1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * qemu_plugin_register 12 * 13 * Which can then be passed back into the API to do additional things. 14 * As such all the public functions in here are exported in 15 * qemu-plugin.h. 16 * 17 * The general life-cycle of a plugin is: 18 * 19 * - plugin is loaded, public qemu_plugin_install called 20 * - the install func registers callbacks for events 21 * - usually an atexit_cb is registered to dump info at the end 22 * - when a registered event occurs the plugin is called 23 * - some events pass additional info 24 * - during translation the plugin can decide to instrument any 25 * instruction 26 * - when QEMU exits all the registered atexit callbacks are called 27 * 28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 29 * Copyright (C) 2019, Linaro 30 * 31 * License: GNU GPL, version 2 or later. 32 * See the COPYING file in the top-level directory. 33 * 34 * SPDX-License-Identifier: GPL-2.0-or-later 35 * 36 */ 37 38 #include "qemu/osdep.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/plugin.h" 41 #include "qemu/log.h" 42 #include "qemu/timer.h" 43 #include "tcg/tcg.h" 44 #include "exec/exec-all.h" 45 #include "exec/gdbstub.h" 46 #include "exec/translator.h" 47 #include "disas/disas.h" 48 #include "plugin.h" 49 #ifndef CONFIG_USER_ONLY 50 #include "qapi/error.h" 51 #include "migration/blocker.h" 52 #include "exec/ram_addr.h" 53 #include "qemu/plugin-memory.h" 54 #include "hw/boards.h" 55 #else 56 #include "qemu.h" 57 #ifdef CONFIG_LINUX 58 #include "loader.h" 59 #endif 60 #endif 61 62 /* Uninstall and Reset handlers */ 63 64 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 65 { 66 plugin_reset_uninstall(id, cb, false); 67 } 68 69 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 70 { 71 plugin_reset_uninstall(id, cb, true); 72 } 73 74 /* 75 * Plugin Register Functions 76 * 77 * This allows the plugin to register callbacks for various events 78 * during the translation. 79 */ 80 81 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 82 qemu_plugin_vcpu_simple_cb_t cb) 83 { 84 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 85 } 86 87 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 88 qemu_plugin_vcpu_simple_cb_t cb) 89 { 90 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 91 } 92 93 static bool tb_is_mem_only(void) 94 { 95 return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY; 96 } 97 98 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 99 qemu_plugin_vcpu_udata_cb_t cb, 100 enum qemu_plugin_cb_flags flags, 101 void *udata) 102 { 103 if (!tb_is_mem_only()) { 104 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata); 105 } 106 } 107 108 void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb, 109 qemu_plugin_vcpu_udata_cb_t cb, 110 enum qemu_plugin_cb_flags flags, 111 enum qemu_plugin_cond cond, 112 qemu_plugin_u64 entry, 113 uint64_t imm, 114 void *udata) 115 { 116 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { 117 return; 118 } 119 if (cond == QEMU_PLUGIN_COND_ALWAYS) { 120 qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata); 121 return; 122 } 123 plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags, 124 cond, entry, imm, udata); 125 } 126 127 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( 128 struct qemu_plugin_tb *tb, 129 enum qemu_plugin_op op, 130 qemu_plugin_u64 entry, 131 uint64_t imm) 132 { 133 if (!tb_is_mem_only()) { 134 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm); 135 } 136 } 137 138 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 139 qemu_plugin_vcpu_udata_cb_t cb, 140 enum qemu_plugin_cb_flags flags, 141 void *udata) 142 { 143 if (!tb_is_mem_only()) { 144 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata); 145 } 146 } 147 148 void qemu_plugin_register_vcpu_insn_exec_cond_cb( 149 struct qemu_plugin_insn *insn, 150 qemu_plugin_vcpu_udata_cb_t cb, 151 enum qemu_plugin_cb_flags flags, 152 enum qemu_plugin_cond cond, 153 qemu_plugin_u64 entry, 154 uint64_t imm, 155 void *udata) 156 { 157 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { 158 return; 159 } 160 if (cond == QEMU_PLUGIN_COND_ALWAYS) { 161 qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata); 162 return; 163 } 164 plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags, 165 cond, entry, imm, udata); 166 } 167 168 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( 169 struct qemu_plugin_insn *insn, 170 enum qemu_plugin_op op, 171 qemu_plugin_u64 entry, 172 uint64_t imm) 173 { 174 if (!tb_is_mem_only()) { 175 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm); 176 } 177 } 178 179 180 /* 181 * We always plant memory instrumentation because they don't finalise until 182 * after the operation has complete. 