xref: /qemu/linux-user/signal.c (revision aa3a285b5bc56a4208b3b57d4a55291e9c260107)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "qemu/cutils.h"
22 #include "gdbstub/user.h"
23 #include "exec/page-protection.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 
26 #include <sys/ucontext.h>
27 #include <sys/resource.h>
28 
29 #include "qemu.h"
30 #include "user-internals.h"
31 #include "strace.h"
32 #include "loader.h"
33 #include "trace.h"
34 #include "signal-common.h"
35 #include "host-signal.h"
36 #include "user/cpu_loop.h"
37 #include "user/page-protection.h"
38 #include "user/safe-syscall.h"
39 #include "tcg/tcg.h"
40 
41 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
42 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
43 
44 static struct target_sigaction sigact_table[TARGET_NSIG];
45 
46 static void host_signal_handler(int host_signum, siginfo_t *info,
47                                 void *puc);
48 
49 /* Fallback addresses into sigtramp page. */
50 abi_ulong default_sigreturn;
51 abi_ulong default_rt_sigreturn;
52 
53 /*
54  * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
55  * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
56  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
57  * a process exists without sending it a signal.
58  */
59 #ifdef __SIGRTMAX
60 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
61 #endif
62 static uint8_t host_to_target_signal_table[_NSIG] = {
63 #define MAKE_SIG_ENTRY(sig)     [sig] = TARGET_##sig,
64         MAKE_SIGNAL_LIST
65 #undef MAKE_SIG_ENTRY
66 };
67 
68 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
69 
70 /* valid sig is between 1 and _NSIG - 1 */
71 int host_to_target_signal(int sig)
72 {
73     if (sig < 1) {
74         return sig;
75     }
76     if (sig >= _NSIG) {
77         return TARGET_NSIG + 1;
78     }
79     return host_to_target_signal_table[sig];
80 }
81 
82 /* valid sig is between 1 and TARGET_NSIG */
83 int target_to_host_signal(int sig)
84 {
85     if (sig < 1) {
86         return sig;
87     }
88     if (sig > TARGET_NSIG) {
89         return _NSIG;
90     }
91     return target_to_host_signal_table[sig];
92 }
93 
94 static inline void target_sigaddset(target_sigset_t *set, int signum)
95 {
96     signum--;
97     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
98     set->sig[signum / TARGET_NSIG_BPW] |= mask;
99 }
100 
101 static inline int target_sigismember(const target_sigset_t *set, int signum)
102 {
103     signum--;
104     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
105     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
106 }
107 
108 void host_to_target_sigset_internal(target_sigset_t *d,
109                                     const sigset_t *s)
110 {
111     int host_sig, target_sig;
112     target_sigemptyset(d);
113     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
114         target_sig = host_to_target_signal(host_sig);
115         if (target_sig < 1 || target_sig > TARGET_NSIG) {
116             continue;
117         }
118         if (sigismember(s, host_sig)) {
119             target_sigaddset(d, target_sig);
120         }
121     }
122 }
123 
124 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
125 {
126     target_sigset_t d1;
127     int i;
128 
129     host_to_target_sigset_internal(&d1, s);
130     for(i = 0;i < TARGET_NSIG_WORDS; i++)
131         d->sig[i] = tswapal(d1.sig[i]);
132 }
133 
134 void target_to_host_sigset_internal(sigset_t *d,
135                                     const target_sigset_t *s)
136 {
137     int host_sig, target_sig;
138     sigemptyset(d);
139     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
140         host_sig = target_to_host_signal(target_sig);
141         if (host_sig < 1 || host_sig >= _NSIG) {
142             continue;
143         }
144         if (target_sigismember(s, target_sig)) {
145             sigaddset(d, host_sig);
146         }
147     }
148 }
149 
150 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
151 {
152     target_sigset_t s1;
153     int i;
154 
155     for(i = 0;i < TARGET_NSIG_WORDS; i++)
156         s1.sig[i] = tswapal(s->sig[i]);
157     target_to_host_sigset_internal(d, &s1);
158 }
159 
160 void host_to_target_old_sigset(abi_ulong *old_sigset,
161                                const sigset_t *sigset)
162 {
163     target_sigset_t d;
164     host_to_target_sigset(&d, sigset);
165     *old_sigset = d.sig[0];
166 }
167 
168 void target_to_host_old_sigset(sigset_t *sigset,
169                                const abi_ulong *old_sigset)
170 {
171     target_sigset_t d;
172     int i;
173 
174     d.sig[0] = *old_sigset;
175     for(i = 1;i < TARGET_NSIG_WORDS; i++)
176         d.sig[i] = 0;
177     target_to_host_sigset(sigset, &d);
178 }
179 
180 int block_signals(void)
181 {
182     TaskState *ts = get_task_state(thread_cpu);
183     sigset_t set;
184 
185     /* It's OK to block everything including SIGSEGV, because we won't
186      * run any further guest code before unblocking signals in
187      * process_pending_signals().
188      */
189     sigfillset(&set);
190     sigprocmask(SIG_SETMASK, &set, 0);
191 
192     return qatomic_xchg(&ts->signal_pending, 1);
193 }
194 
195 /* Wrapper for sigprocmask function
196  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
197  * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
198  * a signal was already pending and the syscall must be restarted, or
199  * 0 on success.
200  * If set is NULL, this is guaranteed not to fail.
