1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/misc.h" 30 #include "hw/virtio/vhost.h" 31 #include "trace.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 NotifierWithReturn migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_F_IN_ORDER, 66 VIRTIO_F_NOTIFICATION_DATA, 67 VIRTIO_NET_F_CSUM, 68 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 69 VIRTIO_NET_F_CTRL_MAC_ADDR, 70 VIRTIO_NET_F_CTRL_RX, 71 VIRTIO_NET_F_CTRL_RX_EXTRA, 72 VIRTIO_NET_F_CTRL_VLAN, 73 VIRTIO_NET_F_CTRL_VQ, 74 VIRTIO_NET_F_GSO, 75 VIRTIO_NET_F_GUEST_CSUM, 76 VIRTIO_NET_F_GUEST_ECN, 77 VIRTIO_NET_F_GUEST_TSO4, 78 VIRTIO_NET_F_GUEST_TSO6, 79 VIRTIO_NET_F_GUEST_UFO, 80 VIRTIO_NET_F_GUEST_USO4, 81 VIRTIO_NET_F_GUEST_USO6, 82 VIRTIO_NET_F_HASH_REPORT, 83 VIRTIO_NET_F_HOST_ECN, 84 VIRTIO_NET_F_HOST_TSO4, 85 VIRTIO_NET_F_HOST_TSO6, 86 VIRTIO_NET_F_HOST_UFO, 87 VIRTIO_NET_F_HOST_USO, 88 VIRTIO_NET_F_MQ, 89 VIRTIO_NET_F_MRG_RXBUF, 90 VIRTIO_NET_F_MTU, 91 VIRTIO_NET_F_RSC_EXT, 92 VIRTIO_NET_F_RSS, 93 VIRTIO_NET_F_STATUS, 94 VIRTIO_RING_F_EVENT_IDX, 95 VIRTIO_RING_F_INDIRECT_DESC, 96 97 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 98 VHOST_INVALID_FEATURE_BIT 99 }; 100 101 /** Supported device specific feature bits with SVQ */ 102 static const uint64_t vdpa_svq_device_features = 103 BIT_ULL(VIRTIO_NET_F_CSUM) | 104 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 105 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 106 BIT_ULL(VIRTIO_NET_F_MTU) | 107 BIT_ULL(VIRTIO_NET_F_MAC) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 109 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 110 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 111 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 112 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 113 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 114 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 115 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 116 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 117 BIT_ULL(VIRTIO_NET_F_STATUS) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 119 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 120 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 122 BIT_ULL(VIRTIO_NET_F_MQ) | 123 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 124 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 125 /* VHOST_F_LOG_ALL is exposed by SVQ */ 126 BIT_ULL(VHOST_F_LOG_ALL) | 127 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 128 BIT_ULL(VIRTIO_NET_F_RSS) | 129 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 130 BIT_ULL(VIRTIO_NET_F_STANDBY) | 131 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 132 133 #define VHOST_VDPA_NET_CVQ_ASID 1 134 135 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 136 { 137 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 138 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 139 return s->vhost_net; 140 } 141 142 static size_t vhost_vdpa_net_cvq_cmd_len(void) 143 { 144 /* 145 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 146 * In buffer is always 1 byte, so it should fit here 147 */ 148 return sizeof(struct virtio_net_ctrl_hdr) + 149 2 * sizeof(struct virtio_net_ctrl_mac) + 150 MAC_TABLE_ENTRIES * ETH_ALEN; 151 } 152 153 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 154 { 155 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 156 } 157 158 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 159 { 160 uint64_t invalid_dev_features = 161 features & ~vdpa_svq_device_features & 162 /* Transport are all accepted at this point */ 163 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 164 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 165 166 if (invalid_dev_features) { 167 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 168 invalid_dev_features); 169 return false; 170 } 171 172 return vhost_svq_valid_features(features, errp); 173 } 174 175 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 176 { 177 uint32_t device_id; 178 int ret; 179 struct vhost_dev *hdev; 180 181 hdev = (struct vhost_dev *)&net->dev; 182 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 183 if (device_id != VIRTIO_ID_NET) { 184 return -ENOTSUP; 185 } 186 return ret; 187 } 188 189 static int vhost_vdpa_add(NetClientState *ncs, void *be, 190 int queue_pair_index, int nvqs) 191 { 192 VhostNetOptions options; 193 struct vhost_net *net = NULL; 194 VhostVDPAState *s; 195 int ret; 196 197 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 198 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 199 s = DO_UPCAST(VhostVDPAState, nc, ncs); 200 options.net_backend = ncs; 201 options.opaque = be; 202 options.busyloop_timeout = 0; 203 options.nvqs = nvqs; 204 205 net = vhost_net_init(&options); 206 if (!net) { 207 error_report("failed to init vhost_net for queue"); 208 goto err_init; 209 } 210 s->vhost_net = net; 211 ret = vhost_vdpa_net_check_device_id(net); 212 if (ret) { 213 goto err_check; 214 } 215 return 0; 216 err_check: 217 vhost_net_cleanup(net); 218 g_free(net); 219 err_init: 220 return -1; 221 } 222 223 static void vhost_vdpa_cleanup(NetClientState *nc) 224 { 225 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 226 227 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 228 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 229 if (s->vhost_net) { 230 vhost_net_cleanup(s->vhost_net); 231 g_free(s->vhost_net); 232 s->vhost_net = NULL; 233 } 234 if (s->vhost_vdpa.index != 0) { 235 return; 236 } 237 qemu_close(s->vhost_vdpa.shared->device_fd); 238 g_free(s->vhost_vdpa.shared); 239 } 240 241 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */ 242 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd) 243 { 244 return true; 245 } 246 247 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 248 { 249 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 250 251 return true; 252 } 253 254 static bool vhost_vdpa_has_ufo(NetClientState *nc) 255 { 256 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 257 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 258 uint64_t features = 0; 259 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 260 features = vhost_net_get_features(s->vhost_net, features); 261 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 262 263 } 264 265 /* 266 * FIXME: vhost_vdpa doesn't have an API to "set h/w endianness". But it's 267 * reasonable to assume that h/w is LE by default, because LE is what 268 * virtio 1.0 and later ask for. So, this function just says "yes, the h/w is 269 * LE". Otherwise, on a BE machine, higher-level code would mistakely think 270 * the h/w is BE and can't support VDPA for a virtio 1.0 client. 