xref: /qemu/linux-user/signal.c (revision e80cfcfc8884400e826328b772971913a14d0f44)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <stdarg.h>
24 #include <unistd.h>
25 #include <signal.h>
26 #include <errno.h>
27 #include <sys/ucontext.h>
28 
29 #ifdef __ia64__
30 #undef uc_mcontext
31 #undef uc_sigmask
32 #undef uc_stack
33 #undef uc_link
34 #endif
35 
36 #include "qemu.h"
37 
38 //#define DEBUG_SIGNAL
39 
40 #define MAX_SIGQUEUE_SIZE 1024
41 
42 struct sigqueue {
43     struct sigqueue *next;
44     target_siginfo_t info;
45 };
46 
47 struct emulated_sigaction {
48     struct target_sigaction sa;
49     int pending; /* true if signal is pending */
50     struct sigqueue *first;
51     struct sigqueue info; /* in order to always have memory for the
52                              first signal, we put it here */
53 };
54 
55 static struct emulated_sigaction sigact_table[TARGET_NSIG];
56 static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
57 static struct sigqueue *first_free; /* first free siginfo queue entry */
58 static int signal_pending; /* non zero if a signal may be pending */
59 
60 static void host_signal_handler(int host_signum, siginfo_t *info,
61                                 void *puc);
62 
63 static uint8_t host_to_target_signal_table[65] = {
64     [SIGHUP] = TARGET_SIGHUP,
65     [SIGINT] = TARGET_SIGINT,
66     [SIGQUIT] = TARGET_SIGQUIT,
67     [SIGILL] = TARGET_SIGILL,
68     [SIGTRAP] = TARGET_SIGTRAP,
69     [SIGABRT] = TARGET_SIGABRT,
70 /*    [SIGIOT] = TARGET_SIGIOT,*/
71     [SIGBUS] = TARGET_SIGBUS,
72     [SIGFPE] = TARGET_SIGFPE,
73     [SIGKILL] = TARGET_SIGKILL,
74     [SIGUSR1] = TARGET_SIGUSR1,
75     [SIGSEGV] = TARGET_SIGSEGV,
76     [SIGUSR2] = TARGET_SIGUSR2,
77     [SIGPIPE] = TARGET_SIGPIPE,
78     [SIGALRM] = TARGET_SIGALRM,
79     [SIGTERM] = TARGET_SIGTERM,
80 #ifdef SIGSTKFLT
81     [SIGSTKFLT] = TARGET_SIGSTKFLT,
82 #endif
83     [SIGCHLD] = TARGET_SIGCHLD,
84     [SIGCONT] = TARGET_SIGCONT,
85     [SIGSTOP] = TARGET_SIGSTOP,
86     [SIGTSTP] = TARGET_SIGTSTP,
87     [SIGTTIN] = TARGET_SIGTTIN,
88     [SIGTTOU] = TARGET_SIGTTOU,
89     [SIGURG] = TARGET_SIGURG,
90     [SIGXCPU] = TARGET_SIGXCPU,
91     [SIGXFSZ] = TARGET_SIGXFSZ,
92     [SIGVTALRM] = TARGET_SIGVTALRM,
93     [SIGPROF] = TARGET_SIGPROF,
94     [SIGWINCH] = TARGET_SIGWINCH,
95     [SIGIO] = TARGET_SIGIO,
96     [SIGPWR] = TARGET_SIGPWR,
97     [SIGSYS] = TARGET_SIGSYS,
98     /* next signals stay the same */
99 };
100 static uint8_t target_to_host_signal_table[65];
101 
102 static inline int host_to_target_signal(int sig)
103 {
104     return host_to_target_signal_table[sig];
105 }
106 
107 static inline int target_to_host_signal(int sig)
108 {
109     return target_to_host_signal_table[sig];
110 }
111 
112 static void host_to_target_sigset_internal(target_sigset_t *d,
113                                            const sigset_t *s)
114 {
115     int i;
116     unsigned long sigmask;
117     uint32_t target_sigmask;
118 
119     sigmask = ((unsigned long *)s)[0];
120     target_sigmask = 0;
121     for(i = 0; i < 32; i++) {
122         if (sigmask & (1 << i))
123             target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1);
124     }
125 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
126     d->sig[0] = target_sigmask;
127     for(i = 1;i < TARGET_NSIG_WORDS; i++) {
128         d->sig[i] = ((unsigned long *)s)[i];
129     }
130 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
131     d->sig[0] = target_sigmask;
132     d->sig[1] = sigmask >> 32;
133 #else
134 #error host_to_target_sigset
135 #endif
136 }
137 
138 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
139 {
140     target_sigset_t d1;
141     int i;
142 
143     host_to_target_sigset_internal(&d1, s);
144     for(i = 0;i < TARGET_NSIG_WORDS; i++)
145         __put_user(d1.sig[i], &d->sig[i]);
146 }
147 
148 void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s)
149 {
150     int i;
151     unsigned long sigmask;
152     target_ulong target_sigmask;
153 
154     target_sigmask = s->sig[0];
155     sigmask = 0;
156     for(i = 0; i < 32; i++) {
157         if (target_sigmask & (1 << i))
158             sigmask |= 1 << (target_to_host_signal(i + 1) - 1);
159     }
160 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
161     ((unsigned long *)d)[0] = sigmask;
162     for(i = 1;i < TARGET_NSIG_WORDS; i++) {
163         ((unsigned long *)d)[i] = s->sig[i];
164     }
165 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
166     ((unsigned long *)d)[0] = sigmask | ((unsigned long)(s->sig[1]) << 32);
167 #else
168 #error target_to_host_sigset
169 #endif /* TARGET_LONG_BITS */
170 }
171 
172 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
173 {
174     target_sigset_t s1;
175     int i;
176 
177     for(i = 0;i < TARGET_NSIG_WORDS; i++)
178         __get_user(s1.sig[i], &s->sig[i]);
179     target_to_host_sigset_internal(d, &s1);
180 }
181 
182 void host_to_target_old_sigset(target_ulong *old_sigset,
183                                const sigset_t *sigset)
184 {
185     target_sigset_t d;
186     host_to_target_sigset(&d, sigset);
187     *old_sigset = d.sig[0];
188 }
189 
190 void target_to_host_old_sigset(sigset_t *sigset,
191                                const target_ulong *old_sigset)
192 {
193     target_sigset_t d;
194     int i;
195 
196     d.sig[0] = *old_sigset;
197     for(i = 1;i < TARGET_NSIG_WORDS; i++)
198         d.sig[i] = 0;
199     target_to_host_sigset(sigset, &d);
200 }
201 
202 /* siginfo conversion */
203 
204 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
205                                                  const siginfo_t *info)
206 {
207     int sig;
208     sig = host_to_target_signal(info->si_signo);
209     tinfo->si_signo = sig;
210     tinfo->si_errno = 0;
211     tinfo->si_code = 0;
212     if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
213         sig == SIGBUS || sig == SIGTRAP) {
214         /* should never come here, but who knows. The information for
215            the target is irrelevant */
216         tinfo->_sifields._sigfault._addr = 0;
217     } else if (sig >= TARGET_SIGRTMIN) {
218         tinfo->_sifields._rt._pid = info->si_pid;
219         tinfo->_sifields._rt._uid = info->si_uid;
220         /* XXX: potential problem if 64 bit */
221         tinfo->_sifields._rt._sigval.sival_ptr =
222             (target_ulong)info->si_value.sival_ptr;
223     }
224 }
225 
226 static void tswap_siginfo(target_siginfo_t *tinfo,