201  */
202 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
203 {
204     TaskState *ts = get_task_state(thread_cpu);
205 
206     if (oldset) {
207         *oldset = ts->signal_mask;
208     }
209 
210     if (set) {
211         int i;
212 
213         if (block_signals()) {
214             return -QEMU_ERESTARTSYS;
215         }
216 
217         switch (how) {
218         case SIG_BLOCK:
219             sigorset(&ts->signal_mask, &ts->signal_mask, set);
220             break;
221         case SIG_UNBLOCK:
222             for (i = 1; i <= NSIG; ++i) {
223                 if (sigismember(set, i)) {
224                     sigdelset(&ts->signal_mask, i);
225                 }
226             }
227             break;
228         case SIG_SETMASK:
229             ts->signal_mask = *set;
230             break;
231         default:
232             g_assert_not_reached();
233         }
234 
235         /* Silently ignore attempts to change blocking status of KILL or STOP */
236         sigdelset(&ts->signal_mask, SIGKILL);
237         sigdelset(&ts->signal_mask, SIGSTOP);
238     }
239     return 0;
240 }
241 
242 /* Just set the guest's signal mask to the specified value; the
243  * caller is assumed to have called block_signals() already.
244  */
245 void set_sigmask(const sigset_t *set)
246 {
247     TaskState *ts = get_task_state(thread_cpu);
248 
249     ts->signal_mask = *set;
250 }
251 
252 /* sigaltstack management */
253 
254 int on_sig_stack(unsigned long sp)
255 {
256     TaskState *ts = get_task_state(thread_cpu);
257 
258     return (sp - ts->sigaltstack_used.ss_sp
259             < ts->sigaltstack_used.ss_size);
260 }
261 
262 int sas_ss_flags(unsigned long sp)
263 {
264     TaskState *ts = get_task_state(thread_cpu);
265 
266     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
267             : on_sig_stack(sp) ? SS_ONSTACK : 0);
268 }
269 
270 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
271 {
272     /*
273      * This is the X/Open sanctioned signal stack switching.
274      */
275     TaskState *ts = get_task_state(thread_cpu);
276 
277     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
278         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
279     }
280     return sp;
281 }
282 
283 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
284 {
285     TaskState *ts = get_task_state(thread_cpu);
286 
287     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
288     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
289     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
290 }
291 
292 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
293 {
294     TaskState *ts = get_task_state(thread_cpu);
295     size_t minstacksize = TARGET_MINSIGSTKSZ;
296     target_stack_t ss;
297 
298 #if defined(TARGET_PPC64)
299     /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
300     struct image_info *image = ts->info;
301     if (get_ppc64_abi(image) > 1) {
302         minstacksize = 4096;
303     }
304 #endif
305 
306     __get_user(ss.ss_sp, &uss->ss_sp);
307     __get_user(ss.ss_size, &uss->ss_size);
308     __get_user(ss.ss_flags, &uss->ss_flags);
309 
310     if (on_sig_stack(get_sp_from_cpustate(env))) {
311         return -TARGET_EPERM;
312     }
313 
314     switch (ss.ss_flags) {
315     default:
316         return -TARGET_EINVAL;
317 
318     case TARGET_SS_DISABLE:
319         ss.ss_size = 0;
320         ss.ss_sp = 0;
321         break;
322 
323     case TARGET_SS_ONSTACK:
324     case 0:
325         if (ss.ss_size < minstacksize) {
326             return -TARGET_ENOMEM;
327         }
328         break;
329     }
330 
331     ts->sigaltstack_used.ss_sp = ss.ss_sp;
332     ts->sigaltstack_used.ss_size = ss.ss_size;
333     return 0;
334 }
335 
336 /* siginfo conversion */
337 
338 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
339                                                  const siginfo_t *info)
340 {
341     int sig = host_to_target_signal(info->si_signo);
342     int si_code = info->si_code;
343     int si_type;
344     tinfo->si_signo = sig;
345     tinfo->si_errno = 0;
346     tinfo->si_code = info->si_code;
347 
348     /* This memset serves two purposes:
349      * (1) ensure we don't leak random junk to the guest later
350      * (2) placate false positives from gcc about fields
351      *     being used uninitialized if it chooses to inline both this
352      *     function and tswap_siginfo() into host_to_target_siginfo().
353      */
354     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
355 
356     /* This is awkward, because we have to use a combination of
357      * the si_code and si_signo to figure out which of the union's
358      * members are valid. (Within the host kernel it is always possible
359      * to tell, but the kernel carefully avoids giving userspace the
360      * high 16 bits of si_code, so we don't have the information to
361      * do this the easy way...) We therefore make our best guess,
362      * bearing in mind that a guest can spoof most of the si_codes
363      * via rt_sigqueueinfo() if it likes.
364      *
365      * Once we have made our guess, we record it in the top 16 bits of
366      * the si_code, so that tswap_siginfo() later can use it.
367      * tswap_siginfo() will strip these top bits out before writing
368      * si_code to the guest (sign-extending the lower bits).
369      */
370 
371     switch (si_code) {
372     case SI_USER:
373     case SI_TKILL:
374     case SI_KERNEL:
375         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
376          * These are the only unspoofable si_code values.
