1 /* 2 * RDMA protocol and interfaces 3 * 4 * Copyright IBM, Corp. 2010-2013 5 * 6 * Authors: 7 * Michael R. Hines <mrhines@us.ibm.com> 8 * Jiuxing Liu <jl@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or 11 * later. See the COPYING file in the top-level directory. 12 * 13 */ 14 #include "qemu-common.h" 15 #include "migration/migration.h" 16 #include "migration/qemu-file.h" 17 #include "exec/cpu-common.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/sockets.h" 20 #include "qemu/bitmap.h" 21 #include "block/coroutine.h" 22 #include <stdio.h> 23 #include <sys/types.h> 24 #include <sys/socket.h> 25 #include <netdb.h> 26 #include <arpa/inet.h> 27 #include <string.h> 28 #include <rdma/rdma_cma.h> 29 30 //#define DEBUG_RDMA 31 //#define DEBUG_RDMA_VERBOSE 32 //#define DEBUG_RDMA_REALLY_VERBOSE 33 34 #ifdef DEBUG_RDMA 35 #define DPRINTF(fmt, ...) \ 36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) 37 #else 38 #define DPRINTF(fmt, ...) \ 39 do { } while (0) 40 #endif 41 42 #ifdef DEBUG_RDMA_VERBOSE 43 #define DDPRINTF(fmt, ...) \ 44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) 45 #else 46 #define DDPRINTF(fmt, ...) \ 47 do { } while (0) 48 #endif 49 50 #ifdef DEBUG_RDMA_REALLY_VERBOSE 51 #define DDDPRINTF(fmt, ...) \ 52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) 53 #else 54 #define DDDPRINTF(fmt, ...) \ 55 do { } while (0) 56 #endif 57 58 /* 59 * Print and error on both the Monitor and the Log file. 60 */ 61 #define ERROR(errp, fmt, ...) \ 62 do { \ 63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ 64 if (errp && (*(errp) == NULL)) { \ 65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define RDMA_RESOLVE_TIMEOUT_MS 10000 70 71 /* Do not merge data if larger than this. */ 72 #define RDMA_MERGE_MAX (2 * 1024 * 1024) 73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) 74 75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ 76 77 /* 78 * This is only for non-live state being migrated. 79 * Instead of RDMA_WRITE messages, we use RDMA_SEND 80 * messages for that state, which requires a different 81 * delivery design than main memory. 82 */ 83 #define RDMA_SEND_INCREMENT 32768 84 85 /* 86 * Maximum size infiniband SEND message 87 */ 88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) 89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 90 91 #define RDMA_CONTROL_VERSION_CURRENT 1 92 /* 93 * Capabilities for negotiation. 94 */ 95 #define RDMA_CAPABILITY_PIN_ALL 0x01 96 97 /* 98 * Add the other flags above to this list of known capabilities 99 * as they are introduced. 100 */ 101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; 102 103 #define CHECK_ERROR_STATE() \ 104 do { \ 105 if (rdma->error_state) { \ 106 if (!rdma->error_reported) { \ 107 fprintf(stderr, "RDMA is in an error state waiting migration" \ 108 " to abort!\n"); \ 109 rdma->error_reported = 1; \ 110 } \ 111 return rdma->error_state; \ 112 } \ 113 } while (0); 114 115 /* 116 * A work request ID is 64-bits and we split up these bits 117 * into 3 parts: 118 * 119 * bits 0-15 : type of control message, 2^16 120 * bits 16-29: ram block index, 2^14 121 * bits 30-63: ram block chunk number, 2^34 122 * 123 * The last two bit ranges are only used for RDMA writes, 124 * in order to track their completion and potentially 125 * also track unregistration status of the message. 126 */ 127 #define RDMA_WRID_TYPE_SHIFT 0UL 128 #define RDMA_WRID_BLOCK_SHIFT 16UL 129 #define RDMA_WRID_CHUNK_SHIFT 30UL 130 131 #define RDMA_WRID_TYPE_MASK \ 132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) 133 134 #define RDMA_WRID_BLOCK_MASK \ 135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) 136 137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) 138 139 /* 140 * RDMA migration protocol: 141 * 1. RDMA Writes (data messages, i.e. RAM) 142 * 2. IB Send/Recv (control channel messages) 143 */ 144 enum { 145 RDMA_WRID_NONE = 0, 146 RDMA_WRID_RDMA_WRITE = 1, 147 RDMA_WRID_SEND_CONTROL = 2000, 148 RDMA_WRID_RECV_CONTROL = 4000, 149 }; 150 151 const char *wrid_desc[] = { 152 [RDMA_WRID_NONE] = "NONE", 153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", 154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", 155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", 156 }; 157 158 /* 159 * Work request IDs for IB SEND messages only (not RDMA writes). 160 * This is used by the migration protocol to transmit 161 * control messages (such as device state and registration commands) 162 * 163 * We could use more WRs, but we have enough for now. 164 */ 165 enum { 166 RDMA_WRID_READY = 0, 167 RDMA_WRID_DATA, 168 RDMA_WRID_CONTROL, 169 RDMA_WRID_MAX, 170 }; 171 172 /* 173 * SEND/RECV IB Control Messages. 174 */ 175 enum { 176 RDMA_CONTROL_NONE = 0, 177 RDMA_CONTROL_ERROR, 178 RDMA_CONTROL_READY, /* ready to receive */ 179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ 180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ 181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ 182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */ 183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ 184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ 185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ 186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ 187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ 188 }; 189 190 const char *control_desc[] = { 191 [RDMA_CONTROL_NONE] = "NONE", 192 [RDMA_CONTROL_ERROR] = "ERROR", 193 [RDMA_CONTROL_READY] = "READY", 194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", 195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", 196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", 197 [RDMA_CONTROL_COMPRESS] = "COMPRESS", 198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", 199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", 200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", 201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", 202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", 203 }; 204 205 /* 206 * Memory and MR structures used to represent an IB Send/Recv work request. 207 * This is *not* used for RDMA writes, only IB Send/Recv. 208 */ 209 typedef struct { 210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ 211 struct ibv_mr *control_mr; /* registration metadata */ 212 size_t control_len; /* length of the message */ 213 uint8_t *control_curr; /* start of unconsumed bytes */ 214 } RDMAWorkRequestData; 215 216 /* 217 * Negotiate RDMA capabilities during connection-setup time. 218 */ 219 typedef struct { 220 uint32_t version; 221 uint32_t flags; 222 } RDMACapabilities; 223 224 static void caps_to_network(RDMACapabilities *cap) 225 { 226 cap->version = htonl(cap->version); 227 cap->flags = htonl(cap->flags); 228 } 229 230 static void network_to_caps(RDMACapabilities *cap) 231 { 232 cap->version = ntohl(cap->version); 233 cap->flags = ntohl(cap->flags); 234 } 235 236 /* 237 * Representation of a RAMBlock from an RDMA perspective. 238 * This is not transmitted, only local. 239 * This and subsequent structures cannot be linked lists 240 * because we're using a single IB message to transmit 241 * the information. It's small anyway, so a list is overkill. 242 */ 243 typedef struct RDMALocalBlock { 244 uint8_t *local_host_addr; /* local virtual address */ 245 uint64_t remote_host_addr; /* remote virtual address */ 246 uint64_t offset; 247 uint64_t length; 248 struct ibv_mr **pmr; /* MRs for chunk-level registration */ 249 struct ibv_mr *mr; /* MR for non-chunk-level registration */ 250 uint32_t *remote_keys; /* rkeys for chunk-level registration */ 251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ 252 int index; /* which block are we */ 253 bool is_ram_block; 254 int nb_chunks; 255 unsigned long *transit_bitmap; 256 unsigned long *unregister_bitmap; 257 } RDMALocalBlock; 258 259 /* 260 * Also represents a RAMblock, but only on the dest. 261 * This gets transmitted by the dest during connection-time 262 * to the source VM and then is used to populate the 263 * corresponding RDMALocalBlock with 264 * the information needed to perform the actual RDMA. 265 */ 266 typedef struct QEMU_PACKED RDMARemoteBlock { 267 uint64_t remote_host_addr; 268 uint64_t offset; 269 uint64_t length; 270 uint32_t remote_rkey; 271 uint32_t padding; 272 } RDMARemoteBlock; 273 274 static uint64_t htonll(uint64_t v) 275 { 276 union { uint32_t lv[2]; uint64_t llv; } u; 277 u.lv[0] = htonl(v >> 32); 278 u.lv[1] = htonl(v & 0xFFFFFFFFULL); 279 return u.llv; 280 } 281 282 static uint64_t ntohll(uint64_t v) { 283 union { uint32_t lv[2]; uint64_t llv; } u; 284 u.llv = v; 285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); 286 } 287 288 static void remote_block_to_network(RDMARemoteBlock *rb) 289 { 290 rb->remote_host_addr = htonll(rb->remote_host_addr); 291 rb->offset = htonll(rb->offset); 292 rb->length = htonll(rb->length); 293 rb->remote_rkey = htonl(rb->remote_rkey); 294 } 295 296 static void network_to_remote_block(RDMARemoteBlock *rb) 297 { 298 rb->remote_host_addr = ntohll(rb->remote_host_addr); 299 rb->offset = ntohll(rb->offset); 300 rb->length = ntohll(rb->length); 301 rb->remote_rkey = ntohl(rb->remote_rkey); 302 } 303 304 /* 305 * Virtual address of the above structures used for transmitting 306 * the RAMBlock descriptions at connection-time. 307 * This structure is *not* transmitted. 308 */ 309 typedef struct RDMALocalBlocks { 310 int nb_blocks; 311 bool init; /* main memory init complete */ 312 RDMALocalBlock *block; 313 } RDMALocalBlocks; 314 315 /* 316 * Main data structure for RDMA state. 317 * While there is only one copy of this structure being allocated right now, 318 * this is the place where one would start if you wanted to consider 319 * having more than one RDMA connection open at the same time. 320 */ 321 typedef struct RDMAContext { 322 char *host; 323 int port; 324 325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; 326 327 /* 328 * This is used by *_exchange_send() to figure out whether or not 329 * the initial "READY" message has already been received or not. 330 * This is because other functions may potentially poll() and detect 331 * the READY message before send() does, in which case we need to 332 * know if it completed. 333 */ 334 int control_ready_expected; 335 336 /* number of outstanding writes */ 337 int nb_sent; 338 339 /* store info about current buffer so that we can 340 merge it with future sends */ 341 uint64_t current_addr; 342 uint64_t current_length; 343 /* index of ram block the current buffer belongs to */ 344 int current_index; 345 /* index of the chunk in the current ram block */ 346 int current_chunk; 347 348 bool pin_all; 349 350 /* 351 * infiniband-specific variables for opening the device 352 * and maintaining connection state and so forth. 353 * 354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in 355 * cm_id->verbs, cm_id->channel, and cm_id->qp. 356 */ 357 struct rdma_cm_id *cm_id; /* connection manager ID */ 358 struct rdma_cm_id *listen_id; 359 bool connected; 360 361 struct ibv_context *verbs; 362 struct rdma_event_channel *channel; 363 struct ibv_qp *qp; /* queue pair */ 364 struct ibv_comp_channel *comp_channel; /* completion channel */ 365 struct ibv_pd *pd; /* protection domain */ 366 struct ibv_cq *cq; /* completion queue */ 367 368 /* 369 * If a previous write failed (perhaps because of a failed 370 * memory registration, then do not attempt any future work 371 * and remember the error state. 372 */ 373 int error_state; 374 int error_reported; 375 376 /* 377 * Description of ram blocks used throughout the code. 378 */ 379 RDMALocalBlocks local_ram_blocks; 380 RDMARemoteBlock *block; 381 382 /* 383 * Migration on *destination* started. 384 * Then use coroutine yield function. 385 * Source runs in a thread, so we don't care. 386 */ 387 int migration_started_on_destination; 388 389 int total_registrations; 390 int total_writes; 391 392 int unregister_current, unregister_next; 393 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; 394 395 GHashTable *blockmap; 396 } RDMAContext; 397 398 /* 399 * Interface to the rest of the migration call stack. 400 */ 401 typedef struct QEMUFileRDMA { 402 RDMAContext *rdma; 403 size_t len; 404 void *file; 405 } QEMUFileRDMA; 406 407 /* 408 * Main structure for IB Send/Recv control messages. 