227                           const target_siginfo_t *info)
228 {
229     int sig;
230     sig = info->si_signo;
231     tinfo->si_signo = tswap32(sig);
232     tinfo->si_errno = tswap32(info->si_errno);
233     tinfo->si_code = tswap32(info->si_code);
234     if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
235         sig == SIGBUS || sig == SIGTRAP) {
236         tinfo->_sifields._sigfault._addr =
237             tswapl(info->_sifields._sigfault._addr);
238     } else if (sig >= TARGET_SIGRTMIN) {
239         tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid);
240         tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid);
241         tinfo->_sifields._rt._sigval.sival_ptr =
242             tswapl(info->_sifields._rt._sigval.sival_ptr);
243     }
244 }
245 
246 
247 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
248 {
249     host_to_target_siginfo_noswap(tinfo, info);
250     tswap_siginfo(tinfo, tinfo);
251 }
252 
253 /* XXX: we support only POSIX RT signals are used. */
254 /* XXX: find a solution for 64 bit (additionnal malloced data is needed) */
255 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
256 {
257     info->si_signo = tswap32(tinfo->si_signo);
258     info->si_errno = tswap32(tinfo->si_errno);
259     info->si_code = tswap32(tinfo->si_code);
260     info->si_pid = tswap32(tinfo->_sifields._rt._pid);
261     info->si_uid = tswap32(tinfo->_sifields._rt._uid);
262     info->si_value.sival_ptr =
263         (void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr);
264 }
265 
266 void signal_init(void)
267 {
268     struct sigaction act;
269     int i, j;
270 
271     /* generate signal conversion tables */
272     for(i = 1; i <= 64; i++) {
273         if (host_to_target_signal_table[i] == 0)
274             host_to_target_signal_table[i] = i;
275     }
276     for(i = 1; i <= 64; i++) {
277         j = host_to_target_signal_table[i];
278         target_to_host_signal_table[j] = i;
279     }
280 
281     /* set all host signal handlers. ALL signals are blocked during
282        the handlers to serialize them. */
283     sigfillset(&act.sa_mask);
284     act.sa_flags = SA_SIGINFO;
285     act.sa_sigaction = host_signal_handler;
286     for(i = 1; i < NSIG; i++) {
287         sigaction(i, &act, NULL);
288     }
289 
290     memset(sigact_table, 0, sizeof(sigact_table));
291 
292     first_free = &sigqueue_table[0];
293     for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++)
294         sigqueue_table[i].next = &sigqueue_table[i + 1];
295     sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL;
296 }
297 
298 /* signal queue handling */
299 
300 static inline struct sigqueue *alloc_sigqueue(void)
301 {
302     struct sigqueue *q = first_free;
303     if (!q)
304         return NULL;
305     first_free = q->next;
306     return q;
307 }
308 
309 static inline void free_sigqueue(struct sigqueue *q)
310 {
311     q->next = first_free;
312     first_free = q;
313 }
314 
315 /* abort execution with signal */
316 void __attribute((noreturn)) force_sig(int sig)
317 {
318     int host_sig;
319     host_sig = target_to_host_signal(sig);
320     fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n",
321             sig, strsignal(host_sig));
322 #if 1
323     _exit(-host_sig);
324 #else
325     {
326         struct sigaction act;
327         sigemptyset(&act.sa_mask);
328         act.sa_flags = SA_SIGINFO;
329         act.sa_sigaction = SIG_DFL;
330         sigaction(SIGABRT, &act, NULL);
331         abort();
332     }
333 #endif
334 }
335 
336 /* queue a signal so that it will be send to the virtual CPU as soon
337    as possible */
338 int queue_signal(int sig, target_siginfo_t *info)
339 {
340     struct emulated_sigaction *k;
341     struct sigqueue *q, **pq;
342     target_ulong handler;
343 
344 #if defined(DEBUG_SIGNAL)
345     fprintf(stderr, "queue_signal: sig=%d\n",
346             sig);
347 #endif
348     k = &sigact_table[sig - 1];
349     handler = k->sa._sa_handler;
350     if (handler == TARGET_SIG_DFL) {
351         /* default handler : ignore some signal. The other are fatal */
352         if (sig != TARGET_SIGCHLD &&
353             sig != TARGET_SIGURG &&
354             sig != TARGET_SIGWINCH) {
355             force_sig(sig);
356         } else {
357             return 0; /* indicate ignored */
358         }
359     } else if (handler == TARGET_SIG_IGN) {
360         /* ignore signal */
361         return 0;
362     } else if (handler == TARGET_SIG_ERR) {
363         force_sig(sig);
364     } else {
365         pq = &k->first;
366         if (sig < TARGET_SIGRTMIN) {
367             /* if non real time signal, we queue exactly one signal */
368             if (!k->pending)
369                 q = &k->info;
370             else
371                 return 0;
372         } else {
373             if (!k->pending) {
374                 /* first signal */
375                 q = &k->info;
376             } else {
377                 q = alloc_sigqueue();
378                 if (!q)
379                     return -EAGAIN;
380                 while (*pq != NULL)
381                     pq = &(*pq)->next;
382             }
383         }
384         *pq = q;
385         q->info = *info;
386         q->next = NULL;
387         k->pending = 1;
388         /* signal that a new signal is pending */
389         signal_pending = 1;
390         return 1; /* indicates that the signal was queued */
391     }
392 }
393 
394 static void host_signal_handler(int host_signum, siginfo_t *info,
395                                 void *puc)
396 {
397     int sig;
398     target_siginfo_t tinfo;
399 
400     /* the CPU emulator uses some host signals to detect exceptions,
401        we we forward to it some signals */
402     if (host_signum == SIGSEGV || host_signum == SIGBUS
403 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
404         || host_signum == SIGFPE
405 #endif
406         ) {
407         if (cpu_signal_handler(host_signum, info, puc))
408             return;
409     }
410 
411     /* get target signal number */
412     sig = host_to_target_signal(host_signum);
413     if (sig < 1 || sig > TARGET_NSIG)
414         return;
415 #if defined(DEBUG_SIGNAL)
416     fprintf(stderr, "qemu: got signal %d\n", sig);
417 #endif
418     host_to_target_siginfo_noswap(&tinfo, info);
419     if (queue_signal(sig, &tinfo) == 1) {
420         /* interrupt the virtual CPU as soon as possible */
421         cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
422     }
423 }
424 