377          */
378         tinfo->_sifields._kill._pid = info->si_pid;
379         tinfo->_sifields._kill._uid = info->si_uid;
380         si_type = QEMU_SI_KILL;
381         break;
382     default:
383         /* Everything else is spoofable. Make best guess based on signal */
384         switch (sig) {
385         case TARGET_SIGCHLD:
386             tinfo->_sifields._sigchld._pid = info->si_pid;
387             tinfo->_sifields._sigchld._uid = info->si_uid;
388             if (si_code == CLD_EXITED)
389                 tinfo->_sifields._sigchld._status = info->si_status;
390             else
391                 tinfo->_sifields._sigchld._status
392                     = host_to_target_signal(info->si_status & 0x7f)
393                         | (info->si_status & ~0x7f);
394             tinfo->_sifields._sigchld._utime = info->si_utime;
395             tinfo->_sifields._sigchld._stime = info->si_stime;
396             si_type = QEMU_SI_CHLD;
397             break;
398         case TARGET_SIGIO:
399             tinfo->_sifields._sigpoll._band = info->si_band;
400             tinfo->_sifields._sigpoll._fd = info->si_fd;
401             si_type = QEMU_SI_POLL;
402             break;
403         default:
404             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
405             tinfo->_sifields._rt._pid = info->si_pid;
406             tinfo->_sifields._rt._uid = info->si_uid;
407             /* XXX: potential problem if 64 bit */
408             tinfo->_sifields._rt._sigval.sival_ptr
409                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
410             si_type = QEMU_SI_RT;
411             break;
412         }
413         break;
414     }
415 
416     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
417 }
418 
419 static void tswap_siginfo(target_siginfo_t *tinfo,
420                           const target_siginfo_t *info)
421 {
422     int si_type = extract32(info->si_code, 16, 16);
423     int si_code = sextract32(info->si_code, 0, 16);
424 
425     __put_user(info->si_signo, &tinfo->si_signo);
426     __put_user(info->si_errno, &tinfo->si_errno);
427     __put_user(si_code, &tinfo->si_code);
428 
429     /* We can use our internal marker of which fields in the structure
430      * are valid, rather than duplicating the guesswork of
431      * host_to_target_siginfo_noswap() here.
432      */
433     switch (si_type) {
434     case QEMU_SI_KILL:
435         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
436         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
437         break;
438     case QEMU_SI_TIMER:
439         __put_user(info->_sifields._timer._timer1,
440                    &tinfo->_sifields._timer._timer1);
441         __put_user(info->_sifields._timer._timer2,
442                    &tinfo->_sifields._timer._timer2);
443         break;
444     case QEMU_SI_POLL:
445         __put_user(info->_sifields._sigpoll._band,
446                    &tinfo->_sifields._sigpoll._band);
447         __put_user(info->_sifields._sigpoll._fd,
448                    &tinfo->_sifields._sigpoll._fd);
449         break;
450     case QEMU_SI_FAULT:
451         __put_user(info->_sifields._sigfault._addr,
452                    &tinfo->_sifields._sigfault._addr);
453         break;
454     case QEMU_SI_CHLD:
455         __put_user(info->_sifields._sigchld._pid,
456                    &tinfo->_sifields._sigchld._pid);
457         __put_user(info->_sifields._sigchld._uid,
458                    &tinfo->_sifields._sigchld._uid);
459         __put_user(info->_sifields._sigchld._status,
460                    &tinfo->_sifields._sigchld._status);
461         __put_user(info->_sifields._sigchld._utime,
462                    &tinfo->_sifields._sigchld._utime);
463         __put_user(info->_sifields._sigchld._stime,
464                    &tinfo->_sifields._sigchld._stime);
465         break;
466     case QEMU_SI_RT:
467         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
468         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
469         __put_user(info->_sifields._rt._sigval.sival_ptr,
470                    &tinfo->_sifields._rt._sigval.sival_ptr);
471         break;
472     default:
473         g_assert_not_reached();
474     }
475 }
476 
477 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
478 {
479     target_siginfo_t tgt_tmp;
480     host_to_target_siginfo_noswap(&tgt_tmp, info);
481     tswap_siginfo(tinfo, &tgt_tmp);
482 }
483 
484 /* XXX: we support only POSIX RT signals are used. */
485 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
486 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
487 {
488     /* This conversion is used only for the rt_sigqueueinfo syscall,
489      * and so we know that the _rt fields are the valid ones.
490      */
491     abi_ulong sival_ptr;
492 
493     __get_user(info->si_signo, &tinfo->si_signo);
494     __get_user(info->si_errno, &tinfo->si_errno);
495     __get_user(info->si_code, &tinfo->si_code);
496     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
497     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
498     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
499     info->si_value.sival_ptr = (void *)(long)sival_ptr;
500 }
501 
502 /* returns 1 if given signal should dump core if not handled */
503 static int core_dump_signal(int sig)
504 {
505     switch (sig) {
506     case TARGET_SIGABRT:
507     case TARGET_SIGFPE:
508     case TARGET_SIGILL:
509     case TARGET_SIGQUIT:
510     case TARGET_SIGSEGV:
511     case TARGET_SIGTRAP:
512     case TARGET_SIGBUS:
513         return (1);
514     default:
515         return (0);
516     }
517 }
518 
519 static void signal_table_init(const char *rtsig_map)
520 {
521     int hsig, tsig, count;
522 
523     if (rtsig_map) {
524         /*
525          * Map host RT signals to target RT signals according to the
526          * user-provided specification.
527          */
528         const char *s = rtsig_map;
529 
530         while (true) {
531             int i;
532 
533             if (qemu_strtoi(s, &s, 10, &tsig) || *s++ != ' ') {
534                 fprintf(stderr, "Malformed target signal in QEMU_RTSIG_MAP\n");
535                 exit(EXIT_FAILURE);
536             }
537             if (qemu_strtoi(s, &s, 10, &hsig) || *s++ != ' ') {
538                 fprintf(stderr, "Malformed host signal in QEMU_RTSIG_MAP\n");
539                 exit(EXIT_FAILURE);
540             }
541             if (qemu_strtoi(s, &s, 10, &count) || (*s && *s != ',')) {
542                 fprintf(stderr, "Malformed signal count in QEMU_RTSIG_MAP\n");
543                 exit(EXIT_FAILURE);
544             }
545 
546             for (i = 0; i < count; i++, tsig++, hsig++) {
547                 if (tsig < TARGET_SIGRTMIN || tsig > TARGET_NSIG) {
548                     fprintf(stderr, "%d is not a target rt signal\n", tsig);
549                     exit(EXIT_FAILURE);
550                 }
551                 if (hsig < SIGRTMIN || hsig > SIGRTMAX) {
552                     fprintf(stderr, "%d is not a host rt signal\n", hsig);
553                     exit(EXIT_FAILURE);
554                 }
555                 if (host_to_target_signal_table[hsig]) {
556                     fprintf(stderr, "%d already maps %d\n",
557                             hsig, host_to_target_signal_table[hsig]);
558                     exit(EXIT_FAILURE);
559                 }
560                 host_to_target_signal_table[hsig] = tsig;
561             }
562 
563             if (*s) {
564                 s++;
565             } else {
566                 break;
567             }
568         }
569     } else {
570         /*
571          * Default host-to-target RT signal mapping.
