1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/misc.h" 30 #include "hw/virtio/vhost.h" 31 #include "trace.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 NotifierWithReturn migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_F_IN_ORDER, 66 VIRTIO_F_NOTIFICATION_DATA, 67 VIRTIO_NET_F_CSUM, 68 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 69 VIRTIO_NET_F_CTRL_MAC_ADDR, 70 VIRTIO_NET_F_CTRL_RX, 71 VIRTIO_NET_F_CTRL_RX_EXTRA, 72 VIRTIO_NET_F_CTRL_VLAN, 73 VIRTIO_NET_F_CTRL_VQ, 74 VIRTIO_NET_F_GSO, 75 VIRTIO_NET_F_GUEST_CSUM, 76 VIRTIO_NET_F_GUEST_ECN, 77 VIRTIO_NET_F_GUEST_TSO4, 78 VIRTIO_NET_F_GUEST_TSO6, 79 VIRTIO_NET_F_GUEST_UFO, 80 VIRTIO_NET_F_GUEST_USO4, 81 VIRTIO_NET_F_GUEST_USO6, 82 VIRTIO_NET_F_HASH_REPORT, 83 VIRTIO_NET_F_HOST_ECN, 84 VIRTIO_NET_F_HOST_TSO4, 85 VIRTIO_NET_F_HOST_TSO6, 86 VIRTIO_NET_F_HOST_UFO, 87 VIRTIO_NET_F_HOST_USO, 88 VIRTIO_NET_F_MQ, 89 VIRTIO_NET_F_MRG_RXBUF, 90 VIRTIO_NET_F_MTU, 91 VIRTIO_NET_F_RSC_EXT, 92 VIRTIO_NET_F_RSS, 93 VIRTIO_NET_F_STATUS, 94 VIRTIO_RING_F_EVENT_IDX, 95 VIRTIO_RING_F_INDIRECT_DESC, 96 97 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 98 VHOST_INVALID_FEATURE_BIT 99 }; 100 101 /** Supported device specific feature bits with SVQ */ 102 static const uint64_t vdpa_svq_device_features = 103 BIT_ULL(VIRTIO_NET_F_CSUM) | 104 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 105 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 106 BIT_ULL(VIRTIO_NET_F_MTU) | 107 BIT_ULL(VIRTIO_NET_F_MAC) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 109 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 110 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 111 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 112 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 113 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 114 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 115 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 116 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 117 BIT_ULL(VIRTIO_NET_F_STATUS) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 119 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 120 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 122 BIT_ULL(VIRTIO_NET_F_MQ) | 123 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 124 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 125 /* VHOST_F_LOG_ALL is exposed by SVQ */ 126 BIT_ULL(VHOST_F_LOG_ALL) | 127 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 128 BIT_ULL(VIRTIO_NET_F_RSS) | 129 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 130 BIT_ULL(VIRTIO_NET_F_STANDBY) | 131 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 132 133 #define VHOST_VDPA_NET_CVQ_ASID 1 134 135 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 136 { 137 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 138 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 139 return s->vhost_net; 140 } 141 142 static size_t vhost_vdpa_net_cvq_cmd_len(void) 143 { 144 /* 145 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 146 * In buffer is always 1 byte, so it should fit here 147 */ 148 return sizeof(struct virtio_net_ctrl_hdr) + 149 2 * sizeof(struct virtio_net_ctrl_mac) + 150 MAC_TABLE_ENTRIES * ETH_ALEN; 151 } 152 153 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 154 { 155 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 156 } 157 158 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 159 { 160 uint64_t invalid_dev_features = 161 features & ~vdpa_svq_device_features & 162 /* Transport are all accepted at this point */ 163 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 164 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 165 166 if (invalid_dev_features) { 167 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 168 invalid_dev_features); 169 return false; 170 } 171 172 return vhost_svq_valid_features(features, errp); 173 } 174 175 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 176 { 177 uint32_t device_id; 178 int ret; 179 struct vhost_dev *hdev; 180 181 hdev = (struct vhost_dev *)&net->dev; 182 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 183 if (device_id != VIRTIO_ID_NET) { 184 return -ENOTSUP; 185 } 186 return ret; 187 } 188 189 static int vhost_vdpa_add(NetClientState *ncs, void *be, 190 int queue_pair_index, int nvqs) 191 { 192 VhostNetOptions options; 193 struct vhost_net *net = NULL; 194 VhostVDPAState *s; 195 int ret; 196 197 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 198 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 199 s = DO_UPCAST(VhostVDPAState, nc, ncs); 200 options.net_backend = ncs; 201 options.opaque = be; 202 options.busyloop_timeout = 0; 203 options.nvqs = nvqs; 204 205 net = vhost_net_init(&options); 206 if (!net) { 207 error_report("failed to init vhost_net for queue"); 208 goto err_init; 209 } 210 s->vhost_net = net; 211 ret = vhost_vdpa_net_check_device_id(net); 212 if (ret) { 213 goto err_check; 214 } 215 return 0; 216 err_check: 217 vhost_net_cleanup(net); 218 g_free(net); 219 err_init: 220 return -1; 221 } 222 223 static void vhost_vdpa_cleanup(NetClientState *nc) 224 { 225 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 226 227 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 228 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 229 if (s->vhost_net) { 230 vhost_net_cleanup(s->vhost_net); 231 g_free(s->vhost_net); 232 s->vhost_net = NULL; 233 } 234 if (s->vhost_vdpa.index != 0) { 235 return; 236 } 237 qemu_close(s->vhost_vdpa.shared->device_fd); 238 g_clear_pointer(&s->vhost_vdpa.shared->iova_tree, vhost_iova_tree_delete); 239 g_free(s->vhost_vdpa.shared); 240 } 241 242 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */ 243 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd) 244 { 245 return true; 246 } 247 248 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 249 { 250 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 251 252 return true; 253 } 254 255 static bool vhost_vdpa_has_ufo(NetClientState *nc) 256 { 257 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 258 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 259 uint64_t features = 0; 260 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 261 features = vhost_net_get_features(s->vhost_net, features); 262 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 263 264 } 265 266 /* 267 * FIXME: vhost_vdpa doesn't have an API to "set h/w endianness". But it's 268 * reasonable to assume that h/w is LE by default, because LE is what 269 * virtio 1.0 and later ask for. So, this function just says "yes, the h/w is 270 * LE". Otherwise, on a BE machine, higher-level code would mistakely think 271 * the h/w is BE and can't support VDPA for a virtio 1.0 client. 