -> { "execute": "xen-save-devices-state", 1819# "arguments": { "filename": "/tmp/save" } } 1820# <- { "return": {} } 1821## 1822{ 'command': 'xen-save-devices-state', 1823 'data': {'filename': 'str', '*live':'bool' } } 1824 1825## 1826# @xen-set-global-dirty-log: 1827# 1828# Enable or disable the global dirty log mode. 1829# 1830# @enable: true to enable, false to disable. 1831# 1832# Since: 1.3 1833# 1834# .. qmp-example:: 1835# 1836# -> { "execute": "xen-set-global-dirty-log", 1837# "arguments": { "enable": true } } 1838# <- { "return": {} } 1839## 1840{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1841 1842## 1843# @xen-load-devices-state: 1844# 1845# Load the state of all devices from file. The RAM and the block 1846# devices of the VM are not loaded by this command. 1847# 1848# @filename: the file to load the state of the devices from as binary 1849# data. See xen-save-devices-state.txt for a description of the 1850# binary format. 1851# 1852# Since: 2.7 1853# 1854# .. qmp-example:: 1855# 1856# -> { "execute": "xen-load-devices-state", 1857# "arguments": { "filename": "/tmp/resume" } } 1858# <- { "return": {} } 1859## 1860{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1861 1862## 1863# @xen-set-replication: 1864# 1865# Enable or disable replication. 1866# 1867# @enable: true to enable, false to disable. 1868# 1869# @primary: true for primary or false for secondary. 1870# 1871# @failover: true to do failover, false to stop. Cannot be specified 1872# if 'enable' is true. Default value is false. 1873# 1874# .. qmp-example:: 1875# 1876# -> { "execute": "xen-set-replication", 1877# "arguments": {"enable": true, "primary": false} } 1878# <- { "return": {} } 1879# 1880# Since: 2.9 1881## 1882{ 'command': 'xen-set-replication', 1883 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1884 'if': 'CONFIG_REPLICATION' } 1885 1886## 1887# @ReplicationStatus: 1888# 1889# The result format for 'query-xen-replication-status'. 1890# 1891# @error: true if an error happened, false if replication is normal. 1892# 1893# @desc: the human readable error description string, when @error is 1894# 'true'. 1895# 1896# Since: 2.9 1897## 1898{ 'struct': 'ReplicationStatus', 1899 'data': { 'error': 'bool', '*desc': 'str' }, 1900 'if': 'CONFIG_REPLICATION' } 1901 1902## 1903# @query-xen-replication-status: 1904# 1905# Query replication status while the vm is running. 1906# 1907# Returns: A @ReplicationStatus object showing the status. 1908# 1909# .. qmp-example:: 1910# 1911# -> { "execute": "query-xen-replication-status" } 1912# <- { "return": { "error": false } } 1913# 1914# Since: 2.9 1915## 1916{ 'command': 'query-xen-replication-status', 1917 'returns': 'ReplicationStatus', 1918 'if': 'CONFIG_REPLICATION' } 1919 1920## 1921# @xen-colo-do-checkpoint: 1922# 1923# Xen uses this command to notify replication to trigger a checkpoint. 1924# 1925# .. qmp-example:: 1926# 1927# -> { "execute": "xen-colo-do-checkpoint" } 1928# <- { "return": {} } 1929# 1930# Since: 2.9 1931## 1932{ 'command': 'xen-colo-do-checkpoint', 1933 'if': 'CONFIG_REPLICATION' } 1934 1935## 1936# @COLOStatus: 1937# 1938# The result format for 'query-colo-status'. 1939# 1940# @mode: COLO running mode. If COLO is running, this field will 1941# return 'primary' or 'secondary'. 1942# 1943# @last-mode: COLO last running mode. If COLO is running, this field 1944# will return same like mode field, after failover we can use this 1945# field to get last colo mode. (since 4.0) 1946# 1947# @reason: describes the reason for the COLO exit. 1948# 1949# Since: 3.1 1950## 1951{ 'struct': 'COLOStatus', 1952 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1953 'reason': 'COLOExitReason' }, 1954 'if': 'CONFIG_REPLICATION' } 1955 1956## 1957# @query-colo-status: 1958# 1959# Query COLO status while the vm is running. 1960# 1961# Returns: A @COLOStatus object showing the status. 1962# 1963# .. qmp-example:: 1964# 1965# -> { "execute": "query-colo-status" } 1966# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1967# 1968# Since: 3.1 1969## 1970{ 'command': 'query-colo-status', 1971 'returns': 'COLOStatus', 1972 'if': 'CONFIG_REPLICATION' } 1973 1974## 1975# @migrate-recover: 1976# 1977# Provide a recovery migration stream URI. 1978# 1979# @uri: the URI to be used for the recovery of migration stream. 