xref: /qemu/linux-user/qemu.h (revision dfeab06c98f7bc37f8ad8a6a2f8f677e5a57a55d)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include <signal.h>
5 #include <string.h>
6 
7 #include "cpu.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
13 
14 #include "exec/user/abitypes.h"
15 
16 #include "exec/user/thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "exec/gdbstub.h"
20 #include "qemu/queue.h"
21 
22 #if defined(CONFIG_USE_NPTL)
23 #define THREAD __thread
24 #else
25 #define THREAD
26 #endif
27 
28 /* This struct is used to hold certain information about the image.
29  * Basically, it replicates in user space what would be certain
30  * task_struct fields in the kernel
31  */
32 struct image_info {
33         abi_ulong       load_bias;
34         abi_ulong       load_addr;
35         abi_ulong       start_code;
36         abi_ulong       end_code;
37         abi_ulong       start_data;
38         abi_ulong       end_data;
39         abi_ulong       start_brk;
40         abi_ulong       brk;
41         abi_ulong       start_mmap;
42         abi_ulong       mmap;
43         abi_ulong       rss;
44         abi_ulong       start_stack;
45         abi_ulong       stack_limit;
46         abi_ulong       entry;
47         abi_ulong       code_offset;
48         abi_ulong       data_offset;
49         abi_ulong       saved_auxv;
50         abi_ulong       auxv_len;
51         abi_ulong       arg_start;
52         abi_ulong       arg_end;
53         uint32_t        elf_flags;
54 	int		personality;
55 #ifdef CONFIG_USE_FDPIC
56         abi_ulong       loadmap_addr;
57         uint16_t        nsegs;
58         void           *loadsegs;
59         abi_ulong       pt_dynamic_addr;
60         struct image_info *other_info;
61 #endif
62 };
63 
64 #ifdef TARGET_I386
65 /* Information about the current linux thread */
66 struct vm86_saved_state {
67     uint32_t eax; /* return code */
68     uint32_t ebx;
69     uint32_t ecx;
70     uint32_t edx;
71     uint32_t esi;
72     uint32_t edi;
73     uint32_t ebp;
74     uint32_t esp;
75     uint32_t eflags;
76     uint32_t eip;
77     uint16_t cs, ss, ds, es, fs, gs;
78 };
79 #endif
80 
81 #ifdef TARGET_ARM
82 /* FPU emulator */
83 #include "nwfpe/fpa11.h"
84 #endif
85 
86 #define MAX_SIGQUEUE_SIZE 1024
87 
88 struct sigqueue {
89     struct sigqueue *next;
90     target_siginfo_t info;
91 };
92 
93 struct emulated_sigtable {
94     int pending; /* true if signal is pending */
95     struct sigqueue *first;
96     struct sigqueue info; /* in order to always have memory for the
97                              first signal, we put it here */
98 };
99 
100 /* NOTE: we force a big alignment so that the stack stored after is
101    aligned too */
102 typedef struct TaskState {
103     pid_t ts_tid;     /* tid (or pid) of this task */
104 #ifdef TARGET_ARM
105     /* FPA state */
106     FPA11 fpa;
107     int swi_errno;
108 #endif
109 #ifdef TARGET_UNICORE32
110     int swi_errno;
111 #endif
112 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
113     abi_ulong target_v86;
114     struct vm86_saved_state vm86_saved_regs;
115     struct target_vm86plus_struct vm86plus;
116     uint32_t v86flags;
117     uint32_t v86mask;
118 #endif
119 #ifdef CONFIG_USE_NPTL
120     abi_ulong child_tidptr;
121 #endif
122 #ifdef TARGET_M68K
123     int sim_syscalls;
124 #endif
125 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
126     /* Extra fields for semihosted binaries.  */
127     uint32_t heap_base;
128     uint32_t heap_limit;
129 #endif
130     uint32_t stack_base;
131     int used; /* non zero if used */
132     struct image_info *info;
133     struct linux_binprm *bprm;
134 
135     struct emulated_sigtable sigtab[TARGET_NSIG];
136     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
137     struct sigqueue *first_free; /* first free siginfo queue entry */
138     int signal_pending; /* non zero if a signal may be pending */
139 } __attribute__((aligned(16))) TaskState;
140 
141 extern char *exec_path;
142 void init_task_state(TaskState *ts);
143 void task_settid(TaskState *);
144 void stop_all_tasks(void);
145 extern const char *qemu_uname_release;
146 extern unsigned long mmap_min_addr;
147 
148 /* ??? See if we can avoid exposing so much of the loader internals.  */
149 /*
150  * MAX_ARG_PAGES defines the number of pages allocated for arguments
151  * and envelope for the new program. 32 should suffice, this gives
152  * a maximum env+arg of 128kB w/4KB pages!
