1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * qemu_plugin_register 12 * 13 * Which can then be passed back into the API to do additional things. 14 * As such all the public functions in here are exported in 15 * qemu-plugin.h. 16 * 17 * The general life-cycle of a plugin is: 18 * 19 * - plugin is loaded, public qemu_plugin_install called 20 * - the install func registers callbacks for events 21 * - usually an atexit_cb is registered to dump info at the end 22 * - when a registered event occurs the plugin is called 23 * - some events pass additional info 24 * - during translation the plugin can decide to instrument any 25 * instruction 26 * - when QEMU exits all the registered atexit callbacks are called 27 * 28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 29 * Copyright (C) 2019, Linaro 30 * 31 * License: GNU GPL, version 2 or later. 32 * See the COPYING file in the top-level directory. 33 * 34 * SPDX-License-Identifier: GPL-2.0-or-later 35 * 36 */ 37 38 #include "qemu/osdep.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/plugin.h" 41 #include "qemu/log.h" 42 #include "tcg/tcg.h" 43 #include "exec/gdbstub.h" 44 #include "exec/target_page.h" 45 #include "exec/translation-block.h" 46 #include "exec/translator.h" 47 #include "disas/disas.h" 48 #include "plugin.h" 49 50 /* Uninstall and Reset handlers */ 51 52 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 53 { 54 plugin_reset_uninstall(id, cb, false); 55 } 56 57 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 58 { 59 plugin_reset_uninstall(id, cb, true); 60 } 61 62 /* 63 * Plugin Register Functions 64 * 65 * This allows the plugin to register callbacks for various events 66 * during the translation. 67 */ 68 69 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 70 qemu_plugin_vcpu_simple_cb_t cb) 71 { 72 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 73 } 74 75 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 76 qemu_plugin_vcpu_simple_cb_t cb) 77 { 78 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 79 } 80 81 static bool tb_is_mem_only(void) 82 { 83 return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY; 84 } 85 86 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 87 qemu_plugin_vcpu_udata_cb_t cb, 88 enum qemu_plugin_cb_flags flags, 89 void *udata) 90 { 91 if (!tb_is_mem_only()) { 92 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata); 93 } 94 } 95 96 void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb, 97 qemu_plugin_vcpu_udata_cb_t cb, 98 enum qemu_plugin_cb_flags flags, 99 enum qemu_plugin_cond cond, 100 qemu_plugin_u64 entry, 101 uint64_t imm, 102 void *udata) 103 { 104 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { 105 return; 106 } 107 if (cond == QEMU_PLUGIN_COND_ALWAYS) { 108 qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata); 109 return; 110 } 111 plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags, 112 cond, entry, imm, udata); 113 } 114 115 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( 116 struct qemu_plugin_tb *tb, 117 enum qemu_plugin_op op, 118 qemu_plugin_u64 entry, 119 uint64_t imm) 120 { 121 if (!tb_is_mem_only()) { 122 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm); 123 } 124 } 125 126 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 127 qemu_plugin_vcpu_udata_cb_t cb, 128 enum qemu_plugin_cb_flags flags, 129 void *udata) 130 { 131 if (!tb_is_mem_only()) { 132 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata); 133 } 134 } 135 136 void qemu_plugin_register_vcpu_insn_exec_cond_cb( 137 struct qemu_plugin_insn *insn, 138 qemu_plugin_vcpu_udata_cb_t cb, 139 enum qemu_plugin_cb_flags flags, 140 enum qemu_plugin_cond cond, 141 qemu_plugin_u64 entry, 142 uint64_t imm, 143 void *udata) 144 { 145 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) { 146 return; 147 } 148 if (cond == QEMU_PLUGIN_COND_ALWAYS) { 149 qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata); 150 return; 151 } 152 plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags, 153 cond, entry, imm, udata); 154 } 155 156 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( 157 struct qemu_plugin_insn *insn, 158 enum qemu_plugin_op op, 159 qemu_plugin_u64 entry, 160 uint64_t imm) 161 { 162 if (!tb_is_mem_only()) { 163 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm); 164 } 165 } 166 167 168 /* 169 * We always plant memory instrumentation because they don't finalise until 170 * after the operation has complete. 