183 */ 184 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 185 qemu_plugin_vcpu_mem_cb_t cb, 186 enum qemu_plugin_cb_flags flags, 187 enum qemu_plugin_mem_rw rw, 188 void *udata) 189 { 190 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata); 191 } 192 193 void qemu_plugin_register_vcpu_mem_inline_per_vcpu( 194 struct qemu_plugin_insn *insn, 195 enum qemu_plugin_mem_rw rw, 196 enum qemu_plugin_op op, 197 qemu_plugin_u64 entry, 198 uint64_t imm) 199 { 200 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm); 201 } 202 203 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 204 qemu_plugin_vcpu_tb_trans_cb_t cb) 205 { 206 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 207 } 208 209 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 210 qemu_plugin_vcpu_syscall_cb_t cb) 211 { 212 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 213 } 214 215 void 216 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 217 qemu_plugin_vcpu_syscall_ret_cb_t cb) 218 { 219 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 220 } 221 222 /* 223 * Plugin Queries 224 * 225 * These are queries that the plugin can make to gauge information 226 * from our opaque data types. We do not want to leak internal details 227 * here just information useful to the plugin. 228 */ 229 230 /* 231 * Translation block information: 232 * 233 * A plugin can query the virtual address of the start of the block 234 * and the number of instructions in it. It can also get access to 235 * each translated instruction. 236 */ 237 238 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 239 { 240 return tb->n; 241 } 242 243 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 244 { 245 const DisasContextBase *db = tcg_ctx->plugin_db; 246 return db->pc_first; 247 } 248 249 struct qemu_plugin_insn * 250 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 251 { 252 struct qemu_plugin_insn *insn; 253 if (unlikely(idx >= tb->n)) { 254 return NULL; 255 } 256 insn = g_ptr_array_index(tb->insns, idx); 257 return insn; 258 } 259 260 /* 261 * Instruction information 262 * 263 * These queries allow the plugin to retrieve information about each 264 * instruction being translated. 265 */ 266 267 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn, 268 void *dest, size_t len) 269 { 270 const DisasContextBase *db = tcg_ctx->plugin_db; 271 272 len = MIN(len, insn->len); 273 return translator_st(db, dest, insn->vaddr, len) ? len : 0; 274 } 275 276 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 277 { 278 return insn->len; 279 } 280 281 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 282 { 283 return insn->vaddr; 284 } 285 286 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 287 { 288 const DisasContextBase *db = tcg_ctx->plugin_db; 289 vaddr page0_last = db->pc_first | ~TARGET_PAGE_MASK; 290 291 if (db->fake_insn) { 292 return NULL; 293 } 294 295 /* 296 * ??? The return value is not intended for use of host memory, 297 * but as a proxy for address space and physical address. 298 * Thus we are only interested in the first byte and do not 299 * care about spanning pages. 300 */ 301 if (insn->vaddr <= page0_last) { 302 if (db->host_addr[0] == NULL) { 303 return NULL; 304 } 305 return db->host_addr[0] + insn->vaddr - db->pc_first; 306 } else { 307 if (db->host_addr[1] == NULL) { 308 return NULL; 309 } 310 return db->host_addr[1] + insn->vaddr - (page0_last + 1); 311 } 312 } 313 314 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 315 { 316 return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db, 317 insn->vaddr, insn->len); 318 } 319 320 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 321 { 322 const char *sym = lookup_symbol(insn->vaddr); 323 return sym[0] != 0 ? sym : NULL; 324 } 325 326 /* 327 * The memory queries allow the plugin to query information about a 328 * memory access. 