272 */ 273 static int vhost_vdpa_set_vnet_le(NetClientState *nc, bool enable) 274 { 275 return 0; 276 } 277 278 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 279 Error **errp) 280 { 281 const char *driver = object_class_get_name(oc); 282 283 if (!g_str_has_prefix(driver, "virtio-net-")) { 284 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 285 return false; 286 } 287 288 return true; 289 } 290 291 /** Dummy receive in case qemu falls back to userland tap networking */ 292 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 293 size_t size) 294 { 295 return size; 296 } 297 298 299 /** From any vdpa net client, get the netclient of the i-th queue pair */ 300 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i) 301 { 302 NICState *nic = qemu_get_nic(s->nc.peer); 303 NetClientState *nc_i = qemu_get_peer(nic->ncs, i); 304 305 return DO_UPCAST(VhostVDPAState, nc, nc_i); 306 } 307 308 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 309 { 310 return vhost_vdpa_net_get_nc_vdpa(s, 0); 311 } 312 313 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 314 { 315 struct vhost_vdpa *v = &s->vhost_vdpa; 316 VirtIONet *n; 317 VirtIODevice *vdev; 318 int data_queue_pairs, cvq, r; 319 320 /* We are only called on the first data vqs and only if x-svq is not set */ 321 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 322 return; 323 } 324 325 vdev = v->dev->vdev; 326 n = VIRTIO_NET(vdev); 327 if (!n->vhost_started) { 328 return; 329 } 330 331 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 332 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 333 n->max_ncs - n->max_queue_pairs : 0; 334 v->shared->svq_switching = enable ? 335 SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING; 336 /* 337 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 338 * in the future and resume the device if read-only operations between 339 * suspend and reset goes wrong. 340 */ 341 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 342 343 /* Start will check migration setup_or_active to configure or not SVQ */ 344 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 345 if (unlikely(r < 0)) { 346 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 347 } 348 v->shared->svq_switching = SVQ_TSTATE_DONE; 349 } 350 351 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier, 352 MigrationEvent *e, Error **errp) 353 { 354 VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state); 355 356 if (e->type == MIG_EVENT_PRECOPY_SETUP) { 357 vhost_vdpa_net_log_global_enable(s, true); 358 } else if (e->type == MIG_EVENT_PRECOPY_FAILED) { 359 vhost_vdpa_net_log_global_enable(s, false); 360 } 361 return 0; 362 } 363 364 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 365 { 366 migration_add_notifier(&s->migration_state, 367 vdpa_net_migration_state_notifier); 368 } 369 370 static int vhost_vdpa_net_data_start(NetClientState *nc) 371 { 372 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 373 struct vhost_vdpa *v = &s->vhost_vdpa; 374 375 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 376 377 if (s->always_svq || migration_is_running()) { 378 v->shadow_vqs_enabled = true; 379 } else { 380 v->shadow_vqs_enabled = false; 381 } 382 383 if (v->index == 0) { 384 v->shared->shadow_data = v->shadow_vqs_enabled; 385 vhost_vdpa_net_data_start_first(s); 386 return 0; 387 } 388 389 return 0; 390 } 391 392 static int vhost_vdpa_net_data_load(NetClientState *nc) 393 { 394 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 395 struct vhost_vdpa *v = &s->vhost_vdpa; 396 bool has_cvq = v->dev->vq_index_end % 2; 397 398 if (has_cvq) { 399 return 0; 400 } 401 402 for (int i = 0; i < v->dev->nvqs; ++i) { 403 int ret = vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 404 if (ret < 0) { 405 return ret; 406 } 407 } 408 return 0; 409 } 410 411 static void vhost_vdpa_net_client_stop(NetClientState *nc) 412 { 413 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 414 415 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 416 417 if (s->vhost_vdpa.index == 0) { 418 migration_remove_notifier(&s->migration_state); 419 } 420 } 421 422 static NetClientInfo net_vhost_vdpa_info = { 423 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 424 .size = sizeof(VhostVDPAState), 425 .receive = vhost_vdpa_receive, 426 .start = vhost_vdpa_net_data_start, 427 .load = vhost_vdpa_net_data_load, 428 .stop = vhost_vdpa_net_client_stop, 429 .cleanup = vhost_vdpa_cleanup, 430 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 431 .has_ufo = vhost_vdpa_has_ufo, 432 .set_vnet_le = vhost_vdpa_set_vnet_le, 433 .check_peer_type = vhost_vdpa_check_peer_type, 434 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 435 }; 436 437 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 438 Error **errp) 439 { 440 struct vhost_vring_state state = { 441 .index = vq_index, 442 }; 443 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 444 445 if (unlikely(r < 0)) { 446 r = -errno; 447 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 448 return r; 449 } 450 451 return state.num; 452 } 453 454 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 455 unsigned vq_group, 456 unsigned asid_num) 457 { 458 struct vhost_vring_state asid = { 459 .index = vq_group, 460 .num = asid_num, 461 }; 462 int r; 463 464 trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num); 465 466 r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 467 if (unlikely(r < 0)) { 468 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 469 asid.index, asid.num, errno, g_strerror(errno)); 470 } 471 return r; 472 } 473 474 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 475 { 476 VhostIOVATree *tree = v->shared->iova_tree; 477 DMAMap needle = { 478 /* 479 * No need to specify size or to look for more translations since 480 * this contiguous chunk was allocated by us. 481 */ 482 .translated_addr = (hwaddr)(uintptr_t)addr, 483 }; 484 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 485 int r; 486 487 if (unlikely(!map)) { 488 error_report("Cannot locate expected map"); 489 return; 490 } 491 492 r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova, 493 map->size + 1); 494 if (unlikely(r != 0)) { 495 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 496 } 497 498 vhost_iova_tree_remove(tree, *map); 499 } 500 501 /** Map CVQ buffer. */ 502 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 503 bool write) 504 { 505 DMAMap map = {}; 506 hwaddr taddr = (hwaddr)(uintptr_t)buf; 507 int r; 508 509 map.size = size - 1; 510 map.perm = write ? IOMMU_RW : IOMMU_RO, 511 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map, taddr); 512 if (unlikely(r != IOVA_OK)) { 513 error_report("Cannot map injected element"); 514 515 if (map.translated_addr == taddr) { 516 error_report("Insertion to IOVA->HVA tree failed"); 517 /* Remove the mapping from the IOVA-only tree */ 518 goto dma_map_err; 519 } 520 return r; 521 } 522 523 r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova, 524 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 525 if (unlikely(r < 0)) { 526 goto dma_map_err; 527 } 528 529 return 0; 530 531 dma_map_err: 532 vhost_iova_tree_remove(v->shared->iova_tree, map); 533 return r; 534 } 535 536 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 537 { 538 VhostVDPAState *s, *s0; 539 struct vhost_vdpa *v; 540 int64_t cvq_group; 541 int r; 542 Error *err = NULL; 543 544 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 545 546 s = DO_UPCAST(VhostVDPAState, nc, nc); 547 v = &s->vhost_vdpa; 548 549 s0 = vhost_vdpa_net_first_nc_vdpa(s); 550 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 551 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 552 553 if (v->shared->shadow_data) { 554 /* SVQ is already configured for all virtqueues */ 555 goto out; 556 } 557 558 /* 559 * If we early return in these cases SVQ will not be enabled. The migration 560 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 561 */ 562 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 563 return 0; 564 } 565 566 if (!s->cvq_isolated) { 567 return 0; 568 } 569 570 cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd, 571 v->dev->vq_index_end - 1, 572 &err); 573 if (unlikely(cvq_group < 0)) { 574 error_report_err(err); 575 return cvq_group; 576 } 577 578 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 579 if (unlikely(r < 0)) { 580 return r; 581 } 582 583 v->shadow_vqs_enabled = true; 584 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 585 586 out: 587 if (!s->vhost_vdpa.shadow_vqs_enabled) { 588 return 0; 589 } 590 591 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 592 vhost_vdpa_net_cvq_cmd_page_len(), false); 593 if (unlikely(r < 0)) { 594 return r; 595 } 596 597 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 598 vhost_vdpa_net_cvq_cmd_page_len(), true); 599 if (unlikely(r < 0)) { 600 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 601 } 602 603 return r; 604 } 605 606 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 607 { 608 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 609 610 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 611 612 if (s->vhost_vdpa.shadow_vqs_enabled) { 613 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 614 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 615 } 616 617 vhost_vdpa_net_client_stop(nc); 618 } 619 620 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 621 const struct iovec *out_sg, size_t out_num, 622 const struct iovec *in_sg, size_t in_num) 623 { 624 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 625 int r; 626 627 r = vhost_svq_add(svq, out_sg, out_num, NULL, in_sg, in_num, NULL, NULL); 628 if (unlikely(r != 0)) { 629 if (unlikely(r == -ENOSPC)) { 630 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 631 __func__); 632 } 633 } 634 635 return r; 636 } 637 638 /* 639 * Convenience wrapper to poll SVQ for multiple control commands. 640 * 641 * Caller should hold the BQL when invoking this function, and should take 642 * the answer before SVQ pulls by itself when BQL is released. 643 */ 644 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 645 { 646 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 647 return vhost_svq_poll(svq, cmds_in_flight); 648 } 649 650 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 651 struct iovec *out_cursor, 652 struct iovec *in_cursor) 653 { 654 /* reset the cursor of the output buffer for the device */ 655 out_cursor->iov_base = s->cvq_cmd_out_buffer; 656 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 657 658 /* reset the cursor of the in buffer for the device */ 659 in_cursor->iov_base = s->status; 660 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 661 } 662 663 /* 664 * Poll SVQ for multiple pending control commands and check the device's ack. 665 * 666 * Caller should hold the BQL when invoking this function. 667 * 668 * @s: The VhostVDPAState 669 * @len: The length of the pending status shadow buffer 670 */ 671 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 672 { 673 /* device uses a one-byte length ack for each control command */ 674 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 675 if (unlikely(dev_written != len)) { 676 return -EIO; 677 } 678 679 /* check the device's ack */ 680 for (int i = 0; i < len; ++i) { 681 if (s->status[i] != VIRTIO_NET_OK) { 682 return -EIO; 683 } 684 } 685 return 0; 686 } 687 688 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 689 struct iovec *out_cursor, 690 struct iovec *in_cursor, uint8_t class, 691 uint8_t cmd, const struct iovec *data_sg, 692 size_t data_num) 693 { 694 const struct virtio_net_ctrl_hdr ctrl = { 695 .class = class, 696 .cmd = cmd, 697 }; 698 size_t data_size = iov_size(data_sg, data_num), cmd_size; 699 struct iovec out, in; 700 ssize_t r; 701 unsigned dummy_cursor_iov_cnt; 702 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 703 704 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 705 cmd_size = sizeof(ctrl) + data_size; 706 trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size); 707 if (vhost_svq_available_slots(svq) < 2 || 708 iov_size(out_cursor, 1) < cmd_size) { 709 /* 710 * It is time to flush all pending control commands if SVQ is full 711 * or control commands shadow buffers are full. 712 * 713 * We can poll here since we've had BQL from the time 714 * we sent the descriptor. 715 */ 716 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 717 (void *)s->status); 718 if (unlikely(r < 0)) { 719 return r; 720 } 721 722 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 723 } 724 725 /* pack the CVQ command header */ 726 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 727 /* pack the CVQ command command-specific-data */ 728 iov_to_buf(data_sg, data_num, 0, 729 out_cursor->iov_base + sizeof(ctrl), data_size); 730 731 /* extract the required buffer from the cursor for output */ 732 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 733 /* extract the required buffer from the cursor for input */ 734 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 735 736 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 737 if (unlikely(r < 0)) { 738 trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r); 739 return r; 740 } 741 742 /* iterate the cursors */ 743 dummy_cursor_iov_cnt = 1; 744 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 745 dummy_cursor_iov_cnt = 1; 746 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 747 748 return 0; 749 } 750 751 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 752 struct iovec *out_cursor, 753 struct iovec *in_cursor) 754 { 755 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 756 const struct iovec data = { 757 .iov_base = (void *)n->mac, 758 .iov_len = sizeof(n->mac), 759 }; 760 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 761 VIRTIO_NET_CTRL_MAC, 762 VIRTIO_NET_CTRL_MAC_ADDR_SET, 763 &data, 1); 764 if (unlikely(r < 0)) { 765 return r; 766 } 767 } 768 769 /* 770 * According to VirtIO standard, "The device MUST have an 771 * empty MAC filtering table on reset.". 