1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram.h" 37 #include "migration.h" 38 #include "migration-stats.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "page_cache.h" 44 #include "qemu/error-report.h" 45 #include "qapi/error.h" 46 #include "qapi/qapi-types-migration.h" 47 #include "qapi/qapi-events-migration.h" 48 #include "qapi/qapi-commands-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "system/cpu-throttle.h" 56 #include "savevm.h" 57 #include "qemu/iov.h" 58 #include "multifd.h" 59 #include "system/runstate.h" 60 #include "rdma.h" 61 #include "options.h" 62 #include "system/dirtylimit.h" 63 #include "system/kvm.h" 64 65 #include "hw/boards.h" /* for machine_dump_guest_core() */ 66 67 #if defined(__linux__) 68 #include "qemu/userfaultfd.h" 69 #endif /* defined(__linux__) */ 70 71 /***********************************************************/ 72 /* ram save/restore */ 73 74 /* 75 * mapped-ram migration supports O_DIRECT, so we need to make sure the 76 * userspace buffer, the IO operation size and the file offset are 77 * aligned according to the underlying device's block size. The first 78 * two are already aligned to page size, but we need to add padding to 79 * the file to align the offset. We cannot read the block size 80 * dynamically because the migration file can be moved between 81 * different systems, so use 1M to cover most block sizes and to keep 82 * the file offset aligned at page size as well. 83 */ 84 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000 85 86 /* 87 * When doing mapped-ram migration, this is the amount we read from 88 * the pages region in the migration file at a time. 89 */ 90 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000 91 92 XBZRLECacheStats xbzrle_counters; 93 94 /* used by the search for pages to send */ 95 struct PageSearchStatus { 96 /* The migration channel used for a specific host page */ 97 QEMUFile *pss_channel; 98 /* Last block from where we have sent data */ 99 RAMBlock *last_sent_block; 100 /* Current block being searched */ 101 RAMBlock *block; 102 /* Current page to search from */ 103 unsigned long page; 104 /* Set once we wrap around */ 105 bool complete_round; 106 /* Whether we're sending a host page */ 107 bool host_page_sending; 108 /* The start/end of current host page. Invalid if host_page_sending==false */ 109 unsigned long host_page_start; 110 unsigned long host_page_end; 111 }; 112 typedef struct PageSearchStatus PageSearchStatus; 113 114 /* struct contains XBZRLE cache and a static page 115 used by the compression */ 116 static struct { 117 /* buffer used for XBZRLE encoding */ 118 uint8_t *encoded_buf; 119 /* buffer for storing page content */ 120 uint8_t *current_buf; 121 /* Cache for XBZRLE, Protected by lock. */ 122 PageCache *cache; 123 QemuMutex lock; 124 /* it will store a page full of zeros */ 125 uint8_t *zero_target_page; 126 /* buffer used for XBZRLE decoding */ 127 uint8_t *decoded_buf; 128 } XBZRLE; 129 130 static void XBZRLE_cache_lock(void) 131 { 132 if (migrate_xbzrle()) { 133 qemu_mutex_lock(&XBZRLE.lock); 134 } 135 } 136 137 static void XBZRLE_cache_unlock(void) 138 { 139 if (migrate_xbzrle()) { 140 qemu_mutex_unlock(&XBZRLE.lock); 141 } 142 } 143 144 /** 145 * xbzrle_cache_resize: resize the xbzrle cache 146 * 147 * This function is called from migrate_params_apply in main 148 * thread, possibly while a migration is in progress. A running 149 * migration may be using the cache and might finish during this call, 150 * hence changes to the cache are protected by XBZRLE.lock(). 151 * 152 * Returns 0 for success or -1 for error 153 * 154 * @new_size: new cache size 155 * @errp: set *errp if the check failed, with reason 156 */ 157 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 158 { 159 PageCache *new_cache; 160 int64_t ret = 0; 161 162 /* Check for truncation */ 163 if (new_size != (size_t)new_size) { 164 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 165 "exceeding address space"); 166 return -1; 167 } 168 169 if (new_size == migrate_xbzrle_cache_size()) { 170 /* nothing to do */ 171 return 0; 172 } 173 174 XBZRLE_cache_lock(); 175 176 if (XBZRLE.cache != NULL) { 177 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 178 if (!new_cache) { 179 ret = -1; 180 goto out; 181 } 182 183 cache_fini(XBZRLE.cache); 184 XBZRLE.cache = new_cache; 185 } 186 out: 187 XBZRLE_cache_unlock(); 188 return ret; 189 } 190 191 static bool postcopy_preempt_active(void) 192 { 193 return migrate_postcopy_preempt() && migration_in_postcopy(); 194 } 195 196 bool migrate_ram_is_ignored(RAMBlock *block) 197 { 198 MigMode mode = migrate_mode(); 199 return !qemu_ram_is_migratable(block) || 200 mode == MIG_MODE_CPR_TRANSFER || 201 (migrate_ignore_shared() && qemu_ram_is_shared(block) 202 && qemu_ram_is_named_file(block)); 203 } 204 205 #undef RAMBLOCK_FOREACH 206 207 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 208 { 209 RAMBlock *block; 210 int ret = 0; 211 212 RCU_READ_LOCK_GUARD(); 213 214 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 215 ret = func(block, opaque); 216 if (ret) { 217 break; 218 } 219 } 220 return ret; 221 } 222 223 static void ramblock_recv_map_init(void) 224 { 225 RAMBlock *rb; 226 227 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 228 assert(!rb->receivedmap); 229 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 230 } 231 } 232 233 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 234 { 235 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 236 rb->receivedmap); 237 } 238 239 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 240 { 241 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 242 } 243 244 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 245 { 246 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 247 } 248 249 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 250 size_t nr) 251 { 252 bitmap_set_atomic(rb->receivedmap, 253 ramblock_recv_bitmap_offset(host_addr, rb), 254 nr); 255 } 256 257 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset) 258 { 259 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 260 } 261 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 262 263 /* 264 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 265 * 266 * Returns >0 if success with sent bytes, or <0 if error. 267 */ 268 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 269 const char *block_name) 270 { 271 RAMBlock *block = qemu_ram_block_by_name(block_name); 272 unsigned long *le_bitmap, nbits; 273 uint64_t size; 274 275 if (!block) { 276 error_report("%s: invalid block name: %s", __func__, block_name); 277 return -1; 278 } 279 280 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 281 282 /* 283 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 284 * machines we may need 4 more bytes for padding (see below 285 * comment). So extend it a bit before hand. 286 */ 287 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 288 289 /* 290 * Always use little endian when sending the bitmap. This is 291 * required that when source and destination VMs are not using the 292 * same endianness. (Note: big endian won't work.) 293 */ 294 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 295 296 /* Size of the bitmap, in bytes */ 297 size = DIV_ROUND_UP(nbits, 8); 298 299 /* 300 * size is always aligned to 8 bytes for 64bit machines, but it 301 * may not be true for 32bit machines. We need this padding to 302 * make sure the migration can survive even between 32bit and 303 * 64bit machines. 304 */ 305 size = ROUND_UP(size, 8); 306 307 qemu_put_be64(file, size); 308 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 309 g_free(le_bitmap); 310 /* 311 * Mark as an end, in case the middle part is screwed up due to 312 * some "mysterious" reason. 313 */ 314 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 315 int ret = qemu_fflush(file); 316 if (ret) { 317 return ret; 318 } 319 320 return size + sizeof(size); 321 } 322 323 /* 324 * An outstanding page request, on the source, having been received 325 * and queued 326 */ 327 struct RAMSrcPageRequest { 328 RAMBlock *rb; 329 hwaddr offset; 330 hwaddr len; 331 332 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 333 }; 334 335 /* State of RAM for migration */ 336 struct RAMState { 337 /* 338 * PageSearchStatus structures for the channels when send pages. 339 * Protected by the bitmap_mutex. 340 */ 341 PageSearchStatus pss[RAM_CHANNEL_MAX]; 342 /* UFFD file descriptor, used in 'write-tracking' migration */ 343 int uffdio_fd; 344 /* total ram size in bytes */ 345 uint64_t ram_bytes_total; 346 /* Last block that we have visited searching for dirty pages */ 347 RAMBlock *last_seen_block; 348 /* Last dirty target page we have sent */ 349 ram_addr_t last_page; 350 /* last ram version we have seen */ 351 uint32_t last_version; 352 /* How many times we have dirty too many pages */ 353 int dirty_rate_high_cnt; 354 /* these variables are used for bitmap sync */ 355 /* last time we did a full bitmap_sync */ 356 int64_t time_last_bitmap_sync; 357 /* bytes transferred at start_time */ 358 uint64_t bytes_xfer_prev; 359 /* number of dirty pages since start_time */ 360 uint64_t num_dirty_pages_period; 361 /* xbzrle misses since the beginning of the period */ 362 uint64_t xbzrle_cache_miss_prev; 363 /* Amount of xbzrle pages since the beginning of the period */ 364 uint64_t xbzrle_pages_prev; 365 /* Amount of xbzrle encoded bytes since the beginning of the period */ 366 uint64_t xbzrle_bytes_prev; 367 /* Are we really using XBZRLE (e.g., after the first round). */ 368 bool xbzrle_started; 369 /* Are we on the last stage of migration */ 370 bool last_stage; 371 372 /* total handled target pages at the beginning of period */ 373 uint64_t target_page_count_prev; 374 /* total handled target pages since start */ 375 uint64_t target_page_count; 376 /* number of dirty bits in the bitmap */ 377 uint64_t migration_dirty_pages; 378 /* 379 * Protects: 380 * - dirty/clear bitmap 381 * - migration_dirty_pages 382 * - pss structures 383 */ 384 QemuMutex bitmap_mutex; 385 /* The RAMBlock used in the last src_page_requests */ 386 RAMBlock *last_req_rb; 387 /* Queue of outstanding page requests from the destination */ 388 QemuMutex src_page_req_mutex; 389 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 390 391 /* 392 * This is only used when postcopy is in recovery phase, to communicate 393 * between the migration thread and the return path thread on dirty 394 * bitmap synchronizations. This field is unused in other stages of 395 * RAM migration. 396 */ 397 unsigned int postcopy_bmap_sync_requested; 398 }; 399 typedef struct RAMState RAMState; 400 401 static RAMState *ram_state; 402 403 static NotifierWithReturnList precopy_notifier_list; 404 405 /* Whether postcopy has queued requests? */ 406 static bool postcopy_has_request(RAMState *rs) 407 { 408 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 409 } 410 411 void precopy_infrastructure_init(void) 412 { 413 notifier_with_return_list_init(&precopy_notifier_list); 414 } 415 416 void precopy_add_notifier(NotifierWithReturn *n) 417 { 418 notifier_with_return_list_add(&precopy_notifier_list, n); 419 } 420 421 void precopy_remove_notifier(NotifierWithReturn *n) 422 { 423 notifier_with_return_remove(n); 424 } 425 426 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 427 { 428 PrecopyNotifyData pnd; 429 pnd.reason = reason; 430 431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp); 432 } 433 434 uint64_t ram_bytes_remaining(void) 435 { 436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 437 0; 438 } 439 440 void ram_transferred_add(uint64_t bytes) 441 { 442 if (runstate_is_running()) { 443 stat64_add(&mig_stats.precopy_bytes, bytes); 444 } else if (migration_in_postcopy()) { 445 stat64_add(&mig_stats.postcopy_bytes, bytes); 446 } else { 447 stat64_add(&mig_stats.downtime_bytes, bytes); 448 } 449 } 450 451 static int ram_save_host_page_urgent(PageSearchStatus *pss); 452 453 /* NOTE: page is the PFN not real ram_addr_t. */ 454 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 455 { 456 pss->block = rb; 457 pss->page = page; 458 pss->complete_round = false; 459 } 460 461 /* 462 * Check whether two PSSs are actively sending the same page. Return true 463 * if it is, false otherwise. 464 */ 465 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 466 { 467 return pss1->host_page_sending && pss2->host_page_sending && 468 (pss1->host_page_start == pss2->host_page_start); 469 } 470 471 /** 472 * save_page_header: write page header to wire 473 * 474 * If this is the 1st block, it also writes the block identification 475 * 476 * Returns the number of bytes written 477 * 478 * @pss: current PSS channel status 479 * @block: block that contains the page we want to send 480 * @offset: offset inside the block for the page 481 * in the lower bits, it contains flags 482 */ 483 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 484 RAMBlock *block, ram_addr_t offset) 485 { 486 size_t size, len; 487 bool same_block = (block == pss->last_sent_block); 488 489 if (same_block) { 490 offset |= RAM_SAVE_FLAG_CONTINUE; 491 } 492 qemu_put_be64(f, offset); 493 size = 8; 494 495 if (!same_block) { 496 len = strlen(block->idstr); 497 qemu_put_byte(f, len); 498 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 499 size += 1 + len; 500 pss->last_sent_block = block; 501 } 502 return size; 503 } 504 505 /** 506 * mig_throttle_guest_down: throttle down the guest 507 * 508 * Reduce amount of guest cpu execution to hopefully slow down memory 509 * writes. If guest dirty memory rate is reduced below the rate at 510 * which we can transfer pages to the destination then we should be 511 * able to complete migration. Some workloads dirty memory way too 512 * fast and will not effectively converge, even with auto-converge. 513 */ 514 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 515 uint64_t bytes_dirty_threshold) 516 { 517 uint64_t pct_initial = migrate_cpu_throttle_initial(); 518 uint64_t pct_increment = migrate_cpu_throttle_increment(); 519 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 520 int pct_max = migrate_max_cpu_throttle(); 521 522 uint64_t throttle_now = cpu_throttle_get_percentage(); 523 uint64_t cpu_now, cpu_ideal, throttle_inc; 524 525 /* We have not started throttling yet. Let's start it. */ 526 if (!cpu_throttle_active()) { 527 cpu_throttle_set(pct_initial); 528 } else { 529 /* Throttling already on, just increase the rate */ 530 if (!pct_tailslow) { 531 throttle_inc = pct_increment; 532 } else { 533 /* Compute the ideal CPU percentage used by Guest, which may 534 * make the dirty rate match the dirty rate threshold. */ 535 cpu_now = 100 - throttle_now; 536 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 537 bytes_dirty_period); 538 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 539 } 540 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 541 } 542 } 543 544 void mig_throttle_counter_reset(void) 545 { 546 RAMState *rs = ram_state; 547 548 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 549 rs->num_dirty_pages_period = 0; 550 rs->bytes_xfer_prev = migration_transferred_bytes(); 551 } 552 553 /** 554 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 555 * 556 * @current_addr: address for the zero page 557 * 558 * Update the xbzrle cache to reflect a page that's been sent as all 0. 