409 * This gets prepended at the beginning of every Send/Recv. 410 */ 411 typedef struct QEMU_PACKED { 412 uint32_t len; /* Total length of data portion */ 413 uint32_t type; /* which control command to perform */ 414 uint32_t repeat; /* number of commands in data portion of same type */ 415 uint32_t padding; 416 } RDMAControlHeader; 417 418 static void control_to_network(RDMAControlHeader *control) 419 { 420 control->type = htonl(control->type); 421 control->len = htonl(control->len); 422 control->repeat = htonl(control->repeat); 423 } 424 425 static void network_to_control(RDMAControlHeader *control) 426 { 427 control->type = ntohl(control->type); 428 control->len = ntohl(control->len); 429 control->repeat = ntohl(control->repeat); 430 } 431 432 /* 433 * Register a single Chunk. 434 * Information sent by the source VM to inform the dest 435 * to register an single chunk of memory before we can perform 436 * the actual RDMA operation. 437 */ 438 typedef struct QEMU_PACKED { 439 union QEMU_PACKED { 440 uint64_t current_addr; /* offset into the ramblock of the chunk */ 441 uint64_t chunk; /* chunk to lookup if unregistering */ 442 } key; 443 uint32_t current_index; /* which ramblock the chunk belongs to */ 444 uint32_t padding; 445 uint64_t chunks; /* how many sequential chunks to register */ 446 } RDMARegister; 447 448 static void register_to_network(RDMARegister *reg) 449 { 450 reg->key.current_addr = htonll(reg->key.current_addr); 451 reg->current_index = htonl(reg->current_index); 452 reg->chunks = htonll(reg->chunks); 453 } 454 455 static void network_to_register(RDMARegister *reg) 456 { 457 reg->key.current_addr = ntohll(reg->key.current_addr); 458 reg->current_index = ntohl(reg->current_index); 459 reg->chunks = ntohll(reg->chunks); 460 } 461 462 typedef struct QEMU_PACKED { 463 uint32_t value; /* if zero, we will madvise() */ 464 uint32_t block_idx; /* which ram block index */ 465 uint64_t offset; /* where in the remote ramblock this chunk */ 466 uint64_t length; /* length of the chunk */ 467 } RDMACompress; 468 469 static void compress_to_network(RDMACompress *comp) 470 { 471 comp->value = htonl(comp->value); 472 comp->block_idx = htonl(comp->block_idx); 473 comp->offset = htonll(comp->offset); 474 comp->length = htonll(comp->length); 475 } 476 477 static void network_to_compress(RDMACompress *comp) 478 { 479 comp->value = ntohl(comp->value); 480 comp->block_idx = ntohl(comp->block_idx); 481 comp->offset = ntohll(comp->offset); 482 comp->length = ntohll(comp->length); 483 } 484 485 /* 486 * The result of the dest's memory registration produces an "rkey" 487 * which the source VM must reference in order to perform 488 * the RDMA operation. 489 */ 490 typedef struct QEMU_PACKED { 491 uint32_t rkey; 492 uint32_t padding; 493 uint64_t host_addr; 494 } RDMARegisterResult; 495 496 static void result_to_network(RDMARegisterResult *result) 497 { 498 result->rkey = htonl(result->rkey); 499 result->host_addr = htonll(result->host_addr); 500 }; 501 502 static void network_to_result(RDMARegisterResult *result) 503 { 504 result->rkey = ntohl(result->rkey); 505 result->host_addr = ntohll(result->host_addr); 506 }; 507 508 const char *print_wrid(int wrid); 509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 510 uint8_t *data, RDMAControlHeader *resp, 511 int *resp_idx, 512 int (*callback)(RDMAContext *rdma)); 513 514 static inline uint64_t ram_chunk_index(const uint8_t *start, 515 const uint8_t *host) 516 { 517 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; 518 } 519 520 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, 521 uint64_t i) 522 { 523 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr) 524 + (i << RDMA_REG_CHUNK_SHIFT)); 525 } 526 527 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, 528 uint64_t i) 529 { 530 uint8_t *result = ram_chunk_start(rdma_ram_block, i) + 531 (1UL << RDMA_REG_CHUNK_SHIFT); 532 533 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { 534 result = rdma_ram_block->local_host_addr + rdma_ram_block->length; 535 } 536 537 return result; 538 } 539 540 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr, 541 ram_addr_t block_offset, uint64_t length) 542 { 543 RDMALocalBlocks *local = &rdma->local_ram_blocks; 544 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 545 (void *) block_offset); 546 RDMALocalBlock *old = local->block; 547 548 assert(block == NULL); 549 550 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1)); 551 552 if (local->nb_blocks) { 553 int x; 554 555 for (x = 0; x < local->nb_blocks; x++) { 556 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); 557 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset, 558 &local->block[x]); 559 } 560 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); 561 g_free(old); 562 } 563 564 block = &local->block[local->nb_blocks]; 565 566 block->local_host_addr = host_addr; 567 block->offset = block_offset; 568 block->length = length; 569 block->index = local->nb_blocks; 570 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; 571 block->transit_bitmap = bitmap_new(block->nb_chunks); 572 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); 573 block->unregister_bitmap = bitmap_new(block->nb_chunks); 574 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); 575 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t)); 576 577 block->is_ram_block = local->init ? false : true; 578 579 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block); 580 581 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64 582 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n", 583 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset, 584 block->length, (uint64_t) (block->local_host_addr + block->length), 585 BITS_TO_LONGS(block->nb_chunks) * 586 sizeof(unsigned long) * 8, block->nb_chunks); 587 588 local->nb_blocks++; 589 590 return 0; 591 } 592 593 /* 594 * Memory regions need to be registered with the device and queue pairs setup 595 * in advanced before the migration starts. This tells us where the RAM blocks 596 * are so that we can register them individually. 597 */ 598 static void qemu_rdma_init_one_block(void *host_addr, 599 ram_addr_t block_offset, ram_addr_t length, void *opaque) 600 { 601 __qemu_rdma_add_block(opaque, host_addr, block_offset, length); 602 } 603 604 /* 605 * Identify the RAMBlocks and their quantity. They will be references to 606 * identify chunk boundaries inside each RAMBlock and also be referenced 607 * during dynamic page registration. 608 */ 609 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) 610 { 611 RDMALocalBlocks *local = &rdma->local_ram_blocks; 612 613 assert(rdma->blockmap == NULL); 614 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); 615 memset(local, 0, sizeof *local); 616 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); 617 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks); 618 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) * 619 rdma->local_ram_blocks.nb_blocks); 620 local->init = true; 621 return 0; 622 } 623 624 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset) 625 { 626 RDMALocalBlocks *local = &rdma->local_ram_blocks; 627 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 628 (void *) block_offset); 629 RDMALocalBlock *old = local->block; 630 int x; 631 632 assert(block); 633 634 if (block->pmr) { 635 int j; 636 637 for (j = 0; j < block->nb_chunks; j++) { 638 if (!block->pmr[j]) { 639 continue; 640 } 641 ibv_dereg_mr(block->pmr[j]); 642 rdma->total_registrations--; 643 } 644 g_free(block->pmr); 645 block->pmr = NULL; 646 } 647 648 if (block->mr) { 649 ibv_dereg_mr(block->mr); 650 rdma->total_registrations--; 651 block->mr = NULL; 652 } 653 654 g_free(block->transit_bitmap); 655 block->transit_bitmap = NULL; 656 657 g_free(block->unregister_bitmap); 658 block->unregister_bitmap = NULL; 659 660 g_free(block->remote_keys); 661 block->remote_keys = NULL; 662 663 for (x = 0; x < local->nb_blocks; x++) { 664 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); 665 } 666 667 if (local->nb_blocks > 1) { 668 669 local->block = g_malloc0(sizeof(RDMALocalBlock) * 670 (local->nb_blocks - 1)); 671 672 if (block->index) { 673 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); 674 } 675 676 if (block->index < (local->nb_blocks - 1)) { 677 memcpy(local->block + block->index, old + (block->index + 1), 678 sizeof(RDMALocalBlock) * 679 (local->nb_blocks - (block->index + 1))); 680 } 681 } else { 682 assert(block == local->block); 683 local->block = NULL; 684 } 685 686 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64 687 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n", 688 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset, 689 block->length, (uint64_t) (block->local_host_addr + block->length), 690 BITS_TO_LONGS(block->nb_chunks) * 691 sizeof(unsigned long) * 8, block->nb_chunks); 692 693 g_free(old); 694 695 local->nb_blocks--; 696 697 if (local->nb_blocks) { 698 for (x = 0; x < local->nb_blocks; x++) { 699 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset, 700 &local->block[x]); 701 } 702 } 703 704 return 0; 705 } 706 707 /* 708 * Put in the log file which RDMA device was opened and the details 709 * associated with that device. 710 */ 711 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) 712 { 713 struct ibv_port_attr port; 714 715 if (ibv_query_port(verbs, 1, &port)) { 716 fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n"); 717 return; 718 } 719 720 printf("%s RDMA Device opened: kernel name %s " 721 "uverbs device name %s, " 722 "infiniband_verbs class device path %s, " 723 "infiniband class device path %s, " 724 "transport: (%d) %s\n", 725 who, 726 verbs->device->name, 727 verbs->device->dev_name, 728 verbs->device->dev_path, 729 verbs->device->ibdev_path, 730 port.link_layer, 731 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : 732 ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 733 ? "Ethernet" : "Unknown")); 734 } 735 736 /* 737 * Put in the log file the RDMA gid addressing information, 738 * useful for folks who have trouble understanding the 739 * RDMA device hierarchy in the kernel. 740 */ 741 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) 742 { 743 char sgid[33]; 744 char dgid[33]; 745 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); 746 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); 747 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid); 748 } 749 750 /* 751 * As of now, IPv6 over RoCE / iWARP is not supported by linux. 752 * We will try the next addrinfo struct, and fail if there are 753 * no other valid addresses to bind against. 754 * 755 * If user is listening on '[::]', then we will not have a opened a device 756 * yet and have no way of verifying if the device is RoCE or not. 757 * 758 * In this case, the source VM will throw an error for ALL types of 759 * connections (both IPv4 and IPv6) if the destination machine does not have 760 * a regular infiniband network available for use. 761 * 762 * The only way to guarantee that an error is thrown for broken kernels is 763 * for the management software to choose a *specific* interface at bind time 764 * and validate what time of hardware it is. 765 * 766 * Unfortunately, this puts the user in a fix: 767 * 768 * If the source VM connects with an IPv4 address without knowing that the 769 * destination has bound to '[::]' the migration will unconditionally fail 770 * unless the management software is explicitly listening on the the IPv4 771 * address while using a RoCE-based device. 772 * 773 * If the source VM connects with an IPv6 address, then we're OK because we can 774 * throw an error on the source (and similarly on the destination). 775 * 776 * But in mixed environments, this will be broken for a while until it is fixed 777 * inside linux. 778 * 779 * We do provide a *tiny* bit of help in this function: We can list all of the 780 * devices in the system and check to see if all the devices are RoCE or 781 * Infiniband. 782 * 783 * If we detect that we have a *pure* RoCE environment, then we can safely 784 * thrown an error even if the management software has specified '[::]' as the 785 * bind address. 786 * 787 * However, if there is are multiple hetergeneous devices, then we cannot make 788 * this assumption and the user just has to be sure they know what they are 789 * doing. 790 * 791 * Patches are being reviewed on linux-rdma. 792 */ 793 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs) 794 { 795 struct ibv_port_attr port_attr; 796 797 /* This bug only exists in linux, to our knowledge. */ 798 #ifdef CONFIG_LINUX 799 800 /* 801 * Verbs are only NULL if management has bound to '[::]'. 