xref: /qemu/linux-user/signal.c (revision b5ff1b3127119aa430a6fd309591d584803b7b6e)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <stdarg.h>
24 #include <unistd.h>
25 #include <signal.h>
26 #include <errno.h>
27 #include <sys/ucontext.h>
28 
29 #include "qemu.h"
30 
31 //#define DEBUG_SIGNAL
32 
33 #define MAX_SIGQUEUE_SIZE 1024
34 
35 struct sigqueue {
36     struct sigqueue *next;
37     target_siginfo_t info;
38 };
39 
40 struct emulated_sigaction {
41     struct target_sigaction sa;
42     int pending; /* true if signal is pending */
43     struct sigqueue *first;
44     struct sigqueue info; /* in order to always have memory for the
45                              first signal, we put it here */
46 };
47 
48 static struct emulated_sigaction sigact_table[TARGET_NSIG];
49 static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
50 static struct sigqueue *first_free; /* first free siginfo queue entry */
51 static int signal_pending; /* non zero if a signal may be pending */
52 
53 static void host_signal_handler(int host_signum, siginfo_t *info,
54                                 void *puc);
55 
56 static uint8_t host_to_target_signal_table[65] = {
57     [SIGHUP] = TARGET_SIGHUP,
58     [SIGINT] = TARGET_SIGINT,
59     [SIGQUIT] = TARGET_SIGQUIT,
60     [SIGILL] = TARGET_SIGILL,
61     [SIGTRAP] = TARGET_SIGTRAP,
62     [SIGABRT] = TARGET_SIGABRT,
63 /*    [SIGIOT] = TARGET_SIGIOT,*/
64     [SIGBUS] = TARGET_SIGBUS,
65     [SIGFPE] = TARGET_SIGFPE,
66     [SIGKILL] = TARGET_SIGKILL,
67     [SIGUSR1] = TARGET_SIGUSR1,
68     [SIGSEGV] = TARGET_SIGSEGV,
69     [SIGUSR2] = TARGET_SIGUSR2,
70     [SIGPIPE] = TARGET_SIGPIPE,
71     [SIGALRM] = TARGET_SIGALRM,
72     [SIGTERM] = TARGET_SIGTERM,
73 #ifdef SIGSTKFLT
74     [SIGSTKFLT] = TARGET_SIGSTKFLT,
75 #endif
76     [SIGCHLD] = TARGET_SIGCHLD,
77     [SIGCONT] = TARGET_SIGCONT,
78     [SIGSTOP] = TARGET_SIGSTOP,
79     [SIGTSTP] = TARGET_SIGTSTP,
80     [SIGTTIN] = TARGET_SIGTTIN,
81     [SIGTTOU] = TARGET_SIGTTOU,
82     [SIGURG] = TARGET_SIGURG,
83     [SIGXCPU] = TARGET_SIGXCPU,
84     [SIGXFSZ] = TARGET_SIGXFSZ,
85     [SIGVTALRM] = TARGET_SIGVTALRM,
86     [SIGPROF] = TARGET_SIGPROF,
87     [SIGWINCH] = TARGET_SIGWINCH,
88     [SIGIO] = TARGET_SIGIO,
89     [SIGPWR] = TARGET_SIGPWR,
90     [SIGSYS] = TARGET_SIGSYS,
91     /* next signals stay the same */
92 };
93 static uint8_t target_to_host_signal_table[65];
94 
95 static inline int host_to_target_signal(int sig)
96 {
97     return host_to_target_signal_table[sig];
98 }
99 
100 static inline int target_to_host_signal(int sig)
101 {
102     return target_to_host_signal_table[sig];
103 }
104 
105 static void host_to_target_sigset_internal(target_sigset_t *d,
106                                            const sigset_t *s)
107 {
108     int i;
109     unsigned long sigmask;
110     uint32_t target_sigmask;
111 
112     sigmask = ((unsigned long *)s)[0];
113     target_sigmask = 0;
114     for(i = 0; i < 32; i++) {
115         if (sigmask & (1 << i))
116             target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1);
117     }
118 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
119     d->sig[0] = target_sigmask;
120     for(i = 1;i < TARGET_NSIG_WORDS; i++) {
121         d->sig[i] = ((unsigned long *)s)[i];
122     }
123 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
124     d->sig[0] = target_sigmask;
125     d->sig[1] = sigmask >> 32;
126 #else
127 #warning host_to_target_sigset
128 #endif
129 }
130 
131 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
132 {
133     target_sigset_t d1;
134     int i;
135 
136     host_to_target_sigset_internal(&d1, s);
137     for(i = 0;i < TARGET_NSIG_WORDS; i++)
138         __put_user(d1.sig[i], &d->sig[i]);
139 }
140 
141 void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s)
142 {
143     int i;
144     unsigned long sigmask;
145     target_ulong target_sigmask;
146 
147     target_sigmask = s->sig[0];
148     sigmask = 0;
149     for(i = 0; i < 32; i++) {
150         if (target_sigmask & (1 << i))
151             sigmask |= 1 << (target_to_host_signal(i + 1) - 1);
152     }
153 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
154     ((unsigned long *)d)[0] = sigmask;
155     for(i = 1;i < TARGET_NSIG_WORDS; i++) {
156         ((unsigned long *)d)[i] = s->sig[i];
157     }
158 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
159     ((unsigned long *)d)[0] = sigmask | ((unsigned long)(s->sig[1]) << 32);
160 #else
161 #warning target_to_host_sigset
162 #endif /* TARGET_LONG_BITS */
163 }
164 
165 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
166 {
167     target_sigset_t s1;
168     int i;
169 
170     for(i = 0;i < TARGET_NSIG_WORDS; i++)
171         __get_user(s1.sig[i], &s->sig[i]);
172     target_to_host_sigset_internal(d, &s1);
173 }
174 
175 void host_to_target_old_sigset(target_ulong *old_sigset,
176                                const sigset_t *sigset)
177 {
178     target_sigset_t d;
179     host_to_target_sigset(&d, sigset);
180     *old_sigset = d.sig[0];
181 }
182 
183 void target_to_host_old_sigset(sigset_t *sigset,
184                                const target_ulong *old_sigset)
185 {
186     target_sigset_t d;
187     int i;
188 
189     d.sig[0] = *old_sigset;
190     for(i = 1;i < TARGET_NSIG_WORDS; i++)
191         d.sig[i] = 0;
192     target_to_host_sigset(sigset, &d);
193 }
194 
195 /* siginfo conversion */
196 
197 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
198                                                  const siginfo_t *info)
199 {
200     int sig;
201     sig = host_to_target_signal(info->si_signo);
202     tinfo->si_signo = sig;
203     tinfo->si_errno = 0;
204     tinfo->si_code = 0;
205     if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
206         sig == SIGBUS || sig == SIGTRAP) {
207         /* should never come here, but who knows. The information for
208            the target is irrelevant */
209         tinfo->_sifields._sigfault._addr = 0;
210     } else if (sig >= TARGET_SIGRTMIN) {
211         tinfo->_sifields._rt._pid = info->si_pid;
212         tinfo->_sifields._rt._uid = info->si_uid;
213         /* XXX: potential problem if 64 bit */
214         tinfo->_sifields._rt._sigval.sival_ptr =
215             (target_ulong)info->si_value.sival_ptr;
216     }
217 }
218 
219 static void tswap_siginfo(target_siginfo_t *tinfo,
220                           const target_siginfo_t *info)
221 {
222     int sig;