572          *
573          * Signals are supported starting from TARGET_SIGRTMIN and going up
574          * until we run out of host realtime signals.  Glibc uses the lower 2
575          * RT signals and (hopefully) nobody uses the upper ones.
576          * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
577          * To fix this properly we would need to do manual signal delivery
578          * multiplexed over a single host signal.
579          * Attempts for configure "missing" signals via sigaction will be
580          * silently ignored.
581          *
582          * Reserve one signal for internal usage (see below).
583          */
584 
585         hsig = SIGRTMIN + 1;
586         for (tsig = TARGET_SIGRTMIN;
587              hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
588              hsig++, tsig++) {
589             host_to_target_signal_table[hsig] = tsig;
590         }
591     }
592 
593     /*
594      * Remap the target SIGABRT, so that we can distinguish host abort
595      * from guest abort.  When the guest registers a signal handler or
596      * calls raise(SIGABRT), the host will raise SIG_RTn.  If the guest
597      * arrives at dump_core_and_abort(), we will map back to host SIGABRT
598      * so that the parent (native or emulated) sees the correct signal.
599      * Finally, also map host to guest SIGABRT so that the emulated
600      * parent sees the correct mapping from wait status.
601      */
602 
603     host_to_target_signal_table[SIGABRT] = 0;
604     for (hsig = SIGRTMIN; hsig <= SIGRTMAX; hsig++) {
605         if (!host_to_target_signal_table[hsig]) {
606             host_to_target_signal_table[hsig] = TARGET_SIGABRT;
607             break;
608         }
609     }
610     if (hsig > SIGRTMAX) {
611         fprintf(stderr, "No rt signals left for SIGABRT mapping\n");
612         exit(EXIT_FAILURE);
613     }
614 
615     /* Invert the mapping that has already been assigned. */
616     for (hsig = 1; hsig < _NSIG; hsig++) {
617         tsig = host_to_target_signal_table[hsig];
618         if (tsig) {
619             if (target_to_host_signal_table[tsig]) {
620                 fprintf(stderr, "%d is already mapped to %d\n",
621                         tsig, target_to_host_signal_table[tsig]);
622                 exit(EXIT_FAILURE);
623             }
624             target_to_host_signal_table[tsig] = hsig;
625         }
626     }
627 
628     host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
629 
630     /* Map everything else out-of-bounds. */
631     for (hsig = 1; hsig < _NSIG; hsig++) {
632         if (host_to_target_signal_table[hsig] == 0) {
633             host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
634         }
635     }
636     for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
637         if (target_to_host_signal_table[tsig] == 0) {
638             target_to_host_signal_table[tsig] = _NSIG;
639             count++;
640         }
641     }
642 
643     trace_signal_table_init(count);
644 }
645 
646 void signal_init(const char *rtsig_map)
647 {
648     TaskState *ts = get_task_state(thread_cpu);
649     struct sigaction act, oact;
650 
651     /* initialize signal conversion tables */
652     signal_table_init(rtsig_map);
653 
654     /* Set the signal mask from the host mask. */
655     sigprocmask(0, 0, &ts->signal_mask);
656 
657     sigfillset(&act.sa_mask);
658     act.sa_flags = SA_SIGINFO;
659     act.sa_sigaction = host_signal_handler;
660 
661     /*
662      * A parent process may configure ignored signals, but all other
663      * signals are default.  For any target signals that have no host
664      * mapping, set to ignore.  For all core_dump_signal, install our
665      * host signal handler so that we may invoke dump_core_and_abort.
666      * This includes SIGSEGV and SIGBUS, which are also need our signal
667      * handler for paging and exceptions.
668      */
669     for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
670         int hsig = target_to_host_signal(tsig);
671         abi_ptr thand = TARGET_SIG_IGN;
672 
673         if (hsig >= _NSIG) {
674             continue;
675         }
676 
677         /* As we force remap SIGABRT, cannot probe and install in one step. */
678         if (tsig == TARGET_SIGABRT) {
679             sigaction(SIGABRT, NULL, &oact);
680             sigaction(hsig, &act, NULL);
681         } else {
682             struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
683             sigaction(hsig, iact, &oact);
684         }
685 
686         if (oact.sa_sigaction != (void *)SIG_IGN) {
687             thand = TARGET_SIG_DFL;
688         }
689         sigact_table[tsig - 1]._sa_handler = thand;
690     }
691 }
692 
693 /* Force a synchronously taken signal. The kernel force_sig() function
694  * also forces the signal to "not blocked, not ignored", but for QEMU
695  * that work is done in process_pending_signals().
696  */
697 void force_sig(int sig)
698 {
699     CPUState *cpu = thread_cpu;
700     target_siginfo_t info = {};
701 
702     info.si_signo = sig;
703     info.si_errno = 0;
704     info.si_code = TARGET_SI_KERNEL;
705     info._sifields._kill._pid = 0;
706     info._sifields._kill._uid = 0;
707     queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info);
708 }
709 
710 /*
711  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
712  * 'force' part is handled in process_pending_signals().