425 int do_sigaction(int sig, const struct target_sigaction *act,
426                  struct target_sigaction *oact)
427 {
428     struct emulated_sigaction *k;
429     struct sigaction act1;
430     int host_sig;
431 
432     if (sig < 1 || sig > TARGET_NSIG)
433         return -EINVAL;
434     k = &sigact_table[sig - 1];
435 #if defined(DEBUG_SIGNAL)
436     fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n",
437             sig, (int)act, (int)oact);
438 #endif
439     if (oact) {
440         oact->_sa_handler = tswapl(k->sa._sa_handler);
441         oact->sa_flags = tswapl(k->sa.sa_flags);
442         oact->sa_restorer = tswapl(k->sa.sa_restorer);
443         oact->sa_mask = k->sa.sa_mask;
444     }
445     if (act) {
446         k->sa._sa_handler = tswapl(act->_sa_handler);
447         k->sa.sa_flags = tswapl(act->sa_flags);
448         k->sa.sa_restorer = tswapl(act->sa_restorer);
449         k->sa.sa_mask = act->sa_mask;
450 
451         /* we update the host linux signal state */
452         host_sig = target_to_host_signal(sig);
453         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
454             sigfillset(&act1.sa_mask);
455             act1.sa_flags = SA_SIGINFO;
456             if (k->sa.sa_flags & TARGET_SA_RESTART)
457                 act1.sa_flags |= SA_RESTART;
458             /* NOTE: it is important to update the host kernel signal
459                ignore state to avoid getting unexpected interrupted
460                syscalls */
461             if (k->sa._sa_handler == TARGET_SIG_IGN) {
462                 act1.sa_sigaction = (void *)SIG_IGN;
463             } else if (k->sa._sa_handler == TARGET_SIG_DFL) {
464                 act1.sa_sigaction = (void *)SIG_DFL;
465             } else {
466                 act1.sa_sigaction = host_signal_handler;
467             }
468             sigaction(host_sig, &act1, NULL);
469         }
470     }
471     return 0;
472 }
473 
474 #ifndef offsetof
475 #define offsetof(type, field) ((size_t) &((type *)0)->field)
476 #endif
477 
478 static inline int copy_siginfo_to_user(target_siginfo_t *tinfo,
479                                        const target_siginfo_t *info)
480 {
481     tswap_siginfo(tinfo, info);
482     return 0;
483 }
484 
485 #ifdef TARGET_I386
486 
487 /* from the Linux kernel */
488 
489 struct target_fpreg {
490 	uint16_t significand[4];
491 	uint16_t exponent;
492 };
493 
494 struct target_fpxreg {
495 	uint16_t significand[4];
496 	uint16_t exponent;
497 	uint16_t padding[3];
498 };
499 
500 struct target_xmmreg {
501 	target_ulong element[4];
502 };
503 
504 struct target_fpstate {
505 	/* Regular FPU environment */
506 	target_ulong 	cw;
507 	target_ulong	sw;
508 	target_ulong	tag;
509 	target_ulong	ipoff;
510 	target_ulong	cssel;
511 	target_ulong	dataoff;
512 	target_ulong	datasel;
513 	struct target_fpreg	_st[8];
514 	uint16_t	status;
515 	uint16_t	magic;		/* 0xffff = regular FPU data only */
516 
517 	/* FXSR FPU environment */
518 	target_ulong	_fxsr_env[6];	/* FXSR FPU env is ignored */
519 	target_ulong	mxcsr;
520 	target_ulong	reserved;
521 	struct target_fpxreg	_fxsr_st[8];	/* FXSR FPU reg data is ignored */
522 	struct target_xmmreg	_xmm[8];
523 	target_ulong	padding[56];
524 };
525 
526 #define X86_FXSR_MAGIC		0x0000
527 
528 struct target_sigcontext {
529 	uint16_t gs, __gsh;
530 	uint16_t fs, __fsh;
531 	uint16_t es, __esh;
532 	uint16_t ds, __dsh;
533 	target_ulong edi;
534 	target_ulong esi;
535 	target_ulong ebp;
536 	target_ulong esp;
537 	target_ulong ebx;
538 	target_ulong edx;
539 	target_ulong ecx;
540 	target_ulong eax;
541 	target_ulong trapno;
542 	target_ulong err;
543 	target_ulong eip;
544 	uint16_t cs, __csh;
545 	target_ulong eflags;
546 	target_ulong esp_at_signal;
547 	uint16_t ss, __ssh;
548         target_ulong fpstate; /* pointer */
549 	target_ulong oldmask;
550 	target_ulong cr2;
551 };
552 
553 typedef struct target_sigaltstack {
554 	target_ulong ss_sp;
555 	int ss_flags;
556 	target_ulong ss_size;
557 } target_stack_t;
558 
559 struct target_ucontext {
560         target_ulong	  uc_flags;
561 	target_ulong      uc_link;
562 	target_stack_t	  uc_stack;
563 	struct target_sigcontext uc_mcontext;
564 	target_sigset_t	  uc_sigmask;	/* mask last for extensibility */
565 };
566 
567 struct sigframe
568 {
569     target_ulong pretcode;
570     int sig;
571     struct target_sigcontext sc;
572     struct target_fpstate fpstate;
573     target_ulong extramask[TARGET_NSIG_WORDS-1];
574     char retcode[8];
575 };
576 
577 struct rt_sigframe
578 {
579     target_ulong pretcode;
580     int sig;
581     target_ulong pinfo;
582     target_ulong puc;
583     struct target_siginfo info;
584     struct target_ucontext uc;
585     struct target_fpstate fpstate;
586     char retcode[8];
587 };
588 
589 /*
590  * Set up a signal frame.
591  */
592 
593 /* XXX: save x87 state */
594 static int
595 setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate,
596 		 CPUX86State *env, unsigned long mask)
597 {
598 	int err = 0;
599 
600 	err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs);
601 	err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs);
602 	err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es);
603 	err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds);
604 	err |= __put_user(env->regs[R_EDI], &sc->edi);
605 	err |= __put_user(env->regs[R_ESI], &sc->esi);
606 	err |= __put_user(env->regs[R_EBP], &sc->ebp);
607 	err |= __put_user(env->regs[R_ESP], &sc->esp);
608 	err |= __put_user(env->regs[R_EBX], &sc->ebx);
609 	err |= __put_user(env->regs[R_EDX], &sc->edx);
610 	err |= __put_user(env->regs[R_ECX], &sc->ecx);
611 	err |= __put_user(env->regs[R_EAX], &sc->eax);
612 	err |= __put_user(env->exception_index, &sc->trapno);
613 	err |= __put_user(env->error_code, &sc->err);
614 	err |= __put_user(env->eip, &sc->eip);
615 	err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs);
616 	err |= __put_user(env->eflags, &sc->eflags);
617 	err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal);
618 	err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss);
619 
620         cpu_x86_fsave(env, (void *)fpstate, 1);
621         fpstate->status = fpstate->sw;
622         err |= __put_user(0xffff, &fpstate->magic);
623         err |= __put_user(fpstate, &sc->fpstate);
624 
625 	/* non-iBCS2 extensions.. */
626 	err |= __put_user(mask, &sc->oldmask);
627 	err |= __put_user(env->cr[2], &sc->cr2);
628 	return err;
629 }
630 
631 /*
632  * Determine which stack to use..