223     sig = info->si_signo;
224     tinfo->si_signo = tswap32(sig);
225     tinfo->si_errno = tswap32(info->si_errno);
226     tinfo->si_code = tswap32(info->si_code);
227     if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
228         sig == SIGBUS || sig == SIGTRAP) {
229         tinfo->_sifields._sigfault._addr =
230             tswapl(info->_sifields._sigfault._addr);
231     } else if (sig >= TARGET_SIGRTMIN) {
232         tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid);
233         tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid);
234         tinfo->_sifields._rt._sigval.sival_ptr =
235             tswapl(info->_sifields._rt._sigval.sival_ptr);
236     }
237 }
238 
239 
240 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
241 {
242     host_to_target_siginfo_noswap(tinfo, info);
243     tswap_siginfo(tinfo, tinfo);
244 }
245 
246 /* XXX: we support only POSIX RT signals are used. */
247 /* XXX: find a solution for 64 bit (additionnal malloced data is needed) */
248 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
249 {
250     info->si_signo = tswap32(tinfo->si_signo);
251     info->si_errno = tswap32(tinfo->si_errno);
252     info->si_code = tswap32(tinfo->si_code);
253     info->si_pid = tswap32(tinfo->_sifields._rt._pid);
254     info->si_uid = tswap32(tinfo->_sifields._rt._uid);
255     info->si_value.sival_ptr =
256         (void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr);
257 }
258 
259 void signal_init(void)
260 {
261     struct sigaction act;
262     int i, j;
263 
264     /* generate signal conversion tables */
265     for(i = 1; i <= 64; i++) {
266         if (host_to_target_signal_table[i] == 0)
267             host_to_target_signal_table[i] = i;
268     }
269     for(i = 1; i <= 64; i++) {
270         j = host_to_target_signal_table[i];
271         target_to_host_signal_table[j] = i;
272     }
273 
274     /* set all host signal handlers. ALL signals are blocked during
275        the handlers to serialize them. */
276     sigfillset(&act.sa_mask);
277     act.sa_flags = SA_SIGINFO;
278     act.sa_sigaction = host_signal_handler;
279     for(i = 1; i < NSIG; i++) {
280         sigaction(i, &act, NULL);
281     }
282 
283     memset(sigact_table, 0, sizeof(sigact_table));
284 
285     first_free = &sigqueue_table[0];
286     for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++)
287         sigqueue_table[i].next = &sigqueue_table[i + 1];
288     sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL;
289 }
290 
291 /* signal queue handling */
292 
293 static inline struct sigqueue *alloc_sigqueue(void)
294 {
295     struct sigqueue *q = first_free;
296     if (!q)
297         return NULL;
298     first_free = q->next;
299     return q;
300 }
301 
302 static inline void free_sigqueue(struct sigqueue *q)
303 {
304     q->next = first_free;
305     first_free = q;
306 }
307 
308 /* abort execution with signal */
309 void __attribute((noreturn)) force_sig(int sig)
310 {
311     int host_sig;
312     host_sig = target_to_host_signal(sig);
313     fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n",
314             sig, strsignal(host_sig));
315 #if 1
316     _exit(-host_sig);
317 #else
318     {
319         struct sigaction act;
320         sigemptyset(&act.sa_mask);
321         act.sa_flags = SA_SIGINFO;
322         act.sa_sigaction = SIG_DFL;
323         sigaction(SIGABRT, &act, NULL);
324         abort();
325     }
326 #endif
327 }
328 
329 /* queue a signal so that it will be send to the virtual CPU as soon
330    as possible */
331 int queue_signal(int sig, target_siginfo_t *info)
332 {
333     struct emulated_sigaction *k;
334     struct sigqueue *q, **pq;
335     target_ulong handler;
336 
337 #if defined(DEBUG_SIGNAL)
338     fprintf(stderr, "queue_signal: sig=%d\n",
339             sig);
340 #endif
341     k = &sigact_table[sig - 1];
342     handler = k->sa._sa_handler;
343     if (handler == TARGET_SIG_DFL) {
344         /* default handler : ignore some signal. The other are fatal */
345         if (sig != TARGET_SIGCHLD &&
346             sig != TARGET_SIGURG &&
347             sig != TARGET_SIGWINCH) {
348             force_sig(sig);
349         } else {
350             return 0; /* indicate ignored */
351         }
352     } else if (handler == TARGET_SIG_IGN) {
353         /* ignore signal */
354         return 0;
355     } else if (handler == TARGET_SIG_ERR) {
356         force_sig(sig);
357     } else {
358         pq = &k->first;
359         if (sig < TARGET_SIGRTMIN) {
360             /* if non real time signal, we queue exactly one signal */
361             if (!k->pending)
362                 q = &k->info;
363             else
364                 return 0;
365         } else {
366             if (!k->pending) {
367                 /* first signal */
368                 q = &k->info;
369             } else {
370                 q = alloc_sigqueue();
371                 if (!q)
372                     return -EAGAIN;
373                 while (*pq != NULL)
374                     pq = &(*pq)->next;
375             }
376         }
377         *pq = q;
378         q->info = *info;
379         q->next = NULL;
380         k->pending = 1;
381         /* signal that a new signal is pending */
382         signal_pending = 1;
383         return 1; /* indicates that the signal was queued */
384     }
385 }
386 
387 static void host_signal_handler(int host_signum, siginfo_t *info,
388                                 void *puc)
389 {
390     int sig;
391     target_siginfo_t tinfo;
392 
393     /* the CPU emulator uses some host signals to detect exceptions,
394        we we forward to it some signals */
395     if (host_signum == SIGSEGV || host_signum == SIGBUS
396 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
397         || host_signum == SIGFPE
398 #endif
399         ) {
400         if (cpu_signal_handler(host_signum, info, puc))
401             return;
402     }
403 
404     /* get target signal number */
405     sig = host_to_target_signal(host_signum);
406     if (sig < 1 || sig > TARGET_NSIG)
407         return;
408 #if defined(DEBUG_SIGNAL)
409     fprintf(stderr, "qemu: got signal %d\n", sig);
410 #endif
411     host_to_target_siginfo_noswap(&tinfo, info);
412     if (queue_signal(sig, &tinfo) == 1) {
413         /* interrupt the virtual CPU as soon as possible */
414         cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
415     }
416 }
417 
418 int do_sigaction(int sig, const struct target_sigaction *act,