329 */ 330 331 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 332 { 333 MemOp op = get_memop(info); 334 return op & MO_SIZE; 335 } 336 337 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 338 { 339 MemOp op = get_memop(info); 340 return op & MO_SIGN; 341 } 342 343 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 344 { 345 MemOp op = get_memop(info); 346 return (op & MO_BSWAP) == MO_BE; 347 } 348 349 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 350 { 351 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 352 } 353 354 qemu_plugin_mem_value qemu_plugin_mem_get_value(qemu_plugin_meminfo_t info) 355 { 356 uint64_t low = current_cpu->neg.plugin_mem_value_low; 357 qemu_plugin_mem_value value; 358 359 switch (qemu_plugin_mem_size_shift(info)) { 360 case 0: 361 value.type = QEMU_PLUGIN_MEM_VALUE_U8; 362 value.data.u8 = (uint8_t)low; 363 break; 364 case 1: 365 value.type = QEMU_PLUGIN_MEM_VALUE_U16; 366 value.data.u16 = (uint16_t)low; 367 break; 368 case 2: 369 value.type = QEMU_PLUGIN_MEM_VALUE_U32; 370 value.data.u32 = (uint32_t)low; 371 break; 372 case 3: 373 value.type = QEMU_PLUGIN_MEM_VALUE_U64; 374 value.data.u64 = low; 375 break; 376 case 4: 377 value.type = QEMU_PLUGIN_MEM_VALUE_U128; 378 value.data.u128.low = low; 379 value.data.u128.high = current_cpu->neg.plugin_mem_value_high; 380 break; 381 default: 382 g_assert_not_reached(); 383 } 384 return value; 385 } 386 387 /* 388 * Virtual Memory queries 389 */ 390 391 #ifdef CONFIG_SOFTMMU 392 static __thread struct qemu_plugin_hwaddr hwaddr_info; 393 #endif 394 395 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, 396 uint64_t vaddr) 397 { 398 #ifdef CONFIG_SOFTMMU 399 CPUState *cpu = current_cpu; 400 unsigned int mmu_idx = get_mmuidx(info); 401 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 402 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; 403 404 assert(mmu_idx < NB_MMU_MODES); 405 406 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, 407 hwaddr_info.is_store, &hwaddr_info)) { 408 error_report("invalid use of qemu_plugin_get_hwaddr"); 409 return NULL; 410 } 411 412 return &hwaddr_info; 413 #else 414 return NULL; 415 #endif 416 } 417 418 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) 419 { 420 #ifdef CONFIG_SOFTMMU 421 return haddr->is_io; 422 #else 423 return false; 424 #endif 425 } 426 427 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) 428 { 429 #ifdef CONFIG_SOFTMMU 430 if (haddr) { 431 return haddr->phys_addr; 432 } 433 #endif 434 return 0; 435 } 436 437 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) 438 { 439 #ifdef CONFIG_SOFTMMU 440 if (h && h->is_io) { 441 MemoryRegion *mr = h->mr; 442 if (!mr->name) { 443 unsigned maddr = (uintptr_t)mr; 444 g_autofree char *temp = g_strdup_printf("anon%08x", maddr); 445 return g_intern_string(temp); 446 } else { 447 return g_intern_string(mr->name); 448 } 449 } else { 450 return g_intern_static_string("RAM"); 451 } 452 #else 453 return g_intern_static_string("Invalid"); 454 #endif 455 } 456 457 int qemu_plugin_num_vcpus(void) 458 { 459 return plugin_num_vcpus(); 460 } 461 462 /* 463 * Plugin output 464 */ 465 void qemu_plugin_outs(const char *string) 466 { 467 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 468 } 469 470 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 471 { 472 return name && value && qapi_bool_parse(name, value, ret, NULL); 473 } 474 475 /* 476 * Binary path, start and end locations 477 */ 478 const char *qemu_plugin_path_to_binary(void) 479 { 480 char *path = NULL; 481 #ifdef CONFIG_USER_ONLY 482 TaskState *ts = get_task_state(current_cpu); 483 path = g_strdup(ts->bprm->filename); 484 #endif 485 return path; 486 } 487 488 uint64_t qemu_plugin_start_code(void) 489 { 490 uint64_t start = 0; 491 #ifdef CONFIG_USER_ONLY 492 TaskState *ts = get_task_state(current_cpu); 493 start = ts->info->start_code; 494 #endif 495 return start; 496 } 497 498 uint64_t qemu_plugin_end_code(void) 499 { 500 uint64_t end = 0; 501 #ifdef CONFIG_USER_ONLY 502 TaskState *ts = get_task_state(current_cpu); 503 end = ts->info->end_code; 504 #endif 505 return end; 506 } 507 508 uint64_t qemu_plugin_entry_code(void) 509 { 510 uint64_t entry = 0; 511 #ifdef CONFIG_USER_ONLY 512 TaskState *ts = get_task_state(current_cpu); 513 entry = ts->info->entry; 514 #endif 515 return entry; 516 } 517 518 /* 519 * Create register handles. 