1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * qemu_plugin_register 12 * 13 * Which can then be passed back into the API to do additional things. 14 * As such all the public functions in here are exported in 15 * qemu-plugin.h. 16 * 17 * The general life-cycle of a plugin is: 18 * 19 * - plugin is loaded, public qemu_plugin_install called 20 * - the install func registers callbacks for events 21 * - usually an atexit_cb is registered to dump info at the end 22 * - when a registered event occurs the plugin is called 23 * - some events pass additional info 24 * - during translation the plugin can decide to instrument any 25 * instruction 26 * - when QEMU exits all the registered atexit callbacks are called 27 * 28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 29 * Copyright (C) 2019, Linaro 30 * 31 * License: GNU GPL, version 2 or later. 32 * See the COPYING file in the top-level directory. 33 * 34 * SPDX-License-Identifier: GPL-2.0-or-later 35 * 36 */ 37 38 #include "qemu/osdep.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/plugin.h" 41 #include "qemu/log.h" 42 #include "tcg/tcg.h" 43 #include "exec/gdbstub.h" 44 #include "exec/target_page.h" 45 #include "exec/translation-block.h" 46 #include "exec/translator.h" 47 #include "disas/disas.h" 48 #include "plugin.h" 49 50 /* Uninstall and Reset handlers */ 51 52 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 53 { 54 plugin_reset_uninstall(id, cb, false); 55 } 56 57 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 58 { 59 plugin_reset_uninstall(id, cb, true); 60 } 61 62 /* 63 * Plugin Register Functions 64 * 65 * This allows the plugin to register callbacks for various events 66 * during the translation. 67 */ 68 69 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 70 qemu_plugin_vcpu_simple_cb_t cb) 71 { 72 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 73 } 74 75 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 76 qemu_plugin_vcpu_simple_cb_t cb) 77 { 78 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 79 } 80 81 static bool tb_is_mem_only(void) 82 { 83 return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY; 84 } 85 86 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 87 qemu_plugin_vcpu_udata_cb_t cb, 88 enum qemu_plugin_cb_flags flags, 89 void *udata) 90 { 91 if (!tb_is_mem_only()) { 92 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata); 93 } 94 } 95 96 void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb, 97 qemu_plugin_vcpu_udata_cb_t cb, 98 enum qemu_plugin_cb_flags flags, 99 enum qemu_plugin_cond cond, 100 qemu_plugin_u64 entry, 101 uint64_t imm, 102 void *udata) 103 { 104 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { 105 return; 106 } 107 if (cond == QEMU_PLUGIN_COND_ALWAYS) { 108 qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata); 109 return; 110 } 111 plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags, 112 cond, entry, imm, udata); 113 } 114 115 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( 116 struct qemu_plugin_tb *tb, 117 enum qemu_plugin_op op, 118 qemu_plugin_u64 entry, 119 uint64_t imm) 120 { 121 if (!tb_is_mem_only()) { 122 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm); 123 } 124 } 125 126 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 127 qemu_plugin_vcpu_udata_cb_t cb, 128 enum qemu_plugin_cb_flags flags, 129 void *udata) 130 { 131 if (!tb_is_mem_only()) { 132 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata); 133 } 134 } 135 136 void qemu_plugin_register_vcpu_insn_exec_cond_cb( 137 struct qemu_plugin_insn *insn, 138 qemu_plugin_vcpu_udata_cb_t cb, 139 enum qemu_plugin_cb_flags flags, 140 enum qemu_plugin_cond cond, 141 qemu_plugin_u64 entry, 142 uint64_t imm, 143 void *udata) 144 { 145 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { 146 return; 147 } 148 if (cond == QEMU_PLUGIN_COND_ALWAYS) { 149 qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata); 150 return; 151 } 152 plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags, 153 cond, entry, imm, udata); 154 } 155 156 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( 157 struct qemu_plugin_insn *insn, 158 enum qemu_plugin_op op, 159 qemu_plugin_u64 entry, 160 uint64_t imm) 161 { 162 if (!tb_is_mem_only()) { 163 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm); 164 } 165 } 166 167 168 /* 169 * We always plant memory instrumentation because they don't finalise until 170 * after the operation has complete. 