419                  struct target_sigaction *oact)
420 {
421     struct emulated_sigaction *k;
422     struct sigaction act1;
423     int host_sig;
424 
425     if (sig < 1 || sig > TARGET_NSIG)
426         return -EINVAL;
427     k = &sigact_table[sig - 1];
428 #if defined(DEBUG_SIGNAL)
429     fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n",
430             sig, (int)act, (int)oact);
431 #endif
432     if (oact) {
433         oact->_sa_handler = tswapl(k->sa._sa_handler);
434         oact->sa_flags = tswapl(k->sa.sa_flags);
435         oact->sa_restorer = tswapl(k->sa.sa_restorer);
436         oact->sa_mask = k->sa.sa_mask;
437     }
438     if (act) {
439         k->sa._sa_handler = tswapl(act->_sa_handler);
440         k->sa.sa_flags = tswapl(act->sa_flags);
441         k->sa.sa_restorer = tswapl(act->sa_restorer);
442         k->sa.sa_mask = act->sa_mask;
443 
444         /* we update the host linux signal state */
445         host_sig = target_to_host_signal(sig);
446         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
447             sigfillset(&act1.sa_mask);
448             act1.sa_flags = SA_SIGINFO;
449             if (k->sa.sa_flags & TARGET_SA_RESTART)
450                 act1.sa_flags |= SA_RESTART;
451             /* NOTE: it is important to update the host kernel signal
452                ignore state to avoid getting unexpected interrupted
453                syscalls */
454             if (k->sa._sa_handler == TARGET_SIG_IGN) {
455                 act1.sa_sigaction = (void *)SIG_IGN;
456             } else if (k->sa._sa_handler == TARGET_SIG_DFL) {
457                 act1.sa_sigaction = (void *)SIG_DFL;
458             } else {
459                 act1.sa_sigaction = host_signal_handler;
460             }
461             sigaction(host_sig, &act1, NULL);
462         }
463     }
464     return 0;
465 }
466 
467 #ifndef offsetof
468 #define offsetof(type, field) ((size_t) &((type *)0)->field)
469 #endif
470 
471 static inline int copy_siginfo_to_user(target_siginfo_t *tinfo,
472                                        const target_siginfo_t *info)
473 {
474     tswap_siginfo(tinfo, info);
475     return 0;
476 }
477 
478 #ifdef TARGET_I386
479 
480 /* from the Linux kernel */
481 
482 struct target_fpreg {
483 	uint16_t significand[4];
484 	uint16_t exponent;
485 };
486 
487 struct target_fpxreg {
488 	uint16_t significand[4];
489 	uint16_t exponent;
490 	uint16_t padding[3];
491 };
492 
493 struct target_xmmreg {
494 	target_ulong element[4];
495 };
496 
497 struct target_fpstate {
498 	/* Regular FPU environment */
499 	target_ulong 	cw;
500 	target_ulong	sw;
501 	target_ulong	tag;
502 	target_ulong	ipoff;
503 	target_ulong	cssel;
504 	target_ulong	dataoff;
505 	target_ulong	datasel;
506 	struct target_fpreg	_st[8];
507 	uint16_t	status;
508 	uint16_t	magic;		/* 0xffff = regular FPU data only */
509 
510 	/* FXSR FPU environment */
511 	target_ulong	_fxsr_env[6];	/* FXSR FPU env is ignored */
512 	target_ulong	mxcsr;
513 	target_ulong	reserved;
514 	struct target_fpxreg	_fxsr_st[8];	/* FXSR FPU reg data is ignored */
515 	struct target_xmmreg	_xmm[8];
516 	target_ulong	padding[56];
517 };
518 
519 #define X86_FXSR_MAGIC		0x0000
520 
521 struct target_sigcontext {
522 	uint16_t gs, __gsh;
523 	uint16_t fs, __fsh;
524 	uint16_t es, __esh;
525 	uint16_t ds, __dsh;
526 	target_ulong edi;
527 	target_ulong esi;
528 	target_ulong ebp;
529 	target_ulong esp;
530 	target_ulong ebx;
531 	target_ulong edx;
532 	target_ulong ecx;
533 	target_ulong eax;
534 	target_ulong trapno;
535 	target_ulong err;
536 	target_ulong eip;
537 	uint16_t cs, __csh;
538 	target_ulong eflags;
539 	target_ulong esp_at_signal;
540 	uint16_t ss, __ssh;
541         target_ulong fpstate; /* pointer */
542 	target_ulong oldmask;
543 	target_ulong cr2;
544 };
545 
546 typedef struct target_sigaltstack {
547 	target_ulong ss_sp;
548 	int ss_flags;
549 	target_ulong ss_size;
550 } target_stack_t;
551 
552 struct target_ucontext {
553         target_ulong	  tuc_flags;
554 	target_ulong      tuc_link;
555 	target_stack_t	  tuc_stack;
556 	struct target_sigcontext tuc_mcontext;
557 	target_sigset_t	  tuc_sigmask;	/* mask last for extensibility */
558 };
559 
560 struct sigframe
561 {
562     target_ulong pretcode;
563     int sig;
564     struct target_sigcontext sc;
565     struct target_fpstate fpstate;
566     target_ulong extramask[TARGET_NSIG_WORDS-1];
567     char retcode[8];
568 };
569 
570 struct rt_sigframe
571 {
572     target_ulong pretcode;
573     int sig;
574     target_ulong pinfo;
575     target_ulong puc;
576     struct target_siginfo info;
577     struct target_ucontext uc;
578     struct target_fpstate fpstate;
579     char retcode[8];
580 };
581 
582 /*
583  * Set up a signal frame.
584  */
585 
586 /* XXX: save x87 state */
587 static int
588 setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate,
589 		 CPUX86State *env, unsigned long mask)
590 {
591 	int err = 0;
592 
593 	err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs);
594 	err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs);
595 	err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es);
596 	err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds);
597 	err |= __put_user(env->regs[R_EDI], &sc->edi);
598 	err |= __put_user(env->regs[R_ESI], &sc->esi);
599 	err |= __put_user(env->regs[R_EBP], &sc->ebp);
600 	err |= __put_user(env->regs[R_ESP], &sc->esp);
601 	err |= __put_user(env->regs[R_EBX], &sc->ebx);
602 	err |= __put_user(env->regs[R_EDX], &sc->edx);
603 	err |= __put_user(env->regs[R_ECX], &sc->ecx);
604 	err |= __put_user(env->regs[R_EAX], &sc->eax);
605 	err |= __put_user(env->exception_index, &sc->trapno);
606 	err |= __put_user(env->error_code, &sc->err);
607 	err |= __put_user(env->eip, &sc->eip);
608 	err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs);
609 	err |= __put_user(env->eflags, &sc->eflags);
610 	err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal);
611 	err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss);
612 
613         cpu_x86_fsave(env, (void *)fpstate, 1);
614         fpstate->status = fpstate->sw;
615         err |= __put_user(0xffff, &fpstate->magic);
616         err |= __put_user(fpstate, &sc->fpstate);
617 
618 	/* non-iBCS2 extensions.. */
619 	err |= __put_user(mask, &sc->oldmask);
620 	err |= __put_user(env->cr[2], &sc->cr2);
621 	return err;
622 }
623 
624 /*
625  * Determine which stack to use..