520 * 521 * We need to create a handle for each register so the plugin 522 * infrastructure can call gdbstub to read a register. They are 523 * currently just a pointer encapsulation of the gdb_reg but in 524 * future may hold internal plugin state so its important plugin 525 * authors are not tempted to treat them as numbers. 526 * 527 * We also construct a result array with those handles and some 528 * ancillary data the plugin might find useful. 529 */ 530 531 static GArray *create_register_handles(GArray *gdbstub_regs) 532 { 533 GArray *find_data = g_array_new(true, true, 534 sizeof(qemu_plugin_reg_descriptor)); 535 536 for (int i = 0; i < gdbstub_regs->len; i++) { 537 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); 538 qemu_plugin_reg_descriptor desc; 539 540 /* skip "un-named" regs */ 541 if (!grd->name) { 542 continue; 543 } 544 545 /* Create a record for the plugin */ 546 desc.handle = GINT_TO_POINTER(grd->gdb_reg + 1); 547 desc.name = g_intern_string(grd->name); 548 desc.feature = g_intern_string(grd->feature_name); 549 g_array_append_val(find_data, desc); 550 } 551 552 return find_data; 553 } 554 555 GArray *qemu_plugin_get_registers(void) 556 { 557 g_assert(current_cpu); 558 559 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); 560 return create_register_handles(regs); 561 } 562 563 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) 564 { 565 g_assert(current_cpu); 566 567 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg) - 1); 568 } 569 570 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) 571 { 572 return plugin_scoreboard_new(element_size); 573 } 574 575 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) 576 { 577 plugin_scoreboard_free(score); 578 } 579 580 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, 581 unsigned int vcpu_index) 582 { 583 g_assert(vcpu_index < qemu_plugin_num_vcpus()); 584 /* we can't use g_array_index since entry size is not statically known */ 585 char *base_ptr = score->data->data; 586 return base_ptr + vcpu_index * g_array_get_element_size(score->data); 587 } 588 589 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, 590 unsigned int vcpu_index) 591 { 592 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); 593 return (uint64_t *)(ptr + entry.offset); 594 } 595 596 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, 597 uint64_t added) 598 { 599 *plugin_u64_address(entry, vcpu_index) += added; 600 } 601 602 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, 603 unsigned int vcpu_index) 604 { 605 return *plugin_u64_address(entry, vcpu_index); 606 } 607 608 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, 609 uint64_t val) 610 { 611 *plugin_u64_address(entry, vcpu_index) = val; 612 } 613 614 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) 615 { 616 uint64_t total = 0; 617 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { 618 total += qemu_plugin_u64_get(entry, i); 619 } 620 return total; 621 } 622 623 /* 624 * Time control 625 */ 626 static bool has_control; 627 #ifdef CONFIG_SOFTMMU 628 static Error *migration_blocker; 629 #endif 630 631 const void *qemu_plugin_request_time_control(void) 632 { 633 if (!has_control) { 634 has_control = true; 635 #ifdef CONFIG_SOFTMMU 636 error_setg(&migration_blocker, 637 "TCG plugin time control does not support migration"); 638 migrate_add_blocker(&migration_blocker, NULL); 639 #endif 640 return &has_control; 641 } 642 return NULL; 643 } 644 645 #ifdef CONFIG_SOFTMMU 646 static void advance_virtual_time__async(CPUState *cpu, run_on_cpu_data data) 647 { 648 int64_t new_time = data.host_ulong; 649 qemu_clock_advance_virtual_time(new_time); 650 } 651 #endif 652 653 void qemu_plugin_update_ns(const void *handle, int64_t new_time) 654 { 655 #ifdef CONFIG_SOFTMMU 656 if (handle == &has_control) { 657 /* Need to execute out of cpu_exec, so bql can be locked. */ 658 async_run_on_cpu(current_cpu, 659 advance_virtual_time__async, 660 RUN_ON_CPU_HOST_ULONG(new_time)); 661 } 662 #endif 663 } 664