772 * 773 * Therefore, there is no need to send this CVQ command if the 774 * driver also sets an empty MAC filter table, which aligns with 775 * the device's defaults. 776 * 777 * Note that the device's defaults can mismatch the driver's 778 * configuration only at live migration. 779 */ 780 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 781 n->mac_table.in_use == 0) { 782 return 0; 783 } 784 785 uint32_t uni_entries = n->mac_table.first_multi, 786 uni_macs_size = uni_entries * ETH_ALEN, 787 mul_entries = n->mac_table.in_use - uni_entries, 788 mul_macs_size = mul_entries * ETH_ALEN; 789 struct virtio_net_ctrl_mac uni = { 790 .entries = cpu_to_le32(uni_entries), 791 }; 792 struct virtio_net_ctrl_mac mul = { 793 .entries = cpu_to_le32(mul_entries), 794 }; 795 const struct iovec data[] = { 796 { 797 .iov_base = &uni, 798 .iov_len = sizeof(uni), 799 }, { 800 .iov_base = n->mac_table.macs, 801 .iov_len = uni_macs_size, 802 }, { 803 .iov_base = &mul, 804 .iov_len = sizeof(mul), 805 }, { 806 .iov_base = &n->mac_table.macs[uni_macs_size], 807 .iov_len = mul_macs_size, 808 }, 809 }; 810 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 811 VIRTIO_NET_CTRL_MAC, 812 VIRTIO_NET_CTRL_MAC_TABLE_SET, 813 data, ARRAY_SIZE(data)); 814 if (unlikely(r < 0)) { 815 return r; 816 } 817 818 return 0; 819 } 820 821 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 822 struct iovec *out_cursor, 823 struct iovec *in_cursor, bool do_rss) 824 { 825 struct virtio_net_rss_config cfg = {}; 826 ssize_t r; 827 g_autofree uint16_t *table = NULL; 828 829 /* 830 * According to VirtIO standard, "Initially the device has all hash 831 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 832 * 833 * Therefore, there is no need to send this CVQ command if the 834 * driver disables the all hash types, which aligns with 835 * the device's defaults. 836 * 837 * Note that the device's defaults can mismatch the driver's 838 * configuration only at live migration. 839 */ 840 if (!n->rss_data.enabled || 841 n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 842 return 0; 843 } 844 845 table = g_malloc_n(n->rss_data.indirections_len, 846 sizeof(n->rss_data.indirections_table[0])); 847 cfg.hash_types = cpu_to_le32(n->rss_data.hash_types); 848 849 if (do_rss) { 850 /* 851 * According to VirtIO standard, "Number of entries in indirection_table 852 * is (indirection_table_mask + 1)". 853 */ 854 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 855 1); 856 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 857 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 858 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 859 } 860 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 861 } else { 862 /* 863 * According to VirtIO standard, "Field reserved MUST contain zeroes. 864 * It is defined to make the structure to match the layout of 865 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 866 * 867 * Therefore, we need to zero the fields in 868 * struct virtio_net_rss_config, which corresponds to the 869 * `reserved` field in struct virtio_net_hash_config. 870 * 871 * Note that all other fields are zeroed at their definitions, 872 * except for the `indirection_table` field, where the actual data 873 * is stored in the `table` variable to ensure compatibility 874 * with RSS case. Therefore, we need to zero the `table` variable here. 875 */ 876 table[0] = 0; 877 } 878 879 /* 880 * Considering that virtio_net_handle_rss() currently does not restore 881 * the hash key length parsed from the CVQ command sent from the guest 882 * into n->rss_data and uses the maximum key length in other code, so 883 * we also employ the maximum key length here. 884 */ 885 cfg.hash_key_length = sizeof(n->rss_data.key); 886 887 const struct iovec data[] = { 888 { 889 .iov_base = &cfg, 890 .iov_len = offsetof(struct virtio_net_rss_config, 891 indirection_table), 892 }, { 893 .iov_base = table, 894 .iov_len = n->rss_data.indirections_len * 895 sizeof(n->rss_data.indirections_table[0]), 896 }, { 897 .iov_base = &cfg.max_tx_vq, 898 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 899 offsetof(struct virtio_net_rss_config, max_tx_vq), 900 }, { 901 .iov_base = (void *)n->rss_data.key, 902 .iov_len = sizeof(n->rss_data.key), 903 } 904 }; 905 906 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 907 VIRTIO_NET_CTRL_MQ, 908 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 909 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 910 data, ARRAY_SIZE(data)); 911 if (unlikely(r < 0)) { 912 return r; 913 } 914 915 return 0; 916 } 917 918 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 919 const VirtIONet *n, 920 struct iovec *out_cursor, 921 struct iovec *in_cursor) 922 { 923 struct virtio_net_ctrl_mq mq; 924 ssize_t r; 925 926 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 927 return 0; 928 } 929 930 trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs); 931 932 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 933 const struct iovec data = { 934 .iov_base = &mq, 935 .iov_len = sizeof(mq), 936 }; 937 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 938 VIRTIO_NET_CTRL_MQ, 939 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 940 &data, 1); 941 if (unlikely(r < 0)) { 942 return r; 943 } 944 945 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 946 /* load the receive-side scaling state */ 947 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 948 if (unlikely(r < 0)) { 949 return r; 950 } 951 } else if (virtio_vdev_has_feature(&n->parent_obj, 952 VIRTIO_NET_F_HASH_REPORT)) { 953 /* load the hash calculation state */ 954 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 955 if (unlikely(r < 0)) { 956 return r; 957 } 958 } 959 960 return 0; 961 } 962 963 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 964 const VirtIONet *n, 965 struct iovec *out_cursor, 966 struct iovec *in_cursor) 967 { 968 uint64_t offloads; 969 ssize_t r; 970 971 if (!virtio_vdev_has_feature(&n->parent_obj, 972 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 973 return 0; 974 } 975 976 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 977 /* 978 * According to VirtIO standard, "Upon feature negotiation 979 * corresponding offload gets enabled to preserve 980 * backward compatibility.". 