626  */
627 
628 static inline void *
629 get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size)
630 {
631 	unsigned long esp;
632 
633 	/* Default to using normal stack */
634 	esp = env->regs[R_ESP];
635 #if 0
636 	/* This is the X/Open sanctioned signal stack switching.  */
637 	if (ka->sa.sa_flags & SA_ONSTACK) {
638 		if (sas_ss_flags(esp) == 0)
639 			esp = current->sas_ss_sp + current->sas_ss_size;
640 	}
641 
642 	/* This is the legacy signal stack switching. */
643 	else
644 #endif
645         if ((env->segs[R_SS].selector & 0xffff) != __USER_DS &&
646             !(ka->sa.sa_flags & TARGET_SA_RESTORER) &&
647             ka->sa.sa_restorer) {
648             esp = (unsigned long) ka->sa.sa_restorer;
649 	}
650         return (void *)((esp - frame_size) & -8ul);
651 }
652 
653 static void setup_frame(int sig, struct emulated_sigaction *ka,
654 			target_sigset_t *set, CPUX86State *env)
655 {
656 	struct sigframe *frame;
657 	int i, err = 0;
658 
659 	frame = get_sigframe(ka, env, sizeof(*frame));
660 
661 	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
662 		goto give_sigsegv;
663 	err |= __put_user((/*current->exec_domain
664 		           && current->exec_domain->signal_invmap
665 		           && sig < 32
666 		           ? current->exec_domain->signal_invmap[sig]
667 		           : */ sig),
668 		          &frame->sig);
669 	if (err)
670 		goto give_sigsegv;
671 
672 	setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]);
673 	if (err)
674 		goto give_sigsegv;
675 
676         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
677             if (__put_user(set->sig[i], &frame->extramask[i - 1]))
678                 goto give_sigsegv;
679         }
680 
681 	/* Set up to return from userspace.  If provided, use a stub
682 	   already in userspace.  */
683 	if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
684 		err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
685 	} else {
686 		err |= __put_user(frame->retcode, &frame->pretcode);
687 		/* This is popl %eax ; movl $,%eax ; int $0x80 */
688 		err |= __put_user(0xb858, (short *)(frame->retcode+0));
689 		err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2));
690 		err |= __put_user(0x80cd, (short *)(frame->retcode+6));
691 	}
692 
693 	if (err)
694 		goto give_sigsegv;
695 
696 	/* Set up registers for signal handler */
697 	env->regs[R_ESP] = (unsigned long) frame;
698 	env->eip = (unsigned long) ka->sa._sa_handler;
699 
700         cpu_x86_load_seg(env, R_DS, __USER_DS);
701         cpu_x86_load_seg(env, R_ES, __USER_DS);
702         cpu_x86_load_seg(env, R_SS, __USER_DS);
703         cpu_x86_load_seg(env, R_CS, __USER_CS);
704 	env->eflags &= ~TF_MASK;
705 
706 	return;
707 
708 give_sigsegv:
709 	if (sig == TARGET_SIGSEGV)
710 		ka->sa._sa_handler = TARGET_SIG_DFL;
711 	force_sig(TARGET_SIGSEGV /* , current */);
712 }
713 
714 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
715                            target_siginfo_t *info,
716 			   target_sigset_t *set, CPUX86State *env)
717 {
718 	struct rt_sigframe *frame;
719 	int i, err = 0;
720 
721 	frame = get_sigframe(ka, env, sizeof(*frame));
722 
723 	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
724 		goto give_sigsegv;
725 
726 	err |= __put_user((/*current->exec_domain
727 		    	   && current->exec_domain->signal_invmap
728 		    	   && sig < 32
729 		    	   ? current->exec_domain->signal_invmap[sig]
730 			   : */sig),
731 			  &frame->sig);
732 	err |= __put_user((target_ulong)&frame->info, &frame->pinfo);
733 	err |= __put_user((target_ulong)&frame->uc, &frame->puc);
734 	err |= copy_siginfo_to_user(&frame->info, info);
735 	if (err)
736 		goto give_sigsegv;
737 
738 	/* Create the ucontext.  */
739 	err |= __put_user(0, &frame->uc.tuc_flags);
740 	err |= __put_user(0, &frame->uc.tuc_link);
741 	err |= __put_user(/*current->sas_ss_sp*/ 0,
742 			  &frame->uc.tuc_stack.ss_sp);
743 	err |= __put_user(/* sas_ss_flags(regs->esp) */ 0,
744 			  &frame->uc.tuc_stack.ss_flags);
745 	err |= __put_user(/* current->sas_ss_size */ 0,
746 			  &frame->uc.tuc_stack.ss_size);
747 	err |= setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate,
748 			        env, set->sig[0]);
749         for(i = 0; i < TARGET_NSIG_WORDS; i++) {
750             if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]))
751                 goto give_sigsegv;
752         }
753 
754 	/* Set up to return from userspace.  If provided, use a stub
755 	   already in userspace.  */
756 	if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
757 		err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
758 	} else {
759 		err |= __put_user(frame->retcode, &frame->pretcode);
760 		/* This is movl $,%eax ; int $0x80 */
761 		err |= __put_user(0xb8, (char *)(frame->retcode+0));
762 		err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1));
763 		err |= __put_user(0x80cd, (short *)(frame->retcode+5));
764 	}
765 
766 	if (err)
767 		goto give_sigsegv;
768 
769 	/* Set up registers for signal handler */
770 	env->regs[R_ESP] = (unsigned long) frame;
771 	env->eip = (unsigned long) ka->sa._sa_handler;
772 
773         cpu_x86_load_seg(env, R_DS, __USER_DS);
774         cpu_x86_load_seg(env, R_ES, __USER_DS);
775         cpu_x86_load_seg(env, R_SS, __USER_DS);
776         cpu_x86_load_seg(env, R_CS, __USER_CS);
777 	env->eflags &= ~TF_MASK;
778 
779 	return;
780 
781 give_sigsegv:
782 	if (sig == TARGET_SIGSEGV)
783 		ka->sa._sa_handler = TARGET_SIG_DFL;
784 	force_sig(TARGET_SIGSEGV /* , current */);
785 }
786 
787 static int
788 restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax)
789 {
790 	unsigned int err = 0;
791 
792         cpu_x86_load_seg(env, R_GS, lduw(&sc->gs));
793         cpu_x86_load_seg(env, R_FS, lduw(&sc->fs));
794         cpu_x86_load_seg(env, R_ES, lduw(&sc->es));
795         cpu_x86_load_seg(env, R_DS, lduw(&sc->ds));
796 
797         env->regs[R_EDI] = ldl(&sc->edi);
798         env->regs[R_ESI] = ldl(&sc->esi);
799         env->regs[R_EBP] = ldl(&sc->ebp);
800         env->regs[R_ESP] = ldl(&sc->esp);
801         env->regs[R_EBX] = ldl(&sc->ebx);
802         env->regs[R_EDX] = ldl(&sc->edx);
803         env->regs[R_ECX] = ldl(&sc->ecx);
804         env->eip = ldl(&sc->eip);
805 
806         cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3);
807         cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3);
808 
809 	{
810 		unsigned int tmpflags;
811                 tmpflags = ldl(&sc->eflags);
812 		env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5);
813                 //		regs->orig_eax = -1;		/* disable syscall checks */
814 	}
815 
816 	{
817 		struct _fpstate * buf;
818                 buf = (void *)ldl(&sc->fpstate);
819 		if (buf) {
820 #if 0
821 			if (verify_area(VERIFY_READ, buf, sizeof(*buf)))
822 				goto badframe;
823 #endif
824                         cpu_x86_frstor(env, (void *)buf, 1);
825 		}
826 	}
827 
828         *peax = ldl(&sc->eax);
829 	return err;
830 #if 0
831 badframe:
832 	return 1;
833 #endif
834 }
835 
836 long do_sigreturn(CPUX86State *env)
837 {
838     struct sigframe *frame = (struct sigframe *)(env->regs[R_ESP] - 8);
839     target_sigset_t target_set;
840     sigset_t set;
841     int eax, i;
842 
843 #if defined(DEBUG_SIGNAL)
844     fprintf(stderr, "do_sigreturn\n");
845 #endif
846     /* set blocked signals */
847     if (__get_user(target_set.sig[0], &frame->sc.oldmask))
848         goto badframe;
849     for(i = 1; i < TARGET_NSIG_WORDS; i++) {
850         if (__get_user(target_set.sig[i], &frame->extramask[i - 1]))
851             goto badframe;
852     }
853 
854     target_to_host_sigset_internal(&set, &target_set);
855     sigprocmask(SIG_SETMASK, &set, NULL);
856 
857     /* restore registers */
858     if (restore_sigcontext(env, &frame->sc, &eax))
859         goto badframe;
860     return eax;
861 
862 badframe:
863     force_sig(TARGET_SIGSEGV);
864     return 0;
865 }
866 
867 long do_rt_sigreturn(CPUX86State *env)
868 {
869 	struct rt_sigframe *frame = (struct rt_sigframe *)(env->regs[R_ESP] - 4);
870         sigset_t set;
871         //	stack_t st;
872 	int eax;
873 
874 #if 0
875 	if (verify_area(VERIFY_READ, frame, sizeof(*frame)))
876 		goto badframe;
877 #endif
878         target_to_host_sigset(&set, &frame->uc.tuc_sigmask);
879         sigprocmask(SIG_SETMASK, &set, NULL);
880 
881 	if (restore_sigcontext(env, &frame->uc.tuc_mcontext, &eax))
882 		goto badframe;
883 
884 #if 0
885 	if (__copy_from_user(&st, &frame->uc.tuc_stack, sizeof(st)))
886 		goto badframe;
887 	/* It is more difficult to avoid calling this function than to
888 	   call it and ignore errors.  */
889 	do_sigaltstack(&st, NULL, regs->esp);
890 #endif
891 	return eax;
892 
893 badframe:
894 	force_sig(TARGET_SIGSEGV);
895 	return 0;
896 }
897 
898 #elif defined(TARGET_ARM)
899 
900 struct target_sigcontext {
901 	target_ulong trap_no;
902 	target_ulong error_code;
903 	target_ulong oldmask;
904 	target_ulong arm_r0;
905 	target_ulong arm_r1;
906 	target_ulong arm_r2;
907 	target_ulong arm_r3;
908 	target_ulong arm_r4;
909 	target_ulong arm_r5;
910 	target_ulong arm_r6;
911 	target_ulong arm_r7;
912 	target_ulong arm_r8;
913 	target_ulong arm_r9;
914 	target_ulong arm_r10;
915 	target_ulong arm_fp;
916 	target_ulong arm_ip;
917 	target_ulong arm_sp;
918 	target_ulong arm_lr;
919 	target_ulong arm_pc;
920 	target_ulong arm_cpsr;
921 	target_ulong fault_address;
922 };
923 
924 typedef struct target_sigaltstack {
925 	target_ulong ss_sp;
926 	int ss_flags;
927 	target_ulong ss_size;
928 } target_stack_t;
929 
930 struct target_ucontext {
931     target_ulong tuc_flags;
932     target_ulong tuc_link;
933     target_stack_t tuc_stack;
934     struct target_sigcontext tuc_mcontext;
935     target_sigset_t  tuc_sigmask;	/* mask last for extensibility */
936 };
937 
938 struct sigframe
939 {
940     struct target_sigcontext sc;
941     target_ulong extramask[TARGET_NSIG_WORDS-1];
942     target_ulong retcode;
943 };
944 
945 struct rt_sigframe
946 {
947     struct target_siginfo *pinfo;
948     void *puc;
949     struct target_siginfo info;
950     struct target_ucontext uc;
951     target_ulong retcode;
952 };
953 
954 #define TARGET_CONFIG_CPU_32 1
955 
956 /*
957  * For ARM syscalls, we encode the syscall number into the instruction.