171 */ 172 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 173 qemu_plugin_vcpu_mem_cb_t cb, 174 enum qemu_plugin_cb_flags flags, 175 enum qemu_plugin_mem_rw rw, 176 void *udata) 177 { 178 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata); 179 } 180 181 void qemu_plugin_register_vcpu_mem_inline_per_vcpu( 182 struct qemu_plugin_insn *insn, 183 enum qemu_plugin_mem_rw rw, 184 enum qemu_plugin_op op, 185 qemu_plugin_u64 entry, 186 uint64_t imm) 187 { 188 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm); 189 } 190 191 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 192 qemu_plugin_vcpu_tb_trans_cb_t cb) 193 { 194 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 195 } 196 197 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 198 qemu_plugin_vcpu_syscall_cb_t cb) 199 { 200 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 201 } 202 203 void 204 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 205 qemu_plugin_vcpu_syscall_ret_cb_t cb) 206 { 207 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 208 } 209 210 /* 211 * Plugin Queries 212 * 213 * These are queries that the plugin can make to gauge information 214 * from our opaque data types. We do not want to leak internal details 215 * here just information useful to the plugin. 216 */ 217 218 /* 219 * Translation block information: 220 * 221 * A plugin can query the virtual address of the start of the block 222 * and the number of instructions in it. It can also get access to 223 * each translated instruction. 224 */ 225 226 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 227 { 228 return tb->n; 229 } 230 231 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 232 { 233 const DisasContextBase *db = tcg_ctx->plugin_db; 234 return db->pc_first; 235 } 236 237 struct qemu_plugin_insn * 238 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 239 { 240 struct qemu_plugin_insn *insn; 241 if (unlikely(idx >= tb->n)) { 242 return NULL; 243 } 244 insn = g_ptr_array_index(tb->insns, idx); 245 return insn; 246 } 247 248 /* 249 * Instruction information 250 * 251 * These queries allow the plugin to retrieve information about each 252 * instruction being translated. 253 */ 254 255 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn, 256 void *dest, size_t len) 257 { 258 const DisasContextBase *db = tcg_ctx->plugin_db; 259 260 len = MIN(len, insn->len); 261 return translator_st(db, dest, insn->vaddr, len) ? len : 0; 262 } 263 264 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 265 { 266 return insn->len; 267 } 268 269 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 270 { 271 return insn->vaddr; 272 } 273 274 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 275 { 276 const DisasContextBase *db = tcg_ctx->plugin_db; 277 vaddr page0_last = db->pc_first | ~qemu_target_page_mask(); 278 279 if (db->fake_insn) { 280 return NULL; 281 } 282 283 /* 284 * ??? The return value is not intended for use of host memory, 285 * but as a proxy for address space and physical address. 286 * Thus we are only interested in the first byte and do not 287 * care about spanning pages. 288 */ 289 if (insn->vaddr <= page0_last) { 290 if (db->host_addr[0] == NULL) { 291 return NULL; 292 } 293 return db->host_addr[0] + insn->vaddr - db->pc_first; 294 } else { 295 if (db->host_addr[1] == NULL) { 296 return NULL; 297 } 298 return db->host_addr[1] + insn->vaddr - (page0_last + 1); 299 } 300 } 301 302 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 303 { 304 return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db, 305 insn->vaddr, insn->len); 306 } 307 308 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 309 { 310 const char *sym = lookup_symbol(insn->vaddr); 311 return sym[0] != 0 ? sym : NULL; 312 } 313 314 /* 315 * The memory queries allow the plugin to query information about a 316 * memory access. 317 */ 318 319 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 320 { 321 MemOp op = get_memop(info); 322 return op & MO_SIZE; 323 } 324 325 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 326 { 327 MemOp op = get_memop(info); 328 return op & MO_SIGN; 329 } 330 331 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 332 { 333 MemOp op = get_memop(info); 334 return (op & MO_BSWAP) == MO_BE; 335 } 336 337 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 338 { 339 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 340 } 341 342 qemu_plugin_mem_value qemu_plugin_mem_get_value(qemu_plugin_meminfo_t info) 343 { 344 uint64_t low = current_cpu->neg.plugin_mem_value_low; 