713  */
714 void force_sig_fault(int sig, int code, abi_ulong addr)
715 {
716     CPUState *cpu = thread_cpu;
717     target_siginfo_t info = {};
718 
719     info.si_signo = sig;
720     info.si_errno = 0;
721     info.si_code = code;
722     info._sifields._sigfault._addr = addr;
723     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
724 }
725 
726 /* Force a SIGSEGV if we couldn't write to memory trying to set
727  * up the signal frame. oldsig is the signal we were trying to handle
728  * at the point of failure.
729  */
730 #if !defined(TARGET_RISCV)
731 void force_sigsegv(int oldsig)
732 {
733     if (oldsig == SIGSEGV) {
734         /* Make sure we don't try to deliver the signal again; this will
735          * end up with handle_pending_signal() calling dump_core_and_abort().
736          */
737         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
738     }
739     force_sig(TARGET_SIGSEGV);
740 }
741 #endif
742 
743 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
744                            MMUAccessType access_type, bool maperr, uintptr_t ra)
745 {
746     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
747 
748     if (tcg_ops->record_sigsegv) {
749         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
750     }
751 
752     force_sig_fault(TARGET_SIGSEGV,
753                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
754                     addr);
755     cpu->exception_index = EXCP_INTERRUPT;
756     cpu_loop_exit_restore(cpu, ra);
757 }
758 
759 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
760                           MMUAccessType access_type, uintptr_t ra)
761 {
762     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
763 
764     if (tcg_ops->record_sigbus) {
765         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
766     }
767 
768     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
769     cpu->exception_index = EXCP_INTERRUPT;
770     cpu_loop_exit_restore(cpu, ra);
771 }
772 
773 /* abort execution with signal */
774 static G_NORETURN
775 void die_with_signal(int host_sig)
776 {
777     struct sigaction act = {
778         .sa_handler = SIG_DFL,
779     };
780 
781     /*
782      * The proper exit code for dying from an uncaught signal is -<signal>.
783      * The kernel doesn't allow exit() or _exit() to pass a negative value.
784      * To get the proper exit code we need to actually die from an uncaught
785      * signal.  Here the default signal handler is installed, we send
786      * the signal and we wait for it to arrive.
787      */
788     sigfillset(&act.sa_mask);
789     sigaction(host_sig, &act, NULL);
790 
791     kill(getpid(), host_sig);
792 
793     /* Make sure the signal isn't masked (reusing the mask inside of act). */
794     sigdelset(&act.sa_mask, host_sig);
795     sigsuspend(&act.sa_mask);
796 
797     /* unreachable */
798     _exit(EXIT_FAILURE);
799 }
800 
801 static G_NORETURN
802 void dump_core_and_abort(CPUArchState *env, int target_sig)
803 {
804     CPUState *cpu = env_cpu(env);
805     TaskState *ts = get_task_state(cpu);
806     int host_sig, core_dumped = 0;
807 
808     /* On exit, undo the remapping of SIGABRT. */
809     if (target_sig == TARGET_SIGABRT) {
810         host_sig = SIGABRT;
811     } else {
812         host_sig = target_to_host_signal(target_sig);
813     }
814     trace_user_dump_core_and_abort(env, target_sig, host_sig);
815     gdb_signalled(env, target_sig);
816 
817     /* dump core if supported by target binary format */
818     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
819         stop_all_tasks();
820         core_dumped =
821             ((*ts->bprm->core_dump)(target_sig, env) == 0);
822     }
823     if (core_dumped) {
824         /* we already dumped the core of target process, we don't want
825          * a coredump of qemu itself */
826         struct rlimit nodump;
827         getrlimit(RLIMIT_CORE, &nodump);
828         nodump.rlim_cur=0;
829         setrlimit(RLIMIT_CORE, &nodump);
830         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
831             target_sig, strsignal(host_sig), "core dumped" );
832     }
833 
834     preexit_cleanup(env, 128 + target_sig);
835     die_with_signal(host_sig);
836 }
837 
838 /* queue a signal so that it will be send to the virtual CPU as soon
839    as possible */
840 void queue_signal(CPUArchState *env, int sig, int si_type,
841                   target_siginfo_t *info)
842 {
843     CPUState *cpu = env_cpu(env);
844     TaskState *ts = get_task_state(cpu);
845 
846     trace_user_queue_signal(env, sig);
847 
848     info->si_code = deposit32(info->si_code, 16, 16, si_type);
849 
850     ts->sync_signal.info = *info;
851     ts->sync_signal.pending = sig;
852     /* signal that a new signal is pending */
853     qatomic_set(&ts->signal_pending, 1);
854 }
855 
856 
857 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
858 static inline void rewind_if_in_safe_syscall(void *puc)
859 {
860     host_sigcontext *uc = (host_sigcontext *)puc;
861     uintptr_t pcreg = host_signal_pc(uc);
862 
863     if (pcreg > (uintptr_t)safe_syscall_start
864         && pcreg < (uintptr_t)safe_syscall_end) {
865         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
866     }
867 }
868 
869 static G_NORETURN
870 void die_from_signal(siginfo_t *info)
871 {
872     char sigbuf[4], codebuf[12];
873     const char *sig, *code = NULL;
874 
875     switch (info->si_signo) {
876     case SIGSEGV:
877         sig = "SEGV";
878         switch (info->si_code) {
879         case SEGV_MAPERR:
880             code = "MAPERR";
881             break;
882         case SEGV_ACCERR:
883             code = "ACCERR";
884             break;
885         }
886         break;
887     case SIGBUS:
888         sig = "BUS";
889         switch (info->si_code) {
890         case BUS_ADRALN:
891             code = "ADRALN";
892             break;
893         case BUS_ADRERR:
894             code = "ADRERR";
895             break;
896         }
897         break;
898     case SIGILL:
899         sig = "ILL";
900         switch (info->si_code) {
901         case ILL_ILLOPC:
902             code = "ILLOPC";
903             break;
904         case ILL_ILLOPN:
905             code = "ILLOPN";
906             break;
907         case ILL_ILLADR:
908             code = "ILLADR";
909             break;
910         case ILL_PRVOPC:
911             code = "PRVOPC";
912             break;
913         case ILL_PRVREG:
914             code = "PRVREG";
915             break;
916         case ILL_COPROC:
917             code = "COPROC";
918             break;
919         }
920         break;
921     case SIGFPE:
922         sig = "FPE";
923         switch (info->si_code) {
924         case FPE_INTDIV:
925             code = "INTDIV";
926             break;
927         case FPE_INTOVF:
928             code = "INTOVF";
929             break;
930         }
931         break;
932     case SIGTRAP:
933         sig = "TRAP";
934         break;
935     default:
936         snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
937         sig = sigbuf;
938         break;
939     }
940     if (code == NULL) {
941         snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
942         code = codebuf;
943     }
944 
945     error_report("QEMU internal SIG%s {code=%s, addr=%p}",
946                  sig, code, info->si_addr);
947     die_with_signal(info->si_signo);
948 }
949 
950 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
951                                  host_sigcontext *uc)
952 {
953     uintptr_t host_addr = (uintptr_t)info->si_addr;
954     /*
955      * Convert forcefully to guest address space: addresses outside
956      * reserved_va are still valid to report via SEGV_MAPERR.