958  */
959 #define SWI_SYS_SIGRETURN	(0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE))
960 #define SWI_SYS_RT_SIGRETURN	(0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE))
961 
962 /*
963  * For Thumb syscalls, we pass the syscall number via r7.  We therefore
964  * need two 16-bit instructions.
965  */
966 #define SWI_THUMB_SIGRETURN	(0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn))
967 #define SWI_THUMB_RT_SIGRETURN	(0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn))
968 
969 static const target_ulong retcodes[4] = {
970 	SWI_SYS_SIGRETURN,	SWI_THUMB_SIGRETURN,
971 	SWI_SYS_RT_SIGRETURN,	SWI_THUMB_RT_SIGRETURN
972 };
973 
974 
975 #define __put_user_error(x,p,e) __put_user(x, p)
976 #define __get_user_error(x,p,e) __get_user(x, p)
977 
978 static inline int valid_user_regs(CPUState *regs)
979 {
980     return 1;
981 }
982 
983 static int
984 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
985 		 CPUState *env, unsigned long mask)
986 {
987 	int err = 0;
988 
989 	__put_user_error(env->regs[0], &sc->arm_r0, err);
990 	__put_user_error(env->regs[1], &sc->arm_r1, err);
991 	__put_user_error(env->regs[2], &sc->arm_r2, err);
992 	__put_user_error(env->regs[3], &sc->arm_r3, err);
993 	__put_user_error(env->regs[4], &sc->arm_r4, err);
994 	__put_user_error(env->regs[5], &sc->arm_r5, err);
995 	__put_user_error(env->regs[6], &sc->arm_r6, err);
996 	__put_user_error(env->regs[7], &sc->arm_r7, err);
997 	__put_user_error(env->regs[8], &sc->arm_r8, err);
998 	__put_user_error(env->regs[9], &sc->arm_r9, err);
999 	__put_user_error(env->regs[10], &sc->arm_r10, err);
1000 	__put_user_error(env->regs[11], &sc->arm_fp, err);
1001 	__put_user_error(env->regs[12], &sc->arm_ip, err);
1002 	__put_user_error(env->regs[13], &sc->arm_sp, err);
1003 	__put_user_error(env->regs[14], &sc->arm_lr, err);
1004 	__put_user_error(env->regs[15], &sc->arm_pc, err);
1005 #ifdef TARGET_CONFIG_CPU_32
1006 	__put_user_error(cpsr_read(env), &sc->arm_cpsr, err);
1007 #endif
1008 
1009 	__put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err);
1010 	__put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err);
1011 	__put_user_error(/* current->thread.address */ 0, &sc->fault_address, err);
1012 	__put_user_error(mask, &sc->oldmask, err);
1013 
1014 	return err;
1015 }
1016 
1017 static inline void *
1018 get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize)
1019 {
1020 	unsigned long sp = regs->regs[13];
1021 
1022 #if 0
1023 	/*
1024 	 * This is the X/Open sanctioned signal stack switching.
1025 	 */
1026 	if ((ka->sa.sa_flags & SA_ONSTACK) && !sas_ss_flags(sp))
1027 		sp = current->sas_ss_sp + current->sas_ss_size;
1028 #endif
1029 	/*
1030 	 * ATPCS B01 mandates 8-byte alignment
1031 	 */
1032 	return (void *)((sp - framesize) & ~7);
1033 }
1034 
1035 static int
1036 setup_return(CPUState *env, struct emulated_sigaction *ka,
1037 	     target_ulong *rc, void *frame, int usig)
1038 {
1039 	target_ulong handler = (target_ulong)ka->sa._sa_handler;
1040 	target_ulong retcode;
1041 	int thumb = 0;
1042 #if defined(TARGET_CONFIG_CPU_32)
1043 #if 0
1044 	target_ulong cpsr = env->cpsr;
1045 
1046 	/*
1047 	 * Maybe we need to deliver a 32-bit signal to a 26-bit task.
1048 	 */
1049 	if (ka->sa.sa_flags & SA_THIRTYTWO)
1050 		cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
1051 
1052 #ifdef CONFIG_ARM_THUMB
1053 	if (elf_hwcap & HWCAP_THUMB) {
1054 		/*
1055 		 * The LSB of the handler determines if we're going to
1056 		 * be using THUMB or ARM mode for this signal handler.