802 * 803 * Let's iterate through all the devices and see if there any pure IB 804 * devices (non-ethernet). 805 * 806 * If not, then we can safely proceed with the migration. 807 * Otherwise, there are no guarantees until the bug is fixed in linux. 808 */ 809 if (!verbs) { 810 int num_devices, x; 811 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); 812 bool roce_found = false; 813 bool ib_found = false; 814 815 for (x = 0; x < num_devices; x++) { 816 verbs = ibv_open_device(dev_list[x]); 817 818 if (ibv_query_port(verbs, 1, &port_attr)) { 819 ibv_close_device(verbs); 820 ERROR(errp, "Could not query initial IB port"); 821 return -EINVAL; 822 } 823 824 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { 825 ib_found = true; 826 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 827 roce_found = true; 828 } 829 830 ibv_close_device(verbs); 831 832 } 833 834 if (roce_found) { 835 if (ib_found) { 836 fprintf(stderr, "WARN: migrations may fail:" 837 " IPv6 over RoCE / iWARP in linux" 838 " is broken. But since you appear to have a" 839 " mixed RoCE / IB environment, be sure to only" 840 " migrate over the IB fabric until the kernel " 841 " fixes the bug.\n"); 842 } else { 843 ERROR(errp, "You only have RoCE / iWARP devices in your systems" 844 " and your management software has specified '[::]'" 845 ", but IPv6 over RoCE / iWARP is not supported in Linux."); 846 return -ENONET; 847 } 848 } 849 850 return 0; 851 } 852 853 /* 854 * If we have a verbs context, that means that some other than '[::]' was 855 * used by the management software for binding. In which case we can actually 856 * warn the user about a potential broken kernel; 857 */ 858 859 /* IB ports start with 1, not 0 */ 860 if (ibv_query_port(verbs, 1, &port_attr)) { 861 ERROR(errp, "Could not query initial IB port"); 862 return -EINVAL; 863 } 864 865 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 866 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " 867 "(but patches on linux-rdma in progress)"); 868 return -ENONET; 869 } 870 871 #endif 872 873 return 0; 874 } 875 876 /* 877 * Figure out which RDMA device corresponds to the requested IP hostname 878 * Also create the initial connection manager identifiers for opening 879 * the connection. 880 */ 881 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) 882 { 883 int ret; 884 struct rdma_addrinfo *res; 885 char port_str[16]; 886 struct rdma_cm_event *cm_event; 887 char ip[40] = "unknown"; 888 struct rdma_addrinfo *e; 889 890 if (rdma->host == NULL || !strcmp(rdma->host, "")) { 891 ERROR(errp, "RDMA hostname has not been set"); 892 return -EINVAL; 893 } 894 895 /* create CM channel */ 896 rdma->channel = rdma_create_event_channel(); 897 if (!rdma->channel) { 898 ERROR(errp, "could not create CM channel"); 899 return -EINVAL; 900 } 901 902 /* create CM id */ 903 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); 904 if (ret) { 905 ERROR(errp, "could not create channel id"); 906 goto err_resolve_create_id; 907 } 908 909 snprintf(port_str, 16, "%d", rdma->port); 910 port_str[15] = '\0'; 911 912 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 913 if (ret < 0) { 914 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 915 goto err_resolve_get_addr; 916 } 917 918 for (e = res; e != NULL; e = e->ai_next) { 919 inet_ntop(e->ai_family, 920 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 921 DPRINTF("Trying %s => %s\n", rdma->host, ip); 922 923 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, 924 RDMA_RESOLVE_TIMEOUT_MS); 925 if (!ret) { 926 if (e->ai_family == AF_INET6) { 927 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs); 928 if (ret) { 929 continue; 930 } 931 } 932 goto route; 933 } 934 } 935 936 ERROR(errp, "could not resolve address %s", rdma->host); 937 goto err_resolve_get_addr; 938 939 route: 940 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); 941 942 ret = rdma_get_cm_event(rdma->channel, &cm_event); 943 if (ret) { 944 ERROR(errp, "could not perform event_addr_resolved"); 945 goto err_resolve_get_addr; 946 } 947 948 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { 949 ERROR(errp, "result not equal to event_addr_resolved %s", 950 rdma_event_str(cm_event->event)); 951 perror("rdma_resolve_addr"); 952 rdma_ack_cm_event(cm_event); 953 ret = -EINVAL; 954 goto err_resolve_get_addr; 955 } 956 rdma_ack_cm_event(cm_event); 957 958 /* resolve route */ 959 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); 960 if (ret) { 961 ERROR(errp, "could not resolve rdma route"); 962 goto err_resolve_get_addr; 963 } 964 965 ret = rdma_get_cm_event(rdma->channel, &cm_event); 966 if (ret) { 967 ERROR(errp, "could not perform event_route_resolved"); 968 goto err_resolve_get_addr; 969 } 970 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { 971 ERROR(errp, "result not equal to event_route_resolved: %s", 972 rdma_event_str(cm_event->event)); 973 rdma_ack_cm_event(cm_event); 974 ret = -EINVAL; 975 goto err_resolve_get_addr; 976 } 977 rdma_ack_cm_event(cm_event); 978 rdma->verbs = rdma->cm_id->verbs; 979 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); 980 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); 981 return 0; 982 983 err_resolve_get_addr: 984 rdma_destroy_id(rdma->cm_id); 985 rdma->cm_id = NULL; 986 err_resolve_create_id: 987 rdma_destroy_event_channel(rdma->channel); 988 rdma->channel = NULL; 989 return ret; 990 } 991 992 /* 993 * Create protection domain and completion queues 994 */ 995 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) 996 { 997 /* allocate pd */ 998 rdma->pd = ibv_alloc_pd(rdma->verbs); 999 if (!rdma->pd) { 1000 fprintf(stderr, "failed to allocate protection domain\n"); 1001 return -1; 1002 } 1003 1004 /* create completion channel */ 1005 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); 1006 if (!rdma->comp_channel) { 1007 fprintf(stderr, "failed to allocate completion channel\n"); 1008 goto err_alloc_pd_cq; 1009 } 1010 1011 /* 1012 * Completion queue can be filled by both read and write work requests, 1013 * so must reflect the sum of both possible queue sizes. 1014 */ 1015 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), 1016 NULL, rdma->comp_channel, 0); 1017 if (!rdma->cq) { 1018 fprintf(stderr, "failed to allocate completion queue\n"); 1019 goto err_alloc_pd_cq; 1020 } 1021 1022 return 0; 1023 1024 err_alloc_pd_cq: 1025 if (rdma->pd) { 1026 ibv_dealloc_pd(rdma->pd); 1027 } 1028 if (rdma->comp_channel) { 1029 ibv_destroy_comp_channel(rdma->comp_channel); 1030 } 1031 rdma->pd = NULL; 1032 rdma->comp_channel = NULL; 1033 return -1; 1034 1035 } 1036 1037 /* 1038 * Create queue pairs. 1039 */ 1040 static int qemu_rdma_alloc_qp(RDMAContext *rdma) 1041 { 1042 struct ibv_qp_init_attr attr = { 0 }; 1043 int ret; 1044 1045 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; 1046 attr.cap.max_recv_wr = 3; 1047 attr.cap.max_send_sge = 1; 1048 attr.cap.max_recv_sge = 1; 1049 attr.send_cq = rdma->cq; 1050 attr.recv_cq = rdma->cq; 1051 attr.qp_type = IBV_QPT_RC; 1052 1053 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); 1054 if (ret) { 1055 return -1; 1056 } 1057 1058 rdma->qp = rdma->cm_id->qp; 1059 return 0; 1060 } 1061 1062 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) 1063 { 1064 int i; 1065 RDMALocalBlocks *local = &rdma->local_ram_blocks; 1066 1067 for (i = 0; i < local->nb_blocks; i++) { 1068 local->block[i].mr = 1069 ibv_reg_mr(rdma->pd, 1070 local->block[i].local_host_addr, 1071 local->block[i].length, 1072 IBV_ACCESS_LOCAL_WRITE | 1073 IBV_ACCESS_REMOTE_WRITE 1074 ); 1075 if (!local->block[i].mr) { 1076 perror("Failed to register local dest ram block!\n"); 1077 break; 1078 } 1079 rdma->total_registrations++; 1080 } 1081 1082 if (i >= local->nb_blocks) { 1083 return 0; 1084 } 1085 1086 for (i--; i >= 0; i--) { 1087 ibv_dereg_mr(local->block[i].mr); 1088 rdma->total_registrations--; 1089 } 1090 1091 return -1; 1092 1093 } 1094 1095 /* 1096 * Find the ram block that corresponds to the page requested to be 1097 * transmitted by QEMU. 1098 * 1099 * Once the block is found, also identify which 'chunk' within that 1100 * block that the page belongs to. 1101 * 1102 * This search cannot fail or the migration will fail. 1103 */ 1104 static int qemu_rdma_search_ram_block(RDMAContext *rdma, 1105 uint64_t block_offset, 1106 uint64_t offset, 1107 uint64_t length, 1108 uint64_t *block_index, 1109 uint64_t *chunk_index) 1110 { 1111 uint64_t current_addr = block_offset + offset; 1112 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 1113 (void *) block_offset); 1114 assert(block); 1115 assert(current_addr >= block->offset); 1116 assert((current_addr + length) <= (block->offset + block->length)); 1117 1118 *block_index = block->index; 1119 *chunk_index = ram_chunk_index(block->local_host_addr, 1120 block->local_host_addr + (current_addr - block->offset)); 1121 1122 return 0; 1123 } 1124 1125 /* 1126 * Register a chunk with IB. If the chunk was already registered 1127 * previously, then skip. 1128 * 1129 * Also return the keys associated with the registration needed 1130 * to perform the actual RDMA operation. 1131 */ 1132 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, 1133 RDMALocalBlock *block, uint8_t *host_addr, 1134 uint32_t *lkey, uint32_t *rkey, int chunk, 1135 uint8_t *chunk_start, uint8_t *chunk_end) 1136 { 1137 if (block->mr) { 1138 if (lkey) { 1139 *lkey = block->mr->lkey; 1140 } 1141 if (rkey) { 1142 *rkey = block->mr->rkey; 1143 } 1144 return 0; 1145 } 1146 1147 /* allocate memory to store chunk MRs */ 1148 if (!block->pmr) { 1149 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *)); 1150 if (!block->pmr) { 1151 return -1; 1152 } 1153 } 1154 1155 /* 1156 * If 'rkey', then we're the destination, so grant access to the source. 1157 * 1158 * If 'lkey', then we're the source VM, so grant access only to ourselves. 1159 */ 1160 if (!block->pmr[chunk]) { 1161 uint64_t len = chunk_end - chunk_start; 1162 1163 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n", 1164 len, chunk_start); 1165 1166 block->pmr[chunk] = ibv_reg_mr(rdma->pd, 1167 chunk_start, len, 1168 (rkey ? (IBV_ACCESS_LOCAL_WRITE | 1169 IBV_ACCESS_REMOTE_WRITE) : 0)); 1170 1171 if (!block->pmr[chunk]) { 1172 perror("Failed to register chunk!"); 1173 fprintf(stderr, "Chunk details: block: %d chunk index %d" 1174 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64 1175 " local %" PRIu64 " registrations: %d\n", 1176 block->index, chunk, (uint64_t) chunk_start, 1177 (uint64_t) chunk_end, (uint64_t) host_addr, 1178 (uint64_t) block->local_host_addr, 1179 rdma->total_registrations); 1180 return -1; 1181 } 1182 rdma->total_registrations++; 1183 } 1184 1185 if (lkey) { 1186 *lkey = block->pmr[chunk]->lkey; 1187 } 1188 if (rkey) { 1189 *rkey = block->pmr[chunk]->rkey; 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * Register (at connection time) the memory used for control 1196 * channel messages. 1197 */ 1198 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) 1199 { 1200 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, 1201 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, 1202 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 1203 if (rdma->wr_data[idx].control_mr) { 1204 rdma->total_registrations++; 1205 return 0; 1206 } 1207 fprintf(stderr, "qemu_rdma_reg_control failed!\n"); 1208 return -1; 1209 } 1210 1211 const char *print_wrid(int wrid) 1212 { 1213 if (wrid >= RDMA_WRID_RECV_CONTROL) { 1214 return wrid_desc[RDMA_WRID_RECV_CONTROL]; 1215 } 1216 return wrid_desc[wrid]; 1217 } 1218 1219 /* 1220 * RDMA requires memory registration (mlock/pinning), but this is not good for 1221 * overcommitment. 1222 * 1223 * In preparation for the future where LRU information or workload-specific 1224 * writable writable working set memory access behavior is available to QEMU 1225 * it would be nice to have in place the ability to UN-register/UN-pin 1226 * particular memory regions from the RDMA hardware when it is determine that 1227 * those regions of memory will likely not be accessed again in the near future. 1228 * 1229 * While we do not yet have such information right now, the following 1230 * compile-time option allows us to perform a non-optimized version of this 1231 * behavior. 1232 * 1233 * By uncommenting this option, you will cause *all* RDMA transfers to be 1234 * unregistered immediately after the transfer completes on both sides of the 1235 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. 