171 */ 172 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 173 qemu_plugin_vcpu_mem_cb_t cb, 174 enum qemu_plugin_cb_flags flags, 175 enum qemu_plugin_mem_rw rw, 176 void *udata) 177 { 178 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata); 179 } 180 181 void qemu_plugin_register_vcpu_mem_inline_per_vcpu( 182 struct qemu_plugin_insn *insn, 183 enum qemu_plugin_mem_rw rw, 184 enum qemu_plugin_op op, 185 qemu_plugin_u64 entry, 186 uint64_t imm) 187 { 188 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm); 189 } 190 191 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 192 qemu_plugin_vcpu_tb_trans_cb_t cb) 193 { 194 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 195 } 196 197 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 198 qemu_plugin_vcpu_syscall_cb_t cb) 199 { 200 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 201 } 202 203 void 204 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 205 qemu_plugin_vcpu_syscall_ret_cb_t cb) 206 { 207 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 208 } 209 210 /* 211 * Plugin Queries 212 * 213 * These are queries that the plugin can make to gauge information 214 * from our opaque data types. We do not want to leak internal details 215 * here just information useful to the plugin. 216 */ 217 218 /* 219 * Translation block information: 220 * 221 * A plugin can query the virtual address of the start of the block 222 * and the number of instructions in it. It can also get access to 223 * each translated instruction. 224 */ 225 226 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 227 { 228 return tb->n; 229 } 230 231 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 232 { 233 const DisasContextBase *db = tcg_ctx->plugin_db; 234 return db->pc_first; 235 } 236 237 struct qemu_plugin_insn * 238 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 239 { 240 if (unlikely(idx >= tb->n)) { 241 return NULL; 242 } 243 return g_ptr_array_index(tb->insns, idx); 244 } 245 246 /* 247 * Instruction information 248 * 249 * These queries allow the plugin to retrieve information about each 250 * instruction being translated. 251 */ 252 253 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn, 254 void *dest, size_t len) 255 { 256 const DisasContextBase *db = tcg_ctx->plugin_db; 257 258 len = MIN(len, insn->len); 259 return translator_st(db, dest, insn->vaddr, len) ? len : 0; 260 } 261 262 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 263 { 264 return insn->len; 265 } 266 267 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 268 { 269 return insn->vaddr; 270 } 271 272 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 273 { 274 const DisasContextBase *db = tcg_ctx->plugin_db; 275 vaddr page0_last = db->pc_first | ~qemu_target_page_mask(); 276 277 if (db->fake_insn) { 278 return NULL; 279 } 280 281 /* 282 * ??? The return value is not intended for use of host memory, 283 * but as a proxy for address space and physical address. 284 * Thus we are only interested in the first byte and do not 285 * care about spanning pages. 286 */ 287 if (insn->vaddr <= page0_last) { 288 if (db->host_addr[0] == NULL) { 289 return NULL; 290 } 291 return db->host_addr[0] + insn->vaddr - db->pc_first; 292 } else { 293 if (db->host_addr[1] == NULL) { 294 return NULL; 295 } 296 return db->host_addr[1] + insn->vaddr - (page0_last + 1); 297 } 298 } 299 300 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 301 { 302 return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db, 303 insn->vaddr, insn->len); 304 } 305 306 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 307 { 308 const char *sym = lookup_symbol(insn->vaddr); 309 return sym[0] != 0 ? sym : NULL; 310 } 311 312 /* 313 * The memory queries allow the plugin to query information about a 314 * memory access. 315 */ 316 317 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 318 { 319 MemOp op = get_memop(info); 320 return op & MO_SIZE; 321 } 322 323 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 324 { 325 MemOp op = get_memop(info); 326 return op & MO_SIGN; 327 } 328 329 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 330 { 331 MemOp op = get_memop(info); 332 return (op & MO_BSWAP) == MO_BE; 333 } 334 335 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 336 { 337 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 338 } 339 340 qemu_plugin_mem_value qemu_plugin_mem_get_value(qemu_plugin_meminfo_t info) 341 { 342 uint64_t low = current_cpu->neg.plugin_mem_value_low; 343 