633  */
634 
635 static inline void *
636 get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size)
637 {
638 	unsigned long esp;
639 
640 	/* Default to using normal stack */
641 	esp = env->regs[R_ESP];
642 #if 0
643 	/* This is the X/Open sanctioned signal stack switching.  */
644 	if (ka->sa.sa_flags & SA_ONSTACK) {
645 		if (sas_ss_flags(esp) == 0)
646 			esp = current->sas_ss_sp + current->sas_ss_size;
647 	}
648 
649 	/* This is the legacy signal stack switching. */
650 	else
651 #endif
652         if ((env->segs[R_SS].selector & 0xffff) != __USER_DS &&
653             !(ka->sa.sa_flags & TARGET_SA_RESTORER) &&
654             ka->sa.sa_restorer) {
655             esp = (unsigned long) ka->sa.sa_restorer;
656 	}
657         return (void *)((esp - frame_size) & -8ul);
658 }
659 
660 static void setup_frame(int sig, struct emulated_sigaction *ka,
661 			target_sigset_t *set, CPUX86State *env)
662 {
663 	struct sigframe *frame;
664 	int i, err = 0;
665 
666 	frame = get_sigframe(ka, env, sizeof(*frame));
667 
668 	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
669 		goto give_sigsegv;
670 	err |= __put_user((/*current->exec_domain
671 		           && current->exec_domain->signal_invmap
672 		           && sig < 32
673 		           ? current->exec_domain->signal_invmap[sig]
674 		           : */ sig),
675 		          &frame->sig);
676 	if (err)
677 		goto give_sigsegv;
678 
679 	setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]);
680 	if (err)
681 		goto give_sigsegv;
682 
683         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
684             if (__put_user(set->sig[i], &frame->extramask[i - 1]))
685                 goto give_sigsegv;
686         }
687 
688 	/* Set up to return from userspace.  If provided, use a stub
689 	   already in userspace.  */
690 	if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
691 		err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
692 	} else {
693 		err |= __put_user(frame->retcode, &frame->pretcode);
694 		/* This is popl %eax ; movl $,%eax ; int $0x80 */
695 		err |= __put_user(0xb858, (short *)(frame->retcode+0));
696 		err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2));
697 		err |= __put_user(0x80cd, (short *)(frame->retcode+6));
698 	}
699 
700 	if (err)
701 		goto give_sigsegv;
702 
703 	/* Set up registers for signal handler */
704 	env->regs[R_ESP] = (unsigned long) frame;
705 	env->eip = (unsigned long) ka->sa._sa_handler;
706 
707         cpu_x86_load_seg(env, R_DS, __USER_DS);
708         cpu_x86_load_seg(env, R_ES, __USER_DS);
709         cpu_x86_load_seg(env, R_SS, __USER_DS);
710         cpu_x86_load_seg(env, R_CS, __USER_CS);
711 	env->eflags &= ~TF_MASK;
712 
713 	return;
714 
715 give_sigsegv:
716 	if (sig == TARGET_SIGSEGV)
717 		ka->sa._sa_handler = TARGET_SIG_DFL;
718 	force_sig(TARGET_SIGSEGV /* , current */);
719 }
720 
721 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
722                            target_siginfo_t *info,
723 			   target_sigset_t *set, CPUX86State *env)
724 {
725 	struct rt_sigframe *frame;
726 	int i, err = 0;
727 
728 	frame = get_sigframe(ka, env, sizeof(*frame));
729 
730 	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
731 		goto give_sigsegv;
732 
733 	err |= __put_user((/*current->exec_domain
734 		    	   && current->exec_domain->signal_invmap
735 		    	   && sig < 32
736 		    	   ? current->exec_domain->signal_invmap[sig]
737 			   : */sig),
738 			  &frame->sig);
739 	err |= __put_user((target_ulong)&frame->info, &frame->pinfo);
740 	err |= __put_user((target_ulong)&frame->uc, &frame->puc);
741 	err |= copy_siginfo_to_user(&frame->info, info);
742 	if (err)
743 		goto give_sigsegv;
744 
745 	/* Create the ucontext.  */
746 	err |= __put_user(0, &frame->uc.uc_flags);
747 	err |= __put_user(0, &frame->uc.uc_link);
748 	err |= __put_user(/*current->sas_ss_sp*/ 0, &frame->uc.uc_stack.ss_sp);
749 	err |= __put_user(/* sas_ss_flags(regs->esp) */ 0,
750 			  &frame->uc.uc_stack.ss_flags);
751 	err |= __put_user(/* current->sas_ss_size */ 0, &frame->uc.uc_stack.ss_size);
752 	err |= setup_sigcontext(&frame->uc.uc_mcontext, &frame->fpstate,
753 			        env, set->sig[0]);
754         for(i = 0; i < TARGET_NSIG_WORDS; i++) {
755             if (__put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]))
756                 goto give_sigsegv;
757         }
758 
759 	/* Set up to return from userspace.  If provided, use a stub
760 	   already in userspace.  */
761 	if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
762 		err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
763 	} else {
764 		err |= __put_user(frame->retcode, &frame->pretcode);
765 		/* This is movl $,%eax ; int $0x80 */
766 		err |= __put_user(0xb8, (char *)(frame->retcode+0));
767 		err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1));
768 		err |= __put_user(0x80cd, (short *)(frame->retcode+5));
769 	}
770 
771 	if (err)
772 		goto give_sigsegv;
773 
774 	/* Set up registers for signal handler */
775 	env->regs[R_ESP] = (unsigned long) frame;
776 	env->eip = (unsigned long) ka->sa._sa_handler;
777 
778         cpu_x86_load_seg(env, R_DS, __USER_DS);
779         cpu_x86_load_seg(env, R_ES, __USER_DS);
780         cpu_x86_load_seg(env, R_SS, __USER_DS);
781         cpu_x86_load_seg(env, R_CS, __USER_CS);
782 	env->eflags &= ~TF_MASK;
783 
784 	return;
785 
786 give_sigsegv:
787 	if (sig == TARGET_SIGSEGV)
788 		ka->sa._sa_handler = TARGET_SIG_DFL;
789 	force_sig(TARGET_SIGSEGV /* , current */);
790 }
791 
792 static int
793 restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax)
794 {
795 	unsigned int err = 0;
796 
797         cpu_x86_load_seg(env, R_GS, lduw(&sc->gs));
798         cpu_x86_load_seg(env, R_FS, lduw(&sc->fs));
799         cpu_x86_load_seg(env, R_ES, lduw(&sc->es));
800         cpu_x86_load_seg(env, R_DS, lduw(&sc->ds));
801 
802         env->regs[R_EDI] = ldl(&sc->edi);
803         env->regs[R_ESI] = ldl(&sc->esi);
804         env->regs[R_EBP] = ldl(&sc->ebp);
805         env->regs[R_ESP] = ldl(&sc->esp);
806         env->regs[R_EBX] = ldl(&sc->ebx);
807         env->regs[R_EDX] = ldl(&sc->edx);
808         env->regs[R_ECX] = ldl(&sc->ecx);
809         env->eip = ldl(&sc->eip);
810 
811         cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3);
812         cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3);
813 
814 	{
815 		unsigned int tmpflags;
816                 tmpflags = ldl(&sc->eflags);
817 		env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5);
818                 //		regs->orig_eax = -1;		/* disable syscall checks */
819 	}
820 
821 	{
822 		struct _fpstate * buf;
823                 buf = (void *)ldl(&sc->fpstate);
824 		if (buf) {
825 #if 0
826 			if (verify_area(VERIFY_READ, buf, sizeof(*buf)))
827 				goto badframe;
828 #endif
829                         cpu_x86_frstor(env, (void *)buf, 1);
830 		}
831 	}
832 
833         *peax = ldl(&sc->eax);
834 	return err;
835 #if 0
836 badframe:
837 	return 1;
838 #endif
839 }
840 
841 long do_sigreturn(CPUX86State *env)
842 {
843     struct sigframe *frame = (struct sigframe *)(env->regs[R_ESP] - 8);
844     target_sigset_t target_set;
845     sigset_t set;
846     int eax, i;
847 
848 #if defined(DEBUG_SIGNAL)
849     fprintf(stderr, "do_sigreturn\n");
850 #endif
851     /* set blocked signals */
852     if (__get_user(target_set.sig[0], &frame->sc.oldmask))
853         goto badframe;
854     for(i = 1; i < TARGET_NSIG_WORDS; i++) {
855         if (__get_user(target_set.sig[i], &frame->extramask[i - 1]))
856             goto badframe;
857     }
858 
859     target_to_host_sigset_internal(&set, &target_set);
860     sigprocmask(SIG_SETMASK, &set, NULL);
861 
862     /* restore registers */
863     if (restore_sigcontext(env, &frame->sc, &eax))
864         goto badframe;
865     return eax;
866 
867 badframe:
868     force_sig(TARGET_SIGSEGV);
869     return 0;
870 }
871 
872 long do_rt_sigreturn(CPUX86State *env)
873 {
874 	struct rt_sigframe *frame = (struct rt_sigframe *)(env->regs[R_ESP] - 4);
875         sigset_t set;
876         //	stack_t st;
877 	int eax;
878 
879 #if 0
880 	if (verify_area(VERIFY_READ, frame, sizeof(*frame)))
881 		goto badframe;
882 #endif
883         target_to_host_sigset(&set, &frame->uc.uc_sigmask);
884         sigprocmask(SIG_SETMASK, &set, NULL);
885 
886 	if (restore_sigcontext(env, &frame->uc.uc_mcontext, &eax))
887 		goto badframe;
888 
889 #if 0
890 	if (__copy_from_user(&st, &frame->uc.uc_stack, sizeof(st)))
891 		goto badframe;
892 	/* It is more difficult to avoid calling this function than to
893 	   call it and ignore errors.  */
894 	do_sigaltstack(&st, NULL, regs->esp);
895 #endif
896 	return eax;
897 
898 badframe:
899 	force_sig(TARGET_SIGSEGV);
900 	return 0;
901 }
902 
903 #elif defined(TARGET_ARM)
904 
905 struct target_sigcontext {
906 	target_ulong trap_no;
907 	target_ulong error_code;
908 	target_ulong oldmask;
909 	target_ulong arm_r0;
910 	target_ulong arm_r1;
911 	target_ulong arm_r2;
912 	target_ulong arm_r3;
913 	target_ulong arm_r4;
914 	target_ulong arm_r5;
915 	target_ulong arm_r6;
916 	target_ulong arm_r7;
917 	target_ulong arm_r8;
918 	target_ulong arm_r9;
919 	target_ulong arm_r10;
920 	target_ulong arm_fp;
921 	target_ulong arm_ip;
922 	target_ulong arm_sp;
923 	target_ulong arm_lr;
924 	target_ulong arm_pc;
925 	target_ulong arm_cpsr;
926 	target_ulong fault_address;
927 };
928 
929 typedef struct target_sigaltstack {
930 	target_ulong ss_sp;
931 	int ss_flags;
932 	target_ulong ss_size;
933 } target_stack_t;
934 
935 struct target_ucontext {
936     target_ulong uc_flags;
937     target_ulong uc_link;
938     target_stack_t uc_stack;
939     struct target_sigcontext uc_mcontext;
940     target_sigset_t  uc_sigmask;	/* mask last for extensibility */
941 };
942 
943 struct sigframe
944 {
945     struct target_sigcontext sc;
946     target_ulong extramask[TARGET_NSIG_WORDS-1];
947     target_ulong retcode;
948 };
949 
950 struct rt_sigframe
951 {
952     struct target_siginfo *pinfo;
953     void *puc;
954     struct target_siginfo info;
955     struct target_ucontext uc;
956     target_ulong retcode;
957 };
958 
959 #define TARGET_CONFIG_CPU_32 1
960 
961 /*
962  * For ARM syscalls, we encode the syscall number into the instruction.