1236 * 1237 * This will have a terrible impact on migration performance, so until future 1238 * workload information or LRU information is available, do not attempt to use 1239 * this feature except for basic testing. 1240 */ 1241 //#define RDMA_UNREGISTRATION_EXAMPLE 1242 1243 /* 1244 * Perform a non-optimized memory unregistration after every transfer 1245 * for demonsration purposes, only if pin-all is not requested. 1246 * 1247 * Potential optimizations: 1248 * 1. Start a new thread to run this function continuously 1249 - for bit clearing 1250 - and for receipt of unregister messages 1251 * 2. Use an LRU. 1252 * 3. Use workload hints. 1253 */ 1254 static int qemu_rdma_unregister_waiting(RDMAContext *rdma) 1255 { 1256 while (rdma->unregistrations[rdma->unregister_current]) { 1257 int ret; 1258 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; 1259 uint64_t chunk = 1260 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1261 uint64_t index = 1262 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1263 RDMALocalBlock *block = 1264 &(rdma->local_ram_blocks.block[index]); 1265 RDMARegister reg = { .current_index = index }; 1266 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, 1267 }; 1268 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1269 .type = RDMA_CONTROL_UNREGISTER_REQUEST, 1270 .repeat = 1, 1271 }; 1272 1273 DDPRINTF("Processing unregister for chunk: %" PRIu64 1274 " at position %d\n", chunk, rdma->unregister_current); 1275 1276 rdma->unregistrations[rdma->unregister_current] = 0; 1277 rdma->unregister_current++; 1278 1279 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { 1280 rdma->unregister_current = 0; 1281 } 1282 1283 1284 /* 1285 * Unregistration is speculative (because migration is single-threaded 1286 * and we cannot break the protocol's inifinband message ordering). 1287 * Thus, if the memory is currently being used for transmission, 1288 * then abort the attempt to unregister and try again 1289 * later the next time a completion is received for this memory. 1290 */ 1291 clear_bit(chunk, block->unregister_bitmap); 1292 1293 if (test_bit(chunk, block->transit_bitmap)) { 1294 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk); 1295 continue; 1296 } 1297 1298 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk); 1299 1300 ret = ibv_dereg_mr(block->pmr[chunk]); 1301 block->pmr[chunk] = NULL; 1302 block->remote_keys[chunk] = 0; 1303 1304 if (ret != 0) { 1305 perror("unregistration chunk failed"); 1306 return -ret; 1307 } 1308 rdma->total_registrations--; 1309 1310 reg.key.chunk = chunk; 1311 register_to_network(®); 1312 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1313 &resp, NULL, NULL); 1314 if (ret < 0) { 1315 return ret; 1316 } 1317 1318 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk); 1319 } 1320 1321 return 0; 1322 } 1323 1324 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, 1325 uint64_t chunk) 1326 { 1327 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; 1328 1329 result |= (index << RDMA_WRID_BLOCK_SHIFT); 1330 result |= (chunk << RDMA_WRID_CHUNK_SHIFT); 1331 1332 return result; 1333 } 1334 1335 /* 1336 * Set bit for unregistration in the next iteration. 1337 * We cannot transmit right here, but will unpin later. 1338 */ 1339 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, 1340 uint64_t chunk, uint64_t wr_id) 1341 { 1342 if (rdma->unregistrations[rdma->unregister_next] != 0) { 1343 fprintf(stderr, "rdma migration: queue is full!\n"); 1344 } else { 1345 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1346 1347 if (!test_and_set_bit(chunk, block->unregister_bitmap)) { 1348 DDPRINTF("Appending unregister chunk %" PRIu64 1349 " at position %d\n", chunk, rdma->unregister_next); 1350 1351 rdma->unregistrations[rdma->unregister_next++] = 1352 qemu_rdma_make_wrid(wr_id, index, chunk); 1353 1354 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { 1355 rdma->unregister_next = 0; 1356 } 1357 } else { 1358 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n", 1359 chunk); 1360 } 1361 } 1362 } 1363 1364 /* 1365 * Consult the connection manager to see a work request 1366 * (of any kind) has completed. 1367 * Return the work request ID that completed. 1368 */ 1369 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, 1370 uint32_t *byte_len) 1371 { 1372 int ret; 1373 struct ibv_wc wc; 1374 uint64_t wr_id; 1375 1376 ret = ibv_poll_cq(rdma->cq, 1, &wc); 1377 1378 if (!ret) { 1379 *wr_id_out = RDMA_WRID_NONE; 1380 return 0; 1381 } 1382 1383 if (ret < 0) { 1384 fprintf(stderr, "ibv_poll_cq return %d!\n", ret); 1385 return ret; 1386 } 1387 1388 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; 1389 1390 if (wc.status != IBV_WC_SUCCESS) { 1391 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", 1392 wc.status, ibv_wc_status_str(wc.status)); 1393 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); 1394 1395 return -1; 1396 } 1397 1398 if (rdma->control_ready_expected && 1399 (wr_id >= RDMA_WRID_RECV_CONTROL)) { 1400 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")" 1401 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL], 1402 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); 1403 rdma->control_ready_expected = 0; 1404 } 1405 1406 if (wr_id == RDMA_WRID_RDMA_WRITE) { 1407 uint64_t chunk = 1408 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1409 uint64_t index = 1410 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1411 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1412 1413 DDDPRINTF("completions %s (%" PRId64 ") left %d, " 1414 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n", 1415 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk, 1416 block->local_host_addr, (void *)block->remote_host_addr); 1417 1418 clear_bit(chunk, block->transit_bitmap); 1419 1420 if (rdma->nb_sent > 0) { 1421 rdma->nb_sent--; 1422 } 1423 1424 if (!rdma->pin_all) { 1425 /* 1426 * FYI: If one wanted to signal a specific chunk to be unregistered 1427 * using LRU or workload-specific information, this is the function 1428 * you would call to do so. That chunk would then get asynchronously 1429 * unregistered later. 1430 */ 1431 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1432 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); 1433 #endif 1434 } 1435 } else { 1436 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n", 1437 print_wrid(wr_id), wr_id, rdma->nb_sent); 1438 } 1439 1440 *wr_id_out = wc.wr_id; 1441 if (byte_len) { 1442 *byte_len = wc.byte_len; 1443 } 1444 1445 return 0; 1446 } 1447 1448 /* 1449 * Block until the next work request has completed. 1450 * 1451 * First poll to see if a work request has already completed, 1452 * otherwise block. 1453 * 1454 * If we encounter completed work requests for IDs other than 1455 * the one we're interested in, then that's generally an error. 1456 * 1457 * The only exception is actual RDMA Write completions. These 1458 * completions only need to be recorded, but do not actually 1459 * need further processing. 1460 */ 1461 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, 1462 uint32_t *byte_len) 1463 { 1464 int num_cq_events = 0, ret = 0; 1465 struct ibv_cq *cq; 1466 void *cq_ctx; 1467 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; 1468 1469 if (ibv_req_notify_cq(rdma->cq, 0)) { 1470 return -1; 1471 } 1472 /* poll cq first */ 1473 while (wr_id != wrid_requested) { 1474 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1475 if (ret < 0) { 1476 return ret; 1477 } 1478 1479 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1480 1481 if (wr_id == RDMA_WRID_NONE) { 1482 break; 1483 } 1484 if (wr_id != wrid_requested) { 1485 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n", 1486 print_wrid(wrid_requested), 1487 wrid_requested, print_wrid(wr_id), wr_id); 1488 } 1489 } 1490 1491 if (wr_id == wrid_requested) { 1492 return 0; 1493 } 1494 1495 while (1) { 1496 /* 1497 * Coroutine doesn't start until process_incoming_migration() 1498 * so don't yield unless we know we're running inside of a coroutine. 1499 */ 1500 if (rdma->migration_started_on_destination) { 1501 yield_until_fd_readable(rdma->comp_channel->fd); 1502 } 1503 1504 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { 1505 perror("ibv_get_cq_event"); 1506 goto err_block_for_wrid; 1507 } 1508 1509 num_cq_events++; 1510 1511 if (ibv_req_notify_cq(cq, 0)) { 1512 goto err_block_for_wrid; 1513 } 1514 1515 while (wr_id != wrid_requested) { 1516 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1517 if (ret < 0) { 1518 goto err_block_for_wrid; 1519 } 1520 1521 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1522 1523 if (wr_id == RDMA_WRID_NONE) { 1524 break; 1525 } 1526 if (wr_id != wrid_requested) { 1527 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n", 1528 print_wrid(wrid_requested), wrid_requested, 1529 print_wrid(wr_id), wr_id); 1530 } 1531 } 1532 1533 if (wr_id == wrid_requested) { 1534 goto success_block_for_wrid; 1535 } 1536 } 1537 1538 success_block_for_wrid: 1539 if (num_cq_events) { 1540 ibv_ack_cq_events(cq, num_cq_events); 1541 } 1542 return 0; 1543 1544 err_block_for_wrid: 1545 if (num_cq_events) { 1546 ibv_ack_cq_events(cq, num_cq_events); 1547 } 1548 return ret; 1549 } 1550 1551 /* 1552 * Post a SEND message work request for the control channel 1553 * containing some data and block until the post completes. 1554 */ 1555 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, 1556 RDMAControlHeader *head) 1557 { 1558 int ret = 0; 1559 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; 1560 struct ibv_send_wr *bad_wr; 1561 struct ibv_sge sge = { 1562 .addr = (uint64_t)(wr->control), 1563 .length = head->len + sizeof(RDMAControlHeader), 1564 .lkey = wr->control_mr->lkey, 1565 }; 1566 struct ibv_send_wr send_wr = { 1567 .wr_id = RDMA_WRID_SEND_CONTROL, 1568 .opcode = IBV_WR_SEND, 1569 .send_flags = IBV_SEND_SIGNALED, 1570 .sg_list = &sge, 1571 .num_sge = 1, 1572 }; 1573 1574 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]); 1575 1576 /* 1577 * We don't actually need to do a memcpy() in here if we used 1578 * the "sge" properly, but since we're only sending control messages 1579 * (not RAM in a performance-critical path), then its OK for now. 1580 * 1581 * The copy makes the RDMAControlHeader simpler to manipulate 1582 * for the time being. 1583 */ 1584 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); 1585 memcpy(wr->control, head, sizeof(RDMAControlHeader)); 1586 control_to_network((void *) wr->control); 1587 1588 if (buf) { 1589 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); 1590 } 1591 1592 1593 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 1594 1595 if (ret > 0) { 1596 fprintf(stderr, "Failed to use post IB SEND for control!\n"); 1597 return -ret; 1598 } 1599 1600 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); 1601 if (ret < 0) { 1602 fprintf(stderr, "rdma migration: send polling control error!\n"); 1603 } 1604 1605 return ret; 1606 } 1607 1608 /* 1609 * Post a RECV work request in anticipation of some future receipt 1610 * of data on the control channel. 1611 */ 1612 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) 1613 { 1614 struct ibv_recv_wr *bad_wr; 1615 struct ibv_sge sge = { 1616 .addr = (uint64_t)(rdma->wr_data[idx].control), 1617 .length = RDMA_CONTROL_MAX_BUFFER, 1618 .lkey = rdma->wr_data[idx].control_mr->lkey, 1619 }; 1620 1621 struct ibv_recv_wr recv_wr = { 1622 .wr_id = RDMA_WRID_RECV_CONTROL + idx, 1623 .sg_list = &sge, 1624 .num_sge = 1, 1625 }; 1626 1627 1628 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { 1629 return -1; 1630 } 1631 1632 return 0; 1633 } 1634 1635 /* 1636 * Block and wait for a RECV control channel message to arrive. 1637 */ 1638 static int qemu_rdma_exchange_get_response(RDMAContext *rdma, 1639 RDMAControlHeader *head, int expecting, int idx) 1640 { 1641 uint32_t byte_len; 1642 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, 1643 &byte_len); 1644 1645 if (ret < 0) { 1646 fprintf(stderr, "rdma migration: recv polling control error!