271 */ 272 static int vhost_vdpa_set_vnet_le(NetClientState *nc, bool enable) 273 { 274 return 0; 275 } 276 277 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 278 Error **errp) 279 { 280 const char *driver = object_class_get_name(oc); 281 282 if (!g_str_has_prefix(driver, "virtio-net-")) { 283 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 284 return false; 285 } 286 287 return true; 288 } 289 290 /** Dummy receive in case qemu falls back to userland tap networking */ 291 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 292 size_t size) 293 { 294 return size; 295 } 296 297 298 /** From any vdpa net client, get the netclient of the i-th queue pair */ 299 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i) 300 { 301 NICState *nic = qemu_get_nic(s->nc.peer); 302 NetClientState *nc_i = qemu_get_peer(nic->ncs, i); 303 304 return DO_UPCAST(VhostVDPAState, nc, nc_i); 305 } 306 307 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 308 { 309 return vhost_vdpa_net_get_nc_vdpa(s, 0); 310 } 311 312 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 313 { 314 struct vhost_vdpa *v = &s->vhost_vdpa; 315 VirtIONet *n; 316 VirtIODevice *vdev; 317 int data_queue_pairs, cvq, r; 318 319 /* We are only called on the first data vqs and only if x-svq is not set */ 320 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 321 return; 322 } 323 324 vdev = v->dev->vdev; 325 n = VIRTIO_NET(vdev); 326 if (!n->vhost_started) { 327 return; 328 } 329 330 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 331 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 332 n->max_ncs - n->max_queue_pairs : 0; 333 v->shared->svq_switching = enable ? 334 SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING; 335 /* 336 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 337 * in the future and resume the device if read-only operations between 338 * suspend and reset goes wrong. 339 */ 340 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 341 342 /* Start will check migration setup_or_active to configure or not SVQ */ 343 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 344 if (unlikely(r < 0)) { 345 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 346 } 347 v->shared->svq_switching = SVQ_TSTATE_DONE; 348 } 349 350 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier, 351 MigrationEvent *e, Error **errp) 352 { 353 VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state); 354 355 if (e->type == MIG_EVENT_PRECOPY_SETUP) { 356 vhost_vdpa_net_log_global_enable(s, true); 357 } else if (e->type == MIG_EVENT_PRECOPY_FAILED) { 358 vhost_vdpa_net_log_global_enable(s, false); 359 } 360 return 0; 361 } 362 363 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 364 { 365 struct vhost_vdpa *v = &s->vhost_vdpa; 366 367 migration_add_notifier(&s->migration_state, 368 vdpa_net_migration_state_notifier); 369 if (v->shadow_vqs_enabled) { 370 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 371 v->shared->iova_range.last); 372 } 373 } 374 375 static int vhost_vdpa_net_data_start(NetClientState *nc) 376 { 377 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 378 struct vhost_vdpa *v = &s->vhost_vdpa; 379 380 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 381 382 if (s->always_svq || migration_is_running()) { 383 v->shadow_vqs_enabled = true; 384 } else { 385 v->shadow_vqs_enabled = false; 386 } 387 388 if (v->index == 0) { 389 v->shared->shadow_data = v->shadow_vqs_enabled; 390 vhost_vdpa_net_data_start_first(s); 391 return 0; 392 } 393 394 return 0; 395 } 396 397 static int vhost_vdpa_net_data_load(NetClientState *nc) 398 { 399 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 400 struct vhost_vdpa *v = &s->vhost_vdpa; 401 bool has_cvq = v->dev->vq_index_end % 2; 402 403 if (has_cvq) { 404 return 0; 405 } 406 407 for (int i = 0; i < v->dev->nvqs; ++i) { 408 int ret = vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 409 if (ret < 0) { 410 return ret; 411 } 412 } 413 return 0; 414 } 415 416 static void vhost_vdpa_net_client_stop(NetClientState *nc) 417 { 418 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 419 struct vhost_dev *dev; 420 421 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 422 423 if (s->vhost_vdpa.index == 0) { 424 migration_remove_notifier(&s->migration_state); 425 } 426 427 dev = s->vhost_vdpa.dev; 428 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 429 g_clear_pointer(&s->vhost_vdpa.shared->iova_tree, 430 vhost_iova_tree_delete); 431 } 432 } 433 434 static NetClientInfo net_vhost_vdpa_info = { 435 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 436 .size = sizeof(VhostVDPAState), 437 .receive = vhost_vdpa_receive, 438 .start = vhost_vdpa_net_data_start, 439 .load = vhost_vdpa_net_data_load, 440 .stop = vhost_vdpa_net_client_stop, 441 .cleanup = vhost_vdpa_cleanup, 442 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 443 .has_ufo = vhost_vdpa_has_ufo, 444 .set_vnet_le = vhost_vdpa_set_vnet_le, 445 .check_peer_type = vhost_vdpa_check_peer_type, 446 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 447 }; 448 449 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 450 Error **errp) 451 { 452 struct vhost_vring_state state = { 453 .index = vq_index, 454 }; 455 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 456 457 if (unlikely(r < 0)) { 458 r = -errno; 459 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 460 return r; 461 } 462 463 return state.num; 464 } 465 466 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 467 unsigned vq_group, 468 unsigned asid_num) 469 { 470 struct vhost_vring_state asid = { 471 .index = vq_group, 472 .num = asid_num, 473 }; 474 int r; 475 476 trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num); 477 478 r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 479 if (unlikely(r < 0)) { 480 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 481 asid.index, asid.num, errno, g_strerror(errno)); 482 } 483 return r; 484 } 485 486 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 487 { 488 VhostIOVATree *tree = v->shared->iova_tree; 489 DMAMap needle = { 490 /* 491 * No need to specify size or to look for more translations since 492 * this contiguous chunk was allocated by us. 493 */ 494 .translated_addr = (hwaddr)(uintptr_t)addr, 495 }; 496 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 497 int r; 498 499 if (unlikely(!map)) { 500 error_report("Cannot locate expected map"); 501 return; 502 } 503 504 r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova, 505 map->size + 1); 506 if (unlikely(r != 0)) { 507 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 508 } 509 510 vhost_iova_tree_remove(tree, *map); 511 } 512 513 /** Map CVQ buffer. */ 514 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 515 bool write) 516 { 517 DMAMap map = {}; 518 hwaddr taddr = (hwaddr)(uintptr_t)buf; 519 int r; 520 521 map.size = size - 1; 522 map.perm = write ? IOMMU_RW : IOMMU_RO, 523 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map, taddr); 524 if (unlikely(r != IOVA_OK)) { 525 