963  */
964 #define SWI_SYS_SIGRETURN	(0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE))
965 #define SWI_SYS_RT_SIGRETURN	(0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE))
966 
967 /*
968  * For Thumb syscalls, we pass the syscall number via r7.  We therefore
969  * need two 16-bit instructions.
970  */
971 #define SWI_THUMB_SIGRETURN	(0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn))
972 #define SWI_THUMB_RT_SIGRETURN	(0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn))
973 
974 static const target_ulong retcodes[4] = {
975 	SWI_SYS_SIGRETURN,	SWI_THUMB_SIGRETURN,
976 	SWI_SYS_RT_SIGRETURN,	SWI_THUMB_RT_SIGRETURN
977 };
978 
979 
980 #define __put_user_error(x,p,e) __put_user(x, p)
981 #define __get_user_error(x,p,e) __get_user(x, p)
982 
983 static inline int valid_user_regs(CPUState *regs)
984 {
985     return 1;
986 }
987 
988 static int
989 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
990 		 CPUState *env, unsigned long mask)
991 {
992 	int err = 0;
993 
994 	__put_user_error(env->regs[0], &sc->arm_r0, err);
995 	__put_user_error(env->regs[1], &sc->arm_r1, err);
996 	__put_user_error(env->regs[2], &sc->arm_r2, err);
997 	__put_user_error(env->regs[3], &sc->arm_r3, err);
998 	__put_user_error(env->regs[4], &sc->arm_r4, err);
999 	__put_user_error(env->regs[5], &sc->arm_r5, err);
1000 	__put_user_error(env->regs[6], &sc->arm_r6, err);
1001 	__put_user_error(env->regs[7], &sc->arm_r7, err);
1002 	__put_user_error(env->regs[8], &sc->arm_r8, err);
1003 	__put_user_error(env->regs[9], &sc->arm_r9, err);
1004 	__put_user_error(env->regs[10], &sc->arm_r10, err);
1005 	__put_user_error(env->regs[11], &sc->arm_fp, err);
1006 	__put_user_error(env->regs[12], &sc->arm_ip, err);
1007 	__put_user_error(env->regs[13], &sc->arm_sp, err);
1008 	__put_user_error(env->regs[14], &sc->arm_lr, err);
1009 	__put_user_error(env->regs[15], &sc->arm_pc, err);
1010 #ifdef TARGET_CONFIG_CPU_32
1011 	__put_user_error(env->cpsr, &sc->arm_cpsr, err);
1012 #endif
1013 
1014 	__put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err);
1015 	__put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err);
1016 	__put_user_error(/* current->thread.address */ 0, &sc->fault_address, err);
1017 	__put_user_error(mask, &sc->oldmask, err);
1018 
1019 	return err;
1020 }
1021 
1022 static inline void *
1023 get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize)
1024 {
1025 	unsigned long sp = regs->regs[13];
1026 
1027 #if 0
1028 	/*
1029 	 * This is the X/Open sanctioned signal stack switching.
1030 	 */
1031 	if ((ka->sa.sa_flags & SA_ONSTACK) && !sas_ss_flags(sp))
1032 		sp = current->sas_ss_sp + current->sas_ss_size;
1033 #endif
1034 	/*
1035 	 * ATPCS B01 mandates 8-byte alignment
1036 	 */
1037 	return (void *)((sp - framesize) & ~7);
1038 }
1039 
1040 static int
1041 setup_return(CPUState *env, struct emulated_sigaction *ka,
1042 	     target_ulong *rc, void *frame, int usig)
1043 {
1044 	target_ulong handler = (target_ulong)ka->sa._sa_handler;
1045 	target_ulong retcode;
1046 	int thumb = 0;
1047 #if defined(TARGET_CONFIG_CPU_32)
1048 	target_ulong cpsr = env->cpsr;
1049 
1050 #if 0
1051 	/*
1052 	 * Maybe we need to deliver a 32-bit signal to a 26-bit task.
1053 	 */
1054 	if (ka->sa.sa_flags & SA_THIRTYTWO)
1055 		cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
1056 
1057 #ifdef CONFIG_ARM_THUMB
1058 	if (elf_hwcap & HWCAP_THUMB) {
1059 		/*
1060 		 * The LSB of the handler determines if we're going to
1061 		 * be using THUMB or ARM mode for this signal handler.