\n"); 1647 return ret; 1648 } 1649 1650 network_to_control((void *) rdma->wr_data[idx].control); 1651 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); 1652 1653 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]); 1654 1655 if (expecting == RDMA_CONTROL_NONE) { 1656 DDDPRINTF("Surprise: got %s (%d)\n", 1657 control_desc[head->type], head->type); 1658 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { 1659 fprintf(stderr, "Was expecting a %s (%d) control message" 1660 ", but got: %s (%d), length: %d\n", 1661 control_desc[expecting], expecting, 1662 control_desc[head->type], head->type, head->len); 1663 return -EIO; 1664 } 1665 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { 1666 fprintf(stderr, "too long length: %d\n", head->len); 1667 return -EINVAL; 1668 } 1669 if (sizeof(*head) + head->len != byte_len) { 1670 fprintf(stderr, "Malformed length: %d byte_len %d\n", 1671 head->len, byte_len); 1672 return -EINVAL; 1673 } 1674 1675 return 0; 1676 } 1677 1678 /* 1679 * When a RECV work request has completed, the work request's 1680 * buffer is pointed at the header. 1681 * 1682 * This will advance the pointer to the data portion 1683 * of the control message of the work request's buffer that 1684 * was populated after the work request finished. 1685 */ 1686 static void qemu_rdma_move_header(RDMAContext *rdma, int idx, 1687 RDMAControlHeader *head) 1688 { 1689 rdma->wr_data[idx].control_len = head->len; 1690 rdma->wr_data[idx].control_curr = 1691 rdma->wr_data[idx].control + sizeof(RDMAControlHeader); 1692 } 1693 1694 /* 1695 * This is an 'atomic' high-level operation to deliver a single, unified 1696 * control-channel message. 1697 * 1698 * Additionally, if the user is expecting some kind of reply to this message, 1699 * they can request a 'resp' response message be filled in by posting an 1700 * additional work request on behalf of the user and waiting for an additional 1701 * completion. 1702 * 1703 * The extra (optional) response is used during registration to us from having 1704 * to perform an *additional* exchange of message just to provide a response by 1705 * instead piggy-backing on the acknowledgement. 1706 */ 1707 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 1708 uint8_t *data, RDMAControlHeader *resp, 1709 int *resp_idx, 1710 int (*callback)(RDMAContext *rdma)) 1711 { 1712 int ret = 0; 1713 1714 /* 1715 * Wait until the dest is ready before attempting to deliver the message 1716 * by waiting for a READY message. 1717 */ 1718 if (rdma->control_ready_expected) { 1719 RDMAControlHeader resp; 1720 ret = qemu_rdma_exchange_get_response(rdma, 1721 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); 1722 if (ret < 0) { 1723 return ret; 1724 } 1725 } 1726 1727 /* 1728 * If the user is expecting a response, post a WR in anticipation of it. 1729 */ 1730 if (resp) { 1731 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); 1732 if (ret) { 1733 fprintf(stderr, "rdma migration: error posting" 1734 " extra control recv for anticipated result!"); 1735 return ret; 1736 } 1737 } 1738 1739 /* 1740 * Post a WR to replace the one we just consumed for the READY message. 1741 */ 1742 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1743 if (ret) { 1744 fprintf(stderr, "rdma migration: error posting first control recv!"); 1745 return ret; 1746 } 1747 1748 /* 1749 * Deliver the control message that was requested. 1750 */ 1751 ret = qemu_rdma_post_send_control(rdma, data, head); 1752 1753 if (ret < 0) { 1754 fprintf(stderr, "Failed to send control buffer!\n"); 1755 return ret; 1756 } 1757 1758 /* 1759 * If we're expecting a response, block and wait for it. 1760 */ 1761 if (resp) { 1762 if (callback) { 1763 DDPRINTF("Issuing callback before receiving response...\n"); 1764 ret = callback(rdma); 1765 if (ret < 0) { 1766 return ret; 1767 } 1768 } 1769 1770 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]); 1771 ret = qemu_rdma_exchange_get_response(rdma, resp, 1772 resp->type, RDMA_WRID_DATA); 1773 1774 if (ret < 0) { 1775 return ret; 1776 } 1777 1778 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); 1779 if (resp_idx) { 1780 *resp_idx = RDMA_WRID_DATA; 1781 } 1782 DDPRINTF("Response %s received.\n", control_desc[resp->type]); 1783 } 1784 1785 rdma->control_ready_expected = 1; 1786 1787 return 0; 1788 } 1789 1790 /* 1791 * This is an 'atomic' high-level operation to receive a single, unified 1792 * control-channel message. 1793 */ 1794 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, 1795 int expecting) 1796 { 1797 RDMAControlHeader ready = { 1798 .len = 0, 1799 .type = RDMA_CONTROL_READY, 1800 .repeat = 1, 1801 }; 1802 int ret; 1803 1804 /* 1805 * Inform the source that we're ready to receive a message. 1806 */ 1807 ret = qemu_rdma_post_send_control(rdma, NULL, &ready); 1808 1809 if (ret < 0) { 1810 fprintf(stderr, "Failed to send control buffer!\n"); 1811 return ret; 1812 } 1813 1814 /* 1815 * Block and wait for the message. 1816 */ 1817 ret = qemu_rdma_exchange_get_response(rdma, head, 1818 expecting, RDMA_WRID_READY); 1819 1820 if (ret < 0) { 1821 return ret; 1822 } 1823 1824 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); 1825 1826 /* 1827 * Post a new RECV work request to replace the one we just consumed. 1828 */ 1829 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1830 if (ret) { 1831 fprintf(stderr, "rdma migration: error posting second control recv!"); 1832 return ret; 1833 } 1834 1835 return 0; 1836 } 1837 1838 /* 1839 * Write an actual chunk of memory using RDMA. 1840 * 1841 * If we're using dynamic registration on the dest-side, we have to 1842 * send a registration command first. 1843 */ 1844 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, 1845 int current_index, uint64_t current_addr, 1846 uint64_t length) 1847 { 1848 struct ibv_sge sge; 1849 struct ibv_send_wr send_wr = { 0 }; 1850 struct ibv_send_wr *bad_wr; 1851 int reg_result_idx, ret, count = 0; 1852 uint64_t chunk, chunks; 1853 uint8_t *chunk_start, *chunk_end; 1854 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); 1855 RDMARegister reg; 1856 RDMARegisterResult *reg_result; 1857 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; 1858 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1859 .type = RDMA_CONTROL_REGISTER_REQUEST, 1860 .repeat = 1, 1861 }; 1862 1863 retry: 1864 sge.addr = (uint64_t)(block->local_host_addr + 1865 (current_addr - block->offset)); 1866 sge.length = length; 1867 1868 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr); 1869 chunk_start = ram_chunk_start(block, chunk); 1870 1871 if (block->is_ram_block) { 1872 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); 1873 1874 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1875 chunks--; 1876 } 1877 } else { 1878 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); 1879 1880 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1881 chunks--; 1882 } 1883 } 1884 1885 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n", 1886 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); 1887 1888 chunk_end = ram_chunk_end(block, chunk + chunks); 1889 1890 if (!rdma->pin_all) { 1891 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1892 qemu_rdma_unregister_waiting(rdma); 1893 #endif 1894 } 1895 1896 while (test_bit(chunk, block->transit_bitmap)) { 1897 (void)count; 1898 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64 1899 " current %" PRIu64 " len %" PRIu64 " %d %d\n", 1900 count++, current_index, chunk, 1901 sge.addr, length, rdma->nb_sent, block->nb_chunks); 1902 1903 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 1904 1905 if (ret < 0) { 1906 fprintf(stderr, "Failed to Wait for previous write to complete " 1907 "block %d chunk %" PRIu64 1908 " current %" PRIu64 " len %" PRIu64 " %d\n", 1909 current_index, chunk, sge.addr, length, rdma->nb_sent); 1910 return ret; 1911 } 1912 } 1913 1914 if (!rdma->pin_all || !block->is_ram_block) { 1915 if (!block->remote_keys[chunk]) { 1916 /* 1917 * This chunk has not yet been registered, so first check to see 1918 * if the entire chunk is zero. If so, tell the other size to 1919 * memset() + madvise() the entire chunk without RDMA. 1920 */ 1921 1922 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length) 1923 && buffer_find_nonzero_offset((void *)sge.addr, 1924 length) == length) { 1925 RDMACompress comp = { 1926 .offset = current_addr, 1927 .value = 0, 1928 .block_idx = current_index, 1929 .length = length, 1930 }; 1931 1932 head.len = sizeof(comp); 1933 head.type = RDMA_CONTROL_COMPRESS; 1934 1935 DDPRINTF("Entire chunk is zero, sending compress: %" 1936 PRIu64 " for %d " 1937 "bytes, index: %d, offset: %" PRId64 "...\n", 1938 chunk, sge.length, current_index, current_addr); 1939 1940 compress_to_network(&comp); 1941 ret = qemu_rdma_exchange_send(rdma, &head, 1942 (uint8_t *) &comp, NULL, NULL, NULL); 1943 1944 if (ret < 0) { 1945 return -EIO; 1946 } 1947 1948 acct_update_position(f, sge.length, true); 1949 1950 return 1; 1951 } 1952 1953 /* 1954 * Otherwise, tell other side to register. 1955 */ 1956 reg.current_index = current_index; 1957 if (block->is_ram_block) { 1958 reg.key.current_addr = current_addr; 1959 } else { 1960 reg.key.chunk = chunk; 1961 } 1962 reg.chunks = chunks; 1963 1964 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d " 1965 "bytes, index: %d, offset: %" PRId64 "...\n", 1966 chunk, sge.length, current_index, current_addr); 1967 1968 register_to_network(®); 1969 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1970 &resp, ®_result_idx, NULL); 1971 if (ret < 0) { 1972 return ret; 1973 } 1974 1975 /* try to overlap this single registration with the one we sent. */ 1976 if (qemu_rdma_register_and_get_keys(rdma, block, 1977 (uint8_t *) sge.addr, 1978 &sge.lkey, NULL, chunk, 1979 chunk_start, chunk_end)) { 1980 fprintf(stderr, "cannot get lkey!\n"); 1981 return -EINVAL; 1982 } 1983 1984 reg_result = (RDMARegisterResult *) 1985 rdma->wr_data[reg_result_idx].control_curr; 1986 1987 network_to_result(reg_result); 1988 1989 DDPRINTF("Received registration result:" 1990 " my key: %x their key %x, chunk %" PRIu64 "\n", 1991 block->remote_keys[chunk], reg_result->rkey, chunk); 1992 1993 block->remote_keys[chunk] = reg_result->rkey; 1994 block->remote_host_addr = reg_result->host_addr; 1995 } else { 1996 /* already registered before */ 1997 if (qemu_rdma_register_and_get_keys(rdma, block, 1998 (uint8_t *)sge.addr, 1999 &sge.lkey, NULL, chunk, 2000 chunk_start, chunk_end)) { 2001 fprintf(stderr, "cannot get lkey!\n"); 2002 return -EINVAL; 2003 } 2004 } 2005 2006 send_wr.wr.rdma.rkey = block->remote_keys[chunk]; 2007 } else { 2008 send_wr.wr.rdma.rkey = block->remote_rkey; 2009 2010 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr, 2011 &sge.lkey, NULL, chunk, 2012 chunk_start, chunk_end)) { 2013 fprintf(stderr, "cannot get lkey!\n"); 2014 return -EINVAL; 2015 } 2016 } 2017 2018 /* 2019 * Encode the ram block index and chunk within this wrid. 2020 * We will use this information at the time of completion 2021 * to figure out which bitmap to check against and then which 2022 * chunk in the bitmap to look for. 2023 */ 2024 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, 2025 current_index, chunk); 2026 2027 send_wr.opcode = IBV_WR_RDMA_WRITE; 2028 send_wr.send_flags = IBV_SEND_SIGNALED; 2029 send_wr.sg_list = &sge; 2030 send_wr.num_sge = 1; 2031 send_wr.wr.rdma.remote_addr = block->remote_host_addr + 2032 (current_addr - block->offset); 2033 2034 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx" 2035 " remote: %lx, bytes %" PRIu32 "\n", 2036 chunk, sge.addr, send_wr.wr.rdma.remote_addr, 2037 sge.length); 2038 2039 /* 2040 * ibv_post_send() does not return negative error numbers, 2041 * per the specification they are positive - no idea why. 2042 */ 2043 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 2044 2045 if (ret == ENOMEM) { 2046 DDPRINTF("send queue is full. wait a little....\n"); 2047 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2048 if (ret < 0) { 2049 fprintf(stderr, "rdma migration: failed to make " 2050 "room in full send queue! %d\n", ret); 2051 return ret; 2052 } 2053 2054 goto retry; 2055 2056 } else if (ret > 0) { 2057 perror("rdma migration: post rdma write failed"); 2058 return -ret; 2059 } 2060 2061 set_bit(chunk, block->transit_bitmap); 2062 acct_update_position(f, sge.length, false); 2063 rdma->total_writes++; 2064 2065 return 0; 2066 } 2067 2068 /* 2069 * Push out any unwritten RDMA operations. 2070 * 2071 * We support sending out multiple chunks at the same time. 2072 * Not all of them need to get signaled in the completion queue. 