981 * 982 * Therefore, there is no need to send this CVQ command if the 983 * driver also enables all supported offloads, which aligns with 984 * the device's defaults. 985 * 986 * Note that the device's defaults can mismatch the driver's 987 * configuration only at live migration. 988 */ 989 return 0; 990 } 991 992 offloads = cpu_to_le64(n->curr_guest_offloads); 993 const struct iovec data = { 994 .iov_base = &offloads, 995 .iov_len = sizeof(offloads), 996 }; 997 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 998 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 999 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1000 &data, 1); 1001 if (unlikely(r < 0)) { 1002 return r; 1003 } 1004 1005 return 0; 1006 } 1007 1008 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1009 struct iovec *out_cursor, 1010 struct iovec *in_cursor, 1011 uint8_t cmd, 1012 uint8_t on) 1013 { 1014 const struct iovec data = { 1015 .iov_base = &on, 1016 .iov_len = sizeof(on), 1017 }; 1018 ssize_t r; 1019 1020 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1021 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1022 if (unlikely(r < 0)) { 1023 return r; 1024 } 1025 1026 return 0; 1027 } 1028 1029 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1030 const VirtIONet *n, 1031 struct iovec *out_cursor, 1032 struct iovec *in_cursor) 1033 { 1034 ssize_t r; 1035 1036 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1037 return 0; 1038 } 1039 1040 /* 1041 * According to virtio_net_reset(), device turns promiscuous mode 1042 * on by default. 1043 * 1044 * Additionally, according to VirtIO standard, "Since there are 1045 * no guarantees, it can use a hash filter or silently switch to 1046 * allmulti or promiscuous mode if it is given too many addresses.". 1047 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1048 * non-multicast MAC addresses, indicating that promiscuous mode 1049 * should be enabled. 1050 * 1051 * Therefore, QEMU should only send this CVQ command if the 1052 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1053 * which sets promiscuous mode on, different from the device's defaults. 1054 * 1055 * Note that the device's defaults can mismatch the driver's 1056 * configuration only at live migration. 1057 */ 1058 if (!n->mac_table.uni_overflow && !n->promisc) { 1059 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1060 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1061 if (unlikely(r < 0)) { 1062 return r; 1063 } 1064 } 1065 1066 /* 1067 * According to virtio_net_reset(), device turns all-multicast mode 1068 * off by default. 1069 * 1070 * According to VirtIO standard, "Since there are no guarantees, 1071 * it can use a hash filter or silently switch to allmulti or 1072 * promiscuous mode if it is given too many addresses.". QEMU marks 1073 * `n->mac_table.multi_overflow` if guest sets too many 1074 * non-multicast MAC addresses. 1075 * 1076 * Therefore, QEMU should only send this CVQ command if the 1077 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1078 * which sets all-multicast mode on, different from the device's defaults. 1079 * 1080 * Note that the device's defaults can mismatch the driver's 1081 * configuration only at live migration. 1082 */ 1083 if (n->mac_table.multi_overflow || n->allmulti) { 1084 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1085 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1086 if (unlikely(r < 0)) { 1087 return r; 1088 } 1089 } 1090 1091 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1092 return 0; 1093 } 1094 1095 /* 1096 * According to virtio_net_reset(), device turns all-unicast mode 1097 * off by default. 1098 * 1099 * Therefore, QEMU should only send this CVQ command if the driver 1100 * sets all-unicast mode on, different from the device's defaults. 1101 * 1102 * Note that the device's defaults can mismatch the driver's 1103 * configuration only at live migration. 1104 */ 1105 if (n->alluni) { 1106 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1107 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1108 if (r < 0) { 1109 return r; 1110 } 1111 } 1112 1113 /* 1114 * According to virtio_net_reset(), device turns non-multicast mode 1115 * off by default. 1116 * 1117 * Therefore, QEMU should only send this CVQ command if the driver 1118 * sets non-multicast mode on, different from the device's defaults. 1119 * 1120 * Note that the device's defaults can mismatch the driver's 1121 * configuration only at live migration. 1122 */ 1123 if (n->nomulti) { 1124 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1125 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1126 if (r < 0) { 1127 return r; 1128 } 1129 } 1130 1131 /* 1132 * According to virtio_net_reset(), device turns non-unicast mode 1133 * off by default. 1134 * 1135 * Therefore, QEMU should only send this CVQ command if the driver 1136 * sets non-unicast mode on, different from the device's defaults. 1137 * 1138 * Note that the device's defaults can mismatch the driver's 1139 * configuration only at live migration. 1140 */ 1141 if (n->nouni) { 1142 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1143 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1144 if (r < 0) { 1145 return r; 1146 } 1147 } 1148 1149 /* 1150 * According to virtio_net_reset(), device turns non-broadcast mode 1151 * off by default. 1152 * 1153 * Therefore, QEMU should only send this CVQ command if the driver 1154 * sets non-broadcast mode on, different from the device's defaults. 1155 * 1156 * Note that the device's defaults can mismatch the driver's 1157 * configuration only at live migration. 