957      */
958     bool is_valid = h2g_valid(host_addr);
959     abi_ptr guest_addr = h2g_nocheck(host_addr);
960     uintptr_t pc = host_signal_pc(uc);
961     bool is_write = host_signal_write(info, uc);
962     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
963     bool maperr;
964 
965     /* If this was a write to a TB protected page, restart. */
966     if (is_write
967         && is_valid
968         && info->si_code == SEGV_ACCERR
969         && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
970                                        pc, guest_addr)) {
971         return;
972     }
973 
974     /*
975      * If the access was not on behalf of the guest, within the executable
976      * mapping of the generated code buffer, then it is a host bug.
977      */
978     if (access_type != MMU_INST_FETCH
979         && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
980         die_from_signal(info);
981     }
982 
983     maperr = true;
984     if (is_valid && info->si_code == SEGV_ACCERR) {
985         /*
986          * With reserved_va, the whole address space is PROT_NONE,
987          * which means that we may get ACCERR when we want MAPERR.
988          */
989         if (page_get_flags(guest_addr) & PAGE_VALID) {
990             maperr = false;
991         } else {
992             info->si_code = SEGV_MAPERR;
993         }
994     }
995 
996     sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
997     cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
998 }
999 
1000 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info,
1001                                 host_sigcontext *uc)
1002 {
1003     uintptr_t pc = host_signal_pc(uc);
1004     bool is_write = host_signal_write(info, uc);
1005     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
1006 
1007     /*
1008      * If the access was not on behalf of the guest, within the executable
1009      * mapping of the generated code buffer, then it is a host bug.
1010      */
1011     if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
1012         die_from_signal(info);
1013     }
1014 
1015     if (info->si_code == BUS_ADRALN) {
1016         uintptr_t host_addr = (uintptr_t)info->si_addr;
1017         abi_ptr guest_addr = h2g_nocheck(host_addr);
1018 
1019         sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
1020         cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
1021     }
1022     return pc;
1023 }
1024 
1025 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
1026 {
1027     CPUState *cpu = thread_cpu;
1028     CPUArchState *env = cpu_env(cpu);
1029     TaskState *ts = get_task_state(cpu);
1030     target_siginfo_t tinfo;
1031     host_sigcontext *uc = puc;
1032     struct emulated_sigtable *k;
1033     int guest_sig;
1034     uintptr_t pc = 0;
1035     bool sync_sig = false;
1036     void *sigmask;
1037 
1038     /*
1039      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
1040      * handling wrt signal blocking and unwinding.  Non-spoofed SIGILL,
1041      * SIGFPE, SIGTRAP are always host bugs.
1042      */
1043     if (info->si_code > 0) {
1044         switch (host_sig) {
1045         case SIGSEGV:
1046             /* Only returns on handle_sigsegv_accerr_write success. */
1047             host_sigsegv_handler(cpu, info, uc);
1048             return;
1049         case SIGBUS:
1050             pc = host_sigbus_handler(cpu, info, uc);
1051             sync_sig = true;
1052             break;
1053         case SIGILL:
1054         case SIGFPE:
1055         case SIGTRAP:
1056             die_from_signal(info);
1057         }
1058     }
1059 
1060     /* get target signal number */
1061     guest_sig = host_to_target_signal(host_sig);
1062     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
1063         return;
1064     }
1065     trace_user_host_signal(env, host_sig, guest_sig);
1066 
1067     host_to_target_siginfo_noswap(&tinfo, info);
1068     k = &ts->sigtab[guest_sig - 1];
1069     k->info = tinfo;
1070     k->pending = guest_sig;
1071     ts->signal_pending = 1;
1072 
1073     /*
1074      * For synchronous signals, unwind the cpu state to the faulting
1075      * insn and then exit back to the main loop so that the signal
1076      * is delivered immediately.
1077      */
1078     if (sync_sig) {
1079         cpu->exception_index = EXCP_INTERRUPT;
1080         cpu_loop_exit_restore(cpu, pc);
1081     }
1082 
1083     rewind_if_in_safe_syscall(puc);
1084 
1085     /*
1086      * Block host signals until target signal handler entered. We
1087      * can't block SIGSEGV or SIGBUS while we're executing guest
1088      * code in case the guest code provokes one in the window between
1089      * now and it getting out to the main loop. Signals will be
1090      * unblocked again in process_pending_signals().