2073 */ 2074 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) 2075 { 2076 int ret; 2077 2078 if (!rdma->current_length) { 2079 return 0; 2080 } 2081 2082 ret = qemu_rdma_write_one(f, rdma, 2083 rdma->current_index, rdma->current_addr, rdma->current_length); 2084 2085 if (ret < 0) { 2086 return ret; 2087 } 2088 2089 if (ret == 0) { 2090 rdma->nb_sent++; 2091 DDDPRINTF("sent total: %d\n", rdma->nb_sent); 2092 } 2093 2094 rdma->current_length = 0; 2095 rdma->current_addr = 0; 2096 2097 return 0; 2098 } 2099 2100 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, 2101 uint64_t offset, uint64_t len) 2102 { 2103 RDMALocalBlock *block; 2104 uint8_t *host_addr; 2105 uint8_t *chunk_end; 2106 2107 if (rdma->current_index < 0) { 2108 return 0; 2109 } 2110 2111 if (rdma->current_chunk < 0) { 2112 return 0; 2113 } 2114 2115 block = &(rdma->local_ram_blocks.block[rdma->current_index]); 2116 host_addr = block->local_host_addr + (offset - block->offset); 2117 chunk_end = ram_chunk_end(block, rdma->current_chunk); 2118 2119 if (rdma->current_length == 0) { 2120 return 0; 2121 } 2122 2123 /* 2124 * Only merge into chunk sequentially. 2125 */ 2126 if (offset != (rdma->current_addr + rdma->current_length)) { 2127 return 0; 2128 } 2129 2130 if (offset < block->offset) { 2131 return 0; 2132 } 2133 2134 if ((offset + len) > (block->offset + block->length)) { 2135 return 0; 2136 } 2137 2138 if ((host_addr + len) > chunk_end) { 2139 return 0; 2140 } 2141 2142 return 1; 2143 } 2144 2145 /* 2146 * We're not actually writing here, but doing three things: 2147 * 2148 * 1. Identify the chunk the buffer belongs to. 2149 * 2. If the chunk is full or the buffer doesn't belong to the current 2150 * chunk, then start a new chunk and flush() the old chunk. 2151 * 3. To keep the hardware busy, we also group chunks into batches 2152 * and only require that a batch gets acknowledged in the completion 2153 * qeueue instead of each individual chunk. 2154 */ 2155 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, 2156 uint64_t block_offset, uint64_t offset, 2157 uint64_t len) 2158 { 2159 uint64_t current_addr = block_offset + offset; 2160 uint64_t index = rdma->current_index; 2161 uint64_t chunk = rdma->current_chunk; 2162 int ret; 2163 2164 /* If we cannot merge it, we flush the current buffer first. */ 2165 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { 2166 ret = qemu_rdma_write_flush(f, rdma); 2167 if (ret) { 2168 return ret; 2169 } 2170 rdma->current_length = 0; 2171 rdma->current_addr = current_addr; 2172 2173 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2174 offset, len, &index, &chunk); 2175 if (ret) { 2176 fprintf(stderr, "ram block search failed\n"); 2177 return ret; 2178 } 2179 rdma->current_index = index; 2180 rdma->current_chunk = chunk; 2181 } 2182 2183 /* merge it */ 2184 rdma->current_length += len; 2185 2186 /* flush it if buffer is too large */ 2187 if (rdma->current_length >= RDMA_MERGE_MAX) { 2188 return qemu_rdma_write_flush(f, rdma); 2189 } 2190 2191 return 0; 2192 } 2193 2194 static void qemu_rdma_cleanup(RDMAContext *rdma) 2195 { 2196 struct rdma_cm_event *cm_event; 2197 int ret, idx; 2198 2199 if (rdma->cm_id && rdma->connected) { 2200 if (rdma->error_state) { 2201 RDMAControlHeader head = { .len = 0, 2202 .type = RDMA_CONTROL_ERROR, 2203 .repeat = 1, 2204 }; 2205 fprintf(stderr, "Early error. Sending error.\n"); 2206 qemu_rdma_post_send_control(rdma, NULL, &head); 2207 } 2208 2209 ret = rdma_disconnect(rdma->cm_id); 2210 if (!ret) { 2211 DDPRINTF("waiting for disconnect\n"); 2212 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2213 if (!ret) { 2214 rdma_ack_cm_event(cm_event); 2215 } 2216 } 2217 DDPRINTF("Disconnected.\n"); 2218 rdma->connected = false; 2219 } 2220 2221 g_free(rdma->block); 2222 rdma->block = NULL; 2223 2224 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2225 if (rdma->wr_data[idx].control_mr) { 2226 rdma->total_registrations--; 2227 ibv_dereg_mr(rdma->wr_data[idx].control_mr); 2228 } 2229 rdma->wr_data[idx].control_mr = NULL; 2230 } 2231 2232 if (rdma->local_ram_blocks.block) { 2233 while (rdma->local_ram_blocks.nb_blocks) { 2234 __qemu_rdma_delete_block(rdma, 2235 rdma->local_ram_blocks.block->offset); 2236 } 2237 } 2238 2239 if (rdma->cq) { 2240 ibv_destroy_cq(rdma->cq); 2241 rdma->cq = NULL; 2242 } 2243 if (rdma->comp_channel) { 2244 ibv_destroy_comp_channel(rdma->comp_channel); 2245 rdma->comp_channel = NULL; 2246 } 2247 if (rdma->pd) { 2248 ibv_dealloc_pd(rdma->pd); 2249 rdma->pd = NULL; 2250 } 2251 if (rdma->listen_id) { 2252 rdma_destroy_id(rdma->listen_id); 2253 rdma->listen_id = NULL; 2254 } 2255 if (rdma->cm_id) { 2256 if (rdma->qp) { 2257 rdma_destroy_qp(rdma->cm_id); 2258 rdma->qp = NULL; 2259 } 2260 rdma_destroy_id(rdma->cm_id); 2261 rdma->cm_id = NULL; 2262 } 2263 if (rdma->channel) { 2264 rdma_destroy_event_channel(rdma->channel); 2265 rdma->channel = NULL; 2266 } 2267 g_free(rdma->host); 2268 rdma->host = NULL; 2269 } 2270 2271 2272 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all) 2273 { 2274 int ret, idx; 2275 Error *local_err = NULL, **temp = &local_err; 2276 2277 /* 2278 * Will be validated against destination's actual capabilities 2279 * after the connect() completes. 2280 */ 2281 rdma->pin_all = pin_all; 2282 2283 ret = qemu_rdma_resolve_host(rdma, temp); 2284 if (ret) { 2285 goto err_rdma_source_init; 2286 } 2287 2288 ret = qemu_rdma_alloc_pd_cq(rdma); 2289 if (ret) { 2290 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" 2291 " limits may be too low. Please check $ ulimit -a # and " 2292 "search for 'ulimit -l' in the output"); 2293 goto err_rdma_source_init; 2294 } 2295 2296 ret = qemu_rdma_alloc_qp(rdma); 2297 if (ret) { 2298 ERROR(temp, "rdma migration: error allocating qp!"); 2299 goto err_rdma_source_init; 2300 } 2301 2302 ret = qemu_rdma_init_ram_blocks(rdma); 2303 if (ret) { 2304 ERROR(temp, "rdma migration: error initializing ram blocks!"); 2305 goto err_rdma_source_init; 2306 } 2307 2308 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2309 ret = qemu_rdma_reg_control(rdma, idx); 2310 if (ret) { 2311 ERROR(temp, "rdma migration: error registering %d control!", 2312 idx); 2313 goto err_rdma_source_init; 2314 } 2315 } 2316 2317 return 0; 2318 2319 err_rdma_source_init: 2320 error_propagate(errp, local_err); 2321 qemu_rdma_cleanup(rdma); 2322 return -1; 2323 } 2324 2325 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) 2326 { 2327 RDMACapabilities cap = { 2328 .version = RDMA_CONTROL_VERSION_CURRENT, 2329 .flags = 0, 2330 }; 2331 struct rdma_conn_param conn_param = { .initiator_depth = 2, 2332 .retry_count = 5, 2333 .private_data = &cap, 2334 .private_data_len = sizeof(cap), 2335 }; 2336 struct rdma_cm_event *cm_event; 2337 int ret; 2338 2339 /* 2340 * Only negotiate the capability with destination if the user 2341 * on the source first requested the capability. 2342 */ 2343 if (rdma->pin_all) { 2344 DPRINTF("Server pin-all memory requested.\n"); 2345 cap.flags |= RDMA_CAPABILITY_PIN_ALL; 2346 } 2347 2348 caps_to_network(&cap); 2349 2350 ret = rdma_connect(rdma->cm_id, &conn_param); 2351 if (ret) { 2352 perror("rdma_connect"); 2353 ERROR(errp, "connecting to destination!"); 2354 rdma_destroy_id(rdma->cm_id); 2355 rdma->cm_id = NULL; 2356 goto err_rdma_source_connect; 2357 } 2358 2359 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2360 if (ret) { 2361 perror("rdma_get_cm_event after rdma_connect"); 2362 ERROR(errp, "connecting to destination!"); 2363 rdma_ack_cm_event(cm_event); 2364 rdma_destroy_id(rdma->cm_id); 2365 rdma->cm_id = NULL; 2366 goto err_rdma_source_connect; 2367 } 2368 2369 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2370 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); 2371 ERROR(errp, "connecting to destination!"); 2372 rdma_ack_cm_event(cm_event); 2373 rdma_destroy_id(rdma->cm_id); 2374 rdma->cm_id = NULL; 2375 goto err_rdma_source_connect; 2376 } 2377 rdma->connected = true; 2378 2379 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2380 network_to_caps(&cap); 2381 2382 /* 2383 * Verify that the *requested* capabilities are supported by the destination 2384 * and disable them otherwise. 2385 */ 2386 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { 2387 ERROR(errp, "Server cannot support pinning all memory. " 2388 "Will register memory dynamically."); 2389 rdma->pin_all = false; 2390 } 2391 2392 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled"); 2393 2394 rdma_ack_cm_event(cm_event); 2395 2396 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2397 if (ret) { 2398 ERROR(errp, "posting second control recv!"); 2399 goto err_rdma_source_connect; 2400 } 2401 2402 rdma->control_ready_expected = 1; 2403 rdma->nb_sent = 0; 2404 return 0; 2405 2406 err_rdma_source_connect: 2407 qemu_rdma_cleanup(rdma); 2408 return -1; 2409 } 2410 2411 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) 2412 { 2413 int ret = -EINVAL, idx; 2414 struct rdma_cm_id *listen_id; 2415 char ip[40] = "unknown"; 2416 struct rdma_addrinfo *res; 2417 char port_str[16]; 2418 2419 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2420 rdma->wr_data[idx].control_len = 0; 2421 rdma->wr_data[idx].control_curr = NULL; 2422 } 2423 2424 if (rdma->host == NULL) { 2425 ERROR(errp, "RDMA host is not set!"); 2426 rdma->error_state = -EINVAL; 2427 return -1; 2428 } 2429 /* create CM channel */ 2430 rdma->channel = rdma_create_event_channel(); 2431 if (!rdma->channel) { 2432 ERROR(errp, "could not create rdma event channel"); 2433 rdma->error_state = -EINVAL; 2434 return -1; 2435 } 2436 2437 /* create CM id */ 2438 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); 2439 if (ret) { 2440 ERROR(errp, "could not create cm_id!"); 2441 goto err_dest_init_create_listen_id; 2442 } 2443 2444 snprintf(port_str, 16, "%d", rdma->port); 2445 port_str[15] = '\0'; 2446 2447 if (rdma->host && strcmp("", rdma->host)) { 2448 struct rdma_addrinfo *e; 2449 2450 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 2451 if (ret < 0) { 2452 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 2453 goto err_dest_init_bind_addr; 2454 } 2455 2456 for (e = res; e != NULL; e = e->ai_next) { 2457 inet_ntop(e->ai_family, 2458 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 2459 DPRINTF("Trying %s => %s\n", rdma->host, ip); 2460 ret = rdma_bind_addr(listen_id, e->ai_dst_addr); 2461 if (!ret) { 2462 if (e->ai_family == AF_INET6) { 2463 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs); 2464 if (ret) { 2465 continue; 2466 } 2467 } 2468 2469 goto listen; 2470 } 2471 } 2472 2473 ERROR(errp, "Error: could not rdma_bind_addr!"); 2474 goto err_dest_init_bind_addr; 2475 } else { 2476 ERROR(errp, "migration host and port not specified!"); 2477 ret = -EINVAL; 2478 goto err_dest_init_bind_addr; 2479 } 2480 listen: 2481 2482 rdma->listen_id = listen_id; 2483 qemu_rdma_dump_gid("dest_init", listen_id); 2484 return 0; 2485 2486 err_dest_init_bind_addr: 2487 rdma_destroy_id(listen_id); 2488 err_dest_init_create_listen_id: 2489 rdma_destroy_event_channel(rdma->channel); 2490 rdma->channel = NULL; 2491 rdma->error_state = ret; 2492 return ret; 2493 2494 } 2495 2496 static void *qemu_rdma_data_init(const char *host_port, Error **errp) 2497 { 2498 RDMAContext *rdma = NULL; 2499 InetSocketAddress *addr; 2500 2501 if (host_port) { 2502 rdma = g_malloc0(sizeof(RDMAContext)); 2503 memset(rdma, 0, sizeof(RDMAContext)); 2504 rdma->current_index = -1; 2505 rdma->current_chunk = -1; 2506 2507 addr = inet_parse(host_port, NULL); 2508 if (addr != NULL) { 2509 rdma->port = atoi(addr->port); 2510 rdma->host = g_strdup(addr->host); 2511 } else { 2512 ERROR(errp, "bad RDMA migration address '%s'", host_port); 2513 g_free(rdma); 2514 rdma = NULL; 2515 } 2516 2517 qapi_free_InetSocketAddress(addr); 2518 } 2519 2520 return rdma; 2521 } 2522 2523 /* 2524 * QEMUFile interface to the control channel. 2525 * SEND messages for control only. 2526 * VM's ram is handled with regular RDMA messages. 