345 qemu_plugin_mem_value value; 346 347 switch (qemu_plugin_mem_size_shift(info)) { 348 case 0: 349 value.type = QEMU_PLUGIN_MEM_VALUE_U8; 350 value.data.u8 = (uint8_t)low; 351 break; 352 case 1: 353 value.type = QEMU_PLUGIN_MEM_VALUE_U16; 354 value.data.u16 = (uint16_t)low; 355 break; 356 case 2: 357 value.type = QEMU_PLUGIN_MEM_VALUE_U32; 358 value.data.u32 = (uint32_t)low; 359 break; 360 case 3: 361 value.type = QEMU_PLUGIN_MEM_VALUE_U64; 362 value.data.u64 = low; 363 break; 364 case 4: 365 value.type = QEMU_PLUGIN_MEM_VALUE_U128; 366 value.data.u128.low = low; 367 value.data.u128.high = current_cpu->neg.plugin_mem_value_high; 368 break; 369 default: 370 g_assert_not_reached(); 371 } 372 return value; 373 } 374 375 int qemu_plugin_num_vcpus(void) 376 { 377 return plugin_num_vcpus(); 378 } 379 380 /* 381 * Plugin output 382 */ 383 void qemu_plugin_outs(const char *string) 384 { 385 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 386 } 387 388 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 389 { 390 return name && value && qapi_bool_parse(name, value, ret, NULL); 391 } 392 393 /* 394 * Create register handles. 395 * 396 * We need to create a handle for each register so the plugin 397 * infrastructure can call gdbstub to read a register. They are 398 * currently just a pointer encapsulation of the gdb_reg but in 399 * future may hold internal plugin state so its important plugin 400 * authors are not tempted to treat them as numbers. 401 * 402 * We also construct a result array with those handles and some 403 * ancillary data the plugin might find useful. 404 */ 405 406 static GArray *create_register_handles(GArray *gdbstub_regs) 407 { 408 GArray *find_data = g_array_new(true, true, 409 sizeof(qemu_plugin_reg_descriptor)); 410 411 for (int i = 0; i < gdbstub_regs->len; i++) { 412 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); 413 qemu_plugin_reg_descriptor desc; 414 415 /* skip "un-named" regs */ 416 if (!grd->name) { 417 continue; 418 } 419 420 /* Create a record for the plugin */ 421 desc.handle = GINT_TO_POINTER(grd->gdb_reg + 1); 422 desc.name = g_intern_string(grd->name); 423 desc.feature = g_intern_string(grd->feature_name); 424 g_array_append_val(find_data, desc); 425 } 426 427 return find_data; 428 } 429 430 GArray *qemu_plugin_get_registers(void) 431 { 432 g_assert(current_cpu); 433 434 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); 435 return create_register_handles(regs); 436 } 437 438 bool qemu_plugin_read_memory_vaddr(uint64_t addr, GByteArray *data, size_t len) 439 { 440 g_assert(current_cpu); 441 442 if (len == 0) { 443 return false; 444 } 445 446 g_byte_array_set_size(data, len); 447 448 int result = cpu_memory_rw_debug(current_cpu, addr, data->data, 449 data->len, false); 450 451 if (result < 0) { 452 return false; 453 } 454 455 return true; 456 } 457 458 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) 459 { 460 g_assert(current_cpu); 461 462 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg) - 1); 463 } 464 465 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) 466 { 467 return plugin_scoreboard_new(element_size); 468 } 469 470 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) 471 { 472 plugin_scoreboard_free(score); 473 } 474 475 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, 476 unsigned int vcpu_index) 477 { 478 g_assert(vcpu_index < qemu_plugin_num_vcpus()); 479 /* we can't use g_array_index since entry size is not statically known */ 480 char *base_ptr = score->data->data; 481 return base_ptr + vcpu_index * g_array_get_element_size(score->data); 482 } 483 484 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, 485 unsigned int vcpu_index) 486 { 487 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); 488 return (uint64_t *)(ptr + entry.offset); 489 } 490 491 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, 492 uint64_t added) 493 { 494 *plugin_u64_address(entry, vcpu_index) += added; 495 } 496 497 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, 498 unsigned int vcpu_index) 499 { 500 return *plugin_u64_address(entry, vcpu_index); 501 } 502 503 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, 504 uint64_t val) 505 { 506 *plugin_u64_address(entry, vcpu_index) = val; 507 } 508 509 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) 510 { 511 uint64_t total = 0; 512 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { 513 total += qemu_plugin_u64_get(entry, i); 514 } 515 return total; 516 } 517 518