559 * The important thing is that a stale (not-yet-0'd) page be replaced 560 * by the new data. 561 * As a bonus, if the page wasn't in the cache it gets added so that 562 * when a small write is made into the 0'd page it gets XBZRLE sent. 563 */ 564 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 565 { 566 /* We don't care if this fails to allocate a new cache page 567 * as long as it updated an old one */ 568 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 569 stat64_get(&mig_stats.dirty_sync_count)); 570 } 571 572 #define ENCODING_FLAG_XBZRLE 0x1 573 574 /** 575 * save_xbzrle_page: compress and send current page 576 * 577 * Returns: 1 means that we wrote the page 578 * 0 means that page is identical to the one already sent 579 * -1 means that xbzrle would be longer than normal 580 * 581 * @rs: current RAM state 582 * @pss: current PSS channel 583 * @current_data: pointer to the address of the page contents 584 * @current_addr: addr of the page 585 * @block: block that contains the page we want to send 586 * @offset: offset inside the block for the page 587 */ 588 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 589 uint8_t **current_data, ram_addr_t current_addr, 590 RAMBlock *block, ram_addr_t offset) 591 { 592 int encoded_len = 0, bytes_xbzrle; 593 uint8_t *prev_cached_page; 594 QEMUFile *file = pss->pss_channel; 595 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 596 597 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 598 xbzrle_counters.cache_miss++; 599 if (!rs->last_stage) { 600 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 601 generation) == -1) { 602 return -1; 603 } else { 604 /* update *current_data when the page has been 605 inserted into cache */ 606 *current_data = get_cached_data(XBZRLE.cache, current_addr); 607 } 608 } 609 return -1; 610 } 611 612 /* 613 * Reaching here means the page has hit the xbzrle cache, no matter what 614 * encoding result it is (normal encoding, overflow or skipping the page), 615 * count the page as encoded. This is used to calculate the encoding rate. 616 * 617 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 618 * 2nd page turns out to be skipped (i.e. no new bytes written to the 619 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 620 * skipped page included. In this way, the encoding rate can tell if the 621 * guest page is good for xbzrle encoding. 622 */ 623 xbzrle_counters.pages++; 624 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 625 626 /* save current buffer into memory */ 627 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 628 629 /* XBZRLE encoding (if there is no overflow) */ 630 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 631 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 632 TARGET_PAGE_SIZE); 633 634 /* 635 * Update the cache contents, so that it corresponds to the data 636 * sent, in all cases except where we skip the page. 637 */ 638 if (!rs->last_stage && encoded_len != 0) { 639 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 640 /* 641 * In the case where we couldn't compress, ensure that the caller 642 * sends the data from the cache, since the guest might have 643 * changed the RAM since we copied it. 644 */ 645 *current_data = prev_cached_page; 646 } 647 648 if (encoded_len == 0) { 649 trace_save_xbzrle_page_skipping(); 650 return 0; 651 } else if (encoded_len == -1) { 652 trace_save_xbzrle_page_overflow(); 653 xbzrle_counters.overflow++; 654 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 655 return -1; 656 } 657 658 /* Send XBZRLE based compressed page */ 659 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 660 offset | RAM_SAVE_FLAG_XBZRLE); 661 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 662 qemu_put_be16(file, encoded_len); 663 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 664 bytes_xbzrle += encoded_len + 1 + 2; 665 /* 666 * The xbzrle encoded bytes don't count the 8 byte header with 667 * RAM_SAVE_FLAG_CONTINUE. 668 */ 669 xbzrle_counters.bytes += bytes_xbzrle - 8; 670 ram_transferred_add(bytes_xbzrle); 671 672 return 1; 673 } 674 675 /** 676 * pss_find_next_dirty: find the next dirty page of current ramblock 677 * 678 * This function updates pss->page to point to the next dirty page index 679 * within the ramblock to migrate, or the end of ramblock when nothing 680 * found. Note that when pss->host_page_sending==true it means we're 681 * during sending a host page, so we won't look for dirty page that is 682 * outside the host page boundary. 683 * 684 * @pss: the current page search status 685 */ 686 static void pss_find_next_dirty(PageSearchStatus *pss) 687 { 688 RAMBlock *rb = pss->block; 689 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 690 unsigned long *bitmap = rb->bmap; 691 692 if (migrate_ram_is_ignored(rb)) { 693 /* Points directly to the end, so we know no dirty page */ 694 pss->page = size; 695 return; 696 } 697 698 /* 699 * If during sending a host page, only look for dirty pages within the 700 * current host page being send. 701 */ 702 if (pss->host_page_sending) { 703 assert(pss->host_page_end); 704 size = MIN(size, pss->host_page_end); 705 } 706 707 pss->page = find_next_bit(bitmap, size, pss->page); 708 } 709 710 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 711 unsigned long page) 712 { 713 uint8_t shift; 714 hwaddr size, start; 715 716 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 717 return; 718 } 719 720 shift = rb->clear_bmap_shift; 721 /* 722 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 723 * can make things easier sometimes since then start address 724 * of the small chunk will always be 64 pages aligned so the 725 * bitmap will always be aligned to unsigned long. We should 726 * even be able to remove this restriction but I'm simply 727 * keeping it. 728 */ 729 assert(shift >= 6); 730 731 size = 1ULL << (TARGET_PAGE_BITS + shift); 732 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 733 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 734 memory_region_clear_dirty_bitmap(rb->mr, start, size); 735 } 736 737 static void 738 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 739 unsigned long start, 740 unsigned long npages) 741 { 742 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 743 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 744 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 745 746 /* 747 * Clear pages from start to start + npages - 1, so the end boundary is 748 * exclusive. 749 */ 750 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 751 migration_clear_memory_region_dirty_bitmap(rb, i); 752 } 753 } 754 755 /* 756 * colo_bitmap_find_diry:find contiguous dirty pages from start 757 * 758 * Returns the page offset within memory region of the start of the contiguout 759 * dirty page 760 * 761 * @rs: current RAM state 762 * @rb: RAMBlock where to search for dirty pages 763 * @start: page where we start the search 764 * @num: the number of contiguous dirty pages 765 */ 766 static inline 767 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 768 unsigned long start, unsigned long *num) 769 { 770 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 771 unsigned long *bitmap = rb->bmap; 772 unsigned long first, next; 773 774 *num = 0; 775 776 if (migrate_ram_is_ignored(rb)) { 777 return size; 778 } 779 780 first = find_next_bit(bitmap, size, start); 781 if (first >= size) { 782 return first; 783 } 784 next = find_next_zero_bit(bitmap, size, first + 1); 785 assert(next >= first); 786 *num = next - first; 787 return first; 788 } 789 790 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 791 RAMBlock *rb, 792 unsigned long page) 793 { 794 bool ret; 795 796 /* 797 * Clear dirty bitmap if needed. This _must_ be called before we 798 * send any of the page in the chunk because we need to make sure 799 * we can capture further page content changes when we sync dirty 800 * log the next time. So as long as we are going to send any of 801 * the page in the chunk we clear the remote dirty bitmap for all. 802 * Clearing it earlier won't be a problem, but too late will. 803 */ 804 migration_clear_memory_region_dirty_bitmap(rb, page); 805 806 ret = test_and_clear_bit(page, rb->bmap); 807 if (ret) { 808 rs->migration_dirty_pages--; 809 } 810 811 return ret; 812 } 813 814 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 815 void *opaque) 816 { 817 const hwaddr offset = section->offset_within_region; 818 const hwaddr size = int128_get64(section->size); 819 const unsigned long start = offset >> TARGET_PAGE_BITS; 820 const unsigned long npages = size >> TARGET_PAGE_BITS; 821 RAMBlock *rb = section->mr->ram_block; 822 uint64_t *cleared_bits = opaque; 823 824 /* 825 * We don't grab ram_state->bitmap_mutex because we expect to run 826 * only when starting migration or during postcopy recovery where 827 * we don't have concurrent access. 828 */ 829 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 830 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 831 } 832 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 833 bitmap_clear(rb->bmap, start, npages); 834 } 835 836 /* 837 * Exclude all dirty pages from migration that fall into a discarded range as 838 * managed by a RamDiscardManager responsible for the mapped memory region of 839 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 840 * 841 * Discarded pages ("logically unplugged") have undefined content and must 842 * not get migrated, because even reading these pages for migration might 843 * result in undesired behavior. 844 * 845 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 846 * 847 * Note: The result is only stable while migrating (precopy/postcopy). 848 */ 849 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 850 { 851 uint64_t cleared_bits = 0; 852 853 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 854 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 855 MemoryRegionSection section = { 856 .mr = rb->mr, 857 .offset_within_region = 0, 858 .size = int128_make64(qemu_ram_get_used_length(rb)), 859 }; 860 861 ram_discard_manager_replay_discarded(rdm, §ion, 862 dirty_bitmap_clear_section, 863 &cleared_bits); 864 } 865 return cleared_bits; 866 } 867 868 /* 869 * Check if a host-page aligned page falls into a discarded range as managed by 870 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 871 * 872 * Note: The result is only stable while migrating (precopy/postcopy). 873 */ 874 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 875 { 876 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 877 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 878 MemoryRegionSection section = { 879 .mr = rb->mr, 880 .offset_within_region = start, 881 .size = int128_make64(qemu_ram_pagesize(rb)), 882 }; 883 884 return !ram_discard_manager_is_populated(rdm, §ion); 885 } 886 return false; 887 } 888 889 /* Called with RCU critical section */ 890 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 891 { 892 uint64_t new_dirty_pages = 893 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 894 895 rs->migration_dirty_pages += new_dirty_pages; 896 rs->num_dirty_pages_period += new_dirty_pages; 897 } 898 899 /** 900 * ram_pagesize_summary: calculate all the pagesizes of a VM 901 * 902 * Returns a summary bitmap of the page sizes of all RAMBlocks 903 * 904 * For VMs with just normal pages this is equivalent to the host page 905 * size. If it's got some huge pages then it's the OR of all the 906 * different page sizes. 907 */ 908 uint64_t ram_pagesize_summary(void) 909 { 910 RAMBlock *block; 911 uint64_t summary = 0; 912 913 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 914 summary |= block->page_size; 915 } 916 917 return summary; 918 } 919 920 uint64_t ram_get_total_transferred_pages(void) 921 { 922 return stat64_get(&mig_stats.normal_pages) + 923 stat64_get(&mig_stats.zero_pages) + 924 xbzrle_counters.pages; 925 } 926 927 static void migration_update_rates(RAMState *rs, int64_t end_time) 928 { 929 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 930 931 /* calculate period counters */ 932 stat64_set(&mig_stats.dirty_pages_rate, 933 rs->num_dirty_pages_period * 1000 / 934 (end_time - rs->time_last_bitmap_sync)); 935 936 if (!page_count) { 937 return; 938 } 939 940 if (migrate_xbzrle()) { 941 double encoded_size, unencoded_size; 942 943 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 944 rs->xbzrle_cache_miss_prev) / page_count; 945 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 946 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 947 TARGET_PAGE_SIZE; 948 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 949 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 950 xbzrle_counters.encoding_rate = 0; 951 } else { 952 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 953 } 954 rs->xbzrle_pages_prev = xbzrle_counters.pages; 955 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 956 } 957 } 958 959 /* 960 * Enable dirty-limit to throttle down the guest 961 */ 962 static void migration_dirty_limit_guest(void) 963 { 964 /* 965 * dirty page rate quota for all vCPUs fetched from 966 * migration parameter 'vcpu_dirty_limit' 967 */ 968 static int64_t quota_dirtyrate; 969 MigrationState *s = migrate_get_current(); 970 971 /* 972 * If dirty limit already enabled and migration parameter 973 * vcpu-dirty-limit untouched. 974 */ 975 if (dirtylimit_in_service() && 976 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 977 return; 978 } 979 980 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 981 982 /* 983 * Set all vCPU a quota dirtyrate, note that the second 984 * parameter will be ignored if setting all vCPU for the vm 985 */ 986 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 987 trace_migration_dirty_limit_guest(quota_dirtyrate); 988 } 989 990 static void migration_trigger_throttle(RAMState *rs) 991 { 992 uint64_t threshold = migrate_throttle_trigger_threshold(); 993 uint64_t bytes_xfer_period = 994 migration_transferred_bytes() - rs->bytes_xfer_prev; 995 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 996 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 997 998 /* 999 * The following detection logic can be refined later. For now: 1000 * Check to see if the ratio between dirtied bytes and the approx. 1001 * amount of bytes that just got transferred since the last time 1002 * we were in this routine reaches the threshold. If that happens 1003 * twice, start or increase throttling. 1004 */ 1005 if ((bytes_dirty_period > bytes_dirty_threshold) && 1006 (++rs->dirty_rate_high_cnt >= 2)) { 1007 rs->dirty_rate_high_cnt = 0; 1008 if (migrate_auto_converge()) { 1009 trace_migration_throttle(); 1010 mig_throttle_guest_down(bytes_dirty_period, 1011 bytes_dirty_threshold); 1012 } else if (migrate_dirty_limit()) { 1013 migration_dirty_limit_guest(); 1014 } 1015 } 1016 } 1017 1018 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1019 { 1020 RAMBlock *block; 1021 int64_t end_time; 1022 1023 stat64_add(&mig_stats.dirty_sync_count, 1); 1024 1025 if (!rs->time_last_bitmap_sync) { 1026 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1027 } 1028 1029 trace_migration_bitmap_sync_start(); 1030 memory_global_dirty_log_sync(last_stage); 1031 1032 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 1033 WITH_RCU_READ_LOCK_GUARD() { 1034 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1035 ramblock_sync_dirty_bitmap(rs, block); 1036 } 1037 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1038 } 1039 } 1040 1041 memory_global_after_dirty_log_sync(); 1042 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1043 1044 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1045 1046 /* more than 1 second = 1000 millisecons */ 1047 if (end_time > rs->time_last_bitmap_sync + 1000) { 1048 migration_trigger_throttle(rs); 1049 1050 migration_update_rates(rs, end_time); 1051 1052 rs->target_page_count_prev = rs->target_page_count; 1053 1054 /* reset period counters */ 1055 rs->time_last_bitmap_sync = end_time; 1056 rs->num_dirty_pages_period = 0; 1057 rs->bytes_xfer_prev = migration_transferred_bytes(); 1058 } 1059 if (migrate_events()) { 1060 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1061 qapi_event_send_migration_pass(generation); 1062 } 1063 } 1064 1065 void migration_bitmap_sync_precopy(bool last_stage) 1066 { 1067 Error *local_err = NULL; 1068 assert(ram_state); 1069 1070 /* 1071 * The current notifier usage is just an optimization to migration, so we 1072 * don't stop the normal migration process in the error case. 1073 */ 1074 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1075 error_report_err(local_err); 1076 local_err = NULL; 1077 } 1078 1079 migration_bitmap_sync(ram_state, last_stage); 1080 1081 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1082 error_report_err(local_err); 1083 } 1084 } 1085 1086 void ram_release_page(const char *rbname, uint64_t offset) 1087 { 1088 if (!migrate_release_ram() || !migration_in_postcopy()) { 1089 return; 1090 } 1091 1092 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1093 } 1094 1095 /** 1096 * save_zero_page: send the zero page to the stream 1097 * 1098 * Returns the number of pages written. 