2527 */ 2528 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf, 2529 int64_t pos, int size) 2530 { 2531 QEMUFileRDMA *r = opaque; 2532 QEMUFile *f = r->file; 2533 RDMAContext *rdma = r->rdma; 2534 size_t remaining = size; 2535 uint8_t * data = (void *) buf; 2536 int ret; 2537 2538 CHECK_ERROR_STATE(); 2539 2540 /* 2541 * Push out any writes that 2542 * we're queued up for VM's ram. 2543 */ 2544 ret = qemu_rdma_write_flush(f, rdma); 2545 if (ret < 0) { 2546 rdma->error_state = ret; 2547 return ret; 2548 } 2549 2550 while (remaining) { 2551 RDMAControlHeader head; 2552 2553 r->len = MIN(remaining, RDMA_SEND_INCREMENT); 2554 remaining -= r->len; 2555 2556 head.len = r->len; 2557 head.type = RDMA_CONTROL_QEMU_FILE; 2558 2559 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); 2560 2561 if (ret < 0) { 2562 rdma->error_state = ret; 2563 return ret; 2564 } 2565 2566 data += r->len; 2567 } 2568 2569 return size; 2570 } 2571 2572 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, 2573 int size, int idx) 2574 { 2575 size_t len = 0; 2576 2577 if (rdma->wr_data[idx].control_len) { 2578 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n", 2579 rdma->wr_data[idx].control_len, size); 2580 2581 len = MIN(size, rdma->wr_data[idx].control_len); 2582 memcpy(buf, rdma->wr_data[idx].control_curr, len); 2583 rdma->wr_data[idx].control_curr += len; 2584 rdma->wr_data[idx].control_len -= len; 2585 } 2586 2587 return len; 2588 } 2589 2590 /* 2591 * QEMUFile interface to the control channel. 2592 * RDMA links don't use bytestreams, so we have to 2593 * return bytes to QEMUFile opportunistically. 2594 */ 2595 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf, 2596 int64_t pos, int size) 2597 { 2598 QEMUFileRDMA *r = opaque; 2599 RDMAContext *rdma = r->rdma; 2600 RDMAControlHeader head; 2601 int ret = 0; 2602 2603 CHECK_ERROR_STATE(); 2604 2605 /* 2606 * First, we hold on to the last SEND message we 2607 * were given and dish out the bytes until we run 2608 * out of bytes. 2609 */ 2610 r->len = qemu_rdma_fill(r->rdma, buf, size, 0); 2611 if (r->len) { 2612 return r->len; 2613 } 2614 2615 /* 2616 * Once we run out, we block and wait for another 2617 * SEND message to arrive. 2618 */ 2619 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); 2620 2621 if (ret < 0) { 2622 rdma->error_state = ret; 2623 return ret; 2624 } 2625 2626 /* 2627 * SEND was received with new bytes, now try again. 2628 */ 2629 return qemu_rdma_fill(r->rdma, buf, size, 0); 2630 } 2631 2632 /* 2633 * Block until all the outstanding chunks have been delivered by the hardware. 2634 */ 2635 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) 2636 { 2637 int ret; 2638 2639 if (qemu_rdma_write_flush(f, rdma) < 0) { 2640 return -EIO; 2641 } 2642 2643 while (rdma->nb_sent) { 2644 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2645 if (ret < 0) { 2646 fprintf(stderr, "rdma migration: complete polling error!\n"); 2647 return -EIO; 2648 } 2649 } 2650 2651 qemu_rdma_unregister_waiting(rdma); 2652 2653 return 0; 2654 } 2655 2656 static int qemu_rdma_close(void *opaque) 2657 { 2658 DPRINTF("Shutting down connection.\n"); 2659 QEMUFileRDMA *r = opaque; 2660 if (r->rdma) { 2661 qemu_rdma_cleanup(r->rdma); 2662 g_free(r->rdma); 2663 } 2664 g_free(r); 2665 return 0; 2666 } 2667 2668 /* 2669 * Parameters: 2670 * @offset == 0 : 2671 * This means that 'block_offset' is a full virtual address that does not 2672 * belong to a RAMBlock of the virtual machine and instead 2673 * represents a private malloc'd memory area that the caller wishes to 2674 * transfer. 2675 * 2676 * @offset != 0 : 2677 * Offset is an offset to be added to block_offset and used 2678 * to also lookup the corresponding RAMBlock. 2679 * 2680 * @size > 0 : 2681 * Initiate an transfer this size. 2682 * 2683 * @size == 0 : 2684 * A 'hint' or 'advice' that means that we wish to speculatively 2685 * and asynchronously unregister this memory. In this case, there is no 2686 * guarantee that the unregister will actually happen, for example, 2687 * if the memory is being actively transmitted. Additionally, the memory 2688 * may be re-registered at any future time if a write within the same 2689 * chunk was requested again, even if you attempted to unregister it 2690 * here. 2691 * 2692 * @size < 0 : TODO, not yet supported 2693 * Unregister the memory NOW. This means that the caller does not 2694 * expect there to be any future RDMA transfers and we just want to clean 2695 * things up. This is used in case the upper layer owns the memory and 2696 * cannot wait for qemu_fclose() to occur. 2697 * 2698 * @bytes_sent : User-specificed pointer to indicate how many bytes were 2699 * sent. Usually, this will not be more than a few bytes of 2700 * the protocol because most transfers are sent asynchronously. 2701 */ 2702 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, 2703 ram_addr_t block_offset, ram_addr_t offset, 2704 size_t size, int *bytes_sent) 2705 { 2706 QEMUFileRDMA *rfile = opaque; 2707 RDMAContext *rdma = rfile->rdma; 2708 int ret; 2709 2710 CHECK_ERROR_STATE(); 2711 2712 qemu_fflush(f); 2713 2714 if (size > 0) { 2715 /* 2716 * Add this page to the current 'chunk'. If the chunk 2717 * is full, or the page doen't belong to the current chunk, 2718 * an actual RDMA write will occur and a new chunk will be formed. 2719 */ 2720 ret = qemu_rdma_write(f, rdma, block_offset, offset, size); 2721 if (ret < 0) { 2722 fprintf(stderr, "rdma migration: write error! %d\n", ret); 2723 goto err; 2724 } 2725 2726 /* 2727 * We always return 1 bytes because the RDMA 2728 * protocol is completely asynchronous. We do not yet know 2729 * whether an identified chunk is zero or not because we're 2730 * waiting for other pages to potentially be merged with 2731 * the current chunk. So, we have to call qemu_update_position() 2732 * later on when the actual write occurs. 2733 */ 2734 if (bytes_sent) { 2735 *bytes_sent = 1; 2736 } 2737 } else { 2738 uint64_t index, chunk; 2739 2740 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long 2741 if (size < 0) { 2742 ret = qemu_rdma_drain_cq(f, rdma); 2743 if (ret < 0) { 2744 fprintf(stderr, "rdma: failed to synchronously drain" 2745 " completion queue before unregistration.\n"); 2746 goto err; 2747 } 2748 } 2749 */ 2750 2751 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2752 offset, size, &index, &chunk); 2753 2754 if (ret) { 2755 fprintf(stderr, "ram block search failed\n"); 2756 goto err; 2757 } 2758 2759 qemu_rdma_signal_unregister(rdma, index, chunk, 0); 2760 2761 /* 2762 * TODO: Synchronous, guaranteed unregistration (should not occur during 2763 * fast-path). Otherwise, unregisters will process on the next call to 2764 * qemu_rdma_drain_cq() 2765 if (size < 0) { 2766 qemu_rdma_unregister_waiting(rdma); 2767 } 2768 */ 2769 } 2770 2771 /* 2772 * Drain the Completion Queue if possible, but do not block, 2773 * just poll. 2774 * 2775 * If nothing to poll, the end of the iteration will do this 2776 * again to make sure we don't overflow the request queue. 2777 */ 2778 while (1) { 2779 uint64_t wr_id, wr_id_in; 2780 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); 2781 if (ret < 0) { 2782 fprintf(stderr, "rdma migration: polling error! %d\n", ret); 2783 goto err; 2784 } 2785 2786 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 2787 2788 if (wr_id == RDMA_WRID_NONE) { 2789 break; 2790 } 2791 } 2792 2793 return RAM_SAVE_CONTROL_DELAYED; 2794 err: 2795 rdma->error_state = ret; 2796 return ret; 2797 } 2798 2799 static int qemu_rdma_accept(RDMAContext *rdma) 2800 { 2801 RDMACapabilities cap; 2802 struct rdma_conn_param conn_param = { 2803 .responder_resources = 2, 2804 .private_data = &cap, 2805 .private_data_len = sizeof(cap), 2806 }; 2807 struct rdma_cm_event *cm_event; 2808 struct ibv_context *verbs; 2809 int ret = -EINVAL; 2810 int idx; 2811 2812 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2813 if (ret) { 2814 goto err_rdma_dest_wait; 2815 } 2816 2817 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { 2818 rdma_ack_cm_event(cm_event); 2819 goto err_rdma_dest_wait; 2820 } 2821 2822 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2823 2824 network_to_caps(&cap); 2825 2826 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { 2827 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n", 2828 cap.version); 2829 rdma_ack_cm_event(cm_event); 2830 goto err_rdma_dest_wait; 2831 } 2832 2833 /* 2834 * Respond with only the capabilities this version of QEMU knows about. 2835 */ 2836 cap.flags &= known_capabilities; 2837 2838 /* 2839 * Enable the ones that we do know about. 2840 * Add other checks here as new ones are introduced. 2841 */ 2842 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { 2843 rdma->pin_all = true; 2844 } 2845 2846 rdma->cm_id = cm_event->id; 2847 verbs = cm_event->id->verbs; 2848 2849 rdma_ack_cm_event(cm_event); 2850 2851 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled"); 2852 2853 caps_to_network(&cap); 2854 2855 DPRINTF("verbs context after listen: %p\n", verbs); 2856 2857 if (!rdma->verbs) { 2858 rdma->verbs = verbs; 2859 } else if (rdma->verbs != verbs) { 2860 fprintf(stderr, "ibv context not matching %p, %p!\n", 2861 rdma->verbs, verbs); 2862 goto err_rdma_dest_wait; 2863 } 2864 2865 qemu_rdma_dump_id("dest_init", verbs); 2866 2867 ret = qemu_rdma_alloc_pd_cq(rdma); 2868 if (ret) { 2869 fprintf(stderr, "rdma migration: error allocating pd and cq!\n"); 2870 goto err_rdma_dest_wait; 2871 } 2872 2873 ret = qemu_rdma_alloc_qp(rdma); 2874 if (ret) { 2875 fprintf(stderr, "rdma migration: error allocating qp!\n"); 2876 goto err_rdma_dest_wait; 2877 } 2878 2879 ret = qemu_rdma_init_ram_blocks(rdma); 2880 if (ret) { 2881 fprintf(stderr, "rdma migration: error initializing ram blocks!\n"); 2882 goto err_rdma_dest_wait; 2883 } 2884 2885 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2886 ret = qemu_rdma_reg_control(rdma, idx); 2887 if (ret) { 2888 fprintf(stderr, "rdma: error registering %d control!\n", idx); 2889 goto err_rdma_dest_wait; 2890 } 2891 } 2892 2893 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL); 2894 2895 ret = rdma_accept(rdma->cm_id, &conn_param); 2896 if (ret) { 2897 fprintf(stderr, "rdma_accept returns %d!\n", ret); 2898 goto err_rdma_dest_wait; 2899 } 2900 2901 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2902 if (ret) { 2903 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret); 2904 goto err_rdma_dest_wait; 2905 } 2906 2907 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2908 fprintf(stderr, "rdma_accept not event established!\n"); 2909 rdma_ack_cm_event(cm_event); 2910 goto err_rdma_dest_wait; 2911 } 2912 2913 rdma_ack_cm_event(cm_event); 2914 rdma->connected = true; 2915 2916 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2917 if (ret) { 2918 fprintf(stderr, "rdma migration: error posting second control recv!\n"); 2919 goto err_rdma_dest_wait; 2920 } 2921 2922 qemu_rdma_dump_gid("dest_connect", rdma->cm_id); 2923 2924 return 0; 2925 2926 err_rdma_dest_wait: 2927 rdma->error_state = ret; 2928 qemu_rdma_cleanup(rdma); 2929 return ret; 2930 } 2931 2932 /* 2933 * During each iteration of the migration, we listen for instructions 2934 * by the source VM to perform dynamic page registrations before they 2935 * can perform RDMA operations. 2936 * 2937 * We respond with the 'rkey'. 2938 * 2939 * Keep doing this until the source tells us to stop. 2940 */ 2941 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque, 2942 uint64_t flags) 2943 { 2944 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), 2945 .type = RDMA_CONTROL_REGISTER_RESULT, 2946 .repeat = 0, 2947 }; 2948 RDMAControlHeader unreg_resp = { .len = 0, 2949 .type = RDMA_CONTROL_UNREGISTER_FINISHED, 2950 .repeat = 0, 2951 }; 2952 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, 2953 .repeat = 1 }; 2954 QEMUFileRDMA *rfile = opaque; 2955 RDMAContext *rdma = rfile->rdma; 2956 RDMALocalBlocks *local = &rdma->local_ram_blocks; 2957 RDMAControlHeader head; 2958 RDMARegister *reg, *registers; 2959 RDMACompress *comp; 2960 RDMARegisterResult *reg_result; 2961 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; 2962 RDMALocalBlock *block; 2963 void *host_addr; 2964 int ret = 0; 2965 int idx = 0; 2966 int count = 0; 2967 int i = 0; 2968 2969 CHECK_ERROR_STATE(); 2970 2971 do { 2972 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags); 2973 2974 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); 2975 2976 if (ret < 0) { 2977 break; 2978 } 2979 2980 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { 2981 fprintf(stderr, "rdma: Too many requests in this message (%d)." 2982 "Bailing.\n", head.repeat); 2983 ret = -EIO; 2984 break; 2985 } 2986 2987 switch (head.type) { 2988 case RDMA_CONTROL_COMPRESS: 2989 comp = (RDMACompress *) rdma->wr_data[idx].control_curr; 2990 network_to_compress(comp); 2991 2992 DDPRINTF("Zapping zero chunk: %" PRId64 2993 " bytes, index %d, offset %" PRId64 "\n", 2994 comp->length, comp->block_idx, comp->offset); 2995 block = &(rdma->local_ram_blocks.block[comp->block_idx]); 2996 2997 host_addr = block->local_host_addr + 2998 (comp->offset - block->offset); 2999 3000 ram_handle_compressed(host_addr, comp->value, comp->length); 3001 break; 3002 3003 case RDMA_CONTROL_REGISTER_FINISHED: 3004 DDDPRINTF("Current registrations complete.