1980# 1981# .. qmp-example:: 1982# 1983# -> { "execute": "migrate-recover", 1984# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1985# <- { "return": {} } 1986# 1987# Since: 3.0 1988## 1989{ 'command': 'migrate-recover', 1990 'data': { 'uri': 'str' }, 1991 'allow-oob': true } 1992 1993## 1994# @migrate-pause: 1995# 1996# Pause a migration. Currently it only supports postcopy. 1997# 1998# .. qmp-example:: 1999# 2000# -> { "execute": "migrate-pause" } 2001# <- { "return": {} } 2002# 2003# Since: 3.0 2004## 2005{ 'command': 'migrate-pause', 'allow-oob': true } 2006 2007## 2008# @UNPLUG_PRIMARY: 2009# 2010# Emitted from source side of a migration when migration state is 2011# WAIT_UNPLUG. Device was unplugged by guest operating system. 2012# Device resources in QEMU are kept on standby to be able to re-plug 2013# it in case of migration failure. 2014# 2015# @device-id: QEMU device id of the unplugged device 2016# 2017# Since: 4.2 2018# 2019# .. qmp-example:: 2020# 2021# <- { "event": "UNPLUG_PRIMARY", 2022# "data": { "device-id": "hostdev0" }, 2023# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2024## 2025{ 'event': 'UNPLUG_PRIMARY', 2026 'data': { 'device-id': 'str' } } 2027 2028## 2029# @DirtyRateVcpu: 2030# 2031# Dirty rate of vcpu. 2032# 2033# @id: vcpu index. 2034# 2035# @dirty-rate: dirty rate. 2036# 2037# Since: 6.2 2038## 2039{ 'struct': 'DirtyRateVcpu', 2040 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 2041 2042## 2043# @DirtyRateStatus: 2044# 2045# Dirty page rate measurement status. 2046# 2047# @unstarted: measuring thread has not been started yet 2048# 2049# @measuring: measuring thread is running 2050# 2051# @measured: dirty page rate is measured and the results are available 2052# 2053# Since: 5.2 2054## 2055{ 'enum': 'DirtyRateStatus', 2056 'data': [ 'unstarted', 'measuring', 'measured'] } 2057 2058## 2059# @DirtyRateMeasureMode: 2060# 2061# Method used to measure dirty page rate. Differences between 2062# available methods are explained in @calc-dirty-rate. 2063# 2064# @page-sampling: use page sampling 2065# 2066# @dirty-ring: use dirty ring 2067# 2068# @dirty-bitmap: use dirty bitmap 2069# 2070# Since: 6.2 2071## 2072{ 'enum': 'DirtyRateMeasureMode', 2073 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2074 2075## 2076# @TimeUnit: 2077# 2078# Specifies unit in which time-related value is specified. 2079# 2080# @second: value is in seconds 2081# 2082# @millisecond: value is in milliseconds 2083# 2084# Since: 8.2 2085## 2086{ 'enum': 'TimeUnit', 2087 'data': ['second', 'millisecond'] } 2088 2089## 2090# @DirtyRateInfo: 2091# 2092# Information about measured dirty page rate. 2093# 2094# @dirty-rate: an estimate of the dirty page rate of the VM in units 2095# of MiB/s. Value is present only when @status is 'measured'. 2096# 2097# @status: current status of dirty page rate measurements 2098# 2099# @start-time: start time in units of second for calculation 2100# 2101# @calc-time: time period for which dirty page rate was measured, 2102# expressed and rounded down to @calc-time-unit. 2103# 2104# @calc-time-unit: time unit of @calc-time (Since 8.2) 2105# 2106# @sample-pages: number of sampled pages per GiB of guest memory. 2107# Valid only in page-sampling mode (Since 6.1) 2108# 2109# @mode: mode that was used to measure dirty page rate (Since 6.2) 2110# 2111# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2112# specified (Since 6.2) 2113# 2114# Since: 5.2 2115## 2116{ 'struct': 'DirtyRateInfo', 2117 'data': {'*dirty-rate': 'int64', 2118 'status': 'DirtyRateStatus', 2119 'start-time': 'int64', 2120 'calc-time': 'int64', 2121 'calc-time-unit': 'TimeUnit', 2122 'sample-pages': 'uint64', 2123 'mode': 'DirtyRateMeasureMode', 2124 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2125 2126## 2127# @calc-dirty-rate: 2128# 2129# Start measuring dirty page rate of the VM. Results can be retrieved 2130# with @query-dirty-rate after measurements are completed. 2131# 2132# Dirty page rate is the number of pages changed in a given time 2133# period expressed in MiB/s. The following methods of calculation are 2134# available: 2135# 2136# 1. In page sampling mode, a random subset of pages are selected and 2137# hashed twice: once at the beginning of measurement time period, 2138# and once again at the end. If two hashes for some page are 2139# different, the page is counted as changed. Since this method 2140# relies on sampling and hashing, calculated dirty page rate is 2141# only an estimate of its true value. Increasing @sample-pages 2142# improves estimation quality at the cost of higher computational 2143# overhead. 