qemu_plugin_mem_value value; 344 345 switch (qemu_plugin_mem_size_shift(info)) { 346 case 0: 347 value.type = QEMU_PLUGIN_MEM_VALUE_U8; 348 value.data.u8 = (uint8_t)low; 349 break; 350 case 1: 351 value.type = QEMU_PLUGIN_MEM_VALUE_U16; 352 value.data.u16 = (uint16_t)low; 353 break; 354 case 2: 355 value.type = QEMU_PLUGIN_MEM_VALUE_U32; 356 value.data.u32 = (uint32_t)low; 357 break; 358 case 3: 359 value.type = QEMU_PLUGIN_MEM_VALUE_U64; 360 value.data.u64 = low; 361 break; 362 case 4: 363 value.type = QEMU_PLUGIN_MEM_VALUE_U128; 364 value.data.u128.low = low; 365 value.data.u128.high = current_cpu->neg.plugin_mem_value_high; 366 break; 367 default: 368 g_assert_not_reached(); 369 } 370 return value; 371 } 372 373 int qemu_plugin_num_vcpus(void) 374 { 375 return plugin_num_vcpus(); 376 } 377 378 /* 379 * Plugin output 380 */ 381 void qemu_plugin_outs(const char *string) 382 { 383 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 384 } 385 386 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 387 { 388 return name && value && qapi_bool_parse(name, value, ret, NULL); 389 } 390 391 /* 392 * Create register handles. 393 * 394 * We need to create a handle for each register so the plugin 395 * infrastructure can call gdbstub to read a register. They are 396 * currently just a pointer encapsulation of the gdb_reg but in 397 * future may hold internal plugin state so its important plugin 398 * authors are not tempted to treat them as numbers. 399 * 400 * We also construct a result array with those handles and some 401 * ancillary data the plugin might find useful. 402 */ 403 404 static GArray *create_register_handles(GArray *gdbstub_regs) 405 { 406 GArray *find_data = g_array_new(true, true, 407 sizeof(qemu_plugin_reg_descriptor)); 408 409 for (int i = 0; i < gdbstub_regs->len; i++) { 410 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); 411 qemu_plugin_reg_descriptor desc; 412 413 /* skip "un-named" regs */ 414 if (!grd->name) { 415 continue; 416 } 417 418 /* Create a record for the plugin */ 419 desc.handle = GINT_TO_POINTER(grd->gdb_reg + 1); 420 desc.name = g_intern_string(grd->name); 421 desc.feature = g_intern_string(grd->feature_name); 422 g_array_append_val(find_data, desc); 423 } 424 425 return find_data; 426 } 427 428 GArray *qemu_plugin_get_registers(void) 429 { 430 g_assert(current_cpu); 431 432 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); 433 return create_register_handles(regs); 434 } 435 436 bool qemu_plugin_read_memory_vaddr(uint64_t addr, GByteArray *data, size_t len) 437 { 438 g_assert(current_cpu); 439 440 if (len == 0) { 441 return false; 442 } 443 444 g_byte_array_set_size(data, len); 445 446 int result = cpu_memory_rw_debug(current_cpu, addr, data->data, 447 data->len, false); 448 449 if (result < 0) { 450 return false; 451 } 452 453 return true; 454 } 455 456 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) 457 { 458 g_assert(current_cpu); 459 460 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg) - 1); 461 } 462 463 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) 464 { 465 return plugin_scoreboard_new(element_size); 466 } 467 468 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) 469 { 470 plugin_scoreboard_free(score); 471 } 472 473 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, 474 unsigned int vcpu_index) 475 { 476 g_assert(vcpu_index < qemu_plugin_num_vcpus()); 477 /* we can't use g_array_index since entry size is not statically known */ 478 char *base_ptr = score->data->data; 479 return base_ptr + vcpu_index * g_array_get_element_size(score->data); 480 } 481 482 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, 483 unsigned int vcpu_index) 484 { 485 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); 486 return (uint64_t *)(ptr + entry.offset); 487 } 488 489 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, 490 uint64_t added) 491 { 492 *plugin_u64_address(entry, vcpu_index) += added; 493 } 494 495 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, 496 unsigned int vcpu_index) 497 { 498 return *plugin_u64_address(entry, vcpu_index); 499 } 500 501 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, 502 uint64_t val) 503 { 504 *plugin_u64_address(entry, vcpu_index) = val; 505 } 506 507 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) 508 { 509 uint64_t total = 0; 510 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { 511 total += qemu_plugin_u64_get(entry, i); 512 } 513 return total; 514 } 515 516