1091      *
1092      * WARNING: we cannot use sigfillset() here because the sigmask
1093      * field is a kernel sigset_t, which is much smaller than the
1094      * libc sigset_t which sigfillset() operates on. Using sigfillset()
1095      * would write 0xff bytes off the end of the structure and trash
1096      * data on the struct.
1097      */
1098     sigmask = host_signal_mask(uc);
1099     memset(sigmask, 0xff, SIGSET_T_SIZE);
1100     sigdelset(sigmask, SIGSEGV);
1101     sigdelset(sigmask, SIGBUS);
1102 
1103     /* interrupt the virtual CPU as soon as possible */
1104     cpu_exit(thread_cpu);
1105 }
1106 
1107 /* do_sigaltstack() returns target values and errnos. */
1108 /* compare linux/kernel/signal.c:do_sigaltstack() */
1109 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1110                         CPUArchState *env)
1111 {
1112     target_stack_t oss, *uoss = NULL;
1113     abi_long ret = -TARGET_EFAULT;
1114 
1115     if (uoss_addr) {
1116         /* Verify writability now, but do not alter user memory yet. */
1117         if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1118             goto out;
1119         }
1120         target_save_altstack(&oss, env);
1121     }
1122 
1123     if (uss_addr) {
1124         target_stack_t *uss;
1125 
1126         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1127             goto out;
1128         }
1129         ret = target_restore_altstack(uss, env);
1130         if (ret) {
1131             goto out;
1132         }
1133     }
1134 
1135     if (uoss_addr) {
1136         memcpy(uoss, &oss, sizeof(oss));
1137         unlock_user_struct(uoss, uoss_addr, 1);
1138         uoss = NULL;
1139     }
1140     ret = 0;
1141 
1142  out:
1143     if (uoss) {
1144         unlock_user_struct(uoss, uoss_addr, 0);
1145     }
1146     return ret;
1147 }
1148 
1149 /* do_sigaction() return target values and host errnos */
1150 int do_sigaction(int sig, const struct target_sigaction *act,
1151                  struct target_sigaction *oact, abi_ulong ka_restorer)
1152 {
1153     struct target_sigaction *k;
1154     int host_sig;
1155     int ret = 0;
1156 
1157     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1158 
1159     if (sig < 1 || sig > TARGET_NSIG) {
1160         return -TARGET_EINVAL;
1161     }
1162 
1163     if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1164         return -TARGET_EINVAL;
1165     }
1166 
1167     if (block_signals()) {
1168         return -QEMU_ERESTARTSYS;
1169     }
1170 
1171     k = &sigact_table[sig - 1];
1172     if (oact) {
1173         __put_user(k->_sa_handler, &oact->_sa_handler);
1174         __put_user(k->sa_flags, &oact->sa_flags);
1175 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1176         __put_user(k->sa_restorer, &oact->sa_restorer);
1177 #endif
1178         /* Not swapped.  */
1179         oact->sa_mask = k->sa_mask;
1180     }
1181     if (act) {
1182         __get_user(k->_sa_handler, &act->_sa_handler);
1183         __get_user(k->sa_flags, &act->sa_flags);
1184 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1185         __get_user(k->sa_restorer, &act->sa_restorer);
1186 #endif
1187 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1188         k->ka_restorer = ka_restorer;
1189 #endif
1190         /* To be swapped in target_to_host_sigset.  */
1191         k->sa_mask = act->sa_mask;
1192 
1193         /* we update the host linux signal state */
1194         host_sig = target_to_host_signal(sig);
1195         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1196         if (host_sig > SIGRTMAX) {
1197             /* we don't have enough host signals to map all target signals */
1198             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1199                           sig);
1200             /*
1201              * we don't return an error here because some programs try to
1202              * register an handler for all possible rt signals even if they
1203              * don't need it.
1204              * An error here can abort them whereas there can be no problem
1205              * to not have the signal available later.
1206              * This is the case for golang,
1207              *   See https://github.com/golang/go/issues/33746
1208              * So we silently ignore the error.
1209              */
1210             return 0;
1211         }
1212         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1213             struct sigaction act1;
1214 
1215             sigfillset(&act1.sa_mask);
1216             act1.sa_flags = SA_SIGINFO;
1217             if (k->_sa_handler == TARGET_SIG_IGN) {
1218                 /*
1219                  * It is important to update the host kernel signal ignore
1220                  * state to avoid getting unexpected interrupted syscalls.
1221                  */
1222                 act1.sa_sigaction = (void *)SIG_IGN;
1223             } else if (k->_sa_handler == TARGET_SIG_DFL) {
1224                 if (core_dump_signal(sig)) {
1225                     act1.sa_sigaction = host_signal_handler;
1226                 } else {
1227                     act1.sa_sigaction = (void *)SIG_DFL;
1228                 }
1229             } else {
1230                 act1.sa_sigaction = host_signal_handler;
1231                 if (k->sa_flags & TARGET_SA_RESTART) {
1232                     act1.sa_flags |= SA_RESTART;
1233                 }
1234             }
1235             ret = sigaction(host_sig, &act1, NULL);
1236         }
1237     }
1238     return ret;
1239 }
1240 
1241 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1242                                   struct emulated_sigtable *k)
1243 {
1244     CPUState *cpu = env_cpu(cpu_env);
1245     abi_ulong handler;
1246     sigset_t set;
1247     target_siginfo_t unswapped;
1248     target_sigset_t target_old_set;
1249     struct target_sigaction *sa;
1250     TaskState *ts = get_task_state(cpu);
1251 
1252     trace_user_handle_signal(cpu_env, sig);
1253     /* dequeue signal */
1254     k->pending = 0;
1255 
1256     /*
1257      * Writes out siginfo values byteswapped, accordingly to the target.