1057 		 */
1058 		thumb = handler & 1;
1059 
1060 		if (thumb)
1061 			cpsr |= T_BIT;
1062 		else
1063 			cpsr &= ~T_BIT;
1064 	}
1065 #endif
1066 #endif
1067 #endif /* TARGET_CONFIG_CPU_32 */
1068 
1069 	if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
1070 		retcode = (target_ulong)ka->sa.sa_restorer;
1071 	} else {
1072 		unsigned int idx = thumb;
1073 
1074 		if (ka->sa.sa_flags & TARGET_SA_SIGINFO)
1075 			idx += 2;
1076 
1077 		if (__put_user(retcodes[idx], rc))
1078 			return 1;
1079 #if 0
1080 		flush_icache_range((target_ulong)rc,
1081 				   (target_ulong)(rc + 1));
1082 #endif
1083 		retcode = ((target_ulong)rc) + thumb;
1084 	}
1085 
1086 	env->regs[0] = usig;
1087 	env->regs[13] = (target_ulong)frame;
1088 	env->regs[14] = retcode;
1089 	env->regs[15] = handler & (thumb ? ~1 : ~3);
1090 
1091 #if 0
1092 #ifdef TARGET_CONFIG_CPU_32
1093 	env->cpsr = cpsr;
1094 #endif
1095 #endif
1096 
1097 	return 0;
1098 }
1099 
1100 static void setup_frame(int usig, struct emulated_sigaction *ka,
1101 			target_sigset_t *set, CPUState *regs)
1102 {
1103 	struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame));
1104 	int i, err = 0;
1105 
1106 	err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]);
1107 
1108         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1109             if (__put_user(set->sig[i], &frame->extramask[i - 1]))
1110                 return;
1111 	}
1112 
1113 	if (err == 0)
1114             err = setup_return(regs, ka, &frame->retcode, frame, usig);
1115         //	return err;
1116 }
1117 
1118 static void setup_rt_frame(int usig, struct emulated_sigaction *ka,
1119                            target_siginfo_t *info,
1120 			   target_sigset_t *set, CPUState *env)
1121 {
1122 	struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame));
1123 	int i, err = 0;
1124 
1125 	if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame)))
1126             return /* 1 */;
1127 
1128 	__put_user_error(&frame->info, (target_ulong *)&frame->pinfo, err);
1129 	__put_user_error(&frame->uc, (target_ulong *)&frame->puc, err);
1130 	err |= copy_siginfo_to_user(&frame->info, info);
1131 
1132 	/* Clear all the bits of the ucontext we don't use.  */
1133 	err |= __clear_user(&frame->uc, offsetof(struct ucontext, uc_mcontext));
1134 
1135 	err |= setup_sigcontext(&frame->uc.tuc_mcontext, /*&frame->fpstate,*/
1136 				env, set->sig[0]);
1137         for(i = 0; i < TARGET_NSIG_WORDS; i++) {
1138             if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]))
1139                 return;
1140         }
1141 
1142 	if (err == 0)
1143 		err = setup_return(env, ka, &frame->retcode, frame, usig);
1144 
1145 	if (err == 0) {
1146 		/*
1147 		 * For realtime signals we must also set the second and third
1148 		 * arguments for the signal handler.
1149 		 *   -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
1150 		 */
1151             env->regs[1] = (target_ulong)frame->pinfo;
1152             env->regs[2] = (target_ulong)frame->puc;
1153 	}
1154 
1155         //	return err;
1156 }
1157 
1158 static int
1159 restore_sigcontext(CPUState *env, struct target_sigcontext *sc)
1160 {
1161 	int err = 0;
1162         uint32_t cpsr;
1163 
1164 	__get_user_error(env->regs[0], &sc->arm_r0, err);
1165 	__get_user_error(env->regs[1], &sc->arm_r1, err);
1166 	__get_user_error(env->regs[2], &sc->arm_r2, err);
1167 	__get_user_error(env->regs[3], &sc->arm_r3, err);
1168 	__get_user_error(env->regs[4], &sc->arm_r4, err);
1169 	__get_user_error(env->regs[5], &sc->arm_r5, err);
1170 	__get_user_error(env->regs[6], &sc->arm_r6, err);
1171 	__get_user_error(env->regs[7], &sc->arm_r7, err);
1172 	__get_user_error(env->regs[8], &sc->arm_r8, err);
1173 	__get_user_error(env->regs[9], &sc->arm_r9, err);
1174 	__get_user_error(env->regs[10], &sc->arm_r10, err);
1175 	__get_user_error(env->regs[11], &sc->arm_fp, err);
1176 	__get_user_error(env->regs[12], &sc->arm_ip, err);
1177 	__get_user_error(env->regs[13], &sc->arm_sp, err);
1178 	__get_user_error(env->regs[14], &sc->arm_lr, err);
1179 	__get_user_error(env->regs[15], &sc->arm_pc, err);
1180 #ifdef TARGET_CONFIG_CPU_32
1181 	__get_user_error(cpsr, &sc->arm_cpsr, err);
1182         cpsr_write(env, cpsr, 0xffffffff);
1183 #endif
1184 
1185 	err |= !valid_user_regs(env);
1186 
1187 	return err;
1188 }
1189 
1190 long do_sigreturn(CPUState *env)
1191 {
1192 	struct sigframe *frame;
1193 	target_sigset_t set;
1194         sigset_t host_set;
1195         int i;
1196 
1197 	/*
1198 	 * Since we stacked the signal on a 64-bit boundary,
1199 	 * then 'sp' should be word aligned here.  If it's
1200 	 * not, then the user is trying to mess with us.
1201 	 */
1202 	if (env->regs[13] & 7)
1203 		goto badframe;
1204 
1205 	frame = (struct sigframe *)env->regs[13];
1206 
1207 #if 0
1208 	if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1209 		goto badframe;
1210 #endif
1211 	if (__get_user(set.sig[0], &frame->sc.oldmask))
1212             goto badframe;
1213         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1214             if (__get_user(set.sig[i], &frame->extramask[i - 1]))
1215                 goto badframe;
1216         }
1217 
1218         target_to_host_sigset_internal(&host_set, &set);
1219         sigprocmask(SIG_SETMASK, &host_set, NULL);
1220 
1221 	if (restore_sigcontext(env, &frame->sc))
1222 		goto badframe;
1223 
1224 #if 0
1225 	/* Send SIGTRAP if we're single-stepping */
1226 	if (ptrace_cancel_bpt(current))
1227 		send_sig(SIGTRAP, current, 1);
1228 #endif
1229 	return env->regs[0];
1230 
1231 badframe:
1232         force_sig(SIGSEGV /* , current */);
1233 	return 0;
1234 }
1235 
1236 long do_rt_sigreturn(CPUState *env)
1237 {
1238 	struct rt_sigframe *frame;
1239         sigset_t host_set;
1240 
1241 	/*
1242 	 * Since we stacked the signal on a 64-bit boundary,
1243 	 * then 'sp' should be word aligned here.  If it's
1244 	 * not, then the user is trying to mess with us.
1245 	 */
1246 	if (env->regs[13] & 7)
1247 		goto badframe;
1248 
1249 	frame = (struct rt_sigframe *)env->regs[13];
1250 
1251 #if 0
1252 	if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1253 		goto badframe;
1254 #endif
1255         target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask);
1256         sigprocmask(SIG_SETMASK, &host_set, NULL);
1257 
1258 	if (restore_sigcontext(env, &frame->uc.tuc_mcontext))
1259 		goto badframe;
1260 
1261 #if 0
1262 	/* Send SIGTRAP if we're single-stepping */
1263 	if (ptrace_cancel_bpt(current))
1264 		send_sig(SIGTRAP, current, 1);
1265 #endif
1266 	return env->regs[0];
1267 
1268 badframe:
1269         force_sig(SIGSEGV /* , current */);
1270 	return 0;
1271 }
1272 
1273 #elif defined(TARGET_SPARC)
1274 
1275 #define __SUNOS_MAXWIN   31
1276 
1277 /* This is what SunOS does, so shall I. */
1278 struct target_sigcontext {
1279         target_ulong sigc_onstack;      /* state to restore */
1280 
1281         target_ulong sigc_mask;         /* sigmask to restore */
1282         target_ulong sigc_sp;           /* stack pointer */
1283         target_ulong sigc_pc;           /* program counter */
1284         target_ulong sigc_npc;          /* next program counter */
1285         target_ulong sigc_psr;          /* for condition codes etc */
1286         target_ulong sigc_g1;           /* User uses these two registers */
1287         target_ulong sigc_o0;           /* within the trampoline code. */
1288 
1289         /* Now comes information regarding the users window set
1290          * at the time of the signal.