153  */
154 #define MAX_ARG_PAGES 33
155 
156 /* Read a good amount of data initially, to hopefully get all the
157    program headers loaded.  */
158 #define BPRM_BUF_SIZE  1024
159 
160 /*
161  * This structure is used to hold the arguments that are
162  * used when loading binaries.
163  */
164 struct linux_binprm {
165         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
166         void *page[MAX_ARG_PAGES];
167         abi_ulong p;
168 	int fd;
169         int e_uid, e_gid;
170         int argc, envc;
171         char **argv;
172         char **envp;
173         char * filename;        /* Name of binary */
174         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
175 };
176 
177 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
178 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
179                               abi_ulong stringp, int push_ptr);
180 int loader_exec(const char * filename, char ** argv, char ** envp,
181              struct target_pt_regs * regs, struct image_info *infop,
182              struct linux_binprm *);
183 
184 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
185                     struct image_info * info);
186 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
187                     struct image_info * info);
188 
189 abi_long memcpy_to_target(abi_ulong dest, const void *src,
190                           unsigned long len);
191 void target_set_brk(abi_ulong new_brk);
192 abi_long do_brk(abi_ulong new_brk);
193 void syscall_init(void);
194 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
195                     abi_long arg2, abi_long arg3, abi_long arg4,
196                     abi_long arg5, abi_long arg6, abi_long arg7,
197                     abi_long arg8);
198 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
199 extern THREAD CPUState *thread_cpu;
200 void cpu_loop(CPUArchState *env);
201 char *target_strerror(int err);
202 int get_osversion(void);
203 void fork_start(void);
204 void fork_end(int child);
205 
206 /* Creates the initial guest address space in the host memory space using
207  * the given host start address hint and size.  The guest_start parameter
208  * specifies the start address of the guest space.  guest_base will be the
209  * difference between the host start address computed by this function and
210  * guest_start.  If fixed is specified, then the mapped address space must
211  * start at host_start.  The real start address of the mapped memory space is
212  * returned or -1 if there was an error.
213  */
214 unsigned long init_guest_space(unsigned long host_start,
215                                unsigned long host_size,
216                                unsigned long guest_start,
217                                bool fixed);
218 
219 #include "qemu/log.h"
220 
221 /* syscall.c */
222 int host_to_target_waitstatus(int status);
223 
224 /* strace.c */
225 void print_syscall(int num,
226                    abi_long arg1, abi_long arg2, abi_long arg3,
227                    abi_long arg4, abi_long arg5, abi_long arg6);
228 void print_syscall_ret(int num, abi_long arg1);
229 extern int do_strace;
230 
231 /* signal.c */
232 void process_pending_signals(CPUArchState *cpu_env);
233 void signal_init(void);
234 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
235 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
236 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
237 int target_to_host_signal(int sig);
238 int host_to_target_signal(int sig);
239 long do_sigreturn(CPUArchState *env);
240 long do_rt_sigreturn(CPUArchState *env);
241 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
242 
243 #ifdef TARGET_I386
244 /* vm86.c */
245 void save_v86_state(CPUX86State *env);
246 void handle_vm86_trap(CPUX86State *env, int trapno);
247 void handle_vm86_fault(CPUX86State *env);
248 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
249 #elif defined(TARGET_SPARC64)
250 void sparc64_set_context(CPUSPARCState *env);
251 void sparc64_get_context(CPUSPARCState *env);
252 #endif
253 
254 /* mmap.c */
255 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
256 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
257                      int flags, int fd, abi_ulong offset);
258 int target_munmap(abi_ulong start, abi_ulong len);
259 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
260                        abi_ulong new_size, unsigned long flags,
261                        abi_ulong new_addr);
262 int target_msync(abi_ulong start, abi_ulong len, int flags);
263 extern unsigned long last_brk;
264 extern abi_ulong mmap_next_start;
265 void mmap_lock(void);
266 void mmap_unlock(void);
267 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
268 void cpu_list_lock(void);
269 void cpu_list_unlock(void);
270 #if defined(CONFIG_USE_NPTL)
271 void mmap_fork_start(void);
272 void mmap_fork_end(int child);
273 #endif
274 
275 /* main.c */
276 extern unsigned long guest_stack_size;
277 
278 /* user access */
279 
280 #define VERIFY_READ 0
281 #define VERIFY_WRITE 1 /* implies read access */
282 
283 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
284 {
285     return page_check_range((target_ulong)addr, size,
286                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
287 }
288 
289 /* NOTE __get_user and __put_user use host pointers and don't check access.