1099 * 1100 * @rs: current RAM state 1101 * @pss: current PSS channel 1102 * @offset: offset inside the block for the page 1103 */ 1104 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1105 ram_addr_t offset) 1106 { 1107 uint8_t *p = pss->block->host + offset; 1108 QEMUFile *file = pss->pss_channel; 1109 int len = 0; 1110 1111 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) { 1112 return 0; 1113 } 1114 1115 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1116 return 0; 1117 } 1118 1119 stat64_add(&mig_stats.zero_pages, 1); 1120 1121 if (migrate_mapped_ram()) { 1122 /* zero pages are not transferred with mapped-ram */ 1123 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap); 1124 return 1; 1125 } 1126 1127 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1128 qemu_put_byte(file, 0); 1129 len += 1; 1130 ram_release_page(pss->block->idstr, offset); 1131 ram_transferred_add(len); 1132 1133 /* 1134 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1135 * page would be stale. 1136 */ 1137 if (rs->xbzrle_started) { 1138 XBZRLE_cache_lock(); 1139 xbzrle_cache_zero_page(pss->block->offset + offset); 1140 XBZRLE_cache_unlock(); 1141 } 1142 1143 return len; 1144 } 1145 1146 /* 1147 * @pages: the number of pages written by the control path, 1148 * < 0 - error 1149 * > 0 - number of pages written 1150 * 1151 * Return true if the pages has been saved, otherwise false is returned. 1152 */ 1153 static bool control_save_page(PageSearchStatus *pss, 1154 ram_addr_t offset, int *pages) 1155 { 1156 int ret; 1157 1158 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1159 TARGET_PAGE_SIZE); 1160 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1161 return false; 1162 } 1163 1164 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1165 *pages = 1; 1166 return true; 1167 } 1168 *pages = ret; 1169 return true; 1170 } 1171 1172 /* 1173 * directly send the page to the stream 1174 * 1175 * Returns the number of pages written. 1176 * 1177 * @pss: current PSS channel 1178 * @block: block that contains the page we want to send 1179 * @offset: offset inside the block for the page 1180 * @buf: the page to be sent 1181 * @async: send to page asyncly 1182 */ 1183 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1184 ram_addr_t offset, uint8_t *buf, bool async) 1185 { 1186 QEMUFile *file = pss->pss_channel; 1187 1188 if (migrate_mapped_ram()) { 1189 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE, 1190 block->pages_offset + offset); 1191 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap); 1192 } else { 1193 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1194 offset | RAM_SAVE_FLAG_PAGE)); 1195 if (async) { 1196 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1197 migrate_release_ram() && 1198 migration_in_postcopy()); 1199 } else { 1200 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1201 } 1202 } 1203 ram_transferred_add(TARGET_PAGE_SIZE); 1204 stat64_add(&mig_stats.normal_pages, 1); 1205 return 1; 1206 } 1207 1208 /** 1209 * ram_save_page: send the given page to the stream 1210 * 1211 * Returns the number of pages written. 1212 * < 0 - error 1213 * >=0 - Number of pages written - this might legally be 0 1214 * if xbzrle noticed the page was the same. 1215 * 1216 * @rs: current RAM state 1217 * @block: block that contains the page we want to send 1218 * @offset: offset inside the block for the page 1219 */ 1220 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1221 { 1222 int pages = -1; 1223 uint8_t *p; 1224 bool send_async = true; 1225 RAMBlock *block = pss->block; 1226 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1227 ram_addr_t current_addr = block->offset + offset; 1228 1229 p = block->host + offset; 1230 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1231 1232 XBZRLE_cache_lock(); 1233 if (rs->xbzrle_started && !migration_in_postcopy()) { 1234 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1235 block, offset); 1236 if (!rs->last_stage) { 1237 /* Can't send this cached data async, since the cache page 1238 * might get updated before it gets to the wire 1239 */ 1240 send_async = false; 1241 } 1242 } 1243 1244 /* XBZRLE overflow or normal page */ 1245 if (pages == -1) { 1246 pages = save_normal_page(pss, block, offset, p, send_async); 1247 } 1248 1249 XBZRLE_cache_unlock(); 1250 1251 return pages; 1252 } 1253 1254 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) 1255 { 1256 if (!multifd_queue_page(block, offset)) { 1257 return -1; 1258 } 1259 1260 return 1; 1261 } 1262 1263 1264 #define PAGE_ALL_CLEAN 0 1265 #define PAGE_TRY_AGAIN 1 1266 #define PAGE_DIRTY_FOUND 2 1267 /** 1268 * find_dirty_block: find the next dirty page and update any state 1269 * associated with the search process. 1270 * 1271 * Returns: 1272 * <0: An error happened 1273 * PAGE_ALL_CLEAN: no dirty page found, give up 1274 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1275 * PAGE_DIRTY_FOUND: dirty page found 1276 * 1277 * @rs: current RAM state 1278 * @pss: data about the state of the current dirty page scan 1279 * @again: set to false if the search has scanned the whole of RAM 1280 */ 1281 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1282 { 1283 /* Update pss->page for the next dirty bit in ramblock */ 1284 pss_find_next_dirty(pss); 1285 1286 if (pss->complete_round && pss->block == rs->last_seen_block && 1287 pss->page >= rs->last_page) { 1288 /* 1289 * We've been once around the RAM and haven't found anything. 1290 * Give up. 1291 */ 1292 return PAGE_ALL_CLEAN; 1293 } 1294 if (!offset_in_ramblock(pss->block, 1295 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1296 /* Didn't find anything in this RAM Block */ 1297 pss->page = 0; 1298 pss->block = QLIST_NEXT_RCU(pss->block, next); 1299 if (!pss->block) { 1300 if (multifd_ram_sync_per_round()) { 1301 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1302 int ret = multifd_ram_flush_and_sync(f); 1303 if (ret < 0) { 1304 return ret; 1305 } 1306 } 1307 1308 /* Hit the end of the list */ 1309 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1310 /* Flag that we've looped */ 1311 pss->complete_round = true; 1312 /* After the first round, enable XBZRLE. */ 1313 if (migrate_xbzrle()) { 1314 rs->xbzrle_started = true; 1315 } 1316 } 1317 /* Didn't find anything this time, but try again on the new block */ 1318 return PAGE_TRY_AGAIN; 1319 } else { 1320 /* We've found something */ 1321 return PAGE_DIRTY_FOUND; 1322 } 1323 } 1324 1325 /** 1326 * unqueue_page: gets a page of the queue 1327 * 1328 * Helper for 'get_queued_page' - gets a page off the queue 1329 * 1330 * Returns the block of the page (or NULL if none available) 1331 * 1332 * @rs: current RAM state 1333 * @offset: used to return the offset within the RAMBlock 1334 */ 1335 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1336 { 1337 struct RAMSrcPageRequest *entry; 1338 RAMBlock *block = NULL; 1339 1340 if (!postcopy_has_request(rs)) { 1341 return NULL; 1342 } 1343 1344 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1345 1346 /* 1347 * This should _never_ change even after we take the lock, because no one 1348 * should be taking anything off the request list other than us. 1349 */ 1350 assert(postcopy_has_request(rs)); 1351 1352 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1353 block = entry->rb; 1354 *offset = entry->offset; 1355 1356 if (entry->len > TARGET_PAGE_SIZE) { 1357 entry->len -= TARGET_PAGE_SIZE; 1358 entry->offset += TARGET_PAGE_SIZE; 1359 } else { 1360 memory_region_unref(block->mr); 1361 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1362 g_free(entry); 1363 migration_consume_urgent_request(); 1364 } 1365 1366 return block; 1367 } 1368 1369 #if defined(__linux__) 1370 /** 1371 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1372 * is found, return RAM block pointer and page offset 1373 * 1374 * Returns pointer to the RAMBlock containing faulting page, 1375 * NULL if no write faults are pending 1376 * 1377 * @rs: current RAM state 1378 * @offset: page offset from the beginning of the block 1379 */ 1380 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1381 { 1382 struct uffd_msg uffd_msg; 1383 void *page_address; 1384 RAMBlock *block; 1385 int res; 1386 1387 if (!migrate_background_snapshot()) { 1388 return NULL; 1389 } 1390 1391 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1392 if (res <= 0) { 1393 return NULL; 1394 } 1395 1396 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1397 block = qemu_ram_block_from_host(page_address, false, offset); 1398 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1399 return block; 1400 } 1401 1402 /** 1403 * ram_save_release_protection: release UFFD write protection after 1404 * a range of pages has been saved 1405 * 1406 * @rs: current RAM state 1407 * @pss: page-search-status structure 1408 * @start_page: index of the first page in the range relative to pss->block 1409 * 1410 * Returns 0 on success, negative value in case of an error 1411 */ 1412 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1413 unsigned long start_page) 1414 { 1415 int res = 0; 1416 1417 /* Check if page is from UFFD-managed region. */ 1418 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1419 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1420 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1421 1422 /* Flush async buffers before un-protect. */ 1423 qemu_fflush(pss->pss_channel); 1424 /* Un-protect memory range. */ 1425 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1426 false, false); 1427 } 1428 1429 return res; 1430 } 1431 1432 /* ram_write_tracking_available: check if kernel supports required UFFD features 1433 * 1434 * Returns true if supports, false otherwise 1435 */ 1436 bool ram_write_tracking_available(void) 1437 { 1438 uint64_t uffd_features; 1439 int res; 1440 1441 res = uffd_query_features(&uffd_features); 1442 return (res == 0 && 1443 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1444 } 1445 1446 /* ram_write_tracking_compatible: check if guest configuration is 1447 * compatible with 'write-tracking' 1448 * 1449 * Returns true if compatible, false otherwise 1450 */ 1451 bool ram_write_tracking_compatible(void) 1452 { 1453 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1454 int uffd_fd; 1455 RAMBlock *block; 1456 bool ret = false; 1457 1458 /* Open UFFD file descriptor */ 1459 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1460 if (uffd_fd < 0) { 1461 return false; 1462 } 1463 1464 RCU_READ_LOCK_GUARD(); 1465 1466 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1467 uint64_t uffd_ioctls; 1468 1469 /* Nothing to do with read-only and MMIO-writable regions */ 1470 if (block->mr->readonly || block->mr->rom_device) { 1471 continue; 1472 } 1473 /* Try to register block memory via UFFD-IO to track writes */ 1474 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1475 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1476 goto out; 1477 } 1478 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1479 goto out; 1480 } 1481 } 1482 ret = true; 1483 1484 out: 1485 uffd_close_fd(uffd_fd); 1486 return ret; 1487 } 1488 1489 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1490 ram_addr_t size) 1491 { 1492 const ram_addr_t end = offset + size; 1493 1494 /* 1495 * We read one byte of each page; this will preallocate page tables if 1496 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1497 * where no page was populated yet. This might require adaption when 1498 * supporting other mappings, like shmem. 1499 */ 1500 for (; offset < end; offset += block->page_size) { 1501 char tmp = *((char *)block->host + offset); 1502 1503 /* Don't optimize the read out */ 1504 asm volatile("" : "+r" (tmp)); 1505 } 1506 } 1507 1508 static inline int populate_read_section(MemoryRegionSection *section, 1509 void *opaque) 1510 { 1511 const hwaddr size = int128_get64(section->size); 1512 hwaddr offset = section->offset_within_region; 1513 RAMBlock *block = section->mr->ram_block; 1514 1515 populate_read_range(block, offset, size); 1516 return 0; 1517 } 1518 1519 /* 1520 * ram_block_populate_read: preallocate page tables and populate pages in the 1521 * RAM block by reading a byte of each page. 1522 * 1523 * Since it's solely used for userfault_fd WP feature, here we just 1524 * hardcode page size to qemu_real_host_page_size. 1525 * 1526 * @block: RAM block to populate 1527 */ 1528 static void ram_block_populate_read(RAMBlock *rb) 1529 { 1530 /* 1531 * Skip populating all pages that fall into a discarded range as managed by 1532 * a RamDiscardManager responsible for the mapped memory region of the 1533 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1534 * must not get populated automatically. We don't have to track 1535 * modifications via userfaultfd WP reliably, because these pages will 1536 * not be part of the migration stream either way -- see 1537 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1538 * 1539 * Note: The result is only stable while migrating (precopy/postcopy). 1540 */ 1541 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1542 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1543 MemoryRegionSection section = { 1544 .mr = rb->mr, 1545 .offset_within_region = 0, 1546 .size = rb->mr->size, 1547 }; 1548 1549 ram_discard_manager_replay_populated(rdm, §ion, 1550 populate_read_section, NULL); 1551 } else { 1552 populate_read_range(rb, 0, rb->used_length); 1553 } 1554 } 1555 1556 /* 1557 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1558 */ 1559 void ram_write_tracking_prepare(void) 1560 { 1561 RAMBlock *block; 1562 1563 RCU_READ_LOCK_GUARD(); 1564 1565 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1566 /* Nothing to do with read-only and MMIO-writable regions */ 1567 if (block->mr->readonly || block->mr->rom_device) { 1568 continue; 1569 } 1570 1571 /* 1572 * Populate pages of the RAM block before enabling userfault_fd 1573 * write protection. 1574 * 1575 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1576 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1577 * pages with pte_none() entries in page table. 1578 */ 1579 ram_block_populate_read(block); 1580 } 1581 } 1582 1583 static inline int uffd_protect_section(MemoryRegionSection *section, 1584 void *opaque) 1585 { 1586 const hwaddr size = int128_get64(section->size); 1587 const hwaddr offset = section->offset_within_region; 1588 RAMBlock *rb = section->mr->ram_block; 1589 int uffd_fd = (uintptr_t)opaque; 1590 1591 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1592 false); 1593 } 1594 1595 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1596 { 1597 assert(rb->flags & RAM_UF_WRITEPROTECT); 1598 1599 /* See ram_block_populate_read() */ 1600 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1601 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1602 MemoryRegionSection section = { 1603 .mr = rb->mr, 1604 .offset_within_region = 0, 1605 .size = rb->mr->size, 1606 }; 1607 1608 return ram_discard_manager_replay_populated(rdm, §ion, 1609 uffd_protect_section, 1610 (void *)(uintptr_t)uffd_fd); 1611 } 1612 return uffd_change_protection(uffd_fd, rb->host, 1613 rb->used_length, true, false); 1614 } 1615 1616 /* 1617 * ram_write_tracking_start: start UFFD-WP memory tracking 1618 * 1619 * Returns 0 for success or negative value in case of error 1620 */ 1621 int ram_write_tracking_start(void) 1622 { 1623 int uffd_fd; 1624 RAMState *rs = ram_state; 1625 RAMBlock *block; 1626 1627 /* Open UFFD file descriptor */ 1628 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1629 if (uffd_fd < 0) { 1630 return uffd_fd; 1631 } 1632 rs->uffdio_fd = uffd_fd; 1633 1634 RCU_READ_LOCK_GUARD(); 1635 1636 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1637 /* Nothing to do with read-only and MMIO-writable regions */ 1638 if (block->mr->readonly || block->mr->rom_device) { 1639 continue; 1640 } 1641 1642 /* Register block memory with UFFD to track writes */ 1643 if (uffd_register_memory(rs->uffdio_fd, block->host, 1644 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1645 goto fail; 1646 } 1647 block->flags |= RAM_UF_WRITEPROTECT; 1648 memory_region_ref(block->mr); 1649 1650 /* Apply UFFD write protection to the block memory range */ 1651 if (ram_block_uffd_protect(block, uffd_fd)) { 1652 goto fail; 1653 } 1654 1655 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1656 block->host, block->max_length); 1657 } 1658 1659 return 0; 1660 1661 fail: 1662 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1663 1664 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1665 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1666 continue; 1667 } 1668 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1669 /* Cleanup flags and remove reference */ 1670 block->flags &= ~RAM_UF_WRITEPROTECT; 