2144# 2145# 2. Dirty bitmap mode captures writes to memory (for example by 2146# temporarily revoking write access to all pages) and counting page 2147# faults. Information about modified pages is collected into a 2148# bitmap, where each bit corresponds to one guest page. This mode 2149# requires that KVM accelerator property "dirty-ring-size" is *not* 2150# set. 2151# 2152# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2153# information about modified pages is collected into ring buffer. 2154# This mode tracks page modification per each vCPU separately. It 2155# requires that KVM accelerator property "dirty-ring-size" is set. 2156# 2157# @calc-time: time period for which dirty page rate is calculated. By 2158# default it is specified in seconds, but the unit can be set 2159# explicitly with @calc-time-unit. Note that larger @calc-time 2160# values will typically result in smaller dirty page rates because 2161# page dirtying is a one-time event. Once some page is counted as 2162# dirty during @calc-time period, further writes to this page will 2163# not increase dirty page rate anymore. 2164# 2165# @calc-time-unit: time unit in which @calc-time is specified. By 2166# default it is seconds. (Since 8.2) 2167# 2168# @sample-pages: number of sampled pages per each GiB of guest memory. 2169# Default value is 512. For 4KiB guest pages this corresponds to 2170# sampling ratio of 0.2%. This argument is used only in page 2171# sampling mode. (Since 6.1) 2172# 2173# @mode: mechanism for tracking dirty pages. Default value is 2174# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2175# (Since 6.1) 2176# 2177# Since: 5.2 2178# 2179# .. qmp-example:: 2180# 2181# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2182# "sample-pages": 512} } 2183# <- { "return": {} } 2184# 2185# .. qmp-example:: 2186# :annotated: 2187# 2188# Measure dirty rate using dirty bitmap for 500 milliseconds:: 2189# 2190# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2191# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2192# 2193# <- { "return": {} } 2194## 2195{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2196 '*calc-time-unit': 'TimeUnit', 2197 '*sample-pages': 'int', 2198 '*mode': 'DirtyRateMeasureMode'} } 2199 2200## 2201# @query-dirty-rate: 2202# 2203# Query results of the most recent invocation of @calc-dirty-rate. 2204# 2205# @calc-time-unit: time unit in which to report calculation time. 2206# By default it is reported in seconds. (Since 8.2) 2207# 2208# Since: 5.2 2209# 2210# .. qmp-example:: 2211# :title: Measurement is in progress 2212# 2213# <- {"status": "measuring", "sample-pages": 512, 2214# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2215# "calc-time-unit": "second"} 2216# 2217# .. qmp-example:: 2218# :title: Measurement has been completed 2219# 2220# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2221# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2222# "calc-time-unit": "second"} 2223## 2224{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2225 'returns': 'DirtyRateInfo' } 2226 2227## 2228# @DirtyLimitInfo: 2229# 2230# Dirty page rate limit information of a virtual CPU. 2231# 2232# @cpu-index: index of a virtual CPU. 2233# 2234# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2235# CPU, 0 means unlimited. 2236# 2237# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2238# 2239# Since: 7.1 2240## 2241{ 'struct': 'DirtyLimitInfo', 2242 'data': { 'cpu-index': 'int', 2243 'limit-rate': 'uint64', 2244 'current-rate': 'uint64' } } 2245 2246## 2247# @set-vcpu-dirty-limit: 2248# 2249# Set the upper limit of dirty page rate for virtual CPUs. 2250# 2251# Requires KVM with accelerator property "dirty-ring-size" set. A 2252# virtual CPU's dirty page rate is a measure of its memory load. To 2253# observe dirty page rates, use @calc-dirty-rate. 2254# 2255# @cpu-index: index of a virtual CPU, default is all. 2256# 2257# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2258# 2259# Since: 7.1 2260# 2261# .. qmp-example:: 2262# 2263# -> {"execute": "set-vcpu-dirty-limit"} 2264# "arguments": { "dirty-rate": 200, 2265# "cpu-index": 1 } } 2266# <- { "return": {} } 2267## 2268{ 'command': 'set-vcpu-dirty-limit', 2269 'data': { '*cpu-index': 'int', 2270 'dirty-rate': 'uint64' } } 2271 2272## 2273# @cancel-vcpu-dirty-limit: 2274# 2275# Cancel the upper limit of dirty page rate for virtual CPUs. 2276# 2277# Cancel the dirty page limit for the vCPU which has been set with 2278# set-vcpu-dirty-limit command. Note that this command requires 2279# support from dirty ring, same as the "set-vcpu-dirty-limit". 