error_report("Cannot map injected element"); 526 527 if (map.translated_addr == taddr) { 528 error_report("Insertion to IOVA->HVA tree failed"); 529 /* Remove the mapping from the IOVA-only tree */ 530 goto dma_map_err; 531 } 532 return r; 533 } 534 535 r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova, 536 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 537 if (unlikely(r < 0)) { 538 goto dma_map_err; 539 } 540 541 return 0; 542 543 dma_map_err: 544 vhost_iova_tree_remove(v->shared->iova_tree, map); 545 return r; 546 } 547 548 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 549 { 550 VhostVDPAState *s, *s0; 551 struct vhost_vdpa *v; 552 int64_t cvq_group; 553 int r; 554 Error *err = NULL; 555 556 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 557 558 s = DO_UPCAST(VhostVDPAState, nc, nc); 559 v = &s->vhost_vdpa; 560 561 s0 = vhost_vdpa_net_first_nc_vdpa(s); 562 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 563 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 564 565 if (v->shared->shadow_data) { 566 /* SVQ is already configured for all virtqueues */ 567 goto out; 568 } 569 570 /* 571 * If we early return in these cases SVQ will not be enabled. The migration 572 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 573 */ 574 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 575 return 0; 576 } 577 578 if (!s->cvq_isolated) { 579 return 0; 580 } 581 582 cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd, 583 v->dev->vq_index_end - 1, 584 &err); 585 if (unlikely(cvq_group < 0)) { 586 error_report_err(err); 587 return cvq_group; 588 } 589 590 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 591 if (unlikely(r < 0)) { 592 return r; 593 } 594 595 v->shadow_vqs_enabled = true; 596 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 597 598 out: 599 if (!s->vhost_vdpa.shadow_vqs_enabled) { 600 return 0; 601 } 602 603 /* 604 * If other vhost_vdpa already have an iova_tree, reuse it for simplicity, 605 * whether CVQ shares ASID with guest or not, because: 606 * - Memory listener need access to guest's memory addresses allocated in 607 * the IOVA tree. 608 * - There should be plenty of IOVA address space for both ASID not to 609 * worry about collisions between them. Guest's translations are still 610 * validated with virtio virtqueue_pop so there is no risk for the guest 611 * to access memory that it shouldn't. 612 * 613 * To allocate a iova tree per ASID is doable but it complicates the code 614 * and it is not worth it for the moment. 615 */ 616 if (!v->shared->iova_tree) { 617 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 618 v->shared->iova_range.last); 619 } 620 621 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 622 vhost_vdpa_net_cvq_cmd_page_len(), false); 623 if (unlikely(r < 0)) { 624 return r; 625 } 626 627 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 628 vhost_vdpa_net_cvq_cmd_page_len(), true); 629 if (unlikely(r < 0)) { 630 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 631 } 632 633 return r; 634 } 635 636 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 637 { 638 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 639 640 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 641 642 if (s->vhost_vdpa.shadow_vqs_enabled) { 643 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 644 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 645 } 646 647 vhost_vdpa_net_client_stop(nc); 648 } 649 650 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 651 const struct iovec *out_sg, size_t out_num, 652 const struct iovec *in_sg, size_t in_num) 653 { 654 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 655 int r; 656 657 r = vhost_svq_add(svq, out_sg, out_num, NULL, in_sg, in_num, NULL, NULL); 658 if (unlikely(r != 0)) { 659 if (unlikely(r == -ENOSPC)) { 660 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 661 __func__); 662 } 663 } 664 665 return r; 666 } 667 668 /* 669 * Convenience wrapper to poll SVQ for multiple control commands. 670 * 671 * Caller should hold the BQL when invoking this function, and should take 672 * the answer before SVQ pulls by itself when BQL is released. 673 */ 674 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 675 { 676 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 677 return vhost_svq_poll(svq, cmds_in_flight); 678 } 679 680 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 681 struct iovec *out_cursor, 682 struct iovec *in_cursor) 683 { 684 /* reset the cursor of the output buffer for the device */ 685 out_cursor->iov_base = s->cvq_cmd_out_buffer; 686 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 687 688 /* reset the cursor of the in buffer for the device */ 689 in_cursor->iov_base = s->status; 690 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 691 } 692 693 /* 694 * Poll SVQ for multiple pending control commands and check the device's ack. 695 * 696 * Caller should hold the BQL when invoking this function. 697 * 698 * @s: The VhostVDPAState 699 * @len: The length of the pending status shadow buffer 700 */ 701 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 702 { 703 /* device uses a one-byte length ack for each control command */ 704 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 705 if (unlikely(dev_written != len)) { 706 return -EIO; 707 } 708 709 /* check the device's ack */ 710 for (int i = 0; i < len; ++i) { 711 if (s->status[i] != VIRTIO_NET_OK) { 712 return -EIO; 713 } 714 } 715 return 0; 716 } 717 718 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 719 struct iovec *out_cursor, 720 struct iovec *in_cursor, uint8_t class, 721 uint8_t cmd, const struct iovec *data_sg, 722 size_t data_num) 723 { 724 const struct virtio_net_ctrl_hdr ctrl = { 725 .class = class, 726 .cmd = cmd, 727 }; 728 size_t data_size = iov_size(data_sg, data_num), cmd_size; 729 struct iovec out, in; 730 ssize_t r; 731 unsigned dummy_cursor_iov_cnt; 732 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 733 734 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 735 cmd_size = sizeof(ctrl) + data_size; 736 trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size); 737 if (vhost_svq_available_slots(svq) < 2 || 738 iov_size(out_cursor, 1) < cmd_size) { 739 /* 740 * It is time to flush all pending control commands if SVQ is full 741 * or control commands shadow buffers are full. 742 * 743 * We can poll here since we've had BQL from the time 744 * we sent the descriptor. 