1062 		 */
1063 		thumb = handler & 1;
1064 
1065 		if (thumb)
1066 			cpsr |= T_BIT;
1067 		else
1068 			cpsr &= ~T_BIT;
1069 	}
1070 #endif
1071 #endif
1072 #endif /* TARGET_CONFIG_CPU_32 */
1073 
1074 	if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
1075 		retcode = (target_ulong)ka->sa.sa_restorer;
1076 	} else {
1077 		unsigned int idx = thumb;
1078 
1079 		if (ka->sa.sa_flags & TARGET_SA_SIGINFO)
1080 			idx += 2;
1081 
1082 		if (__put_user(retcodes[idx], rc))
1083 			return 1;
1084 #if 0
1085 		flush_icache_range((target_ulong)rc,
1086 				   (target_ulong)(rc + 1));
1087 #endif
1088 		retcode = ((target_ulong)rc) + thumb;
1089 	}
1090 
1091 	env->regs[0] = usig;
1092 	env->regs[13] = (target_ulong)frame;
1093 	env->regs[14] = retcode;
1094 	env->regs[15] = handler & (thumb ? ~1 : ~3);
1095 
1096 #ifdef TARGET_CONFIG_CPU_32
1097 	env->cpsr = cpsr;
1098 #endif
1099 
1100 	return 0;
1101 }
1102 
1103 static void setup_frame(int usig, struct emulated_sigaction *ka,
1104 			target_sigset_t *set, CPUState *regs)
1105 {
1106 	struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame));
1107 	int i, err = 0;
1108 
1109 	err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]);
1110 
1111         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1112             if (__put_user(set->sig[i], &frame->extramask[i - 1]))
1113                 return;
1114 	}
1115 
1116 	if (err == 0)
1117             err = setup_return(regs, ka, &frame->retcode, frame, usig);
1118         //	return err;
1119 }
1120 
1121 static void setup_rt_frame(int usig, struct emulated_sigaction *ka,
1122                            target_siginfo_t *info,
1123 			   target_sigset_t *set, CPUState *env)
1124 {
1125 	struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame));
1126 	int i, err = 0;
1127 
1128 	if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame)))
1129             return /* 1 */;
1130 
1131 	__put_user_error(&frame->info, (target_ulong *)&frame->pinfo, err);
1132 	__put_user_error(&frame->uc, (target_ulong *)&frame->puc, err);
1133 	err |= copy_siginfo_to_user(&frame->info, info);
1134 
1135 	/* Clear all the bits of the ucontext we don't use.  */
1136 	err |= __clear_user(&frame->uc, offsetof(struct ucontext, uc_mcontext));
1137 
1138 	err |= setup_sigcontext(&frame->uc.uc_mcontext, /*&frame->fpstate,*/
1139 				env, set->sig[0]);
1140         for(i = 0; i < TARGET_NSIG_WORDS; i++) {
1141             if (__put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]))
1142                 return;
1143         }
1144 
1145 	if (err == 0)
1146 		err = setup_return(env, ka, &frame->retcode, frame, usig);
1147 
1148 	if (err == 0) {
1149 		/*
1150 		 * For realtime signals we must also set the second and third
1151 		 * arguments for the signal handler.
1152 		 *   -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
1153 		 */
1154             env->regs[1] = (target_ulong)frame->pinfo;
1155             env->regs[2] = (target_ulong)frame->puc;
1156 	}
1157 
1158         //	return err;
1159 }
1160 
1161 static int
1162 restore_sigcontext(CPUState *env, struct target_sigcontext *sc)
1163 {
1164 	int err = 0;
1165 
1166 	__get_user_error(env->regs[0], &sc->arm_r0, err);
1167 	__get_user_error(env->regs[1], &sc->arm_r1, err);
1168 	__get_user_error(env->regs[2], &sc->arm_r2, err);
1169 	__get_user_error(env->regs[3], &sc->arm_r3, err);
1170 	__get_user_error(env->regs[4], &sc->arm_r4, err);
1171 	__get_user_error(env->regs[5], &sc->arm_r5, err);
1172 	__get_user_error(env->regs[6], &sc->arm_r6, err);
1173 	__get_user_error(env->regs[7], &sc->arm_r7, err);
1174 	__get_user_error(env->regs[8], &sc->arm_r8, err);
1175 	__get_user_error(env->regs[9], &sc->arm_r9, err);
1176 	__get_user_error(env->regs[10], &sc->arm_r10, err);
1177 	__get_user_error(env->regs[11], &sc->arm_fp, err);
1178 	__get_user_error(env->regs[12], &sc->arm_ip, err);
1179 	__get_user_error(env->regs[13], &sc->arm_sp, err);
1180 	__get_user_error(env->regs[14], &sc->arm_lr, err);
1181 	__get_user_error(env->regs[15], &sc->arm_pc, err);
1182 #ifdef TARGET_CONFIG_CPU_32
1183 	__get_user_error(env->cpsr, &sc->arm_cpsr, err);
1184 #endif
1185 
1186 	err |= !valid_user_regs(env);
1187 
1188 	return err;
1189 }
1190 
1191 long do_sigreturn(CPUState *env)
1192 {
1193 	struct sigframe *frame;
1194 	target_sigset_t set;
1195         sigset_t host_set;
1196         int i;
1197 
1198 	/*
1199 	 * Since we stacked the signal on a 64-bit boundary,
1200 	 * then 'sp' should be word aligned here.  If it's
1201 	 * not, then the user is trying to mess with us.
1202 	 */
1203 	if (env->regs[13] & 7)
1204 		goto badframe;
1205 
1206 	frame = (struct sigframe *)env->regs[13];
1207 
1208 #if 0
1209 	if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1210 		goto badframe;
1211 #endif
1212 	if (__get_user(set.sig[0], &frame->sc.oldmask))
1213             goto badframe;
1214         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1215             if (__get_user(set.sig[i], &frame->extramask[i - 1]))
1216                 goto badframe;
1217         }
1218 
1219         target_to_host_sigset_internal(&host_set, &set);
1220         sigprocmask(SIG_SETMASK, &host_set, NULL);
1221 
1222 	if (restore_sigcontext(env, &frame->sc))
1223 		goto badframe;
1224 
1225 #if 0
1226 	/* Send SIGTRAP if we're single-stepping */
1227 	if (ptrace_cancel_bpt(current))
1228 		send_sig(SIGTRAP, current, 1);
1229 #endif
1230 	return env->regs[0];
1231 
1232 badframe:
1233         force_sig(SIGSEGV /* , current */);
1234 	return 0;
1235 }
1236 
1237 long do_rt_sigreturn(CPUState *env)
1238 {
1239 	struct rt_sigframe *frame;
1240         sigset_t host_set;
1241 
1242 	/*
1243 	 * Since we stacked the signal on a 64-bit boundary,
1244 	 * then 'sp' should be word aligned here.  If it's
1245 	 * not, then the user is trying to mess with us.
1246 	 */
1247 	if (env->regs[13] & 7)
1248 		goto badframe;
1249 
1250 	frame = (struct rt_sigframe *)env->regs[13];
1251 
1252 #if 0
1253 	if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1254 		goto badframe;
1255 #endif
1256         target_to_host_sigset(&host_set, &frame->uc.uc_sigmask);
1257         sigprocmask(SIG_SETMASK, &host_set, NULL);
1258 
1259 	if (restore_sigcontext(env, &frame->uc.uc_mcontext))
1260 		goto badframe;
1261 
1262 #if 0
1263 	/* Send SIGTRAP if we're single-stepping */
1264 	if (ptrace_cancel_bpt(current))
1265 		send_sig(SIGTRAP, current, 1);
1266 #endif
1267 	return env->regs[0];
1268 
1269 badframe:
1270         force_sig(SIGSEGV /* , current */);
1271 	return 0;
1272 }
1273 
1274 #elif defined(TARGET_SPARC)
1275 #define __SUNOS_MAXWIN   31
1276 
1277 /* This is what SunOS does, so shall I. */
1278 struct target_sigcontext {
1279         target_ulong sigc_onstack;      /* state to restore */
1280 
1281         target_ulong sigc_mask;         /* sigmask to restore */
1282         target_ulong sigc_sp;           /* stack pointer */
1283         target_ulong sigc_pc;           /* program counter */
1284         target_ulong sigc_npc;          /* next program counter */
1285         target_ulong sigc_psr;          /* for condition codes etc */
1286         target_ulong sigc_g1;           /* User uses these two registers */
1287         target_ulong sigc_o0;           /* within the trampoline code. */
1288 
1289         /* Now comes information regarding the users window set
1290          * at the time of the signal.