1291          */
1292         target_ulong sigc_oswins;       /* outstanding windows */
1293 
1294         /* stack ptrs for each regwin buf */
1295         char *sigc_spbuf[__SUNOS_MAXWIN];
1296 
1297         /* Windows to restore after signal */
1298         struct {
1299                 target_ulong locals[8];
1300                 target_ulong ins[8];
1301         } sigc_wbuf[__SUNOS_MAXWIN];
1302 };
1303 /* A Sparc stack frame */
1304 struct sparc_stackf {
1305         target_ulong locals[8];
1306         target_ulong ins[6];
1307         struct sparc_stackf *fp;
1308         target_ulong callers_pc;
1309         char *structptr;
1310         target_ulong xargs[6];
1311         target_ulong xxargs[1];
1312 };
1313 
1314 typedef struct {
1315         struct {
1316                 target_ulong psr;
1317                 target_ulong pc;
1318                 target_ulong npc;
1319                 target_ulong y;
1320                 target_ulong u_regs[16]; /* globals and ins */
1321         }               si_regs;
1322         int             si_mask;
1323 } __siginfo_t;
1324 
1325 typedef struct {
1326         unsigned   long si_float_regs [32];
1327         unsigned   long si_fsr;
1328         unsigned   long si_fpqdepth;
1329         struct {
1330                 unsigned long *insn_addr;
1331                 unsigned long insn;
1332         } si_fpqueue [16];
1333 } __siginfo_fpu_t;
1334 
1335 
1336 struct target_signal_frame {
1337 	struct sparc_stackf	ss;
1338 	__siginfo_t		info;
1339 	__siginfo_fpu_t 	*fpu_save;
1340 	target_ulong		insns[2] __attribute__ ((aligned (8)));
1341 	target_ulong		extramask[TARGET_NSIG_WORDS - 1];
1342 	target_ulong		extra_size; /* Should be 0 */
1343 	__siginfo_fpu_t		fpu_state;
1344 };
1345 struct target_rt_signal_frame {
1346 	struct sparc_stackf	ss;
1347 	siginfo_t		info;
1348 	target_ulong		regs[20];
1349 	sigset_t		mask;
1350 	__siginfo_fpu_t 	*fpu_save;
1351 	unsigned int		insns[2];
1352 	stack_t			stack;
1353 	unsigned int		extra_size; /* Should be 0 */
1354 	__siginfo_fpu_t		fpu_state;
1355 };
1356 
1357 #define UREG_O0        16
1358 #define UREG_O6        22
1359 #define UREG_I0        0
1360 #define UREG_I1        1
1361 #define UREG_I2        2
1362 #define UREG_I6        6
1363 #define UREG_I7        7
1364 #define UREG_L0	       8
1365 #define UREG_FP        UREG_I6
1366 #define UREG_SP        UREG_O6
1367 
1368 static inline void *get_sigframe(struct emulated_sigaction *sa, CPUState *env, unsigned long framesize)
1369 {
1370 	unsigned long sp;
1371 
1372 	sp = env->regwptr[UREG_FP];
1373 #if 0
1374 
1375 	/* This is the X/Open sanctioned signal stack switching.  */
1376 	if (sa->sa_flags & TARGET_SA_ONSTACK) {
1377 		if (!on_sig_stack(sp) && !((current->sas_ss_sp + current->sas_ss_size) & 7))
1378 			sp = current->sas_ss_sp + current->sas_ss_size;
1379 	}
1380 #endif
1381 	return (void *)(sp - framesize);
1382 }
1383 
1384 static int
1385 setup___siginfo(__siginfo_t *si, CPUState *env, target_ulong mask)
1386 {
1387 	int err = 0, i;
1388 
1389 	err |= __put_user(env->psr, &si->si_regs.psr);
1390 	err |= __put_user(env->pc, &si->si_regs.pc);
1391 	err |= __put_user(env->npc, &si->si_regs.npc);
1392 	err |= __put_user(env->y, &si->si_regs.y);
1393 	for (i=0; i < 8; i++) {
1394 		err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
1395 	}
1396 	for (i=0; i < 8; i++) {
1397 		err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
1398 	}
1399 	err |= __put_user(mask, &si->si_mask);
1400 	return err;
1401 }
1402 
1403 #if 0
1404 static int
1405 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
1406 		 CPUState *env, unsigned long mask)
1407 {
1408 	int err = 0;
1409 
1410 	err |= __put_user(mask, &sc->sigc_mask);
1411 	err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
1412 	err |= __put_user(env->pc, &sc->sigc_pc);
1413 	err |= __put_user(env->npc, &sc->sigc_npc);
1414 	err |= __put_user(env->psr, &sc->sigc_psr);
1415 	err |= __put_user(env->gregs[1], &sc->sigc_g1);
1416 	err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
1417 
1418 	return err;
1419 }
1420 #endif
1421 #define NF_ALIGNEDSZ  (((sizeof(struct target_signal_frame) + 7) & (~7)))
1422 
1423 static void setup_frame(int sig, struct emulated_sigaction *ka,
1424 			target_sigset_t *set, CPUState *env)
1425 {
1426 	struct target_signal_frame *sf;
1427 	int sigframe_size, err, i;
1428 
1429 	/* 1. Make sure everything is clean */
1430 	//synchronize_user_stack();
1431 
1432         sigframe_size = NF_ALIGNEDSZ;
1433 
1434 	sf = (struct target_signal_frame *)
1435 		get_sigframe(ka, env, sigframe_size);
1436 
1437 	//fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1438 #if 0
1439 	if (invalid_frame_pointer(sf, sigframe_size))
1440 		goto sigill_and_return;
1441 #endif
1442 	/* 2. Save the current process state */
1443 	err = setup___siginfo(&sf->info, env, set->sig[0]);
1444 	err |= __put_user(0, &sf->extra_size);
1445 
1446 	//err |= save_fpu_state(regs, &sf->fpu_state);
1447 	//err |= __put_user(&sf->fpu_state, &sf->fpu_save);
1448 
1449 	err |= __put_user(set->sig[0], &sf->info.si_mask);
1450 	for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
1451 		err |= __put_user(set->sig[i + 1], &sf->extramask[i]);
1452 	}
1453 
1454 	for (i = 0; i < 8; i++) {
1455 	  	err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
1456 	}
1457 	for (i = 0; i < 8; i++) {
1458 	  	err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
1459 	}
1460 	if (err)
1461 		goto sigsegv;
1462 
1463 	/* 3. signal handler back-trampoline and parameters */
1464 	env->regwptr[UREG_FP] = (target_ulong) sf;
1465 	env->regwptr[UREG_I0] = sig;
1466 	env->regwptr[UREG_I1] = (target_ulong) &sf->info;
1467 	env->regwptr[UREG_I2] = (target_ulong) &sf->info;
1468 
1469 	/* 4. signal handler */
1470 	env->pc = (unsigned long) ka->sa._sa_handler;
1471 	env->npc = (env->pc + 4);
1472 	/* 5. return to kernel instructions */
1473 	if (ka->sa.sa_restorer)
1474 		env->regwptr[UREG_I7] = (unsigned long)ka->sa.sa_restorer;
1475 	else {
1476 		env->regwptr[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);
1477 
1478 		/* mov __NR_sigreturn, %g1 */
1479 		err |= __put_user(0x821020d8, &sf->insns[0]);
1480 
1481 		/* t 0x10 */
1482 		err |= __put_user(0x91d02010, &sf->insns[1]);
1483 		if (err)
1484 			goto sigsegv;
1485 
1486 		/* Flush instruction space. */
1487 		//flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
1488                 //		tb_flush(env);
1489 	}
1490 	return;
1491 
1492         //sigill_and_return:
1493 	force_sig(TARGET_SIGILL);
1494 sigsegv:
1495 	//fprintf(stderr, "force_sig\n");
1496 	force_sig(TARGET_SIGSEGV);
1497 }
1498 static inline int
1499 restore_fpu_state(CPUState *env, __siginfo_fpu_t *fpu)
1500 {
1501         int err;
1502 #if 0
1503 #ifdef CONFIG_SMP
1504         if (current->flags & PF_USEDFPU)
1505                 regs->psr &= ~PSR_EF;
1506 #else
1507         if (current == last_task_used_math) {
1508                 last_task_used_math = 0;
1509                 regs->psr &= ~PSR_EF;
1510         }
1511 #endif
1512         current->used_math = 1;
1513         current->flags &= ~PF_USEDFPU;
1514 #endif
1515 #if 0
1516         if (verify_area (VERIFY_READ, fpu, sizeof(*fpu)))
1517                 return -EFAULT;
1518 #endif