745 */ 746 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 747 (void *)s->status); 748 if (unlikely(r < 0)) { 749 return r; 750 } 751 752 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 753 } 754 755 /* pack the CVQ command header */ 756 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 757 /* pack the CVQ command command-specific-data */ 758 iov_to_buf(data_sg, data_num, 0, 759 out_cursor->iov_base + sizeof(ctrl), data_size); 760 761 /* extract the required buffer from the cursor for output */ 762 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 763 /* extract the required buffer from the cursor for input */ 764 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 765 766 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 767 if (unlikely(r < 0)) { 768 trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r); 769 return r; 770 } 771 772 /* iterate the cursors */ 773 dummy_cursor_iov_cnt = 1; 774 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 775 dummy_cursor_iov_cnt = 1; 776 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 777 778 return 0; 779 } 780 781 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 782 struct iovec *out_cursor, 783 struct iovec *in_cursor) 784 { 785 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 786 const struct iovec data = { 787 .iov_base = (void *)n->mac, 788 .iov_len = sizeof(n->mac), 789 }; 790 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 791 VIRTIO_NET_CTRL_MAC, 792 VIRTIO_NET_CTRL_MAC_ADDR_SET, 793 &data, 1); 794 if (unlikely(r < 0)) { 795 return r; 796 } 797 } 798 799 /* 800 * According to VirtIO standard, "The device MUST have an 801 * empty MAC filtering table on reset.". 802 * 803 * Therefore, there is no need to send this CVQ command if the 804 * driver also sets an empty MAC filter table, which aligns with 805 * the device's defaults. 806 * 807 * Note that the device's defaults can mismatch the driver's 808 * configuration only at live migration. 809 */ 810 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 811 n->mac_table.in_use == 0) { 812 return 0; 813 } 814 815 uint32_t uni_entries = n->mac_table.first_multi, 816 uni_macs_size = uni_entries * ETH_ALEN, 817 mul_entries = n->mac_table.in_use - uni_entries, 818 mul_macs_size = mul_entries * ETH_ALEN; 819 struct virtio_net_ctrl_mac uni = { 820 .entries = cpu_to_le32(uni_entries), 821 }; 822 struct virtio_net_ctrl_mac mul = { 823 .entries = cpu_to_le32(mul_entries), 824 }; 825 const struct iovec data[] = { 826 { 827 .iov_base = &uni, 828 .iov_len = sizeof(uni), 829 }, { 830 .iov_base = n->mac_table.macs, 831 .iov_len = uni_macs_size, 832 }, { 833 .iov_base = &mul, 834 .iov_len = sizeof(mul), 835 }, { 836 .iov_base = &n->mac_table.macs[uni_macs_size], 837 .iov_len = mul_macs_size, 838 }, 839 }; 840 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 841 VIRTIO_NET_CTRL_MAC, 842 VIRTIO_NET_CTRL_MAC_TABLE_SET, 843 data, ARRAY_SIZE(data)); 844 if (unlikely(r < 0)) { 845 return r; 846 } 847 848 return 0; 849 } 850 851 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 852 struct iovec *out_cursor, 853 struct iovec *in_cursor, bool do_rss) 854 { 855 struct virtio_net_rss_config cfg = {}; 856 ssize_t r; 857 g_autofree uint16_t *table = NULL; 858 859 /* 860 * According to VirtIO standard, "Initially the device has all hash 861 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 862 * 863 * Therefore, there is no need to send this CVQ command if the 864 * driver disables the all hash types, which aligns with 865 * the device's defaults. 866 * 867 * Note that the device's defaults can mismatch the driver's 868 * configuration only at live migration. 869 */ 870 if (!n->rss_data.enabled || 871 n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 872 return 0; 873 } 874 875 table = g_malloc_n(n->rss_data.indirections_len, 876 sizeof(n->rss_data.indirections_table[0])); 877 cfg.hash_types = cpu_to_le32(n->rss_data.hash_types); 878 879 if (do_rss) { 880 /* 881 * According to VirtIO standard, "Number of entries in indirection_table 882 * is (indirection_table_mask + 1)". 883 */ 884 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 885 1); 886 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 887 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 888 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 889 } 890 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 891 } else { 892 /* 893 * According to VirtIO standard, "Field reserved MUST contain zeroes. 894 * It is defined to make the structure to match the layout of 895 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 896 * 897 * Therefore, we need to zero the fields in 898 * struct virtio_net_rss_config, which corresponds to the 899 * `reserved` field in struct virtio_net_hash_config. 900 * 901 * Note that all other fields are zeroed at their definitions, 902 * except for the `indirection_table` field, where the actual data 903 * is stored in the `table` variable to ensure compatibility 904 * with RSS case. Therefore, we need to zero the `table` variable here. 905 */ 906 table[0] = 0; 907 } 908 909 /* 910 * Considering that virtio_net_handle_rss() currently does not restore 911 * the hash key length parsed from the CVQ command sent from the guest 912 * into n->rss_data and uses the maximum key length in other code, so 913 * we also employ the maximum key length here. 914 */ 915 cfg.hash_key_length = sizeof(n->rss_data.key); 916 917 const struct iovec data[] = { 918 { 919 .iov_base = &cfg, 920 .iov_len = offsetof(struct virtio_net_rss_config, 921 indirection_table), 922 }, { 923 .iov_base = table, 924 .iov_len = n->rss_data.indirections_len * 925 sizeof(n->rss_data.indirections_table[0]), 926 }, { 927 .iov_base = &cfg.max_tx_vq, 928 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 929 offsetof(struct virtio_net_rss_config, max_tx_vq), 930 }, { 931 .iov_base = (void *)n->rss_data.key, 932 .iov_len = sizeof(n->rss_data.key), 933 } 934 }; 935 936 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 937 VIRTIO_NET_CTRL_MQ, 938 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 939 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 940 data, ARRAY_SIZE(data)); 941 if (unlikely(r < 0)) { 942 return r; 943 } 944 945 return 0; 946 } 947 948 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 949 const VirtIONet *n, 950 struct iovec *out_cursor, 951 struct iovec *in_cursor) 952 { 953 struct virtio_net_ctrl_mq mq; 954 ssize_t r; 955 956 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 957 return 0; 958 } 959 960 trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs); 961 962 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 963 const struct iovec data = { 964 .iov_base = &mq, 965 .iov_len = sizeof(mq), 966 }; 967 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 968 VIRTIO_NET_CTRL_MQ, 969 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 970 &data, 1); 971 if (unlikely(r < 0)) { 972 return r; 973 } 974 975 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 976 /* load the receive-side scaling state */ 977 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 978 if (unlikely(r < 0)) { 979 return r; 980 } 981 } else if (virtio_vdev_has_feature(&n->parent_obj, 982 VIRTIO_NET_F_HASH_REPORT)) { 983 /* load the hash calculation state */ 984 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 985 if (unlikely(r < 0)) { 986 return r; 987 } 988 } 989 990 return 0; 991 } 992 993 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 994 const VirtIONet *n, 995 struct iovec *out_cursor, 996 struct iovec *in_cursor) 997 { 998 uint64_t offloads; 999 ssize_t r; 1000 1001 if (!virtio_vdev_has_feature(&n->parent_obj, 1002 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 1003 return 0; 1004 } 1005 1006 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 1007 /* 1008 * According to VirtIO standard, "Upon feature negotiation 1009 * corresponding offload gets enabled to preserve 1010 * backward compatibility.". 