290    These are usually used to access struct data members once the struct has
291    been locked - usually with lock_user_struct.  */
292 
293 /* Tricky points:
294    - Use __builtin_choose_expr to avoid type promotion from ?:,
295    - Invalid sizes result in a compile time error stemming from
296      the fact that abort has no parameters.
297    - It's easier to use the endian-specific unaligned load/store
298      functions than host-endian unaligned load/store plus tswapN.  */
299 
300 #define __put_user_e(x, hptr, e)                                        \
301   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
302    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
303    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
304    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
305      ((hptr), (x)), 0)
306 
307 #define __get_user_e(x, hptr, e)                                        \
308   ((x) = (typeof(*hptr))(                                               \
309    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
310    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
311    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
312    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
313      (hptr)), 0)
314 
315 #ifdef TARGET_WORDS_BIGENDIAN
316 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
317 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
318 #else
319 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
320 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
321 #endif
322 
323 /* put_user()/get_user() take a guest address and check access */
324 /* These are usually used to access an atomic data type, such as an int,
325  * that has been passed by address.  These internally perform locking
326  * and unlocking on the data type.
327  */
328 #define put_user(x, gaddr, target_type)					\
329 ({									\
330     abi_ulong __gaddr = (gaddr);					\
331     target_type *__hptr;						\
332     abi_long __ret;							\
333     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
334         __ret = __put_user((x), __hptr);				\
335         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
336     } else								\
337         __ret = -TARGET_EFAULT;						\
338     __ret;								\
339 })
340 
341 #define get_user(x, gaddr, target_type)					\
342 ({									\
343     abi_ulong __gaddr = (gaddr);					\
344     target_type *__hptr;						\
345     abi_long __ret;							\
346     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
347         __ret = __get_user((x), __hptr);				\
348         unlock_user(__hptr, __gaddr, 0);				\
349     } else {								\
350         /* avoid warning */						\
351         (x) = 0;							\
352         __ret = -TARGET_EFAULT;						\
353     }									\
354     __ret;								\
355 })
356 
357 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
358 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
359 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
360 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
361 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
362 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
363 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
364 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
365 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
366 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
367 
368 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
369 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
370 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
371 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
372 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
373 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
374 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
375 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
376 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
377 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
378 
379 /* copy_from_user() and copy_to_user() are usually used to copy data
380  * buffers between the target and host.  These internally perform
381  * locking/unlocking of the memory.
382  */
383 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
384 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
385 
386 /* Functions for accessing guest memory.  The tget and tput functions
387    read/write single values, byteswapping as necessary.  The lock_user
388    gets a pointer to a contiguous area of guest memory, but does not perform
389    and byteswapping.  lock_user may return either a pointer to the guest
390    memory, or a temporary buffer.  */
391 
392 /* Lock an area of guest memory into the host.  If copy is true then the
393    host area will have the same contents as the guest.  */
394 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
395 {
396     if (!access_ok(type, guest_addr, len))
397         return NULL;
398 #ifdef DEBUG_REMAP
399     {
400         void *addr;
401         addr = malloc(len);
402         if (copy)
403             memcpy(addr, g2h(guest_addr), len);
404         else
405             memset(addr, 0, len);
406         return addr;
407     }
408 #else
409     return g2h(guest_addr);
410 #endif
411 }
412 
413 /* Unlock an area of guest memory.  The first LEN bytes must be
414    flushed back to guest memory. host_ptr = NULL is explicitly
415    allowed and does nothing. */
416 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
417                                long len)
418 {
419 
420 #ifdef DEBUG_REMAP
421     if (!host_ptr)
422         return;
423     if (host_ptr == g2h(guest_addr))
424         return;
425     if (len > 0)
426         memcpy(g2h(guest_addr), host_ptr, len);
427     free(host_ptr);
428 #endif
429 }
430 
431 /* Return the length of a string in target memory or -TARGET_EFAULT if
432    access error. */
433 abi_long target_strlen(abi_ulong gaddr);
434 
435 /* Like lock_user but for null terminated strings.  */
436 static inline void *lock_user_string(abi_ulong guest_addr)
437 {
438     abi_long len;
439     len = target_strlen(guest_addr);
440     if (len < 0)
441         return NULL;
442     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
443 }
444 
445 /* Helper macros for locking/ulocking a target struct.  */
446 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
447     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
448 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
449     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
450 
451 #if defined(CONFIG_USE_NPTL)
452 #include <pthread.h>
453 #endif
454 
455 /* Include target-specific struct and function definitions;
456  * they may need access to the target-independent structures
457  * above, so include them last.
458  */
459 #include "target_cpu.h"
460 #include "target_signal.h"
461 
462 #endif /* QEMU_H */
463