1158 */ 1159 if (n->nobcast) { 1160 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1161 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1162 if (r < 0) { 1163 return r; 1164 } 1165 } 1166 1167 return 0; 1168 } 1169 1170 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1171 const VirtIONet *n, 1172 struct iovec *out_cursor, 1173 struct iovec *in_cursor, 1174 uint16_t vid) 1175 { 1176 const struct iovec data = { 1177 .iov_base = &vid, 1178 .iov_len = sizeof(vid), 1179 }; 1180 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1181 VIRTIO_NET_CTRL_VLAN, 1182 VIRTIO_NET_CTRL_VLAN_ADD, 1183 &data, 1); 1184 if (unlikely(r < 0)) { 1185 return r; 1186 } 1187 1188 return 0; 1189 } 1190 1191 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1192 const VirtIONet *n, 1193 struct iovec *out_cursor, 1194 struct iovec *in_cursor) 1195 { 1196 int r; 1197 1198 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1199 return 0; 1200 } 1201 1202 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1203 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1204 if (n->vlans[i] & (1U << j)) { 1205 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1206 in_cursor, (i << 5) + j); 1207 if (unlikely(r != 0)) { 1208 return r; 1209 } 1210 } 1211 } 1212 } 1213 1214 return 0; 1215 } 1216 1217 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1218 { 1219 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1220 struct vhost_vdpa *v = &s->vhost_vdpa; 1221 const VirtIONet *n; 1222 int r; 1223 struct iovec out_cursor, in_cursor; 1224 1225 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1226 1227 r = vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1228 if (unlikely(r < 0)) { 1229 return r; 1230 } 1231 1232 if (v->shadow_vqs_enabled) { 1233 n = VIRTIO_NET(v->dev->vdev); 1234 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1235 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1236 if (unlikely(r < 0)) { 1237 return r; 1238 } 1239 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1240 if (unlikely(r)) { 1241 return r; 1242 } 1243 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1244 if (unlikely(r)) { 1245 return r; 1246 } 1247 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1248 if (unlikely(r)) { 1249 return r; 1250 } 1251 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1252 if (unlikely(r)) { 1253 return r; 1254 } 1255 1256 /* 1257 * We need to poll and check all pending device's used buffers. 1258 * 1259 * We can poll here since we've had BQL from the time 1260 * we sent the descriptor. 1261 */ 1262 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1263 if (unlikely(r)) { 1264 return r; 1265 } 1266 } 1267 1268 for (int i = 0; i < v->dev->vq_index; ++i) { 1269 r = vhost_vdpa_set_vring_ready(v, i); 1270 if (unlikely(r < 0)) { 1271 return r; 1272 } 1273 } 1274 1275 return 0; 1276 } 1277 1278 static NetClientInfo net_vhost_vdpa_cvq_info = { 1279 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1280 .size = sizeof(VhostVDPAState), 1281 .receive = vhost_vdpa_receive, 1282 .start = vhost_vdpa_net_cvq_start, 1283 .load = vhost_vdpa_net_cvq_load, 1284 .stop = vhost_vdpa_net_cvq_stop, 1285 .cleanup = vhost_vdpa_cleanup, 1286 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1287 .has_ufo = vhost_vdpa_has_ufo, 1288 .check_peer_type = vhost_vdpa_check_peer_type, 1289 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 1290 }; 1291 1292 /* 1293 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1294 * vdpa device. 1295 * 1296 * Considering that QEMU cannot send the entire filter table to the 1297 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1298 * command to enable promiscuous mode to receive all packets, 1299 * according to VirtIO standard, "Since there are no guarantees, 1300 * it can use a hash filter or silently switch to allmulti or 1301 * promiscuous mode if it is given too many addresses.". 1302 * 1303 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1304 * marks `n->mac_table.x_overflow` accordingly, it should have 1305 * the same effect on the device model to receive 1306 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1307 * The same applies to multicast MAC addresses. 1308 * 1309 * Therefore, QEMU can provide the device model with a fake 1310 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1311 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1312 * MAC addresses. This ensures that the device model marks 1313 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1314 * allowing all packets to be received, which aligns with the 1315 * state of the vdpa device. 1316 */ 1317 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1318 VirtQueueElement *elem, 1319 struct iovec *out, 1320 const struct iovec *in) 1321 { 1322 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1323 struct virtio_net_ctrl_hdr *hdr_ptr; 1324 uint32_t cursor; 1325 ssize_t r; 1326 uint8_t on = 1; 1327 1328 /* parse the non-multicast MAC address entries from CVQ command */ 1329 cursor = sizeof(*hdr_ptr); 1330 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1331 &mac_data, sizeof(mac_data)); 1332 if (unlikely(r != sizeof(mac_data))) { 1333 /* 1334 * If the CVQ command is invalid, we should simulate the vdpa device 1335 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1336 */ 1337 *s->status = VIRTIO_NET_ERR; 1338 return sizeof(*s->status); 1339 } 1340 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1341 1342 /* parse the multicast MAC address entries from CVQ command */ 1343 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1344 &mac_data, sizeof(mac_data)); 1345 if (r != sizeof(mac_data)) { 1346 /* 1347 * If the CVQ command is invalid, we should simulate the vdpa device 1348 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1349 */ 1350 *s->status = VIRTIO_NET_ERR; 1351 return sizeof(*s->status); 1352 } 1353 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1354 1355 /* validate the CVQ command */ 1356 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1357 /* 1358 * If the CVQ command is invalid, we should simulate the vdpa device 1359 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1360 */ 1361 *s->status = VIRTIO_NET_ERR; 1362 return sizeof(*s->status); 1363 } 1364 1365 /* 1366 * According to VirtIO standard, "Since there are no guarantees, 1367 * it can use a hash filter or silently switch to allmulti or 1368 * promiscuous mode if it is given too many addresses.". 1369 * 1370 * Therefore, considering that QEMU is unable to send the entire 1371 * filter table to the vdpa device, it should send the 1372 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1373 */ 1374 hdr_ptr = out->iov_base; 1375 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1376 1377 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1378 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1379 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1380 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1381 if (unlikely(r < 0)) { 1382 return r; 1383 } 1384 1385 /* 1386 * We can poll here since we've had BQL from the time 1387 * we sent the descriptor. 1388 */ 1389 r = vhost_vdpa_net_svq_poll(s, 1); 1390 if (unlikely(r < sizeof(*s->status))) { 1391 return r; 1392 } 1393 if (*s->status != VIRTIO_NET_OK) { 1394 return sizeof(*s->status); 1395 } 1396 1397 /* 1398 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1399 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1400 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1401 * multicast MAC addresses. 1402 * 1403 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1404 * and `n->mac_table.multi_overflow`, enabling all packets to be 1405 * received, which aligns with the state of the vdpa device. 