1011 * 1012 * Therefore, there is no need to send this CVQ command if the 1013 * driver also enables all supported offloads, which aligns with 1014 * the device's defaults. 1015 * 1016 * Note that the device's defaults can mismatch the driver's 1017 * configuration only at live migration. 1018 */ 1019 return 0; 1020 } 1021 1022 offloads = cpu_to_le64(n->curr_guest_offloads); 1023 const struct iovec data = { 1024 .iov_base = &offloads, 1025 .iov_len = sizeof(offloads), 1026 }; 1027 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1028 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 1029 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1030 &data, 1); 1031 if (unlikely(r < 0)) { 1032 return r; 1033 } 1034 1035 return 0; 1036 } 1037 1038 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1039 struct iovec *out_cursor, 1040 struct iovec *in_cursor, 1041 uint8_t cmd, 1042 uint8_t on) 1043 { 1044 const struct iovec data = { 1045 .iov_base = &on, 1046 .iov_len = sizeof(on), 1047 }; 1048 ssize_t r; 1049 1050 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1051 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1052 if (unlikely(r < 0)) { 1053 return r; 1054 } 1055 1056 return 0; 1057 } 1058 1059 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1060 const VirtIONet *n, 1061 struct iovec *out_cursor, 1062 struct iovec *in_cursor) 1063 { 1064 ssize_t r; 1065 1066 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1067 return 0; 1068 } 1069 1070 /* 1071 * According to virtio_net_reset(), device turns promiscuous mode 1072 * on by default. 1073 * 1074 * Additionally, according to VirtIO standard, "Since there are 1075 * no guarantees, it can use a hash filter or silently switch to 1076 * allmulti or promiscuous mode if it is given too many addresses.". 1077 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1078 * non-multicast MAC addresses, indicating that promiscuous mode 1079 * should be enabled. 1080 * 1081 * Therefore, QEMU should only send this CVQ command if the 1082 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1083 * which sets promiscuous mode on, different from the device's defaults. 1084 * 1085 * Note that the device's defaults can mismatch the driver's 1086 * configuration only at live migration. 1087 */ 1088 if (!n->mac_table.uni_overflow && !n->promisc) { 1089 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1090 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1091 if (unlikely(r < 0)) { 1092 return r; 1093 } 1094 } 1095 1096 /* 1097 * According to virtio_net_reset(), device turns all-multicast mode 1098 * off by default. 1099 * 1100 * According to VirtIO standard, "Since there are no guarantees, 1101 * it can use a hash filter or silently switch to allmulti or 1102 * promiscuous mode if it is given too many addresses.". QEMU marks 1103 * `n->mac_table.multi_overflow` if guest sets too many 1104 * non-multicast MAC addresses. 1105 * 1106 * Therefore, QEMU should only send this CVQ command if the 1107 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1108 * which sets all-multicast mode on, different from the device's defaults. 1109 * 1110 * Note that the device's defaults can mismatch the driver's 1111 * configuration only at live migration. 1112 */ 1113 if (n->mac_table.multi_overflow || n->allmulti) { 1114 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1115 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1116 if (unlikely(r < 0)) { 1117 return r; 1118 } 1119 } 1120 1121 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1122 return 0; 1123 } 1124 1125 /* 1126 * According to virtio_net_reset(), device turns all-unicast mode 1127 * off by default. 1128 * 1129 * Therefore, QEMU should only send this CVQ command if the driver 1130 * sets all-unicast mode on, different from the device's defaults. 1131 * 1132 * Note that the device's defaults can mismatch the driver's 1133 * configuration only at live migration. 1134 */ 1135 if (n->alluni) { 1136 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1137 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1138 if (r < 0) { 1139 return r; 1140 } 1141 } 1142 1143 /* 1144 * According to virtio_net_reset(), device turns non-multicast mode 1145 * off by default. 1146 * 1147 * Therefore, QEMU should only send this CVQ command if the driver 1148 * sets non-multicast mode on, different from the device's defaults. 1149 * 1150 * Note that the device's defaults can mismatch the driver's 1151 * configuration only at live migration. 1152 */ 1153 if (n->nomulti) { 1154 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1155 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1156 if (r < 0) { 1157 return r; 1158 } 1159 } 1160 1161 /* 1162 * According to virtio_net_reset(), device turns non-unicast mode 1163 * off by default. 1164 * 1165 * Therefore, QEMU should only send this CVQ command if the driver 1166 * sets non-unicast mode on, different from the device's defaults. 1167 * 1168 * Note that the device's defaults can mismatch the driver's 1169 * configuration only at live migration. 1170 */ 1171 if (n->nouni) { 1172 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1173 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1174 if (r < 0) { 1175 return r; 1176 } 1177 } 1178 1179 /* 1180 * According to virtio_net_reset(), device turns non-broadcast mode 1181 * off by default. 1182 * 1183 * Therefore, QEMU should only send this CVQ command if the driver 1184 * sets non-broadcast mode on, different from the device's defaults. 1185 * 1186 * Note that the device's defaults can mismatch the driver's 1187 * configuration only at live migration. 