1671 memory_region_unref(block->mr); 1672 } 1673 1674 uffd_close_fd(uffd_fd); 1675 rs->uffdio_fd = -1; 1676 return -1; 1677 } 1678 1679 /** 1680 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1681 */ 1682 void ram_write_tracking_stop(void) 1683 { 1684 RAMState *rs = ram_state; 1685 RAMBlock *block; 1686 1687 RCU_READ_LOCK_GUARD(); 1688 1689 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1690 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1691 continue; 1692 } 1693 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1694 1695 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1696 block->host, block->max_length); 1697 1698 /* Cleanup flags and remove reference */ 1699 block->flags &= ~RAM_UF_WRITEPROTECT; 1700 memory_region_unref(block->mr); 1701 } 1702 1703 /* Finally close UFFD file descriptor */ 1704 uffd_close_fd(rs->uffdio_fd); 1705 rs->uffdio_fd = -1; 1706 } 1707 1708 #else 1709 /* No target OS support, stubs just fail or ignore */ 1710 1711 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1712 { 1713 (void) rs; 1714 (void) offset; 1715 1716 return NULL; 1717 } 1718 1719 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1720 unsigned long start_page) 1721 { 1722 (void) rs; 1723 (void) pss; 1724 (void) start_page; 1725 1726 return 0; 1727 } 1728 1729 bool ram_write_tracking_available(void) 1730 { 1731 return false; 1732 } 1733 1734 bool ram_write_tracking_compatible(void) 1735 { 1736 g_assert_not_reached(); 1737 } 1738 1739 int ram_write_tracking_start(void) 1740 { 1741 g_assert_not_reached(); 1742 } 1743 1744 void ram_write_tracking_stop(void) 1745 { 1746 g_assert_not_reached(); 1747 } 1748 #endif /* defined(__linux__) */ 1749 1750 /** 1751 * get_queued_page: unqueue a page from the postcopy requests 1752 * 1753 * Skips pages that are already sent (!dirty) 1754 * 1755 * Returns true if a queued page is found 1756 * 1757 * @rs: current RAM state 1758 * @pss: data about the state of the current dirty page scan 1759 */ 1760 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1761 { 1762 RAMBlock *block; 1763 ram_addr_t offset; 1764 bool dirty = false; 1765 1766 do { 1767 block = unqueue_page(rs, &offset); 1768 /* 1769 * We're sending this page, and since it's postcopy nothing else 1770 * will dirty it, and we must make sure it doesn't get sent again 1771 * even if this queue request was received after the background 1772 * search already sent it. 1773 */ 1774 if (block) { 1775 unsigned long page; 1776 1777 page = offset >> TARGET_PAGE_BITS; 1778 dirty = test_bit(page, block->bmap); 1779 if (!dirty) { 1780 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1781 page); 1782 } else { 1783 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1784 } 1785 } 1786 1787 } while (block && !dirty); 1788 1789 if (!block) { 1790 /* 1791 * Poll write faults too if background snapshot is enabled; that's 1792 * when we have vcpus got blocked by the write protected pages. 1793 */ 1794 block = poll_fault_page(rs, &offset); 1795 } 1796 1797 if (block) { 1798 /* 1799 * We want the background search to continue from the queued page 1800 * since the guest is likely to want other pages near to the page 1801 * it just requested. 1802 */ 1803 pss->block = block; 1804 pss->page = offset >> TARGET_PAGE_BITS; 1805 1806 /* 1807 * This unqueued page would break the "one round" check, even is 1808 * really rare. 1809 */ 1810 pss->complete_round = false; 1811 } 1812 1813 return !!block; 1814 } 1815 1816 /** 1817 * migration_page_queue_free: drop any remaining pages in the ram 1818 * request queue 1819 * 1820 * It should be empty at the end anyway, but in error cases there may 1821 * be some left. in case that there is any page left, we drop it. 1822 * 1823 */ 1824 static void migration_page_queue_free(RAMState *rs) 1825 { 1826 struct RAMSrcPageRequest *mspr, *next_mspr; 1827 /* This queue generally should be empty - but in the case of a failed 1828 * migration might have some droppings in. 1829 */ 1830 RCU_READ_LOCK_GUARD(); 1831 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1832 memory_region_unref(mspr->rb->mr); 1833 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1834 g_free(mspr); 1835 } 1836 } 1837 1838 /** 1839 * ram_save_queue_pages: queue the page for transmission 1840 * 1841 * A request from postcopy destination for example. 1842 * 1843 * Returns zero on success or negative on error 1844 * 1845 * @rbname: Name of the RAMBLock of the request. NULL means the 1846 * same that last one. 1847 * @start: starting address from the start of the RAMBlock 1848 * @len: length (in bytes) to send 1849 */ 1850 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1851 Error **errp) 1852 { 1853 RAMBlock *ramblock; 1854 RAMState *rs = ram_state; 1855 1856 stat64_add(&mig_stats.postcopy_requests, 1); 1857 RCU_READ_LOCK_GUARD(); 1858 1859 if (!rbname) { 1860 /* Reuse last RAMBlock */ 1861 ramblock = rs->last_req_rb; 1862 1863 if (!ramblock) { 1864 /* 1865 * Shouldn't happen, we can't reuse the last RAMBlock if 1866 * it's the 1st request. 1867 */ 1868 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1869 return -1; 1870 } 1871 } else { 1872 ramblock = qemu_ram_block_by_name(rbname); 1873 1874 if (!ramblock) { 1875 /* We shouldn't be asked for a non-existent RAMBlock */ 1876 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1877 return -1; 1878 } 1879 rs->last_req_rb = ramblock; 1880 } 1881 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1882 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1883 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1884 "start=" RAM_ADDR_FMT " len=" 1885 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1886 start, len, ramblock->used_length); 1887 return -1; 1888 } 1889 1890 /* 1891 * When with postcopy preempt, we send back the page directly in the 1892 * rp-return thread. 1893 */ 1894 if (postcopy_preempt_active()) { 1895 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1896 size_t page_size = qemu_ram_pagesize(ramblock); 1897 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1898 int ret = 0; 1899 1900 qemu_mutex_lock(&rs->bitmap_mutex); 1901 1902 pss_init(pss, ramblock, page_start); 1903 /* 1904 * Always use the preempt channel, and make sure it's there. It's 1905 * safe to access without lock, because when rp-thread is running 1906 * we should be the only one who operates on the qemufile 1907 */ 1908 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1909 assert(pss->pss_channel); 1910 1911 /* 1912 * It must be either one or multiple of host page size. Just 1913 * assert; if something wrong we're mostly split brain anyway. 1914 */ 1915 assert(len % page_size == 0); 1916 while (len) { 1917 if (ram_save_host_page_urgent(pss)) { 1918 error_setg(errp, "ram_save_host_page_urgent() failed: " 1919 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1920 ramblock->idstr, start); 1921 ret = -1; 1922 break; 1923 } 1924 /* 1925 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1926 * will automatically be moved and point to the next host page 1927 * we're going to send, so no need to update here. 1928 * 1929 * Normally QEMU never sends >1 host page in requests, so 1930 * logically we don't even need that as the loop should only 1931 * run once, but just to be consistent. 1932 */ 1933 len -= page_size; 1934 }; 1935 qemu_mutex_unlock(&rs->bitmap_mutex); 1936 1937 return ret; 1938 } 1939 1940 struct RAMSrcPageRequest *new_entry = 1941 g_new0(struct RAMSrcPageRequest, 1); 1942 new_entry->rb = ramblock; 1943 new_entry->offset = start; 1944 new_entry->len = len; 1945 1946 memory_region_ref(ramblock->mr); 1947 qemu_mutex_lock(&rs->src_page_req_mutex); 1948 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1949 migration_make_urgent_request(); 1950 qemu_mutex_unlock(&rs->src_page_req_mutex); 1951 1952 return 0; 1953 } 1954 1955 /** 1956 * ram_save_target_page: save one target page to the precopy thread 1957 * OR to multifd workers. 1958 * 1959 * @rs: current RAM state 1960 * @pss: data about the page we want to send 1961 */ 1962 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss) 1963 { 1964 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1965 int res; 1966 1967 if (!migrate_multifd() 1968 || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) { 1969 if (save_zero_page(rs, pss, offset)) { 1970 return 1; 1971 } 1972 } 1973 1974 if (migrate_multifd()) { 1975 RAMBlock *block = pss->block; 1976 return ram_save_multifd_page(block, offset); 1977 } 1978 1979 if (control_save_page(pss, offset, &res)) { 1980 return res; 1981 } 1982 1983 return ram_save_page(rs, pss); 1984 } 1985 1986 /* Should be called before sending a host page */ 1987 static void pss_host_page_prepare(PageSearchStatus *pss) 1988 { 1989 /* How many guest pages are there in one host page? */ 1990 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1991 1992 pss->host_page_sending = true; 1993 if (guest_pfns <= 1) { 1994 /* 1995 * This covers both when guest psize == host psize, or when guest 1996 * has larger psize than the host (guest_pfns==0). 1997 * 1998 * For the latter, we always send one whole guest page per 1999 * iteration of the host page (example: an Alpha VM on x86 host 2000 * will have guest psize 8K while host psize 4K). 2001 */ 2002 pss->host_page_start = pss->page; 2003 pss->host_page_end = pss->page + 1; 2004 } else { 2005 /* 2006 * The host page spans over multiple guest pages, we send them 2007 * within the same host page iteration. 2008 */ 2009 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2010 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2011 } 2012 } 2013 2014 /* 2015 * Whether the page pointed by PSS is within the host page being sent. 2016 * Must be called after a previous pss_host_page_prepare(). 2017 */ 2018 static bool pss_within_range(PageSearchStatus *pss) 2019 { 2020 ram_addr_t ram_addr; 2021 2022 assert(pss->host_page_sending); 2023 2024 /* Over host-page boundary? */ 2025 if (pss->page >= pss->host_page_end) { 2026 return false; 2027 } 2028 2029 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2030 2031 return offset_in_ramblock(pss->block, ram_addr); 2032 } 2033 2034 static void pss_host_page_finish(PageSearchStatus *pss) 2035 { 2036 pss->host_page_sending = false; 2037 /* This is not needed, but just to reset it */ 2038 pss->host_page_start = pss->host_page_end = 0; 2039 } 2040 2041 /* 2042 * Send an urgent host page specified by `pss'. Need to be called with 2043 * bitmap_mutex held. 2044 * 2045 * Returns 0 if save host page succeeded, false otherwise. 2046 */ 2047 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2048 { 2049 bool page_dirty, sent = false; 2050 RAMState *rs = ram_state; 2051 int ret = 0; 2052 2053 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2054 pss_host_page_prepare(pss); 2055 2056 /* 2057 * If precopy is sending the same page, let it be done in precopy, or 2058 * we could send the same page in two channels and none of them will 2059 * receive the whole page. 2060 */ 2061 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2062 trace_postcopy_preempt_hit(pss->block->idstr, 2063 pss->page << TARGET_PAGE_BITS); 2064 return 0; 2065 } 2066 2067 do { 2068 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2069 2070 if (page_dirty) { 2071 /* Be strict to return code; it must be 1, or what else? */ 2072 if (ram_save_target_page(rs, pss) != 1) { 2073 error_report_once("%s: ram_save_target_page failed", __func__); 2074 ret = -1; 2075 goto out; 2076 } 2077 sent = true; 2078 } 2079 pss_find_next_dirty(pss); 2080 } while (pss_within_range(pss)); 2081 out: 2082 pss_host_page_finish(pss); 2083 /* For urgent requests, flush immediately if sent */ 2084 if (sent) { 2085 qemu_fflush(pss->pss_channel); 2086 } 2087 return ret; 2088 } 2089 2090 /** 2091 * ram_save_host_page: save a whole host page 2092 * 2093 * Starting at *offset send pages up to the end of the current host 2094 * page. It's valid for the initial offset to point into the middle of 2095 * a host page in which case the remainder of the hostpage is sent. 2096 * Only dirty target pages are sent. Note that the host page size may 2097 * be a huge page for this block. 2098 * 2099 * The saving stops at the boundary of the used_length of the block 2100 * if the RAMBlock isn't a multiple of the host page size. 2101 * 2102 * The caller must be with ram_state.bitmap_mutex held to call this 2103 * function. Note that this function can temporarily release the lock, but 2104 * when the function is returned it'll make sure the lock is still held. 2105 * 2106 * Returns the number of pages written or negative on error 2107 * 2108 * @rs: current RAM state 2109 * @pss: data about the page we want to send 2110 */ 2111 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2112 { 2113 bool page_dirty, preempt_active = postcopy_preempt_active(); 2114 int tmppages, pages = 0; 2115 size_t pagesize_bits = 2116 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2117 unsigned long start_page = pss->page; 2118 int res; 2119 2120 if (migrate_ram_is_ignored(pss->block)) { 2121 error_report("block %s should not be migrated !", pss->block->idstr); 2122 return 0; 2123 } 2124 2125 /* Update host page boundary information */ 2126 pss_host_page_prepare(pss); 2127 2128 do { 2129 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2130 2131 /* Check the pages is dirty and if it is send it */ 2132 if (page_dirty) { 2133 /* 2134 * Properly yield the lock only in postcopy preempt mode 2135 * because both migration thread and rp-return thread can 2136 * operate on the bitmaps. 2137 */ 2138 if (preempt_active) { 2139 qemu_mutex_unlock(&rs->bitmap_mutex); 2140 } 2141 tmppages = ram_save_target_page(rs, pss); 2142 if (tmppages >= 0) { 2143 pages += tmppages; 2144 /* 2145 * Allow rate limiting to happen in the middle of huge pages if 2146 * something is sent in the current iteration. 2147 */ 2148 if (pagesize_bits > 1 && tmppages > 0) { 2149 migration_rate_limit(); 2150 } 2151 } 2152 if (preempt_active) { 2153 qemu_mutex_lock(&rs->bitmap_mutex); 2154 } 2155 } else { 2156 tmppages = 0; 2157 } 2158 2159 if (tmppages < 0) { 2160 pss_host_page_finish(pss); 2161 return tmppages; 2162 } 2163 2164 pss_find_next_dirty(pss); 2165 } while (pss_within_range(pss)); 2166 2167 pss_host_page_finish(pss); 2168 2169 res = ram_save_release_protection(rs, pss, start_page); 2170 return (res < 0 ? res : pages); 2171 } 2172 2173 /** 2174 * ram_find_and_save_block: finds a dirty page and sends it to f 2175 * 2176 * Called within an RCU critical section. 2177 * 2178 * Returns the number of pages written where zero means no dirty pages, 2179 * or negative on error 2180 * 2181 * @rs: current RAM state 2182 * 2183 * On systems where host-page-size > target-page-size it will send all the 2184 * pages in a host page that are dirty. 2185 */ 2186 static int ram_find_and_save_block(RAMState *rs) 2187 { 2188 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2189 int pages = 0; 2190 2191 /* No dirty page as there is zero RAM */ 2192 if (!rs->ram_bytes_total) { 2193 return pages; 2194 } 2195 2196 /* 2197 * Always keep last_seen_block/last_page valid during this procedure, 2198 * because find_dirty_block() relies on these values (e.g., we compare 2199 * last_seen_block with pss.block to see whether we searched all the 2200 * ramblocks) to detect the completion of migration. Having NULL value 2201 * of last_seen_block can conditionally cause below loop to run forever. 