1519 
1520         err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0],
1521 	                             (sizeof(unsigned long) * 32));
1522         err |= __get_user(env->fsr, &fpu->si_fsr);
1523 #if 0
1524         err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth);
1525         if (current->thread.fpqdepth != 0)
1526                 err |= __copy_from_user(&current->thread.fpqueue[0],
1527                                         &fpu->si_fpqueue[0],
1528                                         ((sizeof(unsigned long) +
1529                                         (sizeof(unsigned long *)))*16));
1530 #endif
1531         return err;
1532 }
1533 
1534 
1535 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1536                            target_siginfo_t *info,
1537 			   target_sigset_t *set, CPUState *env)
1538 {
1539     fprintf(stderr, "setup_rt_frame: not implemented\n");
1540 }
1541 
1542 long do_sigreturn(CPUState *env)
1543 {
1544         struct target_signal_frame *sf;
1545         uint32_t up_psr, pc, npc;
1546         target_sigset_t set;
1547         sigset_t host_set;
1548         target_ulong fpu_save;
1549         int err, i;
1550 
1551         sf = (struct target_signal_frame *) env->regwptr[UREG_FP];
1552 #if 0
1553 	fprintf(stderr, "sigreturn\n");
1554 	fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1555 #endif
1556 	//cpu_dump_state(env, stderr, fprintf, 0);
1557 
1558         /* 1. Make sure we are not getting garbage from the user */
1559 #if 0
1560         if (verify_area (VERIFY_READ, sf, sizeof (*sf)))
1561                 goto segv_and_exit;
1562 #endif
1563 
1564         if (((uint) sf) & 3)
1565                 goto segv_and_exit;
1566 
1567         err = __get_user(pc,  &sf->info.si_regs.pc);
1568         err |= __get_user(npc, &sf->info.si_regs.npc);
1569 
1570         if ((pc | npc) & 3)
1571                 goto segv_and_exit;
1572 
1573         /* 2. Restore the state */
1574         err |= __get_user(up_psr, &sf->info.si_regs.psr);
1575 
1576         /* User can only change condition codes and FPU enabling in %psr. */
1577         env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
1578                   | (env->psr & ~(PSR_ICC /* | PSR_EF */));
1579 
1580 	env->pc = pc;
1581 	env->npc = npc;
1582         err |= __get_user(env->y, &sf->info.si_regs.y);
1583 	for (i=0; i < 8; i++) {
1584 		err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
1585 	}
1586 	for (i=0; i < 8; i++) {
1587 		err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
1588 	}
1589 
1590         err |= __get_user(fpu_save, (target_ulong *)&sf->fpu_save);
1591 
1592         //if (fpu_save)
1593         //        err |= restore_fpu_state(env, fpu_save);
1594 
1595         /* This is pretty much atomic, no amount locking would prevent
1596          * the races which exist anyways.
1597          */
1598         err |= __get_user(set.sig[0], &sf->info.si_mask);
1599         for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1600             err |= (__get_user(set.sig[i], &sf->extramask[i - 1]));
1601         }
1602 
1603         target_to_host_sigset_internal(&host_set, &set);
1604         sigprocmask(SIG_SETMASK, &host_set, NULL);
1605 
1606         if (err)
1607                 goto segv_and_exit;
1608 
1609         return env->regwptr[0];
1610 
1611 segv_and_exit:
1612 	force_sig(TARGET_SIGSEGV);
1613 }
1614 
1615 long do_rt_sigreturn(CPUState *env)
1616 {
1617     fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1618     return -ENOSYS;
1619 }
1620 
1621 
1622 #else
1623 
1624 static void setup_frame(int sig, struct emulated_sigaction *ka,
1625 			target_sigset_t *set, CPUState *env)
1626 {
1627     fprintf(stderr, "setup_frame: not implemented\n");
1628 }
1629 
1630 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1631                            target_siginfo_t *info,
1632 			   target_sigset_t *set, CPUState *env)
1633 {
1634     fprintf(stderr, "setup_rt_frame: not implemented\n");
1635 }
1636 
1637 long do_sigreturn(CPUState *env)
1638 {
1639     fprintf(stderr, "do_sigreturn: not implemented\n");
1640     return -ENOSYS;
1641 }
1642 
1643 long do_rt_sigreturn(CPUState *env)
1644 {
1645     fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1646     return -ENOSYS;
1647 }
1648 
1649 #endif
1650 
1651 void process_pending_signals(void *cpu_env)
1652 {
1653     int sig;
1654     target_ulong handler;
1655     sigset_t set, old_set;
1656     target_sigset_t target_old_set;
1657     struct emulated_sigaction *k;
1658     struct sigqueue *q;
1659 
1660     if (!signal_pending)
1661         return;
1662 
1663     k = sigact_table;
1664     for(sig = 1; sig <= TARGET_NSIG; sig++) {
1665         if (k->pending)
1666             goto handle_signal;
1667         k++;
1668     }
1669     /* if no signal is pending, just return */
1670     signal_pending = 0;
1671     return;
1672 
1673  handle_signal:
1674 #ifdef DEBUG_SIGNAL
1675     fprintf(stderr, "qemu: process signal %d\n", sig);
1676 #endif
1677     /* dequeue signal */
1678     q = k->first;
1679     k->first = q->next;
1680     if (!k->first)
1681         k->pending = 0;
1682 
1683     sig = gdb_handlesig (cpu_env, sig);
1684     if (!sig) {
1685         fprintf (stderr, "Lost signal\n");
1686         abort();
1687     }
1688 
1689     handler = k->sa._sa_handler;
1690     if (handler == TARGET_SIG_DFL) {
1691         /* default handler : ignore some signal. The other are fatal */
1692         if (sig != TARGET_SIGCHLD &&
1693             sig != TARGET_SIGURG &&
1694             sig != TARGET_SIGWINCH) {
1695             force_sig(sig);
1696         }
1697     } else if (handler == TARGET_SIG_IGN) {
1698         /* ignore sig */
1699     } else if (handler == TARGET_SIG_ERR) {
1700         force_sig(sig);
1701     } else {
1702         /* compute the blocked signals during the handler execution */
1703         target_to_host_sigset(&set, &k->sa.sa_mask);
1704         /* SA_NODEFER indicates that the current signal should not be
1705            blocked during the handler */
1706         if (!(k->sa.sa_flags & TARGET_SA_NODEFER))
1707             sigaddset(&set, target_to_host_signal(sig));
1708 
1709         /* block signals in the handler using Linux */
1710         sigprocmask(SIG_BLOCK, &set, &old_set);
1711         /* save the previous blocked signal state to restore it at the
1712            end of the signal execution (see do_sigreturn) */
1713         host_to_target_sigset_internal(&target_old_set, &old_set);
1714 
1715         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1716 #ifdef TARGET_I386
1717         {
1718             CPUX86State *env = cpu_env;
1719             if (env->eflags & VM_MASK)
1720                 save_v86_state(env);
1721         }
1722 #endif
1723         /* prepare the stack frame of the virtual CPU */
1724         if (k->sa.sa_flags & TARGET_SA_SIGINFO)
1725             setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env);
1726         else
1727             setup_frame(sig, k, &target_old_set, cpu_env);
1728 	if (k->sa.sa_flags & TARGET_SA_RESETHAND)
1729             k->sa._sa_handler = TARGET_SIG_DFL;
1730     }
1731     if (q != &k->info)
1732         free_sigqueue(q);
1733 }
1734 
1735 
1736