1406 */ 1407 cursor = 0; 1408 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1409 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1410 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1411 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1412 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1413 1414 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1415 out->iov_len = fake_cvq_size; 1416 1417 /* pack the header for fake CVQ command */ 1418 hdr_ptr = out->iov_base + cursor; 1419 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1420 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1421 cursor += sizeof(*hdr_ptr); 1422 1423 /* 1424 * Pack the non-multicast MAC addresses part for fake CVQ command. 1425 * 1426 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1427 * addresses provided in CVQ command. Therefore, only the entries 1428 * field need to be prepared in the CVQ command. 1429 */ 1430 mac_ptr = out->iov_base + cursor; 1431 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1432 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1433 1434 /* 1435 * Pack the multicast MAC addresses part for fake CVQ command. 1436 * 1437 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1438 * addresses provided in CVQ command. Therefore, only the entries 1439 * field need to be prepared in the CVQ command. 1440 */ 1441 mac_ptr = out->iov_base + cursor; 1442 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1443 1444 /* 1445 * Simulating QEMU poll a vdpa device used buffer 1446 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1447 */ 1448 return sizeof(*s->status); 1449 } 1450 1451 /** 1452 * Validate and copy control virtqueue commands. 1453 * 1454 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1455 * prevent TOCTOU bugs. 1456 */ 1457 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1458 VirtQueueElement *elem, 1459 void *opaque) 1460 { 1461 VhostVDPAState *s = opaque; 1462 size_t in_len; 1463 const struct virtio_net_ctrl_hdr *ctrl; 1464 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1465 /* Out buffer sent to both the vdpa device and the device model */ 1466 struct iovec out = { 1467 .iov_base = s->cvq_cmd_out_buffer, 1468 }; 1469 /* in buffer used for device model */ 1470 const struct iovec model_in = { 1471 .iov_base = &status, 1472 .iov_len = sizeof(status), 1473 }; 1474 /* in buffer used for vdpa device */ 1475 const struct iovec vdpa_in = { 1476 .iov_base = s->status, 1477 .iov_len = sizeof(*s->status), 1478 }; 1479 ssize_t dev_written = -EINVAL; 1480 1481 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1482 s->cvq_cmd_out_buffer, 1483 vhost_vdpa_net_cvq_cmd_page_len()); 1484 1485 ctrl = s->cvq_cmd_out_buffer; 1486 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1487 /* 1488 * Guest announce capability is emulated by qemu, so don't forward to 1489 * the device. 1490 */ 1491 dev_written = sizeof(status); 1492 *s->status = VIRTIO_NET_OK; 1493 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1494 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1495 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1496 /* 1497 * Due to the size limitation of the out buffer sent to the vdpa device, 1498 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1499 * MAC addresses set by the driver for the filter table can cause 1500 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1501 * rejects the flawed CVQ command. 1502 * 1503 * Therefore, QEMU must handle this situation instead of sending 1504 * the CVQ command directly. 1505 */ 1506 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1507 &out, &vdpa_in); 1508 if (unlikely(dev_written < 0)) { 1509 goto out; 1510 } 1511 } else { 1512 ssize_t r; 1513 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1514 if (unlikely(r < 0)) { 1515 dev_written = r; 1516 goto out; 1517 } 1518 1519 /* 1520 * We can poll here since we've had BQL from the time 1521 * we sent the descriptor. 1522 */ 1523 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1524 } 1525 1526 if (unlikely(dev_written < sizeof(status))) { 1527 error_report("Insufficient written data (%zu)", dev_written); 1528 goto out; 1529 } 1530 1531 if (*s->status != VIRTIO_NET_OK) { 1532 goto out; 1533 } 1534 1535 status = VIRTIO_NET_ERR; 1536 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1537 if (status != VIRTIO_NET_OK) { 1538 error_report("Bad CVQ processing in model"); 1539 } 1540 1541 out: 1542 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1543 sizeof(status)); 1544 if (unlikely(in_len < sizeof(status))) { 1545 error_report("Bad device CVQ written length"); 1546 } 1547 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1548 /* 1549 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1550 * the function successfully forwards the CVQ command, indicated 1551 * by a non-negative value of `dev_written`. Otherwise, it still 1552 * belongs to SVQ. 1553 * This function should only free the `elem` when it owns. 1554 */ 1555 if (dev_written >= 0) { 1556 g_free(elem); 1557 } 1558 return dev_written < 0 ? dev_written : 0; 1559 } 1560 1561 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1562 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1563 }; 1564 1565 /** 1566 * Probe if CVQ is isolated 1567 * 1568 * @device_fd The vdpa device fd 1569 * @features Features offered by the device. 1570 * @cvq_index The control vq pair index 1571 * 1572 * Returns <0 in case of failure, 0 if false and 1 if true. 1573 */ 1574 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1575 int cvq_index, Error **errp) 1576 { 1577 ERRP_GUARD(); 1578 uint64_t backend_features; 1579 int64_t cvq_group; 1580 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1581 VIRTIO_CONFIG_S_DRIVER; 1582 int r; 1583 1584 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1585 if (unlikely(r < 0)) { 1586 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1587 return r; 1588 } 1589 1590 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1591 return 0; 1592 } 1593 1594 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1595 if (unlikely(r)) { 1596 error_setg_errno(errp, -r, "Cannot set device status"); 1597 goto out; 1598 } 1599 1600 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1601 if (unlikely(r)) { 1602 error_setg_errno(errp, -r, "Cannot set features"); 1603 goto out; 1604 } 1605 1606 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1607 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1608 if (unlikely(r)) { 1609 error_setg_errno(errp, -r, "Cannot set device status"); 1610 goto out; 1611 } 1612 1613 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1614 if (unlikely(cvq_group < 0)) { 1615 if (cvq_group != -ENOTSUP) { 1616 r = cvq_group; 1617 goto out; 