2202 */ 2203 if (!rs->last_seen_block) { 2204 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2205 rs->last_page = 0; 2206 } 2207 2208 pss_init(pss, rs->last_seen_block, rs->last_page); 2209 2210 while (true){ 2211 if (!get_queued_page(rs, pss)) { 2212 /* priority queue empty, so just search for something dirty */ 2213 int res = find_dirty_block(rs, pss); 2214 if (res != PAGE_DIRTY_FOUND) { 2215 if (res == PAGE_ALL_CLEAN) { 2216 break; 2217 } else if (res == PAGE_TRY_AGAIN) { 2218 continue; 2219 } else if (res < 0) { 2220 pages = res; 2221 break; 2222 } 2223 } 2224 } 2225 pages = ram_save_host_page(rs, pss); 2226 if (pages) { 2227 break; 2228 } 2229 } 2230 2231 rs->last_seen_block = pss->block; 2232 rs->last_page = pss->page; 2233 2234 return pages; 2235 } 2236 2237 static uint64_t ram_bytes_total_with_ignored(void) 2238 { 2239 RAMBlock *block; 2240 uint64_t total = 0; 2241 2242 RCU_READ_LOCK_GUARD(); 2243 2244 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2245 total += block->used_length; 2246 } 2247 return total; 2248 } 2249 2250 uint64_t ram_bytes_total(void) 2251 { 2252 RAMBlock *block; 2253 uint64_t total = 0; 2254 2255 RCU_READ_LOCK_GUARD(); 2256 2257 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2258 total += block->used_length; 2259 } 2260 return total; 2261 } 2262 2263 static void xbzrle_load_setup(void) 2264 { 2265 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2266 } 2267 2268 static void xbzrle_load_cleanup(void) 2269 { 2270 g_free(XBZRLE.decoded_buf); 2271 XBZRLE.decoded_buf = NULL; 2272 } 2273 2274 static void ram_state_cleanup(RAMState **rsp) 2275 { 2276 if (*rsp) { 2277 migration_page_queue_free(*rsp); 2278 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2279 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2280 g_free(*rsp); 2281 *rsp = NULL; 2282 } 2283 } 2284 2285 static void xbzrle_cleanup(void) 2286 { 2287 XBZRLE_cache_lock(); 2288 if (XBZRLE.cache) { 2289 cache_fini(XBZRLE.cache); 2290 g_free(XBZRLE.encoded_buf); 2291 g_free(XBZRLE.current_buf); 2292 g_free(XBZRLE.zero_target_page); 2293 XBZRLE.cache = NULL; 2294 XBZRLE.encoded_buf = NULL; 2295 XBZRLE.current_buf = NULL; 2296 XBZRLE.zero_target_page = NULL; 2297 } 2298 XBZRLE_cache_unlock(); 2299 } 2300 2301 static void ram_bitmaps_destroy(void) 2302 { 2303 RAMBlock *block; 2304 2305 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2306 g_free(block->clear_bmap); 2307 block->clear_bmap = NULL; 2308 g_free(block->bmap); 2309 block->bmap = NULL; 2310 g_free(block->file_bmap); 2311 block->file_bmap = NULL; 2312 } 2313 } 2314 2315 static void ram_save_cleanup(void *opaque) 2316 { 2317 RAMState **rsp = opaque; 2318 2319 /* We don't use dirty log with background snapshots */ 2320 if (!migrate_background_snapshot()) { 2321 /* caller have hold BQL or is in a bh, so there is 2322 * no writing race against the migration bitmap 2323 */ 2324 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2325 /* 2326 * do not stop dirty log without starting it, since 2327 * memory_global_dirty_log_stop will assert that 2328 * memory_global_dirty_log_start/stop used in pairs 2329 */ 2330 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2331 } 2332 } 2333 2334 ram_bitmaps_destroy(); 2335 2336 xbzrle_cleanup(); 2337 multifd_ram_save_cleanup(); 2338 ram_state_cleanup(rsp); 2339 } 2340 2341 static void ram_state_reset(RAMState *rs) 2342 { 2343 int i; 2344 2345 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2346 rs->pss[i].last_sent_block = NULL; 2347 } 2348 2349 rs->last_seen_block = NULL; 2350 rs->last_page = 0; 2351 rs->last_version = ram_list.version; 2352 rs->xbzrle_started = false; 2353 } 2354 2355 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2356 2357 /* **** functions for postcopy ***** */ 2358 2359 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2360 { 2361 struct RAMBlock *block; 2362 2363 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2364 unsigned long *bitmap = block->bmap; 2365 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2366 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2367 2368 while (run_start < range) { 2369 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2370 ram_discard_range(block->idstr, 2371 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2372 ((ram_addr_t)(run_end - run_start)) 2373 << TARGET_PAGE_BITS); 2374 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2375 } 2376 } 2377 } 2378 2379 /** 2380 * postcopy_send_discard_bm_ram: discard a RAMBlock 2381 * 2382 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2383 * 2384 * @ms: current migration state 2385 * @block: RAMBlock to discard 2386 */ 2387 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2388 { 2389 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2390 unsigned long current; 2391 unsigned long *bitmap = block->bmap; 2392 2393 for (current = 0; current < end; ) { 2394 unsigned long one = find_next_bit(bitmap, end, current); 2395 unsigned long zero, discard_length; 2396 2397 if (one >= end) { 2398 break; 2399 } 2400 2401 zero = find_next_zero_bit(bitmap, end, one + 1); 2402 2403 if (zero >= end) { 2404 discard_length = end - one; 2405 } else { 2406 discard_length = zero - one; 2407 } 2408 postcopy_discard_send_range(ms, one, discard_length); 2409 current = one + discard_length; 2410 } 2411 } 2412 2413 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2414 2415 /** 2416 * postcopy_each_ram_send_discard: discard all RAMBlocks 2417 * 2418 * Utility for the outgoing postcopy code. 2419 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2420 * passing it bitmap indexes and name. 2421 * (qemu_ram_foreach_block ends up passing unscaled lengths 2422 * which would mean postcopy code would have to deal with target page) 2423 * 2424 * @ms: current migration state 2425 */ 2426 static void postcopy_each_ram_send_discard(MigrationState *ms) 2427 { 2428 struct RAMBlock *block; 2429 2430 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2431 postcopy_discard_send_init(ms, block->idstr); 2432 2433 /* 2434 * Deal with TPS != HPS and huge pages. It discard any partially sent 2435 * host-page size chunks, mark any partially dirty host-page size 2436 * chunks as all dirty. In this case the host-page is the host-page 2437 * for the particular RAMBlock, i.e. it might be a huge page. 2438 */ 2439 postcopy_chunk_hostpages_pass(ms, block); 2440 2441 /* 2442 * Postcopy sends chunks of bitmap over the wire, but it 2443 * just needs indexes at this point, avoids it having 2444 * target page specific code. 2445 */ 2446 postcopy_send_discard_bm_ram(ms, block); 2447 postcopy_discard_send_finish(ms); 2448 } 2449 } 2450 2451 /** 2452 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2453 * 2454 * Helper for postcopy_chunk_hostpages; it's called twice to 2455 * canonicalize the two bitmaps, that are similar, but one is 2456 * inverted. 2457 * 2458 * Postcopy requires that all target pages in a hostpage are dirty or 2459 * clean, not a mix. This function canonicalizes the bitmaps. 2460 * 2461 * @ms: current migration state 2462 * @block: block that contains the page we want to canonicalize 2463 */ 2464 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2465 { 2466 RAMState *rs = ram_state; 2467 unsigned long *bitmap = block->bmap; 2468 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2469 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2470 unsigned long run_start; 2471 2472 if (block->page_size == TARGET_PAGE_SIZE) { 2473 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2474 return; 2475 } 2476 2477 /* Find a dirty page */ 2478 run_start = find_next_bit(bitmap, pages, 0); 2479 2480 while (run_start < pages) { 2481 2482 /* 2483 * If the start of this run of pages is in the middle of a host 2484 * page, then we need to fixup this host page. 2485 */ 2486 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2487 /* Find the end of this run */ 2488 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2489 /* 2490 * If the end isn't at the start of a host page, then the 2491 * run doesn't finish at the end of a host page 2492 * and we need to discard. 2493 */ 2494 } 2495 2496 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2497 unsigned long page; 2498 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2499 host_ratio); 2500 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2501 2502 /* Clean up the bitmap */ 2503 for (page = fixup_start_addr; 2504 page < fixup_start_addr + host_ratio; page++) { 2505 /* 2506 * Remark them as dirty, updating the count for any pages 2507 * that weren't previously dirty. 2508 */ 2509 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2510 } 2511 } 2512 2513 /* Find the next dirty page for the next iteration */ 2514 run_start = find_next_bit(bitmap, pages, run_start); 2515 } 2516 } 2517 2518 /** 2519 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2520 * 2521 * Transmit the set of pages to be discarded after precopy to the target 2522 * these are pages that: 2523 * a) Have been previously transmitted but are now dirty again 2524 * b) Pages that have never been transmitted, this ensures that 2525 * any pages on the destination that have been mapped by background 2526 * tasks get discarded (transparent huge pages is the specific concern) 2527 * Hopefully this is pretty sparse 2528 * 2529 * @ms: current migration state 2530 */ 2531 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2532 { 2533 RAMState *rs = ram_state; 2534 2535 RCU_READ_LOCK_GUARD(); 2536 2537 /* This should be our last sync, the src is now paused */ 2538 migration_bitmap_sync(rs, false); 2539 2540 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2541 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2542 rs->last_seen_block = NULL; 2543 rs->last_page = 0; 2544 2545 postcopy_each_ram_send_discard(ms); 2546 2547 trace_ram_postcopy_send_discard_bitmap(); 2548 } 2549 2550 /** 2551 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2552 * 2553 * Returns zero on success 2554 * 2555 * @rbname: name of the RAMBlock of the request. NULL means the 2556 * same that last one. 2557 * @start: RAMBlock starting page 2558 * @length: RAMBlock size 2559 */ 2560 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2561 { 2562 trace_ram_discard_range(rbname, start, length); 2563 2564 RCU_READ_LOCK_GUARD(); 2565 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2566 2567 if (!rb) { 2568 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2569 return -1; 2570 } 2571 2572 /* 2573 * On source VM, we don't need to update the received bitmap since 2574 * we don't even have one. 2575 */ 2576 if (rb->receivedmap) { 2577 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2578 length >> qemu_target_page_bits()); 2579 } 2580 2581 return ram_block_discard_range(rb, start, length); 2582 } 2583 2584 /* 2585 * For every allocation, we will try not to crash the VM if the 2586 * allocation failed. 2587 */ 2588 static bool xbzrle_init(Error **errp) 2589 { 2590 if (!migrate_xbzrle()) { 2591 return true; 2592 } 2593 2594 XBZRLE_cache_lock(); 2595 2596 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2597 if (!XBZRLE.zero_target_page) { 2598 error_setg(errp, "%s: Error allocating zero page", __func__); 2599 goto err_out; 2600 } 2601 2602 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2603 TARGET_PAGE_SIZE, errp); 2604 if (!XBZRLE.cache) { 2605 goto free_zero_page; 2606 } 2607 2608 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2609 if (!XBZRLE.encoded_buf) { 2610 error_setg(errp, "%s: Error allocating encoded_buf", __func__); 2611 goto free_cache; 2612 } 2613 2614 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2615 if (!XBZRLE.current_buf) { 2616 error_setg(errp, "%s: Error allocating current_buf", __func__); 2617 goto free_encoded_buf; 2618 } 2619 2620 /* We are all good */ 2621 XBZRLE_cache_unlock(); 2622 return true; 2623 2624 free_encoded_buf: 2625 g_free(XBZRLE.encoded_buf); 2626 XBZRLE.encoded_buf = NULL; 2627 free_cache: 2628 cache_fini(XBZRLE.cache); 2629 XBZRLE.cache = NULL; 2630 free_zero_page: 2631 g_free(XBZRLE.zero_target_page); 2632 XBZRLE.zero_target_page = NULL; 2633 err_out: 2634 XBZRLE_cache_unlock(); 2635 return false; 2636 } 2637 2638 static bool ram_state_init(RAMState **rsp, Error **errp) 2639 { 2640 *rsp = g_try_new0(RAMState, 1); 2641 2642 if (!*rsp) { 2643 error_setg(errp, "%s: Init ramstate fail", __func__); 2644 return false; 2645 } 2646 2647 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2648 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2649 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2650 (*rsp)->ram_bytes_total = ram_bytes_total(); 2651 2652 /* 2653 * Count the total number of pages used by ram blocks not including any 2654 * gaps due to alignment or unplugs. 2655 * This must match with the initial values of dirty bitmap. 2656 */ 2657 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2658 ram_state_reset(*rsp); 2659 2660 return true; 2661 } 2662 2663 static void ram_list_init_bitmaps(void) 2664 { 2665 MigrationState *ms = migrate_get_current(); 2666 RAMBlock *block; 2667 unsigned long pages; 2668 uint8_t shift; 2669 2670 /* Skip setting bitmap if there is no RAM */ 2671 if (ram_bytes_total()) { 2672 shift = ms->clear_bitmap_shift; 2673 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2674 error_report("clear_bitmap_shift (%u) too big, using " 2675 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2676 shift = CLEAR_BITMAP_SHIFT_MAX; 2677 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2678 error_report("clear_bitmap_shift (%u) too small, using " 2679 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2680 shift = CLEAR_BITMAP_SHIFT_MIN; 2681 } 2682 2683 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2684 pages = block->max_length >> TARGET_PAGE_BITS; 2685 /* 2686 * The initial dirty bitmap for migration must be set with all 2687 * ones to make sure we'll migrate every guest RAM page to 2688 * destination. 2689 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2690 * new migration after a failed migration, ram_list. 2691 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2692 * guest memory. 2693 */ 2694 block->bmap = bitmap_new(pages); 2695 bitmap_set(block->bmap, 0, pages); 2696 if (migrate_mapped_ram()) { 2697 block->file_bmap = bitmap_new(pages); 2698 } 2699 block->clear_bmap_shift = shift; 2700 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2701 } 2702 } 2703 } 2704 2705 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2706 { 2707 unsigned long pages; 2708 RAMBlock *rb; 2709 2710 RCU_READ_LOCK_GUARD(); 2711 2712 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2713 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2714 rs->migration_dirty_pages -= pages; 2715 } 2716 } 2717 2718 static bool ram_init_bitmaps(RAMState *rs, Error **errp) 2719 { 2720 bool ret = true; 2721 2722 qemu_mutex_lock_ramlist(); 2723 2724 WITH_RCU_READ_LOCK_GUARD() { 2725 ram_list_init_bitmaps(); 2726 /* We don't use dirty log with background snapshots */ 2727 if (!migrate_background_snapshot()) { 2728 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp); 2729 if (!ret) { 2730 goto out_unlock; 2731 } 2732 migration_bitmap_sync_precopy(false); 2733 } 2734 } 2735 out_unlock: 2736 qemu_mutex_unlock_ramlist(); 2737 2738 if (!ret) { 2739 ram_bitmaps_destroy(); 2740 return false; 2741 } 2742 2743 /* 2744 * After an eventual first bitmap sync, fixup the initial bitmap 2745 * containing all 1s to exclude any discarded pages from migration. 2746 */ 2747 migration_bitmap_clear_discarded_pages(rs); 2748 return true; 2749 } 2750 2751 static int ram_init_all(RAMState **rsp, Error **errp) 2752 { 2753 if (!ram_state_init(rsp, errp)) { 2754 return -1; 2755 } 2756 2757 if (!xbzrle_init(errp)) { 2758 ram_state_cleanup(rsp); 2759 return -1; 2760 } 2761 2762 if (!ram_init_bitmaps(*rsp, errp)) { 2763 return -1; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2770 { 2771 RAMBlock *block; 2772 uint64_t pages = 0; 2773 2774 /* 2775 * Postcopy is not using xbzrle/compression, so no need for that. 2776 * Also, since source are already halted, we don't need to care 2777 * about dirty page logging as well. 2778 */ 2779 2780 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2781 pages += bitmap_count_one(block->bmap, 2782 block->used_length >> TARGET_PAGE_BITS); 2783 } 2784 2785 /* This may not be aligned with current bitmaps. Recalculate. */ 2786 rs->migration_dirty_pages = pages; 2787 2788 ram_state_reset(rs); 2789 2790 /* Update RAMState cache of output QEMUFile */ 2791 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2792 2793 trace_ram_state_resume_prepare(pages); 2794 } 2795 2796 /* 2797 * This function clears bits of the free pages reported by the caller from the 2798 * migration dirty bitmap. @addr is the host address corresponding to the 2799 * start of the continuous guest free pages, and @len is the total bytes of 2800 * those pages. 