\n"); 3005 goto out; 3006 3007 case RDMA_CONTROL_RAM_BLOCKS_REQUEST: 3008 DPRINTF("Initial setup info requested.\n"); 3009 3010 if (rdma->pin_all) { 3011 ret = qemu_rdma_reg_whole_ram_blocks(rdma); 3012 if (ret) { 3013 fprintf(stderr, "rdma migration: error dest " 3014 "registering ram blocks!\n"); 3015 goto out; 3016 } 3017 } 3018 3019 /* 3020 * Dest uses this to prepare to transmit the RAMBlock descriptions 3021 * to the source VM after connection setup. 3022 * Both sides use the "remote" structure to communicate and update 3023 * their "local" descriptions with what was sent. 3024 */ 3025 for (i = 0; i < local->nb_blocks; i++) { 3026 rdma->block[i].remote_host_addr = 3027 (uint64_t)(local->block[i].local_host_addr); 3028 3029 if (rdma->pin_all) { 3030 rdma->block[i].remote_rkey = local->block[i].mr->rkey; 3031 } 3032 3033 rdma->block[i].offset = local->block[i].offset; 3034 rdma->block[i].length = local->block[i].length; 3035 3036 remote_block_to_network(&rdma->block[i]); 3037 } 3038 3039 blocks.len = rdma->local_ram_blocks.nb_blocks 3040 * sizeof(RDMARemoteBlock); 3041 3042 3043 ret = qemu_rdma_post_send_control(rdma, 3044 (uint8_t *) rdma->block, &blocks); 3045 3046 if (ret < 0) { 3047 fprintf(stderr, "rdma migration: error sending remote info!\n"); 3048 goto out; 3049 } 3050 3051 break; 3052 case RDMA_CONTROL_REGISTER_REQUEST: 3053 DDPRINTF("There are %d registration requests\n", head.repeat); 3054 3055 reg_resp.repeat = head.repeat; 3056 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3057 3058 for (count = 0; count < head.repeat; count++) { 3059 uint64_t chunk; 3060 uint8_t *chunk_start, *chunk_end; 3061 3062 reg = ®isters[count]; 3063 network_to_register(reg); 3064 3065 reg_result = &results[count]; 3066 3067 DDPRINTF("Registration request (%d): index %d, current_addr %" 3068 PRIu64 " chunks: %" PRIu64 "\n", count, 3069 reg->current_index, reg->key.current_addr, reg->chunks); 3070 3071 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3072 if (block->is_ram_block) { 3073 host_addr = (block->local_host_addr + 3074 (reg->key.current_addr - block->offset)); 3075 chunk = ram_chunk_index(block->local_host_addr, 3076 (uint8_t *) host_addr); 3077 } else { 3078 chunk = reg->key.chunk; 3079 host_addr = block->local_host_addr + 3080 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); 3081 } 3082 chunk_start = ram_chunk_start(block, chunk); 3083 chunk_end = ram_chunk_end(block, chunk + reg->chunks); 3084 if (qemu_rdma_register_and_get_keys(rdma, block, 3085 (uint8_t *)host_addr, NULL, ®_result->rkey, 3086 chunk, chunk_start, chunk_end)) { 3087 fprintf(stderr, "cannot get rkey!\n"); 3088 ret = -EINVAL; 3089 goto out; 3090 } 3091 3092 reg_result->host_addr = (uint64_t) block->local_host_addr; 3093 3094 DDPRINTF("Registered rkey for this request: %x\n", 3095 reg_result->rkey); 3096 3097 result_to_network(reg_result); 3098 } 3099 3100 ret = qemu_rdma_post_send_control(rdma, 3101 (uint8_t *) results, ®_resp); 3102 3103 if (ret < 0) { 3104 fprintf(stderr, "Failed to send control buffer!\n"); 3105 goto out; 3106 } 3107 break; 3108 case RDMA_CONTROL_UNREGISTER_REQUEST: 3109 DDPRINTF("There are %d unregistration requests\n", head.repeat); 3110 unreg_resp.repeat = head.repeat; 3111 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3112 3113 for (count = 0; count < head.repeat; count++) { 3114 reg = ®isters[count]; 3115 network_to_register(reg); 3116 3117 DDPRINTF("Unregistration request (%d): " 3118 " index %d, chunk %" PRIu64 "\n", 3119 count, reg->current_index, reg->key.chunk); 3120 3121 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3122 3123 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); 3124 block->pmr[reg->key.chunk] = NULL; 3125 3126 if (ret != 0) { 3127 perror("rdma unregistration chunk failed"); 3128 ret = -ret; 3129 goto out; 3130 } 3131 3132 rdma->total_registrations--; 3133 3134 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n", 3135 reg->key.chunk); 3136 } 3137 3138 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); 3139 3140 if (ret < 0) { 3141 fprintf(stderr, "Failed to send control buffer!\n"); 3142 goto out; 3143 } 3144 break; 3145 case RDMA_CONTROL_REGISTER_RESULT: 3146 fprintf(stderr, "Invalid RESULT message at dest.\n"); 3147 ret = -EIO; 3148 goto out; 3149 default: 3150 fprintf(stderr, "Unknown control message %s\n", 3151 control_desc[head.type]); 3152 ret = -EIO; 3153 goto out; 3154 } 3155 } while (1); 3156 out: 3157 if (ret < 0) { 3158 rdma->error_state = ret; 3159 } 3160 return ret; 3161 } 3162 3163 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, 3164 uint64_t flags) 3165 { 3166 QEMUFileRDMA *rfile = opaque; 3167 RDMAContext *rdma = rfile->rdma; 3168 3169 CHECK_ERROR_STATE(); 3170 3171 DDDPRINTF("start section: %" PRIu64 "\n", flags); 3172 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); 3173 qemu_fflush(f); 3174 3175 return 0; 3176 } 3177 3178 /* 3179 * Inform dest that dynamic registrations are done for now. 3180 * First, flush writes, if any. 3181 */ 3182 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, 3183 uint64_t flags) 3184 { 3185 Error *local_err = NULL, **errp = &local_err; 3186 QEMUFileRDMA *rfile = opaque; 3187 RDMAContext *rdma = rfile->rdma; 3188 RDMAControlHeader head = { .len = 0, .repeat = 1 }; 3189 int ret = 0; 3190 3191 CHECK_ERROR_STATE(); 3192 3193 qemu_fflush(f); 3194 ret = qemu_rdma_drain_cq(f, rdma); 3195 3196 if (ret < 0) { 3197 goto err; 3198 } 3199 3200 if (flags == RAM_CONTROL_SETUP) { 3201 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; 3202 RDMALocalBlocks *local = &rdma->local_ram_blocks; 3203 int reg_result_idx, i, j, nb_remote_blocks; 3204 3205 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; 3206 DPRINTF("Sending registration setup for ram blocks...\n"); 3207 3208 /* 3209 * Make sure that we parallelize the pinning on both sides. 3210 * For very large guests, doing this serially takes a really 3211 * long time, so we have to 'interleave' the pinning locally 3212 * with the control messages by performing the pinning on this 3213 * side before we receive the control response from the other 3214 * side that the pinning has completed. 3215 */ 3216 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, 3217 ®_result_idx, rdma->pin_all ? 3218 qemu_rdma_reg_whole_ram_blocks : NULL); 3219 if (ret < 0) { 3220 ERROR(errp, "receiving remote info!"); 3221 return ret; 3222 } 3223 3224 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock); 3225 3226 /* 3227 * The protocol uses two different sets of rkeys (mutually exclusive): 3228 * 1. One key to represent the virtual address of the entire ram block. 3229 * (dynamic chunk registration disabled - pin everything with one rkey.) 3230 * 2. One to represent individual chunks within a ram block. 3231 * (dynamic chunk registration enabled - pin individual chunks.) 3232 * 3233 * Once the capability is successfully negotiated, the destination transmits 3234 * the keys to use (or sends them later) including the virtual addresses 3235 * and then propagates the remote ram block descriptions to his local copy. 3236 */ 3237 3238 if (local->nb_blocks != nb_remote_blocks) { 3239 ERROR(errp, "ram blocks mismatch #1! " 3240 "Your QEMU command line parameters are probably " 3241 "not identical on both the source and destination."); 3242 return -EINVAL; 3243 } 3244 3245 qemu_rdma_move_header(rdma, reg_result_idx, &resp); 3246 memcpy(rdma->block, 3247 rdma->wr_data[reg_result_idx].control_curr, resp.len); 3248 for (i = 0; i < nb_remote_blocks; i++) { 3249 network_to_remote_block(&rdma->block[i]); 3250 3251 /* search local ram blocks */ 3252 for (j = 0; j < local->nb_blocks; j++) { 3253 if (rdma->block[i].offset != local->block[j].offset) { 3254 continue; 3255 } 3256 3257 if (rdma->block[i].length != local->block[j].length) { 3258 ERROR(errp, "ram blocks mismatch #2! " 3259 "Your QEMU command line parameters are probably " 3260 "not identical on both the source and destination."); 3261 return -EINVAL; 3262 } 3263 local->block[j].remote_host_addr = 3264 rdma->block[i].remote_host_addr; 3265 local->block[j].remote_rkey = rdma->block[i].remote_rkey; 3266 break; 3267 } 3268 3269 if (j >= local->nb_blocks) { 3270 ERROR(errp, "ram blocks mismatch #3! " 3271 "Your QEMU command line parameters are probably " 3272 "not identical on both the source and destination."); 3273 return -EINVAL; 3274 } 3275 } 3276 } 3277 3278 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags); 3279 3280 head.type = RDMA_CONTROL_REGISTER_FINISHED; 3281 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); 3282 3283 if (ret < 0) { 3284 goto err; 3285 } 3286 3287 return 0; 3288 err: 3289 rdma->error_state = ret; 3290 return ret; 3291 } 3292 3293 static int qemu_rdma_get_fd(void *opaque) 3294 { 3295 QEMUFileRDMA *rfile = opaque; 3296 RDMAContext *rdma = rfile->rdma; 3297 3298 return rdma->comp_channel->fd; 3299 } 3300 3301 const QEMUFileOps rdma_read_ops = { 3302 .get_buffer = qemu_rdma_get_buffer, 3303 .get_fd = qemu_rdma_get_fd, 3304 .close = qemu_rdma_close, 3305 .hook_ram_load = qemu_rdma_registration_handle, 3306 }; 3307 3308 const QEMUFileOps rdma_write_ops = { 3309 .put_buffer = qemu_rdma_put_buffer, 3310 .close = qemu_rdma_close, 3311 .before_ram_iterate = qemu_rdma_registration_start, 3312 .after_ram_iterate = qemu_rdma_registration_stop, 3313 .save_page = qemu_rdma_save_page, 3314 }; 3315 3316 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) 3317 { 3318 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA)); 3319 3320 if (qemu_file_mode_is_not_valid(mode)) { 3321 return NULL; 3322 } 3323 3324 r->rdma = rdma; 3325 3326 if (mode[0] == 'w') { 3327 r->file = qemu_fopen_ops(r, &rdma_write_ops); 3328 } else { 3329 r->file = qemu_fopen_ops(r, &rdma_read_ops); 3330 } 3331 3332 return r->file; 3333 } 3334 3335 static void rdma_accept_incoming_migration(void *opaque) 3336 { 3337 RDMAContext *rdma = opaque; 3338 int ret; 3339 QEMUFile *f; 3340 Error *local_err = NULL, **errp = &local_err; 3341 3342 DPRINTF("Accepting rdma connection...\n"); 3343 ret = qemu_rdma_accept(rdma); 3344 3345 if (ret) { 3346 ERROR(errp, "RDMA Migration initialization failed!"); 3347 return; 3348 } 3349 3350 DPRINTF("Accepted migration\n"); 3351 3352 f = qemu_fopen_rdma(rdma, "rb"); 3353 if (f == NULL) { 3354 ERROR(errp, "could not qemu_fopen_rdma!"); 3355 qemu_rdma_cleanup(rdma); 3356 return; 3357 } 3358 3359 rdma->migration_started_on_destination = 1; 3360 process_incoming_migration(f); 3361 } 3362 3363 void rdma_start_incoming_migration(const char *host_port, Error **errp) 3364 { 3365 int ret; 3366 RDMAContext *rdma; 3367 Error *local_err = NULL; 3368 3369 DPRINTF("Starting RDMA-based incoming migration\n"); 3370 rdma = qemu_rdma_data_init(host_port, &local_err); 3371 3372 if (rdma == NULL) { 3373 goto err; 3374 } 3375 3376 ret = qemu_rdma_dest_init(rdma, &local_err); 3377 3378 if (ret) { 3379 goto err; 3380 } 3381 3382 DPRINTF("qemu_rdma_dest_init success\n"); 3383 3384 ret = rdma_listen(rdma->listen_id, 5); 3385 3386 if (ret) { 3387 ERROR(errp, "listening on socket!"); 3388 goto err; 3389 } 3390 3391 DPRINTF("rdma_listen success\n"); 3392 3393 qemu_set_fd_handler2(rdma->channel->fd, NULL, 3394 rdma_accept_incoming_migration, NULL, 3395 (void *)(intptr_t) rdma); 3396 return; 3397 err: 3398 error_propagate(errp, local_err); 3399 g_free(rdma); 3400 } 3401 3402 void rdma_start_outgoing_migration(void *opaque, 3403 const char *host_port, Error **errp) 3404 { 3405 MigrationState *s = opaque; 3406 Error *local_err = NULL, **temp = &local_err; 3407 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err); 3408 int ret = 0; 3409 3410 if (rdma == NULL) { 3411 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret); 3412 goto err; 3413 } 3414 3415 ret = qemu_rdma_source_init(rdma, &local_err, 3416 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]); 3417 3418 if (ret) { 3419 goto err; 3420 } 3421 3422 DPRINTF("qemu_rdma_source_init success\n"); 3423 ret = qemu_rdma_connect(rdma, &local_err); 3424 3425 if (ret) { 3426 goto err; 3427 } 3428 3429 DPRINTF("qemu_rdma_source_connect success\n"); 3430 3431 s->file = qemu_fopen_rdma(rdma, "wb"); 3432 migrate_fd_connect(s); 3433 return; 3434 err: 3435 error_propagate(errp, local_err); 3436 g_free(rdma); 3437 migrate_fd_error(s); 3438 } 3439