1291          */
1292         target_ulong sigc_oswins;       /* outstanding windows */
1293 
1294         /* stack ptrs for each regwin buf */
1295         char *sigc_spbuf[__SUNOS_MAXWIN];
1296 
1297         /* Windows to restore after signal */
1298         struct {
1299                 target_ulong locals[8];
1300                 target_ulong ins[8];
1301         } sigc_wbuf[__SUNOS_MAXWIN];
1302 };
1303 /* A Sparc stack frame */
1304 struct sparc_stackf {
1305         target_ulong locals[8];
1306         target_ulong ins[6];
1307         struct sparc_stackf *fp;
1308         target_ulong callers_pc;
1309         char *structptr;
1310         target_ulong xargs[6];
1311         target_ulong xxargs[1];
1312 };
1313 
1314 typedef struct {
1315         struct {
1316                 target_ulong psr;
1317                 target_ulong pc;
1318                 target_ulong npc;
1319                 target_ulong y;
1320                 target_ulong u_regs[16]; /* globals and ins */
1321         }               si_regs;
1322         int             si_mask;
1323 } __siginfo_t;
1324 
1325 typedef struct {
1326         unsigned   long si_float_regs [32];
1327         unsigned   long si_fsr;
1328         unsigned   long si_fpqdepth;
1329         struct {
1330                 unsigned long *insn_addr;
1331                 unsigned long insn;
1332         } si_fpqueue [16];
1333 } __siginfo_fpu_t;
1334 
1335 
1336 struct target_signal_frame {
1337 	struct sparc_stackf	ss;
1338 	__siginfo_t		info;
1339 	__siginfo_fpu_t 	*fpu_save;
1340 	target_ulong		insns[2] __attribute__ ((aligned (8)));
1341 	target_ulong		extramask[TARGET_NSIG_WORDS - 1];
1342 	target_ulong		extra_size; /* Should be 0 */
1343 	__siginfo_fpu_t		fpu_state;
1344 };
1345 struct target_rt_signal_frame {
1346 	struct sparc_stackf	ss;
1347 	siginfo_t		info;
1348 	target_ulong		regs[20];
1349 	sigset_t		mask;
1350 	__siginfo_fpu_t 	*fpu_save;
1351 	unsigned int		insns[2];
1352 	stack_t			stack;
1353 	unsigned int		extra_size; /* Should be 0 */
1354 	__siginfo_fpu_t		fpu_state;
1355 };
1356 
1357 #define UREG_O0        16
1358 #define UREG_O6        22
1359 #define UREG_I0        0
1360 #define UREG_I1        1
1361 #define UREG_I2        2
1362 #define UREG_I6        6
1363 #define UREG_I7        7
1364 #define UREG_L0	       8
1365 #define UREG_FP        UREG_I6
1366 #define UREG_SP        UREG_O6
1367 
1368 static inline void *get_sigframe(struct emulated_sigaction *sa, CPUState *env, unsigned long framesize)
1369 {
1370 	unsigned long sp;
1371 
1372 	sp = env->regwptr[UREG_FP];
1373 #if 0
1374 
1375 	/* This is the X/Open sanctioned signal stack switching.  */
1376 	if (sa->sa_flags & TARGET_SA_ONSTACK) {
1377 		if (!on_sig_stack(sp) && !((current->sas_ss_sp + current->sas_ss_size) & 7))
1378 			sp = current->sas_ss_sp + current->sas_ss_size;
1379 	}
1380 #endif
1381 	return (void *)(sp - framesize);
1382 }
1383 
1384 static int
1385 setup___siginfo(__siginfo_t *si, CPUState *env, target_ulong mask)
1386 {
1387 	int err = 0, i;
1388 
1389 	err |= __put_user(env->psr, &si->si_regs.psr);
1390 	err |= __put_user(env->pc, &si->si_regs.pc);
1391 	err |= __put_user(env->npc, &si->si_regs.npc);
1392 	err |= __put_user(env->y, &si->si_regs.y);
1393 	for (i=0; i < 7; i++) {
1394 		err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
1395 	}
1396 	for (i=0; i < 7; i++) {
1397 		err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
1398 	}
1399 	err |= __put_user(mask, &si->si_mask);
1400 	return err;
1401 }
1402 
1403 static int
1404 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
1405 		 CPUState *env, unsigned long mask)
1406 {
1407 	int err = 0;
1408 
1409 	err |= __put_user(mask, &sc->sigc_mask);
1410 	err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
1411 	err |= __put_user(env->pc, &sc->sigc_pc);
1412 	err |= __put_user(env->npc, &sc->sigc_npc);
1413 	err |= __put_user(env->psr, &sc->sigc_psr);
1414 	err |= __put_user(env->gregs[1], &sc->sigc_g1);
1415 	err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
1416 
1417 	return err;
1418 }
1419 #define NF_ALIGNEDSZ  (((sizeof(struct target_signal_frame) + 7) & (~7)))
1420 
1421 static void setup_frame(int sig, struct emulated_sigaction *ka,
1422 			target_sigset_t *set, CPUState *env)
1423 {
1424 	struct target_signal_frame *sf;
1425 	int sigframe_size, err, i;
1426 
1427 	/* 1. Make sure everything is clean */
1428 	//synchronize_user_stack();
1429 
1430         sigframe_size = NF_ALIGNEDSZ;
1431 
1432 	sf = (struct target_signal_frame *)
1433 		get_sigframe(ka, env, sigframe_size);
1434 
1435 	//fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1436 #if 0
1437 	if (invalid_frame_pointer(sf, sigframe_size))
1438 		goto sigill_and_return;
1439 #endif
1440 	/* 2. Save the current process state */
1441 	err = setup___siginfo(&sf->info, env, set->sig[0]);
1442 	err |= __put_user(0, &sf->extra_size);
1443 
1444 	//err |= save_fpu_state(regs, &sf->fpu_state);
1445 	//err |= __put_user(&sf->fpu_state, &sf->fpu_save);
1446 
1447 	err |= __put_user(set->sig[0], &sf->info.si_mask);
1448 	for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
1449 		err |= __put_user(set->sig[i + 1], &sf->extramask[i]);
1450 	}
1451 
1452 	for (i = 0; i < 7; i++) {
1453 	  	err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
1454 	}
1455 	for (i = 0; i < 7; i++) {
1456 	  	err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
1457 	}
1458 	if (err)
1459 		goto sigsegv;
1460 
1461 	/* 3. signal handler back-trampoline and parameters */
1462 	env->regwptr[UREG_FP] = (target_ulong) sf;
1463 	env->regwptr[UREG_I0] = sig;
1464 	env->regwptr[UREG_I1] = (target_ulong) &sf->info;
1465 	env->regwptr[UREG_I2] = (target_ulong) &sf->info;
1466 
1467 	/* 4. signal handler */
1468 	env->pc = (unsigned long) ka->sa._sa_handler;
1469 	env->npc = (env->pc + 4);
1470 	/* 5. return to kernel instructions */
1471 	if (ka->sa.sa_restorer)
1472 		env->regwptr[UREG_I7] = (unsigned long)ka->sa.sa_restorer;
1473 	else {
1474 		env->regwptr[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);
1475 
1476 		/* mov __NR_sigreturn, %g1 */
1477 		err |= __put_user(0x821020d8, &sf->insns[0]);
1478 
1479 		/* t 0x10 */
1480 		err |= __put_user(0x91d02010, &sf->insns[1]);
1481 		if (err)
1482 			goto sigsegv;
1483 
1484 		/* Flush instruction space. */
1485 		//flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
1486 		tb_flush(env);
1487 	}
1488 	//cpu_dump_state(env, stderr, fprintf, 0);
1489 	return;
1490 
1491 sigill_and_return:
1492 	force_sig(TARGET_SIGILL);
1493 sigsegv:
1494 	//fprintf(stderr, "force_sig\n");
1495 	force_sig(TARGET_SIGSEGV);
1496 }
1497 static inline int
1498 restore_fpu_state(CPUState *env, __siginfo_fpu_t *fpu)
1499 {
1500         int err;
1501 #if 0
1502 #ifdef CONFIG_SMP
1503         if (current->flags & PF_USEDFPU)
1504                 regs->psr &= ~PSR_EF;
1505 #else
1506         if (current == last_task_used_math) {
1507                 last_task_used_math = 0;
1508                 regs->psr &= ~PSR_EF;
1509         }
1510 #endif
1511         current->used_math = 1;
1512         current->flags &= ~PF_USEDFPU;
1513 #endif
1514 #if 0
1515         if (verify_area (VERIFY_READ, fpu, sizeof(*fpu)))
1516                 return -EFAULT;