2801 */ 2802 void qemu_guest_free_page_hint(void *addr, size_t len) 2803 { 2804 RAMBlock *block; 2805 ram_addr_t offset; 2806 size_t used_len, start, npages; 2807 2808 /* This function is currently expected to be used during live migration */ 2809 if (!migration_is_running()) { 2810 return; 2811 } 2812 2813 for (; len > 0; len -= used_len, addr += used_len) { 2814 block = qemu_ram_block_from_host(addr, false, &offset); 2815 if (unlikely(!block || offset >= block->used_length)) { 2816 /* 2817 * The implementation might not support RAMBlock resize during 2818 * live migration, but it could happen in theory with future 2819 * updates. So we add a check here to capture that case. 2820 */ 2821 error_report_once("%s unexpected error", __func__); 2822 return; 2823 } 2824 2825 if (len <= block->used_length - offset) { 2826 used_len = len; 2827 } else { 2828 used_len = block->used_length - offset; 2829 } 2830 2831 start = offset >> TARGET_PAGE_BITS; 2832 npages = used_len >> TARGET_PAGE_BITS; 2833 2834 qemu_mutex_lock(&ram_state->bitmap_mutex); 2835 /* 2836 * The skipped free pages are equavalent to be sent from clear_bmap's 2837 * perspective, so clear the bits from the memory region bitmap which 2838 * are initially set. Otherwise those skipped pages will be sent in 2839 * the next round after syncing from the memory region bitmap. 2840 */ 2841 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2842 ram_state->migration_dirty_pages -= 2843 bitmap_count_one_with_offset(block->bmap, start, npages); 2844 bitmap_clear(block->bmap, start, npages); 2845 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2846 } 2847 } 2848 2849 #define MAPPED_RAM_HDR_VERSION 1 2850 struct MappedRamHeader { 2851 uint32_t version; 2852 /* 2853 * The target's page size, so we know how many pages are in the 2854 * bitmap. 2855 */ 2856 uint64_t page_size; 2857 /* 2858 * The offset in the migration file where the pages bitmap is 2859 * stored. 2860 */ 2861 uint64_t bitmap_offset; 2862 /* 2863 * The offset in the migration file where the actual pages (data) 2864 * are stored. 2865 */ 2866 uint64_t pages_offset; 2867 } QEMU_PACKED; 2868 typedef struct MappedRamHeader MappedRamHeader; 2869 2870 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block) 2871 { 2872 g_autofree MappedRamHeader *header = NULL; 2873 size_t header_size, bitmap_size; 2874 long num_pages; 2875 2876 header = g_new0(MappedRamHeader, 1); 2877 header_size = sizeof(MappedRamHeader); 2878 2879 num_pages = block->used_length >> TARGET_PAGE_BITS; 2880 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 2881 2882 /* 2883 * Save the file offsets of where the bitmap and the pages should 2884 * go as they are written at the end of migration and during the 2885 * iterative phase, respectively. 2886 */ 2887 block->bitmap_offset = qemu_get_offset(file) + header_size; 2888 block->pages_offset = ROUND_UP(block->bitmap_offset + 2889 bitmap_size, 2890 MAPPED_RAM_FILE_OFFSET_ALIGNMENT); 2891 2892 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION); 2893 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE); 2894 header->bitmap_offset = cpu_to_be64(block->bitmap_offset); 2895 header->pages_offset = cpu_to_be64(block->pages_offset); 2896 2897 qemu_put_buffer(file, (uint8_t *) header, header_size); 2898 2899 /* prepare offset for next ramblock */ 2900 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET); 2901 } 2902 2903 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header, 2904 Error **errp) 2905 { 2906 size_t ret, header_size = sizeof(MappedRamHeader); 2907 2908 ret = qemu_get_buffer(file, (uint8_t *)header, header_size); 2909 if (ret != header_size) { 2910 error_setg(errp, "Could not read whole mapped-ram migration header " 2911 "(expected %zd, got %zd bytes)", header_size, ret); 2912 return false; 2913 } 2914 2915 /* migration stream is big-endian */ 2916 header->version = be32_to_cpu(header->version); 2917 2918 if (header->version > MAPPED_RAM_HDR_VERSION) { 2919 error_setg(errp, "Migration mapped-ram capability version not " 2920 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION, 2921 header->version); 2922 return false; 2923 } 2924 2925 header->page_size = be64_to_cpu(header->page_size); 2926 header->bitmap_offset = be64_to_cpu(header->bitmap_offset); 2927 header->pages_offset = be64_to_cpu(header->pages_offset); 2928 2929 return true; 2930 } 2931 2932 /* 2933 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2934 * long-running RCU critical section. When rcu-reclaims in the code 2935 * start to become numerous it will be necessary to reduce the 2936 * granularity of these critical sections. 2937 */ 2938 2939 /** 2940 * ram_save_setup: Setup RAM for migration 2941 * 2942 * Returns zero to indicate success and negative for error 2943 * 2944 * @f: QEMUFile where to send the data 2945 * @opaque: RAMState pointer 2946 * @errp: pointer to Error*, to store an error if it happens. 2947 */ 2948 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp) 2949 { 2950 RAMState **rsp = opaque; 2951 RAMBlock *block; 2952 int ret, max_hg_page_size; 2953 2954 /* migration has already setup the bitmap, reuse it. */ 2955 if (!migration_in_colo_state()) { 2956 if (ram_init_all(rsp, errp) != 0) { 2957 return -1; 2958 } 2959 } 2960 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 2961 2962 /* 2963 * ??? Mirrors the previous value of qemu_host_page_size, 2964 * but is this really what was intended for the migration? 2965 */ 2966 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 2967 2968 WITH_RCU_READ_LOCK_GUARD() { 2969 qemu_put_be64(f, ram_bytes_total_with_ignored() 2970 | RAM_SAVE_FLAG_MEM_SIZE); 2971 2972 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2973 qemu_put_byte(f, strlen(block->idstr)); 2974 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2975 qemu_put_be64(f, block->used_length); 2976 if (migrate_postcopy_ram() && 2977 block->page_size != max_hg_page_size) { 2978 qemu_put_be64(f, block->page_size); 2979 } 2980 if (migrate_ignore_shared()) { 2981 qemu_put_be64(f, block->mr->addr); 2982 } 2983 2984 if (migrate_mapped_ram()) { 2985 mapped_ram_setup_ramblock(f, block); 2986 } 2987 } 2988 } 2989 2990 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 2991 if (ret < 0) { 2992 error_setg(errp, "%s: failed to start RDMA registration", __func__); 2993 qemu_file_set_error(f, ret); 2994 return ret; 2995 } 2996 2997 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 2998 if (ret < 0) { 2999 error_setg(errp, "%s: failed to stop RDMA registration", __func__); 3000 qemu_file_set_error(f, ret); 3001 return ret; 3002 } 3003 3004 if (migrate_multifd()) { 3005 multifd_ram_save_setup(); 3006 } 3007 3008 /* 3009 * This operation is unfortunate.. 3010 * 3011 * For legacy QEMUs using per-section sync 3012 * ======================================= 3013 * 3014 * This must exist because the EOS below requires the SYNC messages 3015 * per-channel to work. 3016 * 3017 * For modern QEMUs using per-round sync 3018 * ===================================== 3019 * 3020 * Logically such sync is not needed, and recv threads should not run 3021 * until setup ready (using things like channels_ready on src). Then 3022 * we should be all fine. 3023 * 3024 * However even if we add channels_ready to recv side in new QEMUs, old 3025 * QEMU won't have them so this sync will still be needed to make sure 3026 * multifd recv threads won't start processing guest pages early before 3027 * ram_load_setup() is properly done. 3028 * 3029 * Let's stick with this. Fortunately the overhead is low to sync 3030 * during setup because the VM is running, so at least it's not 3031 * accounted as part of downtime. 3032 */ 3033 bql_unlock(); 3034 ret = multifd_ram_flush_and_sync(f); 3035 bql_lock(); 3036 if (ret < 0) { 3037 error_setg(errp, "%s: multifd synchronization failed", __func__); 3038 return ret; 3039 } 3040 3041 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3042 ret = qemu_fflush(f); 3043 if (ret < 0) { 3044 error_setg_errno(errp, -ret, "%s failed", __func__); 3045 } 3046 return ret; 3047 } 3048 3049 static void ram_save_file_bmap(QEMUFile *f) 3050 { 3051 RAMBlock *block; 3052 3053 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3054 long num_pages = block->used_length >> TARGET_PAGE_BITS; 3055 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 3056 3057 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size, 3058 block->bitmap_offset); 3059 ram_transferred_add(bitmap_size); 3060 3061 /* 3062 * Free the bitmap here to catch any synchronization issues 3063 * with multifd channels. No channels should be sending pages 3064 * after we've written the bitmap to file. 3065 */ 3066 g_free(block->file_bmap); 3067 block->file_bmap = NULL; 3068 } 3069 } 3070 3071 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set) 3072 { 3073 if (set) { 3074 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3075 } else { 3076 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3077 } 3078 } 3079 3080 /** 3081 * ram_save_iterate: iterative stage for migration 3082 * 3083 * Returns zero to indicate success and negative for error 3084 * 3085 * @f: QEMUFile where to send the data 3086 * @opaque: RAMState pointer 3087 */ 3088 static int ram_save_iterate(QEMUFile *f, void *opaque) 3089 { 3090 RAMState **temp = opaque; 3091 RAMState *rs = *temp; 3092 int ret = 0; 3093 int i; 3094 int64_t t0; 3095 int done = 0; 3096 3097 /* 3098 * We'll take this lock a little bit long, but it's okay for two reasons. 3099 * Firstly, the only possible other thread to take it is who calls 3100 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3101 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3102 * guarantees that we'll at least released it in a regular basis. 3103 */ 3104 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 3105 WITH_RCU_READ_LOCK_GUARD() { 3106 if (ram_list.version != rs->last_version) { 3107 ram_state_reset(rs); 3108 } 3109 3110 /* Read version before ram_list.blocks */ 3111 smp_rmb(); 3112 3113 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3114 if (ret < 0) { 3115 qemu_file_set_error(f, ret); 3116 goto out; 3117 } 3118 3119 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3120 i = 0; 3121 while ((ret = migration_rate_exceeded(f)) == 0 || 3122 postcopy_has_request(rs)) { 3123 int pages; 3124 3125 if (qemu_file_get_error(f)) { 3126 break; 3127 } 3128 3129 pages = ram_find_and_save_block(rs); 3130 /* no more pages to sent */ 3131 if (pages == 0) { 3132 done = 1; 3133 break; 3134 } 3135 3136 if (pages < 0) { 3137 qemu_file_set_error(f, pages); 3138 break; 3139 } 3140 3141 rs->target_page_count += pages; 3142 3143 /* 3144 * we want to check in the 1st loop, just in case it was the 1st 3145 * time and we had to sync the dirty bitmap. 3146 * qemu_clock_get_ns() is a bit expensive, so we only check each 3147 * some iterations 3148 */ 3149 if ((i & 63) == 0) { 3150 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3151 1000000; 3152 if (t1 > MAX_WAIT) { 3153 trace_ram_save_iterate_big_wait(t1, i); 3154 break; 3155 } 3156 } 3157 i++; 3158 } 3159 } 3160 } 3161 3162 /* 3163 * Must occur before EOS (or any QEMUFile operation) 3164 * because of RDMA protocol. 3165 */ 3166 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3167 if (ret < 0) { 3168 qemu_file_set_error(f, ret); 3169 } 3170 3171 out: 3172 if (ret >= 0 && migration_is_running()) { 3173 if (multifd_ram_sync_per_section()) { 3174 ret = multifd_ram_flush_and_sync(f); 3175 if (ret < 0) { 3176 return ret; 3177 } 3178 } 3179 3180 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3181 ram_transferred_add(8); 3182 ret = qemu_fflush(f); 3183 } 3184 if (ret < 0) { 3185 return ret; 3186 } 3187 3188 return done; 3189 } 3190 3191 /** 3192 * ram_save_complete: function called to send the remaining amount of ram 3193 * 3194 * Returns zero to indicate success or negative on error 3195 * 3196 * Called with the BQL 3197 * 3198 * @f: QEMUFile where to send the data 3199 * @opaque: RAMState pointer 3200 */ 3201 static int ram_save_complete(QEMUFile *f, void *opaque) 3202 { 3203 RAMState **temp = opaque; 3204 RAMState *rs = *temp; 3205 int ret = 0; 3206 3207 rs->last_stage = !migration_in_colo_state(); 3208 3209 WITH_RCU_READ_LOCK_GUARD() { 3210 if (!migration_in_postcopy()) { 3211 migration_bitmap_sync_precopy(true); 3212 } 3213 3214 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3215 if (ret < 0) { 3216 qemu_file_set_error(f, ret); 3217 return ret; 3218 } 3219 3220 /* try transferring iterative blocks of memory */ 3221 3222 /* flush all remaining blocks regardless of rate limiting */ 3223 qemu_mutex_lock(&rs->bitmap_mutex); 3224 while (true) { 3225 int pages; 3226 3227 pages = ram_find_and_save_block(rs); 3228 /* no more blocks to sent */ 3229 if (pages == 0) { 3230 break; 3231 } 3232 if (pages < 0) { 3233 qemu_mutex_unlock(&rs->bitmap_mutex); 3234 return pages; 3235 } 3236 } 3237 qemu_mutex_unlock(&rs->bitmap_mutex); 3238 3239 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3240 if (ret < 0) { 3241 qemu_file_set_error(f, ret); 3242 return ret; 3243 } 3244 } 3245 3246 if (multifd_ram_sync_per_section()) { 3247 /* 3248 * Only the old dest QEMU will need this sync, because each EOS 3249 * will require one SYNC message on each channel. 3250 */ 3251 ret = multifd_ram_flush_and_sync(f); 3252 if (ret < 0) { 3253 return ret; 3254 } 3255 } 3256 3257 if (migrate_mapped_ram()) { 3258 ram_save_file_bmap(f); 3259 3260 if (qemu_file_get_error(f)) { 3261 Error *local_err = NULL; 3262 int err = qemu_file_get_error_obj(f, &local_err); 3263 3264 error_reportf_err(local_err, "Failed to write bitmap to file: "); 3265 return -err; 3266 } 3267 } 3268 3269 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3270 return qemu_fflush(f); 3271 } 3272 3273 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3274 uint64_t *can_postcopy) 3275 { 3276 RAMState **temp = opaque; 3277 RAMState *rs = *temp; 3278 3279 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3280 3281 if (migrate_postcopy_ram()) { 3282 /* We can do postcopy, and all the data is postcopiable */ 3283 *can_postcopy += remaining_size; 3284 } else { 3285 *must_precopy += remaining_size; 3286 } 3287 } 3288 3289 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3290 uint64_t *can_postcopy) 3291 { 3292 RAMState **temp = opaque; 3293 RAMState *rs = *temp; 3294 uint64_t remaining_size; 3295 3296 if (!migration_in_postcopy()) { 3297 bql_lock(); 3298 WITH_RCU_READ_LOCK_GUARD() { 3299 migration_bitmap_sync_precopy(false); 3300 } 3301 bql_unlock(); 3302 } 3303 3304 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3305 3306 if (migrate_postcopy_ram()) { 3307 /* We can do postcopy, and all the data is postcopiable */ 3308 *can_postcopy += remaining_size; 3309 } else { 3310 *must_precopy += remaining_size; 3311 } 3312 } 3313 3314 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3315 { 3316 unsigned int xh_len; 3317 int xh_flags; 3318 uint8_t *loaded_data; 3319 3320 /* extract RLE header */ 3321 xh_flags = qemu_get_byte(f); 3322 xh_len = qemu_get_be16(f); 3323 3324 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3325 error_report("Failed to load XBZRLE page - wrong compression!"); 3326 return -1; 3327 } 3328 3329 if (xh_len > TARGET_PAGE_SIZE) { 3330 error_report("Failed to load XBZRLE page - len overflow!"); 3331 return -1; 3332 } 3333 loaded_data = XBZRLE.decoded_buf; 3334 /* load data and decode */ 3335 /* it can change loaded_data to point to an internal buffer */ 3336 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3337 3338 /* decode RLE */ 3339 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3340 TARGET_PAGE_SIZE) == -1) { 3341 error_report("Failed to load XBZRLE page - decode error!"); 3342 return -1; 3343 } 3344 3345 return 0; 3346 } 3347 3348 /** 3349 * ram_block_from_stream: read a RAMBlock id from the migration stream 3350 * 3351 * Must be called from within a rcu critical section. 