1258      * It also cleans the si_type from si_code making it correct for
1259      * the target.  We must hold on to the original unswapped copy for
1260      * strace below, because si_type is still required there.
1261      */
1262     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1263         unswapped = k->info;
1264     }
1265     tswap_siginfo(&k->info, &k->info);
1266 
1267     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
1268     if (!sig) {
1269         sa = NULL;
1270         handler = TARGET_SIG_IGN;
1271     } else {
1272         sa = &sigact_table[sig - 1];
1273         handler = sa->_sa_handler;
1274     }
1275 
1276     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1277         print_taken_signal(sig, &unswapped);
1278     }
1279 
1280     if (handler == TARGET_SIG_DFL) {
1281         /* default handler : ignore some signal. The other are job control or fatal */
1282         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1283             kill(getpid(),SIGSTOP);
1284         } else if (sig != TARGET_SIGCHLD &&
1285                    sig != TARGET_SIGURG &&
1286                    sig != TARGET_SIGWINCH &&
1287                    sig != TARGET_SIGCONT) {
1288             dump_core_and_abort(cpu_env, sig);
1289         }
1290     } else if (handler == TARGET_SIG_IGN) {
1291         /* ignore sig */
1292     } else if (handler == TARGET_SIG_ERR) {
1293         dump_core_and_abort(cpu_env, sig);
1294     } else {
1295         /* compute the blocked signals during the handler execution */
1296         sigset_t *blocked_set;
1297 
1298         target_to_host_sigset(&set, &sa->sa_mask);
1299         /* SA_NODEFER indicates that the current signal should not be
1300            blocked during the handler */
1301         if (!(sa->sa_flags & TARGET_SA_NODEFER))
1302             sigaddset(&set, target_to_host_signal(sig));
1303 
1304         /* save the previous blocked signal state to restore it at the
1305            end of the signal execution (see do_sigreturn) */
1306         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1307 
1308         /* block signals in the handler */
1309         blocked_set = ts->in_sigsuspend ?
1310             &ts->sigsuspend_mask : &ts->signal_mask;
1311         sigorset(&ts->signal_mask, blocked_set, &set);
1312         ts->in_sigsuspend = 0;
1313 
1314         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1315 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1316         {
1317             CPUX86State *env = cpu_env;
1318             if (env->eflags & VM_MASK)
1319                 save_v86_state(env);
1320         }
1321 #endif
1322         /* prepare the stack frame of the virtual CPU */
1323 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1324         if (sa->sa_flags & TARGET_SA_SIGINFO) {
1325             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1326         } else {
1327             setup_frame(sig, sa, &target_old_set, cpu_env);
1328         }
1329 #else
1330         /* These targets do not have traditional signals.  */
1331         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1332 #endif
1333         if (sa->sa_flags & TARGET_SA_RESETHAND) {
1334             sa->_sa_handler = TARGET_SIG_DFL;
1335         }
1336     }
1337 }
1338 
1339 void process_pending_signals(CPUArchState *cpu_env)
1340 {
1341     CPUState *cpu = env_cpu(cpu_env);
1342     int sig;
1343     TaskState *ts = get_task_state(cpu);
1344     sigset_t set;
1345     sigset_t *blocked_set;
1346 
1347     while (qatomic_read(&ts->signal_pending)) {
1348         sigfillset(&set);
1349         sigprocmask(SIG_SETMASK, &set, 0);
1350 
1351     restart_scan:
1352         sig = ts->sync_signal.pending;
1353         if (sig) {
1354             /* Synchronous signals are forced,
1355              * see force_sig_info() and callers in Linux
1356              * Note that not all of our queue_signal() calls in QEMU correspond
1357              * to force_sig_info() calls in Linux (some are send_sig_info()).
1358              * However it seems like a kernel bug to me to allow the process
1359              * to block a synchronous signal since it could then just end up
1360              * looping round and round indefinitely.
1361              */
1362             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1363                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1364                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1365                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1366             }
1367 
1368             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1369         }
1370 
1371         for (sig = 1; sig <= TARGET_NSIG; sig++) {
1372             blocked_set = ts->in_sigsuspend ?
1373                 &ts->sigsuspend_mask : &ts->signal_mask;
1374 
1375             if (ts->sigtab[sig - 1].pending &&
1376                 (!sigismember(blocked_set,
1377                               target_to_host_signal_table[sig]))) {
1378                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1379                 /* Restart scan from the beginning, as handle_pending_signal
1380                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1381                  */
1382                 goto restart_scan;
1383             }
1384         }
1385 
1386         /* if no signal is pending, unblock signals and recheck (the act
1387          * of unblocking might cause us to take another host signal which
1388          * will set signal_pending again).
1389          */
1390         qatomic_set(&ts->signal_pending, 0);
1391         ts->in_sigsuspend = 0;
1392         set = ts->signal_mask;
1393         sigdelset(&set, SIGSEGV);
1394         sigdelset(&set, SIGBUS);
1395         sigprocmask(SIG_SETMASK, &set, 0);
1396     }
1397     ts->in_sigsuspend = 0;
1398 }
1399 
1400 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1401                             target_ulong sigsize)
1402 {
1403     TaskState *ts = get_task_state(thread_cpu);
1404     sigset_t *host_set = &ts->sigsuspend_mask;
1405     target_sigset_t *target_sigset;
1406 
1407     if (sigsize != sizeof(*target_sigset)) {
1408         /* Like the kernel, we enforce correct size sigsets */
1409         return -TARGET_EINVAL;
1410     }
1411 
1412     target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1413     if (!target_sigset) {
1414         return -TARGET_EFAULT;
1415     }
1416     target_to_host_sigset(host_set, target_sigset);
1417     unlock_user(target_sigset, sigset, 0);
1418 
1419     *pset = host_set;
1420     return 0;
1421 }
1422