2280# 2281# @cpu-index: index of a virtual CPU, default is all. 2282# 2283# Since: 7.1 2284# 2285# .. qmp-example:: 2286# 2287# -> {"execute": "cancel-vcpu-dirty-limit"}, 2288# "arguments": { "cpu-index": 1 } } 2289# <- { "return": {} } 2290## 2291{ 'command': 'cancel-vcpu-dirty-limit', 2292 'data': { '*cpu-index': 'int'} } 2293 2294## 2295# @query-vcpu-dirty-limit: 2296# 2297# Returns information about virtual CPU dirty page rate limits, if 2298# any. 2299# 2300# Since: 7.1 2301# 2302# .. qmp-example:: 2303# 2304# -> {"execute": "query-vcpu-dirty-limit"} 2305# <- {"return": [ 2306# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2307# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2308## 2309{ 'command': 'query-vcpu-dirty-limit', 2310 'returns': [ 'DirtyLimitInfo' ] } 2311 2312## 2313# @MigrationThreadInfo: 2314# 2315# Information about migrationthreads 2316# 2317# @name: the name of migration thread 2318# 2319# @thread-id: ID of the underlying host thread 2320# 2321# Since: 7.2 2322## 2323{ 'struct': 'MigrationThreadInfo', 2324 'data': {'name': 'str', 2325 'thread-id': 'int'} } 2326 2327## 2328# @query-migrationthreads: 2329# 2330# Returns information of migration threads 2331# 2332# Features: 2333# 2334# @deprecated: This command is deprecated with no replacement yet. 2335# 2336# Returns: @MigrationThreadInfo 2337# 2338# Since: 7.2 2339## 2340{ 'command': 'query-migrationthreads', 2341 'returns': ['MigrationThreadInfo'], 2342 'features': ['deprecated'] } 2343 2344## 2345# @snapshot-save: 2346# 2347# Save a VM snapshot 2348# 2349# @job-id: identifier for the newly created job 2350# 2351# @tag: name of the snapshot to create 2352# 2353# @vmstate: block device node name to save vmstate to 2354# 2355# @devices: list of block device node names to save a snapshot to 2356# 2357# Applications should not assume that the snapshot save is complete 2358# when this command returns. The job commands / events must be used 2359# to determine completion and to fetch details of any errors that 2360# arise. 2361# 2362# Note that execution of the guest CPUs may be stopped during the time 2363# it takes to save the snapshot. A future version of QEMU may ensure 2364# CPUs are executing continuously. 2365# 2366# It is strongly recommended that @devices contain all writable block 2367# device nodes if a consistent snapshot is required. 2368# 2369# If @tag already exists, an error will be reported 2370# 2371# .. qmp-example:: 2372# 2373# -> { "execute": "snapshot-save", 2374# "arguments": { 2375# "job-id": "snapsave0", 2376# "tag": "my-snap", 2377# "vmstate": "disk0", 2378# "devices": ["disk0", "disk1"] 2379# } 2380# } 2381# <- { "return": { } } 2382# <- {"event": "JOB_STATUS_CHANGE", 2383# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2384# "data": {"status": "created", "id": "snapsave0"}} 2385# <- {"event": "JOB_STATUS_CHANGE", 2386# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2387# "data": {"status": "running", "id": "snapsave0"}} 2388# <- {"event": "STOP", 2389# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2390# <- {"event": "RESUME", 2391# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2392# <- {"event": "JOB_STATUS_CHANGE", 2393# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2394# "data": {"status": "waiting", "id": "snapsave0"}} 2395# <- {"event": "JOB_STATUS_CHANGE", 2396# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2397# "data": {"status": "pending", "id": "snapsave0"}} 2398# <- {"event": "JOB_STATUS_CHANGE", 2399# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2400# "data": {"status": "concluded", "id": "snapsave0"}} 2401# -> {"execute": "query-jobs"} 2402# <- {"return": [{"current-progress": 1, 2403# "status": "concluded", 2404# "total-progress": 1, 2405# "type": "snapshot-save", 2406# "id": "snapsave0"}]} 2407# 2408# Since: 6.0 2409## 2410{ 'command': 'snapshot-save', 2411 'data': { 'job-id': 'str', 2412 'tag': 'str', 2413 'vmstate': 'str', 2414 'devices': ['str'] } } 2415 2416## 2417# @snapshot-load: 2418# 2419# Load a VM snapshot 2420# 2421# @job-id: identifier for the newly created job 2422# 2423# @tag: name of the snapshot to load. 2424# 2425# @vmstate: block device node name to load vmstate from 2426# 2427# @devices: list of block device node names to load a snapshot from 2428# 2429# Applications should not assume that the snapshot load is complete 2430# when this command returns. The job commands / events must be used 2431# to determine completion and to fetch details of any errors that 2432# arise. 