3352 * 3353 * Returns a pointer from within the RCU-protected ram_list. 3354 * 3355 * @mis: the migration incoming state pointer 3356 * @f: QEMUFile where to read the data from 3357 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3358 * @channel: the channel we're using 3359 */ 3360 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3361 QEMUFile *f, int flags, 3362 int channel) 3363 { 3364 RAMBlock *block = mis->last_recv_block[channel]; 3365 char id[256]; 3366 uint8_t len; 3367 3368 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3369 if (!block) { 3370 error_report("Ack, bad migration stream!"); 3371 return NULL; 3372 } 3373 return block; 3374 } 3375 3376 len = qemu_get_byte(f); 3377 qemu_get_buffer(f, (uint8_t *)id, len); 3378 id[len] = 0; 3379 3380 block = qemu_ram_block_by_name(id); 3381 if (!block) { 3382 error_report("Can't find block %s", id); 3383 return NULL; 3384 } 3385 3386 if (migrate_ram_is_ignored(block)) { 3387 error_report("block %s should not be migrated !", id); 3388 return NULL; 3389 } 3390 3391 mis->last_recv_block[channel] = block; 3392 3393 return block; 3394 } 3395 3396 static inline void *host_from_ram_block_offset(RAMBlock *block, 3397 ram_addr_t offset) 3398 { 3399 if (!offset_in_ramblock(block, offset)) { 3400 return NULL; 3401 } 3402 3403 return block->host + offset; 3404 } 3405 3406 static void *host_page_from_ram_block_offset(RAMBlock *block, 3407 ram_addr_t offset) 3408 { 3409 /* Note: Explicitly no check against offset_in_ramblock(). */ 3410 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3411 block->page_size); 3412 } 3413 3414 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3415 ram_addr_t offset) 3416 { 3417 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3418 } 3419 3420 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3421 { 3422 qemu_mutex_lock(&ram_state->bitmap_mutex); 3423 for (int i = 0; i < pages; i++) { 3424 ram_addr_t offset = normal[i]; 3425 ram_state->migration_dirty_pages += !test_and_set_bit( 3426 offset >> TARGET_PAGE_BITS, 3427 block->bmap); 3428 } 3429 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3430 } 3431 3432 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3433 ram_addr_t offset, bool record_bitmap) 3434 { 3435 if (!offset_in_ramblock(block, offset)) { 3436 return NULL; 3437 } 3438 if (!block->colo_cache) { 3439 error_report("%s: colo_cache is NULL in block :%s", 3440 __func__, block->idstr); 3441 return NULL; 3442 } 3443 3444 /* 3445 * During colo checkpoint, we need bitmap of these migrated pages. 3446 * It help us to decide which pages in ram cache should be flushed 3447 * into VM's RAM later. 3448 */ 3449 if (record_bitmap) { 3450 colo_record_bitmap(block, &offset, 1); 3451 } 3452 return block->colo_cache + offset; 3453 } 3454 3455 /** 3456 * ram_handle_zero: handle the zero page case 3457 * 3458 * If a page (or a whole RDMA chunk) has been 3459 * determined to be zero, then zap it. 3460 * 3461 * @host: host address for the zero page 3462 * @ch: what the page is filled from. We only support zero 3463 * @size: size of the zero page 3464 */ 3465 void ram_handle_zero(void *host, uint64_t size) 3466 { 3467 if (!buffer_is_zero(host, size)) { 3468 memset(host, 0, size); 3469 } 3470 } 3471 3472 static void colo_init_ram_state(void) 3473 { 3474 Error *local_err = NULL; 3475 3476 if (!ram_state_init(&ram_state, &local_err)) { 3477 error_report_err(local_err); 3478 } 3479 } 3480 3481 /* 3482 * colo cache: this is for secondary VM, we cache the whole 3483 * memory of the secondary VM, it is need to hold the global lock 3484 * to call this helper. 3485 */ 3486 int colo_init_ram_cache(void) 3487 { 3488 RAMBlock *block; 3489 3490 WITH_RCU_READ_LOCK_GUARD() { 3491 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3492 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3493 NULL, false, false); 3494 if (!block->colo_cache) { 3495 error_report("%s: Can't alloc memory for COLO cache of block %s," 3496 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3497 block->used_length); 3498 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3499 if (block->colo_cache) { 3500 qemu_anon_ram_free(block->colo_cache, block->used_length); 3501 block->colo_cache = NULL; 3502 } 3503 } 3504 return -errno; 3505 } 3506 if (!machine_dump_guest_core(current_machine)) { 3507 qemu_madvise(block->colo_cache, block->used_length, 3508 QEMU_MADV_DONTDUMP); 3509 } 3510 } 3511 } 3512 3513 /* 3514 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3515 * with to decide which page in cache should be flushed into SVM's RAM. Here 3516 * we use the same name 'ram_bitmap' as for migration. 3517 */ 3518 if (ram_bytes_total()) { 3519 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3520 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3521 block->bmap = bitmap_new(pages); 3522 } 3523 } 3524 3525 colo_init_ram_state(); 3526 return 0; 3527 } 3528 3529 /* TODO: duplicated with ram_init_bitmaps */ 3530 void colo_incoming_start_dirty_log(void) 3531 { 3532 RAMBlock *block = NULL; 3533 Error *local_err = NULL; 3534 3535 /* For memory_global_dirty_log_start below. */ 3536 bql_lock(); 3537 qemu_mutex_lock_ramlist(); 3538 3539 memory_global_dirty_log_sync(false); 3540 WITH_RCU_READ_LOCK_GUARD() { 3541 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3542 ramblock_sync_dirty_bitmap(ram_state, block); 3543 /* Discard this dirty bitmap record */ 3544 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3545 } 3546 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, 3547 &local_err)) { 3548 error_report_err(local_err); 3549 } 3550 } 3551 ram_state->migration_dirty_pages = 0; 3552 qemu_mutex_unlock_ramlist(); 3553 bql_unlock(); 3554 } 3555 3556 /* It is need to hold the global lock to call this helper */ 3557 void colo_release_ram_cache(void) 3558 { 3559 RAMBlock *block; 3560 3561 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3562 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3563 g_free(block->bmap); 3564 block->bmap = NULL; 3565 } 3566 3567 WITH_RCU_READ_LOCK_GUARD() { 3568 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3569 if (block->colo_cache) { 3570 qemu_anon_ram_free(block->colo_cache, block->used_length); 3571 block->colo_cache = NULL; 3572 } 3573 } 3574 } 3575 ram_state_cleanup(&ram_state); 3576 } 3577 3578 /** 3579 * ram_load_setup: Setup RAM for migration incoming side 3580 * 3581 * Returns zero to indicate success and negative for error 3582 * 3583 * @f: QEMUFile where to receive the data 3584 * @opaque: RAMState pointer 3585 * @errp: pointer to Error*, to store an error if it happens. 3586 */ 3587 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp) 3588 { 3589 xbzrle_load_setup(); 3590 ramblock_recv_map_init(); 3591 3592 return 0; 3593 } 3594 3595 static int ram_load_cleanup(void *opaque) 3596 { 3597 RAMBlock *rb; 3598 3599 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3600 qemu_ram_block_writeback(rb); 3601 } 3602 3603 xbzrle_load_cleanup(); 3604 3605 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3606 g_free(rb->receivedmap); 3607 rb->receivedmap = NULL; 3608 } 3609 3610 return 0; 3611 } 3612 3613 /** 3614 * ram_postcopy_incoming_init: allocate postcopy data structures 3615 * 3616 * Returns 0 for success and negative if there was one error 3617 * 3618 * @mis: current migration incoming state 3619 * 3620 * Allocate data structures etc needed by incoming migration with 3621 * postcopy-ram. postcopy-ram's similarly names 3622 * postcopy_ram_incoming_init does the work. 3623 */ 3624 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3625 { 3626 return postcopy_ram_incoming_init(mis); 3627 } 3628 3629 /** 3630 * ram_load_postcopy: load a page in postcopy case 3631 * 3632 * Returns 0 for success or -errno in case of error 3633 * 3634 * Called in postcopy mode by ram_load(). 3635 * rcu_read_lock is taken prior to this being called. 3636 * 3637 * @f: QEMUFile where to send the data 3638 * @channel: the channel to use for loading 3639 */ 3640 int ram_load_postcopy(QEMUFile *f, int channel) 3641 { 3642 int flags = 0, ret = 0; 3643 bool place_needed = false; 3644 bool matches_target_page_size = false; 3645 MigrationIncomingState *mis = migration_incoming_get_current(); 3646 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3647 3648 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3649 ram_addr_t addr; 3650 void *page_buffer = NULL; 3651 void *place_source = NULL; 3652 RAMBlock *block = NULL; 3653 uint8_t ch; 3654 3655 addr = qemu_get_be64(f); 3656 3657 /* 3658 * If qemu file error, we should stop here, and then "addr" 3659 * may be invalid 3660 */ 3661 ret = qemu_file_get_error(f); 3662 if (ret) { 3663 break; 3664 } 3665 3666 flags = addr & ~TARGET_PAGE_MASK; 3667 addr &= TARGET_PAGE_MASK; 3668 3669 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3670 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3671 block = ram_block_from_stream(mis, f, flags, channel); 3672 if (!block) { 3673 ret = -EINVAL; 3674 break; 3675 } 3676 3677 /* 3678 * Relying on used_length is racy and can result in false positives. 3679 * We might place pages beyond used_length in case RAM was shrunk 3680 * while in postcopy, which is fine - trying to place via 3681 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3682 */ 3683 if (!block->host || addr >= block->postcopy_length) { 3684 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3685 ret = -EINVAL; 3686 break; 3687 } 3688 tmp_page->target_pages++; 3689 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3690 /* 3691 * Postcopy requires that we place whole host pages atomically; 3692 * these may be huge pages for RAMBlocks that are backed by 3693 * hugetlbfs. 3694 * To make it atomic, the data is read into a temporary page 3695 * that's moved into place later. 3696 * The migration protocol uses, possibly smaller, target-pages 3697 * however the source ensures it always sends all the components 3698 * of a host page in one chunk. 3699 */ 3700 page_buffer = tmp_page->tmp_huge_page + 3701 host_page_offset_from_ram_block_offset(block, addr); 3702 /* If all TP are zero then we can optimise the place */ 3703 if (tmp_page->target_pages == 1) { 3704 tmp_page->host_addr = 3705 host_page_from_ram_block_offset(block, addr); 3706 } else if (tmp_page->host_addr != 3707 host_page_from_ram_block_offset(block, addr)) { 3708 /* not the 1st TP within the HP */ 3709 error_report("Non-same host page detected on channel %d: " 3710 "Target host page %p, received host page %p " 3711 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3712 channel, tmp_page->host_addr, 3713 host_page_from_ram_block_offset(block, addr), 3714 block->idstr, addr, tmp_page->target_pages); 3715 ret = -EINVAL; 3716 break; 3717 } 3718 3719 /* 3720 * If it's the last part of a host page then we place the host 3721 * page 3722 */ 3723 if (tmp_page->target_pages == 3724 (block->page_size / TARGET_PAGE_SIZE)) { 3725 place_needed = true; 3726 } 3727 place_source = tmp_page->tmp_huge_page; 3728 } 3729 3730 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3731 case RAM_SAVE_FLAG_ZERO: 3732 ch = qemu_get_byte(f); 3733 if (ch != 0) { 3734 error_report("Found a zero page with value %d", ch); 3735 ret = -EINVAL; 3736 break; 3737 } 3738 /* 3739 * Can skip to set page_buffer when 3740 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3741 */ 3742 if (!matches_target_page_size) { 3743 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3744 } 3745 break; 3746 3747 case RAM_SAVE_FLAG_PAGE: 3748 tmp_page->all_zero = false; 3749 if (!matches_target_page_size) { 3750 /* For huge pages, we always use temporary buffer */ 3751 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3752 } else { 3753 /* 3754 * For small pages that matches target page size, we 3755 * avoid the qemu_file copy. Instead we directly use 3756 * the buffer of QEMUFile to place the page. Note: we 3757 * cannot do any QEMUFile operation before using that 3758 * buffer to make sure the buffer is valid when 3759 * placing the page. 3760 */ 3761 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3762 TARGET_PAGE_SIZE); 3763 } 3764 break; 3765 case RAM_SAVE_FLAG_EOS: 3766 break; 3767 default: 3768 error_report("Unknown combination of migration flags: 0x%x" 3769 " (postcopy mode)", flags); 3770 ret = -EINVAL; 3771 break; 3772 } 3773 3774 /* Detect for any possible file errors */ 3775 if (!ret && qemu_file_get_error(f)) { 3776 ret = qemu_file_get_error(f); 3777 } 3778 3779 if (!ret && place_needed) { 3780 if (tmp_page->all_zero) { 3781 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3782 } else { 3783 ret = postcopy_place_page(mis, tmp_page->host_addr, 3784 place_source, block); 3785 } 3786 place_needed = false; 3787 postcopy_temp_page_reset(tmp_page); 3788 } 3789 } 3790 3791 return ret; 3792 } 3793 3794 static bool postcopy_is_running(void) 3795 { 3796 PostcopyState ps = postcopy_state_get(); 3797 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3798 } 3799 3800 /* 3801 * Flush content of RAM cache into SVM's memory. 3802 * Only flush the pages that be dirtied by PVM or SVM or both. 3803 */ 3804 void colo_flush_ram_cache(void) 3805 { 3806 RAMBlock *block = NULL; 3807 void *dst_host; 3808 void *src_host; 3809 unsigned long offset = 0; 3810 3811 memory_global_dirty_log_sync(false); 3812 qemu_mutex_lock(&ram_state->bitmap_mutex); 3813 WITH_RCU_READ_LOCK_GUARD() { 3814 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3815 ramblock_sync_dirty_bitmap(ram_state, block); 3816 } 3817 } 3818 3819 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3820 WITH_RCU_READ_LOCK_GUARD() { 3821 block = QLIST_FIRST_RCU(&ram_list.blocks); 3822 3823 while (block) { 3824 unsigned long num = 0; 3825 3826 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3827 if (!offset_in_ramblock(block, 3828 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3829 offset = 0; 3830 num = 0; 3831 block = QLIST_NEXT_RCU(block, next); 3832 } else { 3833 unsigned long i = 0; 3834 3835 for (i = 0; i < num; i++) { 3836 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3837 } 3838 dst_host = block->host 3839 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3840 src_host = block->colo_cache 3841 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3842 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3843 offset += num; 3844 } 3845 } 3846 } 3847 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3848 trace_colo_flush_ram_cache_end(); 3849 } 3850 3851 static size_t ram_load_multifd_pages(void *host_addr, size_t size, 3852 uint64_t offset) 3853 { 3854 MultiFDRecvData *data = multifd_get_recv_data(); 3855 3856 data->opaque = host_addr; 3857 data->file_offset = offset; 3858 data->size = size; 3859 3860 if (!multifd_recv()) { 3861 return 0; 3862 } 3863 3864 return size; 3865 } 3866 3867 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 3868 long num_pages, unsigned long *bitmap, 3869 Error **errp) 3870 { 3871 ERRP_GUARD(); 3872 unsigned long set_bit_idx, clear_bit_idx; 3873 ram_addr_t offset; 3874 void *host; 3875 size_t read, unread, size; 3876 3877 for (set_bit_idx = find_first_bit(bitmap, num_pages); 3878 set_bit_idx < num_pages; 3879 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) { 3880 3881 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1); 3882 3883 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx); 3884 offset = set_bit_idx << TARGET_PAGE_BITS; 3885 3886 while (unread > 0) { 3887 host = host_from_ram_block_offset(block, offset); 3888 if (!host) { 3889 error_setg(errp, "page outside of ramblock %s range", 3890 block->idstr); 3891 return false; 3892 } 3893 3894 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE); 3895 3896 if (migrate_multifd()) { 3897 read = ram_load_multifd_pages(host, size, 3898 block->pages_offset + offset); 3899 } else { 3900 read = qemu_get_buffer_at(f, host, size, 3901 block->pages_offset + offset); 3902 } 3903 3904 if (!read) { 3905 goto err; 3906 } 3907 offset += read; 3908 unread -= read; 3909 } 3910 } 3911 3912 return true; 3913 3914 err: 3915 qemu_file_get_error_obj(f, errp); 3916 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT 3917 "from file offset %" PRIx64 ": ", block->idstr, offset, 3918 block->pages_offset + offset); 3919 return false; 3920 } 3921 3922 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 3923 ram_addr_t length, Error **errp) 3924 { 3925 g_autofree unsigned long *bitmap = NULL; 3926 MappedRamHeader header; 3927 size_t bitmap_size; 3928 long num_pages; 3929 3930 if (!mapped_ram_read_header(f, &header, errp)) { 3931 return; 3932 } 3933 3934 block->pages_offset = header.pages_offset; 3935 3936 /* 3937 * Check the alignment of the file region that contains pages. We 3938 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that 3939 * value to change in the future. Do only a sanity check with page 3940 * size alignment. 