1517 #endif
1518 
1519         err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0],
1520 	                             (sizeof(unsigned long) * 32));
1521         err |= __get_user(env->fsr, &fpu->si_fsr);
1522 #if 0
1523         err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth);
1524         if (current->thread.fpqdepth != 0)
1525                 err |= __copy_from_user(&current->thread.fpqueue[0],
1526                                         &fpu->si_fpqueue[0],
1527                                         ((sizeof(unsigned long) +
1528                                         (sizeof(unsigned long *)))*16));
1529 #endif
1530         return err;
1531 }
1532 
1533 
1534 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1535                            target_siginfo_t *info,
1536 			   target_sigset_t *set, CPUState *env)
1537 {
1538     fprintf(stderr, "setup_rt_frame: not implemented\n");
1539 }
1540 
1541 long do_sigreturn(CPUState *env)
1542 {
1543         struct target_signal_frame *sf;
1544         uint32_t up_psr, pc, npc;
1545         target_sigset_t set;
1546         sigset_t host_set;
1547         __siginfo_fpu_t *fpu_save;
1548         int err, i;
1549 
1550         sf = (struct target_signal_frame *) env->regwptr[UREG_FP];
1551 	fprintf(stderr, "sigreturn\n");
1552 	fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1553 	//cpu_dump_state(env, stderr, fprintf, 0);
1554 
1555         /* 1. Make sure we are not getting garbage from the user */
1556 #if 0
1557         if (verify_area (VERIFY_READ, sf, sizeof (*sf)))
1558                 goto segv_and_exit;
1559 #endif
1560 
1561         if (((uint) sf) & 3)
1562                 goto segv_and_exit;
1563 
1564         err = __get_user(pc,  &sf->info.si_regs.pc);
1565         err |= __get_user(npc, &sf->info.si_regs.npc);
1566 
1567 	fprintf(stderr, "pc: %lx npc %lx\n", pc, npc);
1568         if ((pc | npc) & 3)
1569                 goto segv_and_exit;
1570 
1571         /* 2. Restore the state */
1572         err |= __get_user(up_psr, &sf->info.si_regs.psr);
1573 
1574         /* User can only change condition codes and FPU enabling in %psr. */
1575         env->psr = (up_psr & ~(PSR_ICC /* | PSR_EF */))
1576                   | (env->psr & (PSR_ICC /* | PSR_EF */));
1577 	fprintf(stderr, "psr: %x\n", env->psr);
1578 	env->pc = pc-4;
1579 	env->npc = pc;
1580         err |= __get_user(env->y, &sf->info.si_regs.y);
1581 	for (i=0; i < 7; i++) {
1582 		err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
1583 	}
1584 	for (i=0; i < 7; i++) {
1585 		err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
1586 	}
1587 
1588         err |= __get_user(fpu_save, &sf->fpu_save);
1589 
1590         //if (fpu_save)
1591         //        err |= restore_fpu_state(env, fpu_save);
1592 
1593         /* This is pretty much atomic, no amount locking would prevent
1594          * the races which exist anyways.
1595          */
1596         err |= __get_user(set.sig[0], &sf->info.si_mask);
1597         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1598             err |= (__get_user(set.sig[i], &sf->extramask[i - 1]));
1599         }
1600 
1601         target_to_host_sigset_internal(&host_set, &set);
1602         sigprocmask(SIG_SETMASK, &host_set, NULL);
1603 
1604         if (err)
1605                 goto segv_and_exit;
1606 
1607 	fprintf(stderr, "returning %lx\n", env->regwptr[0]);
1608         return env->regwptr[0];
1609 
1610 segv_and_exit:
1611 	force_sig(TARGET_SIGSEGV);
1612 }
1613 
1614 long do_rt_sigreturn(CPUState *env)
1615 {
1616     fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1617     return -ENOSYS;
1618 }
1619 
1620 
1621 #else
1622 
1623 static void setup_frame(int sig, struct emulated_sigaction *ka,
1624 			target_sigset_t *set, CPUState *env)
1625 {
1626     fprintf(stderr, "setup_frame: not implemented\n");
1627 }
1628 
1629 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1630                            target_siginfo_t *info,
1631 			   target_sigset_t *set, CPUState *env)
1632 {
1633     fprintf(stderr, "setup_rt_frame: not implemented\n");
1634 }
1635 
1636 long do_sigreturn(CPUState *env)
1637 {
1638     fprintf(stderr, "do_sigreturn: not implemented\n");
1639     return -ENOSYS;
1640 }
1641 
1642 long do_rt_sigreturn(CPUState *env)
1643 {
1644     fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1645     return -ENOSYS;
1646 }
1647 
1648 #endif
1649 
1650 void process_pending_signals(void *cpu_env)
1651 {
1652     int sig;
1653     target_ulong handler;
1654     sigset_t set, old_set;
1655     target_sigset_t target_old_set;
1656     struct emulated_sigaction *k;
1657     struct sigqueue *q;
1658 
1659     if (!signal_pending)
1660         return;
1661 
1662     k = sigact_table;
1663     for(sig = 1; sig <= TARGET_NSIG; sig++) {
1664         if (k->pending)
1665             goto handle_signal;
1666         k++;
1667     }
1668     /* if no signal is pending, just return */
1669     signal_pending = 0;
1670     return;
1671 
1672  handle_signal:
1673 #ifdef DEBUG_SIGNAL
1674     fprintf(stderr, "qemu: process signal %d\n", sig);
1675 #endif
1676     /* dequeue signal */
1677     q = k->first;
1678     k->first = q->next;
1679     if (!k->first)
1680         k->pending = 0;
1681 
1682     handler = k->sa._sa_handler;
1683     if (handler == TARGET_SIG_DFL) {
1684         /* default handler : ignore some signal. The other are fatal */
1685         if (sig != TARGET_SIGCHLD &&
1686             sig != TARGET_SIGURG &&
1687             sig != TARGET_SIGWINCH) {
1688             force_sig(sig);
1689         }
1690     } else if (handler == TARGET_SIG_IGN) {
1691         /* ignore sig */
1692     } else if (handler == TARGET_SIG_ERR) {
1693         force_sig(sig);
1694     } else {
1695         /* compute the blocked signals during the handler execution */
1696         target_to_host_sigset(&set, &k->sa.sa_mask);
1697         /* SA_NODEFER indicates that the current signal should not be
1698            blocked during the handler */
1699         if (!(k->sa.sa_flags & TARGET_SA_NODEFER))
1700             sigaddset(&set, target_to_host_signal(sig));
1701 
1702         /* block signals in the handler using Linux */
1703         sigprocmask(SIG_BLOCK, &set, &old_set);
1704         /* save the previous blocked signal state to restore it at the
1705            end of the signal execution (see do_sigreturn) */
1706         host_to_target_sigset_internal(&target_old_set, &old_set);
1707 
1708         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1709 #ifdef TARGET_I386
1710         {
1711             CPUX86State *env = cpu_env;
1712             if (env->eflags & VM_MASK)
1713                 save_v86_state(env);
1714         }
1715 #endif
1716         /* prepare the stack frame of the virtual CPU */
1717         if (k->sa.sa_flags & TARGET_SA_SIGINFO)
1718             setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env);
1719         else
1720             setup_frame(sig, k, &target_old_set, cpu_env);
1721 	if (k->sa.sa_flags & TARGET_SA_RESETHAND)
1722             k->sa._sa_handler = TARGET_SIG_DFL;
1723     }
1724     if (q != &k->info)
1725         free_sigqueue(q);
1726 }
1727 
1728 
1729