2433# 2434# Note that execution of the guest CPUs will be stopped during the 2435# time it takes to load the snapshot. 2436# 2437# It is strongly recommended that @devices contain all writable block 2438# device nodes that can have changed since the original @snapshot-save 2439# command execution. 2440# 2441# .. qmp-example:: 2442# 2443# -> { "execute": "snapshot-load", 2444# "arguments": { 2445# "job-id": "snapload0", 2446# "tag": "my-snap", 2447# "vmstate": "disk0", 2448# "devices": ["disk0", "disk1"] 2449# } 2450# } 2451# <- { "return": { } } 2452# <- {"event": "JOB_STATUS_CHANGE", 2453# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2454# "data": {"status": "created", "id": "snapload0"}} 2455# <- {"event": "JOB_STATUS_CHANGE", 2456# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2457# "data": {"status": "running", "id": "snapload0"}} 2458# <- {"event": "STOP", 2459# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2460# <- {"event": "RESUME", 2461# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2462# <- {"event": "JOB_STATUS_CHANGE", 2463# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2464# "data": {"status": "waiting", "id": "snapload0"}} 2465# <- {"event": "JOB_STATUS_CHANGE", 2466# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2467# "data": {"status": "pending", "id": "snapload0"}} 2468# <- {"event": "JOB_STATUS_CHANGE", 2469# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2470# "data": {"status": "concluded", "id": "snapload0"}} 2471# -> {"execute": "query-jobs"} 2472# <- {"return": [{"current-progress": 1, 2473# "status": "concluded", 2474# "total-progress": 1, 2475# "type": "snapshot-load", 2476# "id": "snapload0"}]} 2477# 2478# Since: 6.0 2479## 2480{ 'command': 'snapshot-load', 2481 'data': { 'job-id': 'str', 2482 'tag': 'str', 2483 'vmstate': 'str', 2484 'devices': ['str'] } } 2485 2486## 2487# @snapshot-delete: 2488# 2489# Delete a VM snapshot 2490# 2491# @job-id: identifier for the newly created job 2492# 2493# @tag: name of the snapshot to delete. 2494# 2495# @devices: list of block device node names to delete a snapshot from 2496# 2497# Applications should not assume that the snapshot delete is complete 2498# when this command returns. The job commands / events must be used 2499# to determine completion and to fetch details of any errors that 2500# arise. 2501# 2502# .. qmp-example:: 2503# 2504# -> { "execute": "snapshot-delete", 2505# "arguments": { 2506# "job-id": "snapdelete0", 2507# "tag": "my-snap", 2508# "devices": ["disk0", "disk1"] 2509# } 2510# } 2511# <- { "return": { } } 2512# <- {"event": "JOB_STATUS_CHANGE", 2513# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2514# "data": {"status": "created", "id": "snapdelete0"}} 2515# <- {"event": "JOB_STATUS_CHANGE", 2516# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2517# "data": {"status": "running", "id": "snapdelete0"}} 2518# <- {"event": "JOB_STATUS_CHANGE", 2519# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2520# "data": {"status": "waiting", "id": "snapdelete0"}} 2521# <- {"event": "JOB_STATUS_CHANGE", 2522# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2523# "data": {"status": "pending", "id": "snapdelete0"}} 2524# <- {"event": "JOB_STATUS_CHANGE", 2525# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2526# "data": {"status": "concluded", "id": "snapdelete0"}} 2527# -> {"execute": "query-jobs"} 2528# <- {"return": [{"current-progress": 1, 2529# "status": "concluded", 2530# "total-progress": 1, 2531# "type": "snapshot-delete", 2532# "id": "snapdelete0"}]} 2533# 2534# Since: 6.0 2535## 2536{ 'command': 'snapshot-delete', 2537 'data': { 'job-id': 'str', 2538 'tag': 'str', 2539 'devices': ['str'] } } 2540