3941 */ 3942 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) { 3943 error_setg(errp, 3944 "Error reading ramblock %s pages, region has bad alignment", 3945 block->idstr); 3946 return; 3947 } 3948 3949 num_pages = length / header.page_size; 3950 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 3951 3952 bitmap = g_malloc0(bitmap_size); 3953 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size, 3954 header.bitmap_offset) != bitmap_size) { 3955 error_setg(errp, "Error reading dirty bitmap"); 3956 return; 3957 } 3958 3959 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) { 3960 return; 3961 } 3962 3963 /* Skip pages array */ 3964 qemu_set_offset(f, block->pages_offset + length, SEEK_SET); 3965 3966 return; 3967 } 3968 3969 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 3970 { 3971 int ret = 0; 3972 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3973 bool postcopy_advised = migration_incoming_postcopy_advised(); 3974 int max_hg_page_size; 3975 Error *local_err = NULL; 3976 3977 assert(block); 3978 3979 if (migrate_mapped_ram()) { 3980 parse_ramblock_mapped_ram(f, block, length, &local_err); 3981 if (local_err) { 3982 error_report_err(local_err); 3983 return -EINVAL; 3984 } 3985 return 0; 3986 } 3987 3988 if (!qemu_ram_is_migratable(block)) { 3989 error_report("block %s should not be migrated !", block->idstr); 3990 return -EINVAL; 3991 } 3992 3993 if (length != block->used_length) { 3994 ret = qemu_ram_resize(block, length, &local_err); 3995 if (local_err) { 3996 error_report_err(local_err); 3997 return ret; 3998 } 3999 } 4000 4001 /* 4002 * ??? Mirrors the previous value of qemu_host_page_size, 4003 * but is this really what was intended for the migration? 4004 */ 4005 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 4006 4007 /* For postcopy we need to check hugepage sizes match */ 4008 if (postcopy_advised && migrate_postcopy_ram() && 4009 block->page_size != max_hg_page_size) { 4010 uint64_t remote_page_size = qemu_get_be64(f); 4011 if (remote_page_size != block->page_size) { 4012 error_report("Mismatched RAM page size %s " 4013 "(local) %zd != %" PRId64, block->idstr, 4014 block->page_size, remote_page_size); 4015 return -EINVAL; 4016 } 4017 } 4018 if (migrate_ignore_shared()) { 4019 hwaddr addr = qemu_get_be64(f); 4020 if (migrate_ram_is_ignored(block) && 4021 block->mr->addr != addr) { 4022 error_report("Mismatched GPAs for block %s " 4023 "%" PRId64 "!= %" PRId64, block->idstr, 4024 (uint64_t)addr, (uint64_t)block->mr->addr); 4025 return -EINVAL; 4026 } 4027 } 4028 ret = rdma_block_notification_handle(f, block->idstr); 4029 if (ret < 0) { 4030 qemu_file_set_error(f, ret); 4031 } 4032 4033 return ret; 4034 } 4035 4036 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 4037 { 4038 int ret = 0; 4039 4040 /* Synchronize RAM block list */ 4041 while (!ret && total_ram_bytes) { 4042 RAMBlock *block; 4043 char id[256]; 4044 ram_addr_t length; 4045 int len = qemu_get_byte(f); 4046 4047 qemu_get_buffer(f, (uint8_t *)id, len); 4048 id[len] = 0; 4049 length = qemu_get_be64(f); 4050 4051 block = qemu_ram_block_by_name(id); 4052 if (block) { 4053 ret = parse_ramblock(f, block, length); 4054 } else { 4055 error_report("Unknown ramblock \"%s\", cannot accept " 4056 "migration", id); 4057 ret = -EINVAL; 4058 } 4059 total_ram_bytes -= length; 4060 } 4061 4062 return ret; 4063 } 4064 4065 /** 4066 * ram_load_precopy: load pages in precopy case 4067 * 4068 * Returns 0 for success or -errno in case of error 4069 * 4070 * Called in precopy mode by ram_load(). 4071 * rcu_read_lock is taken prior to this being called. 4072 * 4073 * @f: QEMUFile where to send the data 4074 */ 4075 static int ram_load_precopy(QEMUFile *f) 4076 { 4077 MigrationIncomingState *mis = migration_incoming_get_current(); 4078 int flags = 0, ret = 0, invalid_flags = 0, i = 0; 4079 4080 if (migrate_mapped_ram()) { 4081 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH | 4082 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE | 4083 RAM_SAVE_FLAG_ZERO); 4084 } 4085 4086 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4087 ram_addr_t addr; 4088 void *host = NULL, *host_bak = NULL; 4089 uint8_t ch; 4090 4091 /* 4092 * Yield periodically to let main loop run, but an iteration of 4093 * the main loop is expensive, so do it each some iterations 4094 */ 4095 if ((i & 32767) == 0 && qemu_in_coroutine()) { 4096 aio_co_schedule(qemu_get_current_aio_context(), 4097 qemu_coroutine_self()); 4098 qemu_coroutine_yield(); 4099 } 4100 i++; 4101 4102 addr = qemu_get_be64(f); 4103 ret = qemu_file_get_error(f); 4104 if (ret) { 4105 error_report("Getting RAM address failed"); 4106 break; 4107 } 4108 4109 flags = addr & ~TARGET_PAGE_MASK; 4110 addr &= TARGET_PAGE_MASK; 4111 4112 if (flags & invalid_flags) { 4113 error_report("Unexpected RAM flags: %d", flags & invalid_flags); 4114 4115 ret = -EINVAL; 4116 break; 4117 } 4118 4119 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4120 RAM_SAVE_FLAG_XBZRLE)) { 4121 RAMBlock *block = ram_block_from_stream(mis, f, flags, 4122 RAM_CHANNEL_PRECOPY); 4123 4124 host = host_from_ram_block_offset(block, addr); 4125 /* 4126 * After going into COLO stage, we should not load the page 4127 * into SVM's memory directly, we put them into colo_cache firstly. 4128 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 4129 * Previously, we copied all these memory in preparing stage of COLO 4130 * while we need to stop VM, which is a time-consuming process. 4131 * Here we optimize it by a trick, back-up every page while in 4132 * migration process while COLO is enabled, though it affects the 4133 * speed of the migration, but it obviously reduce the downtime of 4134 * back-up all SVM'S memory in COLO preparing stage. 4135 */ 4136 if (migration_incoming_colo_enabled()) { 4137 if (migration_incoming_in_colo_state()) { 4138 /* In COLO stage, put all pages into cache temporarily */ 4139 host = colo_cache_from_block_offset(block, addr, true); 4140 } else { 4141 /* 4142 * In migration stage but before COLO stage, 4143 * Put all pages into both cache and SVM's memory. 4144 */ 4145 host_bak = colo_cache_from_block_offset(block, addr, false); 4146 } 4147 } 4148 if (!host) { 4149 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4150 ret = -EINVAL; 4151 break; 4152 } 4153 if (!migration_incoming_in_colo_state()) { 4154 ramblock_recv_bitmap_set(block, host); 4155 } 4156 4157 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4158 } 4159 4160 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4161 case RAM_SAVE_FLAG_MEM_SIZE: 4162 ret = parse_ramblocks(f, addr); 4163 /* 4164 * For mapped-ram migration (to a file) using multifd, we sync 4165 * once and for all here to make sure all tasks we queued to 4166 * multifd threads are completed, so that all the ramblocks 4167 * (including all the guest memory pages within) are fully 4168 * loaded after this sync returns. 4169 */ 4170 if (migrate_mapped_ram()) { 4171 multifd_recv_sync_main(); 4172 } 4173 break; 4174 4175 case RAM_SAVE_FLAG_ZERO: 4176 ch = qemu_get_byte(f); 4177 if (ch != 0) { 4178 error_report("Found a zero page with value %d", ch); 4179 ret = -EINVAL; 4180 break; 4181 } 4182 ram_handle_zero(host, TARGET_PAGE_SIZE); 4183 break; 4184 4185 case RAM_SAVE_FLAG_PAGE: 4186 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4187 break; 4188 4189 case RAM_SAVE_FLAG_XBZRLE: 4190 if (load_xbzrle(f, addr, host) < 0) { 4191 error_report("Failed to decompress XBZRLE page at " 4192 RAM_ADDR_FMT, addr); 4193 ret = -EINVAL; 4194 break; 4195 } 4196 break; 4197 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4198 multifd_recv_sync_main(); 4199 break; 4200 case RAM_SAVE_FLAG_EOS: 4201 /* normal exit */ 4202 if (migrate_multifd() && 4203 migrate_multifd_flush_after_each_section() && 4204 /* 4205 * Mapped-ram migration flushes once and for all after 4206 * parsing ramblocks. Always ignore EOS for it. 4207 */ 4208 !migrate_mapped_ram()) { 4209 multifd_recv_sync_main(); 4210 } 4211 break; 4212 case RAM_SAVE_FLAG_HOOK: 4213 ret = rdma_registration_handle(f); 4214 if (ret < 0) { 4215 qemu_file_set_error(f, ret); 4216 } 4217 break; 4218 default: 4219 error_report("Unknown combination of migration flags: 0x%x", flags); 4220 ret = -EINVAL; 4221 } 4222 if (!ret) { 4223 ret = qemu_file_get_error(f); 4224 } 4225 if (!ret && host_bak) { 4226 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4227 } 4228 } 4229 4230 return ret; 4231 } 4232 4233 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4234 { 4235 int ret = 0; 4236 static uint64_t seq_iter; 4237 /* 4238 * If system is running in postcopy mode, page inserts to host memory must 4239 * be atomic 4240 */ 4241 bool postcopy_running = postcopy_is_running(); 4242 4243 seq_iter++; 4244 4245 if (version_id != 4) { 4246 return -EINVAL; 4247 } 4248 4249 /* 4250 * This RCU critical section can be very long running. 4251 * When RCU reclaims in the code start to become numerous, 4252 * it will be necessary to reduce the granularity of this 4253 * critical section. 4254 */ 4255 trace_ram_load_start(); 4256 WITH_RCU_READ_LOCK_GUARD() { 4257 if (postcopy_running) { 4258 /* 4259 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4260 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4261 * service fast page faults. 4262 */ 4263 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4264 } else { 4265 ret = ram_load_precopy(f); 4266 } 4267 } 4268 trace_ram_load_complete(ret, seq_iter); 4269 4270 return ret; 4271 } 4272 4273 static bool ram_has_postcopy(void *opaque) 4274 { 4275 RAMBlock *rb; 4276 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4277 if (ramblock_is_pmem(rb)) { 4278 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4279 "is not supported now!", rb->idstr, rb->host); 4280 return false; 4281 } 4282 } 4283 4284 return migrate_postcopy_ram(); 4285 } 4286 4287 /* Sync all the dirty bitmap with destination VM. */ 4288 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4289 { 4290 RAMBlock *block; 4291 QEMUFile *file = s->to_dst_file; 4292 4293 trace_ram_dirty_bitmap_sync_start(); 4294 4295 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4296 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4297 qemu_savevm_send_recv_bitmap(file, block->idstr); 4298 trace_ram_dirty_bitmap_request(block->idstr); 4299 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4300 } 4301 4302 trace_ram_dirty_bitmap_sync_wait(); 4303 4304 /* Wait until all the ramblocks' dirty bitmap synced */ 4305 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4306 if (migration_rp_wait(s)) { 4307 return -1; 4308 } 4309 } 4310 4311 trace_ram_dirty_bitmap_sync_complete(); 4312 4313 return 0; 4314 } 4315 4316 /* 4317 * Read the received bitmap, revert it as the initial dirty bitmap. 4318 * This is only used when the postcopy migration is paused but wants 4319 * to resume from a middle point. 4320 * 4321 * Returns true if succeeded, false for errors. 4322 */ 4323 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4324 { 4325 /* from_dst_file is always valid because we're within rp_thread */ 4326 QEMUFile *file = s->rp_state.from_dst_file; 4327 g_autofree unsigned long *le_bitmap = NULL; 4328 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4329 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4330 uint64_t size, end_mark; 4331 RAMState *rs = ram_state; 4332 4333 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4334 4335 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4336 error_setg(errp, "Reload bitmap in incorrect state %s", 4337 MigrationStatus_str(s->state)); 4338 return false; 4339 } 4340 4341 /* 4342 * Note: see comments in ramblock_recv_bitmap_send() on why we 4343 * need the endianness conversion, and the paddings. 4344 */ 4345 local_size = ROUND_UP(local_size, 8); 4346 4347 /* Add paddings */ 4348 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4349 4350 size = qemu_get_be64(file); 4351 4352 /* The size of the bitmap should match with our ramblock */ 4353 if (size != local_size) { 4354 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4355 " != 0x%"PRIx64")", block->idstr, size, local_size); 4356 return false; 4357 } 4358 4359 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4360 end_mark = qemu_get_be64(file); 4361 4362 if (qemu_file_get_error(file) || size != local_size) { 4363 error_setg(errp, "read bitmap failed for ramblock '%s': " 4364 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4365 block->idstr, local_size, size); 4366 return false; 4367 } 4368 4369 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4370 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4371 block->idstr, end_mark); 4372 return false; 4373 } 4374 4375 /* 4376 * Endianness conversion. We are during postcopy (though paused). 4377 * The dirty bitmap won't change. We can directly modify it. 4378 */ 4379 bitmap_from_le(block->bmap, le_bitmap, nbits); 4380 4381 /* 4382 * What we received is "received bitmap". Revert it as the initial 4383 * dirty bitmap for this ramblock. 4384 */ 4385 bitmap_complement(block->bmap, block->bmap, nbits); 4386 4387 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4388 ramblock_dirty_bitmap_clear_discarded_pages(block); 4389 4390 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4391 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4392 4393 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4394 4395 /* 4396 * We succeeded to sync bitmap for current ramblock. Always kick the 4397 * migration thread to check whether all requested bitmaps are 4398 * reloaded. NOTE: it's racy to only kick when requested==0, because 4399 * we don't know whether the migration thread may still be increasing 4400 * it. 4401 */ 4402 migration_rp_kick(s); 4403 4404 return true; 4405 } 4406 4407 static int ram_resume_prepare(MigrationState *s, void *opaque) 4408 { 4409 RAMState *rs = *(RAMState **)opaque; 4410 int ret; 4411 4412 ret = ram_dirty_bitmap_sync_all(s, rs); 4413 if (ret) { 4414 return ret; 4415 } 4416 4417 ram_state_resume_prepare(rs, s->to_dst_file); 4418 4419 return 0; 4420 } 4421 4422 void postcopy_preempt_shutdown_file(MigrationState *s) 4423 { 4424 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4425 qemu_fflush(s->postcopy_qemufile_src); 4426 } 4427 4428 static SaveVMHandlers savevm_ram_handlers = { 4429 .save_setup = ram_save_setup, 4430 .save_live_iterate = ram_save_iterate, 4431 .save_live_complete_postcopy = ram_save_complete, 4432 .save_live_complete_precopy = ram_save_complete, 4433 .has_postcopy = ram_has_postcopy, 4434 .state_pending_exact = ram_state_pending_exact, 4435 .state_pending_estimate = ram_state_pending_estimate, 4436 .load_state = ram_load, 4437 .save_cleanup = ram_save_cleanup, 4438 .load_setup = ram_load_setup, 4439 .load_cleanup = ram_load_cleanup, 4440 .resume_prepare = ram_resume_prepare, 4441 }; 4442 4443 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4444 size_t old_size, size_t new_size) 4445 { 4446 PostcopyState ps = postcopy_state_get(); 4447 ram_addr_t offset; 4448 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4449 Error *err = NULL; 4450 4451 if (!rb) { 4452 error_report("RAM block not found"); 4453 return; 4454 } 4455 4456 if (migrate_ram_is_ignored(rb)) { 4457 return; 4458 } 4459 4460 if (migration_is_running()) { 4461 /* 4462 * Precopy code on the source cannot deal with the size of RAM blocks 4463 * changing at random points in time - especially after sending the 4464 * RAM block sizes in the migration stream, they must no longer change. 4465 * Abort and indicate a proper reason. 4466 */ 4467 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4468 migrate_set_error(migrate_get_current(), err); 4469 error_free(err); 4470 4471 migration_cancel(); 4472 } 4473 4474 switch (ps) { 4475 case POSTCOPY_INCOMING_ADVISE: 4476 /* 4477 * Update what ram_postcopy_incoming_init()->init_range() does at the 4478 * time postcopy was advised. Syncing RAM blocks with the source will 4479 * result in RAM resizes. 4480 */ 4481 if (old_size < new_size) { 4482 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4483 error_report("RAM block '%s' discard of resized RAM failed", 4484 rb->idstr); 4485 } 4486 } 4487 rb->postcopy_length = new_size; 4488 break; 4489 case POSTCOPY_INCOMING_NONE: 4490 case POSTCOPY_INCOMING_RUNNING: 4491 case POSTCOPY_INCOMING_END: 4492 /* 4493 * Once our guest is running, postcopy does no longer care about 4494 * resizes. When growing, the new memory was not available on the 4495 * source, no handler needed. 4496 */ 4497 break; 4498 default: 4499 error_report("RAM block '%s' resized during postcopy state: %d", 4500 rb->idstr, ps); 4501 exit(-1); 4502 } 4503 } 4504 4505 static RAMBlockNotifier ram_mig_ram_notifier = { 4506 .ram_block_resized = ram_mig_ram_block_resized, 4507 }; 4508 4509 void ram_mig_init(void) 4510 { 4511 qemu_mutex_init(&XBZRLE.lock); 4512 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4513 ram_block_notifier_add(&ram_mig_ram_notifier); 4514 } 4515