1618 } 1619 1620 /* 1621 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1622 * support ASID even if the parent driver does not. The CVQ cannot be 1623 * isolated in this case. 1624 */ 1625 error_free(*errp); 1626 *errp = NULL; 1627 r = 0; 1628 goto out; 1629 } 1630 1631 for (int i = 0; i < cvq_index; ++i) { 1632 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1633 if (unlikely(group < 0)) { 1634 r = group; 1635 goto out; 1636 } 1637 1638 if (group == (int64_t)cvq_group) { 1639 r = 0; 1640 goto out; 1641 } 1642 } 1643 1644 r = 1; 1645 1646 out: 1647 status = 0; 1648 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1649 return r; 1650 } 1651 1652 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1653 const char *device, 1654 const char *name, 1655 int vdpa_device_fd, 1656 int queue_pair_index, 1657 int nvqs, 1658 bool is_datapath, 1659 bool svq, 1660 struct vhost_vdpa_iova_range iova_range, 1661 uint64_t features, 1662 VhostVDPAShared *shared, 1663 Error **errp) 1664 { 1665 NetClientState *nc = NULL; 1666 VhostVDPAState *s; 1667 int ret = 0; 1668 assert(name); 1669 int cvq_isolated = 0; 1670 1671 if (is_datapath) { 1672 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1673 name); 1674 } else { 1675 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1676 queue_pair_index * 2, 1677 errp); 1678 if (unlikely(cvq_isolated < 0)) { 1679 return NULL; 1680 } 1681 1682 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1683 device, name); 1684 } 1685 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1686 s = DO_UPCAST(VhostVDPAState, nc, nc); 1687 1688 s->vhost_vdpa.index = queue_pair_index; 1689 s->always_svq = svq; 1690 s->migration_state.notify = NULL; 1691 s->vhost_vdpa.shadow_vqs_enabled = svq; 1692 if (queue_pair_index == 0) { 1693 vhost_vdpa_net_valid_svq_features(features, 1694 &s->vhost_vdpa.migration_blocker); 1695 s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1); 1696 s->vhost_vdpa.shared->device_fd = vdpa_device_fd; 1697 s->vhost_vdpa.shared->iova_range = iova_range; 1698 s->vhost_vdpa.shared->shadow_data = svq; 1699 s->vhost_vdpa.shared->iova_tree = vhost_iova_tree_new(iova_range.first, 1700 iova_range.last); 1701 } else if (!is_datapath) { 1702 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1703 PROT_READ | PROT_WRITE, 1704 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1705 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1706 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1707 -1, 0); 1708 1709 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1710 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1711 s->cvq_isolated = cvq_isolated; 1712 } 1713 if (queue_pair_index != 0) { 1714 s->vhost_vdpa.shared = shared; 1715 } 1716 1717 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1718 if (ret) { 1719 qemu_del_net_client(nc); 1720 return NULL; 1721 } 1722 1723 return nc; 1724 } 1725 1726 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1727 { 1728 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1729 if (unlikely(ret < 0)) { 1730 error_setg_errno(errp, errno, 1731 "Fail to query features from vhost-vDPA device"); 1732 } 1733 return ret; 1734 } 1735 1736 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1737 int *has_cvq, Error **errp) 1738 { 1739 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1740 g_autofree struct vhost_vdpa_config *config = NULL; 1741 __virtio16 *max_queue_pairs; 1742 int ret; 1743 1744 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1745 *has_cvq = 1; 1746 } else { 1747 *has_cvq = 0; 1748 } 1749 1750 if (features & (1 << VIRTIO_NET_F_MQ)) { 1751 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1752 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1753 config->len = sizeof(*max_queue_pairs); 1754 1755 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1756 if (ret) { 1757 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1758 return -ret; 1759 } 1760 1761 max_queue_pairs = (__virtio16 *)&config->buf; 1762 1763 return lduw_le_p(max_queue_pairs); 1764 } 1765 1766 return 1; 1767 } 1768 1769 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1770 NetClientState *peer, Error **errp) 1771 { 1772 ERRP_GUARD(); 1773 const NetdevVhostVDPAOptions *opts; 1774 uint64_t features; 1775 int vdpa_device_fd; 1776 g_autofree NetClientState **ncs = NULL; 1777 struct vhost_vdpa_iova_range iova_range; 1778 NetClientState *nc; 1779 int queue_pairs, r, i = 0, has_cvq = 0; 1780 1781 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1782 opts = &netdev->u.vhost_vdpa; 1783 if (!opts->vhostdev && !opts->vhostfd) { 1784 error_setg(errp, 1785 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1786 return -1; 1787 } 1788 1789 if (opts->vhostdev && opts->vhostfd) { 1790 error_setg(errp, 1791 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1792 return -1; 1793 } 1794 1795 if (opts->vhostdev) { 1796 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1797 if (vdpa_device_fd == -1) { 1798 return -errno; 1799 } 1800 } else { 1801 /* has_vhostfd */ 1802 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1803 if (vdpa_device_fd == -1) { 1804 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1805 return -1; 1806 } 1807 } 1808 1809 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1810 if (unlikely(r < 0)) { 1811 goto err; 1812 } 1813 1814 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1815 &has_cvq, errp); 1816 if (queue_pairs < 0) { 1817 qemu_close(vdpa_device_fd); 1818 return queue_pairs; 1819 } 1820 1821 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1822 if (unlikely(r < 0)) { 1823 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1824 strerror(-r)); 1825 goto err; 1826 } 1827 1828 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1829 goto err; 1830 } 1831 1832 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1833 1834 for (i = 0; i < queue_pairs; i++) { 1835 VhostVDPAShared *shared = NULL; 1836 1837 if (i) { 1838 shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared; 1839 } 1840 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1841 vdpa_device_fd, i, 2, true, opts->x_svq, 1842 iova_range, features, shared, errp); 1843 if (!ncs[i]) 1844 goto err; 1845 } 1846 1847 if (has_cvq) { 1848 VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]); 1849 VhostVDPAShared *shared = s0->vhost_vdpa.shared; 1850 1851 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1852 vdpa_device_fd, i, 1, false, 1853 opts->x_svq, iova_range, features, shared, 1854 errp); 1855 if (!nc) 1856 goto err; 1857 } 1858 1859 return 0; 1860 1861 err: 1862 if (i) { 1863 for (i--; i >= 0; i--) { 1864 qemu_del_net_client(ncs[i]); 1865 } 1866 } 1867 1868 qemu_close(vdpa_device_fd); 1869 1870 return -1; 1871 } 1872