1188 */ 1189 if (n->nobcast) { 1190 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1191 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1192 if (r < 0) { 1193 return r; 1194 } 1195 } 1196 1197 return 0; 1198 } 1199 1200 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1201 const VirtIONet *n, 1202 struct iovec *out_cursor, 1203 struct iovec *in_cursor, 1204 uint16_t vid) 1205 { 1206 const struct iovec data = { 1207 .iov_base = &vid, 1208 .iov_len = sizeof(vid), 1209 }; 1210 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1211 VIRTIO_NET_CTRL_VLAN, 1212 VIRTIO_NET_CTRL_VLAN_ADD, 1213 &data, 1); 1214 if (unlikely(r < 0)) { 1215 return r; 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1222 const VirtIONet *n, 1223 struct iovec *out_cursor, 1224 struct iovec *in_cursor) 1225 { 1226 int r; 1227 1228 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1229 return 0; 1230 } 1231 1232 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1233 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1234 if (n->vlans[i] & (1U << j)) { 1235 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1236 in_cursor, (i << 5) + j); 1237 if (unlikely(r != 0)) { 1238 return r; 1239 } 1240 } 1241 } 1242 } 1243 1244 return 0; 1245 } 1246 1247 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1248 { 1249 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1250 struct vhost_vdpa *v = &s->vhost_vdpa; 1251 const VirtIONet *n; 1252 int r; 1253 struct iovec out_cursor, in_cursor; 1254 1255 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1256 1257 r = vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1258 if (unlikely(r < 0)) { 1259 return r; 1260 } 1261 1262 if (v->shadow_vqs_enabled) { 1263 n = VIRTIO_NET(v->dev->vdev); 1264 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1265 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1266 if (unlikely(r < 0)) { 1267 return r; 1268 } 1269 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1270 if (unlikely(r)) { 1271 return r; 1272 } 1273 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1274 if (unlikely(r)) { 1275 return r; 1276 } 1277 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1278 if (unlikely(r)) { 1279 return r; 1280 } 1281 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1282 if (unlikely(r)) { 1283 return r; 1284 } 1285 1286 /* 1287 * We need to poll and check all pending device's used buffers. 1288 * 1289 * We can poll here since we've had BQL from the time 1290 * we sent the descriptor. 1291 */ 1292 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1293 if (unlikely(r)) { 1294 return r; 1295 } 1296 } 1297 1298 for (int i = 0; i < v->dev->vq_index; ++i) { 1299 r = vhost_vdpa_set_vring_ready(v, i); 1300 if (unlikely(r < 0)) { 1301 return r; 1302 } 1303 } 1304 1305 return 0; 1306 } 1307 1308 static NetClientInfo net_vhost_vdpa_cvq_info = { 1309 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1310 .size = sizeof(VhostVDPAState), 1311 .receive = vhost_vdpa_receive, 1312 .start = vhost_vdpa_net_cvq_start, 1313 .load = vhost_vdpa_net_cvq_load, 1314 .stop = vhost_vdpa_net_cvq_stop, 1315 .cleanup = vhost_vdpa_cleanup, 1316 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1317 .has_ufo = vhost_vdpa_has_ufo, 1318 .check_peer_type = vhost_vdpa_check_peer_type, 1319 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 1320 }; 1321 1322 /* 1323 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1324 * vdpa device. 1325 * 1326 * Considering that QEMU cannot send the entire filter table to the 1327 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1328 * command to enable promiscuous mode to receive all packets, 1329 * according to VirtIO standard, "Since there are no guarantees, 1330 * it can use a hash filter or silently switch to allmulti or 1331 * promiscuous mode if it is given too many addresses.". 1332 * 1333 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1334 * marks `n->mac_table.x_overflow` accordingly, it should have 1335 * the same effect on the device model to receive 1336 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1337 * The same applies to multicast MAC addresses. 1338 * 1339 * Therefore, QEMU can provide the device model with a fake 1340 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1341 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1342 * MAC addresses. This ensures that the device model marks 1343 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1344 * allowing all packets to be received, which aligns with the 1345 * state of the vdpa device. 1346 */ 1347 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1348 VirtQueueElement *elem, 1349 struct iovec *out, 1350 const struct iovec *in) 1351 { 1352 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1353 struct virtio_net_ctrl_hdr *hdr_ptr; 1354 uint32_t cursor; 1355 ssize_t r; 1356 uint8_t on = 1; 1357 1358 /* parse the non-multicast MAC address entries from CVQ command */ 1359 cursor = sizeof(*hdr_ptr); 1360 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1361 &mac_data, sizeof(mac_data)); 1362 if (unlikely(r != sizeof(mac_data))) { 1363 /* 1364 * If the CVQ command is invalid, we should simulate the vdpa device 1365 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1366 */ 1367 *s->status = VIRTIO_NET_ERR; 1368 return sizeof(*s->status); 1369 } 1370 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1371 1372 /* parse the multicast MAC address entries from CVQ command */ 1373 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1374 &mac_data, sizeof(mac_data)); 1375 if (r != sizeof(mac_data)) { 1376 /* 1377 * If the CVQ command is invalid, we should simulate the vdpa device 1378 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1379 */ 1380 *s->status = VIRTIO_NET_ERR; 1381 return sizeof(*s->status); 1382 } 1383 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1384 1385 /* validate the CVQ command */ 1386 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1387 /* 1388 * If the CVQ command is invalid, we should simulate the vdpa device 1389 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1390 */ 1391 *s->status = VIRTIO_NET_ERR; 1392 return sizeof(*s->status); 1393 } 1394 1395 /* 1396 * According to VirtIO standard, "Since there are no guarantees, 1397 * it can use a hash filter or silently switch to allmulti or 1398 * promiscuous mode if it is given too many addresses.". 1399 * 1400 * Therefore, considering that QEMU is unable to send the entire 1401 * filter table to the vdpa device, it should send the 1402 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1403 */ 1404 hdr_ptr = out->iov_base; 1405 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1406 1407 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1408 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1409 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1410 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1411 if (unlikely(r < 0)) { 1412 return r; 1413 } 1414 1415 /* 1416 * We can poll here since we've had BQL from the time 1417 * we sent the descriptor. 1418 */ 1419 r = vhost_vdpa_net_svq_poll(s, 1); 1420 if (unlikely(r < sizeof(*s->status))) { 1421 return r; 1422 } 1423 if (*s->status != VIRTIO_NET_OK) { 1424 return sizeof(*s->status); 1425 } 1426 1427 /* 1428 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1429 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1430 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1431 * multicast MAC addresses. 1432 * 1433 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1434 * and `n->mac_table.multi_overflow`, enabling all packets to be 1435 * received, which aligns with the state of the vdpa device. 1436 */ 1437 cursor = 0; 1438 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1439 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1440 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1441 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1442 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1443 1444 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1445 out->iov_len = fake_cvq_size; 1446 1447 /* pack the header for fake CVQ command */ 1448 hdr_ptr = out->iov_base + cursor; 1449 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1450 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1451 cursor += sizeof(*hdr_ptr); 1452 1453 /* 1454 * Pack the non-multicast MAC addresses part for fake CVQ command. 1455 * 1456 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1457 * addresses provided in CVQ command. Therefore, only the entries 1458 * field need to be prepared in the CVQ command. 1459 */ 1460 mac_ptr = out->iov_base + cursor; 1461 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1462 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1463 1464 /* 1465 * Pack the multicast MAC addresses part for fake CVQ command. 1466 * 1467 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1468 * addresses provided in CVQ command. Therefore, only the entries 1469 * field need to be prepared in the CVQ command. 1470 */ 1471 mac_ptr = out->iov_base + cursor; 1472 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1473 1474 /* 1475 * Simulating QEMU poll a vdpa device used buffer 1476 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1477 */ 1478 return sizeof(*s->status); 1479 } 1480 1481 /** 1482 * Validate and copy control virtqueue commands. 1483 * 1484 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1485 * prevent TOCTOU bugs. 1486 */ 1487 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1488 VirtQueueElement *elem, 1489 void *opaque) 1490 { 1491 VhostVDPAState *s = opaque; 1492 size_t in_len; 1493 const struct virtio_net_ctrl_hdr *ctrl; 1494 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1495 /* Out buffer sent to both the vdpa device and the device model */ 1496 struct iovec out = { 1497 .iov_base = s->cvq_cmd_out_buffer, 1498 }; 1499 /* in buffer used for device model */ 1500 const struct iovec model_in = { 1501 .iov_base = &status, 1502 .iov_len = sizeof(status), 1503 }; 1504 /* in buffer used for vdpa device */ 1505 const struct iovec vdpa_in = { 1506 .iov_base = s->status, 1507 .iov_len = sizeof(*s->status), 1508 }; 1509 ssize_t dev_written = -EINVAL; 1510 1511 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1512 s->cvq_cmd_out_buffer, 1513 vhost_vdpa_net_cvq_cmd_page_len()); 1514 1515 ctrl = s->cvq_cmd_out_buffer; 1516 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1517 /* 1518 * Guest announce capability is emulated by qemu, so don't forward to 1519 * the device. 1520 */ 1521 dev_written = sizeof(status); 1522 *s->status = VIRTIO_NET_OK; 1523 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1524 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1525 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1526 /* 1527 * Due to the size limitation of the out buffer sent to the vdpa device, 1528 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1529 * MAC addresses set by the driver for the filter table can cause 1530 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1531 * rejects the flawed CVQ command. 1532 * 1533 * Therefore, QEMU must handle this situation instead of sending 1534 * the CVQ command directly. 1535 */ 1536 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1537 &out, &vdpa_in); 1538 if (unlikely(dev_written < 0)) { 1539 goto out; 1540 } 1541 } else { 1542 ssize_t r; 1543 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1544 if (unlikely(r < 0)) { 1545 dev_written = r; 1546 goto out; 1547 } 1548 1549 /* 1550 * We can poll here since we've had BQL from the time 1551 * we sent the descriptor. 1552 */ 1553 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1554 } 1555 1556 if (unlikely(dev_written < sizeof(status))) { 1557 error_report("Insufficient written data (%zu)", dev_written); 1558 goto out; 1559 } 1560 1561 if (*s->status != VIRTIO_NET_OK) { 1562 goto out; 1563 } 1564 1565 status = VIRTIO_NET_ERR; 1566 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1567 if (status != VIRTIO_NET_OK) { 1568 error_report("Bad CVQ processing in model"); 1569 } 1570 1571 out: 1572 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1573 sizeof(status)); 1574 if (unlikely(in_len < sizeof(status))) { 1575 error_report("Bad device CVQ written length"); 1576 } 1577 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1578 /* 1579 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1580 * the function successfully forwards the CVQ command, indicated 1581 * by a non-negative value of `dev_written`. Otherwise, it still 1582 * belongs to SVQ. 1583 * This function should only free the `elem` when it owns. 1584 */ 1585 if (dev_written >= 0) { 1586 g_free(elem); 1587 } 1588 return dev_written < 0 ? dev_written : 0; 1589 } 1590 1591 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1592 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1593 }; 1594 1595 /** 1596 * Probe if CVQ is isolated 1597 * 1598 * @device_fd The vdpa device fd 1599 * @features Features offered by the device. 1600 * @cvq_index The control vq pair index 1601 * 1602 * Returns <0 in case of failure, 0 if false and 1 if true. 1603 */ 1604 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1605 int cvq_index, Error **errp) 1606 { 1607 ERRP_GUARD(); 1608 uint64_t backend_features; 1609 int64_t cvq_group; 1610 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1611 VIRTIO_CONFIG_S_DRIVER; 1612 int r; 1613 1614 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1615 if (unlikely(r < 0)) { 1616 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1617 return r; 1618 } 1619 1620 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1621 return 0; 1622 } 1623 1624 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1625 if (unlikely(r)) { 1626 error_setg_errno(errp, -r, "Cannot set device status"); 1627 goto out; 1628 } 1629 1630 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1631 if (unlikely(r)) { 1632 error_setg_errno(errp, -r, "Cannot set features"); 1633 goto out; 1634 } 1635 1636 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1637 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1638 if (unlikely(r)) { 1639 error_setg_errno(errp, -r, "Cannot set device status"); 1640 goto out; 1641 } 1642 1643 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1644 if (unlikely(cvq_group < 0)) { 1645 if (cvq_group != -ENOTSUP) { 1646 r = cvq_group; 1647 goto out; 1648 } 1649 1650 /* 1651 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1652 * support ASID even if the parent driver does not. The CVQ cannot be 1653 * isolated in this case. 1654 */ 1655 error_free(*errp); 1656 *errp = NULL; 1657 r = 0; 1658 goto out; 1659 } 1660 1661 for (int i = 0; i < cvq_index; ++i) { 1662 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1663 if (unlikely(group < 0)) { 1664 r = group; 1665 goto out; 1666 } 1667 1668 if (group == (int64_t)cvq_group) { 1669 r = 0; 1670 goto out; 1671 } 1672 } 1673 1674 r = 1; 1675 1676 out: 1677 status = 0; 1678 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1679 return r; 1680 } 1681 1682 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1683 const char *device, 1684 const char *name, 1685 int vdpa_device_fd, 1686 int queue_pair_index, 1687 int nvqs, 1688 bool is_datapath, 1689 bool svq, 1690 struct vhost_vdpa_iova_range iova_range, 1691 uint64_t features, 1692 VhostVDPAShared *shared, 1693 Error **errp) 1694 { 1695 NetClientState *nc = NULL; 1696 VhostVDPAState *s; 1697 int ret = 0; 1698 assert(name); 1699 int cvq_isolated = 0; 1700 1701 if (is_datapath) { 1702 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1703 name); 1704 } else { 1705 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1706 queue_pair_index * 2, 1707 errp); 1708 if (unlikely(cvq_isolated < 0)) { 1709 return NULL; 1710 } 1711 1712 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1713 device, name); 1714 } 1715 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1716 s = DO_UPCAST(VhostVDPAState, nc, nc); 1717 1718 s->vhost_vdpa.index = queue_pair_index; 1719 s->always_svq = svq; 1720 s->migration_state.notify = NULL; 1721 s->vhost_vdpa.shadow_vqs_enabled = svq; 1722 if (queue_pair_index == 0) { 1723 vhost_vdpa_net_valid_svq_features(features, 1724 &s->vhost_vdpa.migration_blocker); 1725 s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1); 1726 s->vhost_vdpa.shared->device_fd = vdpa_device_fd; 1727 s->vhost_vdpa.shared->iova_range = iova_range; 1728 s->vhost_vdpa.shared->shadow_data = svq; 1729 } else if (!is_datapath) { 1730 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1731 PROT_READ | PROT_WRITE, 1732 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1733 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1734 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1735 -1, 0); 1736 1737 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1738 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1739 s->cvq_isolated = cvq_isolated; 1740 } 1741 if (queue_pair_index != 0) { 1742 s->vhost_vdpa.shared = shared; 1743 } 1744 1745 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1746 if (ret) { 1747 qemu_del_net_client(nc); 1748 return NULL; 1749 } 1750 1751 return nc; 1752 } 1753 1754 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1755 { 1756 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1757 if (unlikely(ret < 0)) { 1758 error_setg_errno(errp, errno, 1759 "Fail to query features from vhost-vDPA device"); 1760 } 1761 return ret; 1762 } 1763 1764 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1765 int *has_cvq, Error **errp) 1766 { 1767 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1768 g_autofree struct vhost_vdpa_config *config = NULL; 1769 __virtio16 *max_queue_pairs; 1770 int ret; 1771 1772 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1773 *has_cvq = 1; 1774 } else { 1775 *has_cvq = 0; 1776 } 1777 1778 if (features & (1 << VIRTIO_NET_F_MQ)) { 1779 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1780 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1781 config->len = sizeof(*max_queue_pairs); 1782 1783 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1784 if (ret) { 1785 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1786 return -ret; 1787 } 1788 1789 max_queue_pairs = (__virtio16 *)&config->buf; 1790 1791 return lduw_le_p(max_queue_pairs); 1792 } 1793 1794 return 1; 1795 } 1796 1797 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1798 NetClientState *peer, Error **errp) 1799 { 1800 ERRP_GUARD(); 1801 const NetdevVhostVDPAOptions *opts; 1802 uint64_t features; 1803 int vdpa_device_fd; 1804 g_autofree NetClientState **ncs = NULL; 1805 struct vhost_vdpa_iova_range iova_range; 1806 NetClientState *nc; 1807 int queue_pairs, r, i = 0, has_cvq = 0; 1808 1809 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1810 opts = &netdev->u.vhost_vdpa; 1811 if (!opts->vhostdev && !opts->vhostfd) { 1812 error_setg(errp, 1813 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1814 return -1; 1815 } 1816 1817 if (opts->vhostdev && opts->vhostfd) { 1818 error_setg(errp, 1819 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1820 return -1; 1821 } 1822 1823 if (opts->vhostdev) { 1824 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1825 if (vdpa_device_fd == -1) { 1826 return -errno; 1827 } 1828 } else { 1829 /* has_vhostfd */ 1830 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1831 if (vdpa_device_fd == -1) { 1832 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1833 return -1; 1834 } 1835 } 1836 1837 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1838 if (unlikely(r < 0)) { 1839 goto err; 1840 } 1841 1842 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1843 &has_cvq, errp); 1844 if (queue_pairs < 0) { 1845 qemu_close(vdpa_device_fd); 1846 return queue_pairs; 1847 } 1848 1849 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1850 if (unlikely(r < 0)) { 1851 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1852 strerror(-r)); 1853 goto err; 1854 } 1855 1856 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1857 goto err; 1858 } 1859 1860 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1861 1862 for (i = 0; i < queue_pairs; i++) { 1863 VhostVDPAShared *shared = NULL; 1864 1865 if (i) { 1866 shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared; 1867 } 1868 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1869 vdpa_device_fd, i, 2, true, opts->x_svq, 1870 iova_range, features, shared, errp); 1871 if (!ncs[i]) 1872 goto err; 1873 } 1874 1875 if (has_cvq) { 1876 VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]); 1877 VhostVDPAShared *shared = s0->vhost_vdpa.shared; 1878 1879 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1880 vdpa_device_fd, i, 1, false, 1881 opts->x_svq, iova_range, features, shared, 1882 errp); 1883 if (!nc) 1884 goto err; 1885 } 1886 1887 return 0; 1888 1889 err: 1890 if (i) { 1891 for (i--; i >= 0; i--) { 1892 qemu_del_net_client(ncs[i]); 1893 } 1894 } 1895 1896 qemu_close(vdpa_device_fd); 1897 1898 return -1; 1899 } 1900