1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "exec/user/abitypes.h" 15 16 #include "exec/user/thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "exec/gdbstub.h" 20 #include "qemu/queue.h" 21 22 #if defined(CONFIG_USE_NPTL) 23 #define THREAD __thread 24 #else 25 #define THREAD 26 #endif 27 28 /* This struct is used to hold certain information about the image. 29 * Basically, it replicates in user space what would be certain 30 * task_struct fields in the kernel 31 */ 32 struct image_info { 33 abi_ulong load_bias; 34 abi_ulong load_addr; 35 abi_ulong start_code; 36 abi_ulong end_code; 37 abi_ulong start_data; 38 abi_ulong end_data; 39 abi_ulong start_brk; 40 abi_ulong brk; 41 abi_ulong start_mmap; 42 abi_ulong mmap; 43 abi_ulong rss; 44 abi_ulong start_stack; 45 abi_ulong stack_limit; 46 abi_ulong entry; 47 abi_ulong code_offset; 48 abi_ulong data_offset; 49 abi_ulong saved_auxv; 50 abi_ulong auxv_len; 51 abi_ulong arg_start; 52 abi_ulong arg_end; 53 uint32_t elf_flags; 54 int personality; 55 #ifdef CONFIG_USE_FDPIC 56 abi_ulong loadmap_addr; 57 uint16_t nsegs; 58 void *loadsegs; 59 abi_ulong pt_dynamic_addr; 60 struct image_info *other_info; 61 #endif 62 }; 63 64 #ifdef TARGET_I386 65 /* Information about the current linux thread */ 66 struct vm86_saved_state { 67 uint32_t eax; /* return code */ 68 uint32_t ebx; 69 uint32_t ecx; 70 uint32_t edx; 71 uint32_t esi; 72 uint32_t edi; 73 uint32_t ebp; 74 uint32_t esp; 75 uint32_t eflags; 76 uint32_t eip; 77 uint16_t cs, ss, ds, es, fs, gs; 78 }; 79 #endif 80 81 #ifdef TARGET_ARM 82 /* FPU emulator */ 83 #include "nwfpe/fpa11.h" 84 #endif 85 86 #define MAX_SIGQUEUE_SIZE 1024 87 88 struct sigqueue { 89 struct sigqueue *next; 90 target_siginfo_t info; 91 }; 92 93 struct emulated_sigtable { 94 int pending; /* true if signal is pending */ 95 struct sigqueue *first; 96 struct sigqueue info; /* in order to always have memory for the 97 first signal, we put it here */ 98 }; 99 100 /* NOTE: we force a big alignment so that the stack stored after is 101 aligned too */ 102 typedef struct TaskState { 103 pid_t ts_tid; /* tid (or pid) of this task */ 104 #ifdef TARGET_ARM 105 /* FPA state */ 106 FPA11 fpa; 107 int swi_errno; 108 #endif 109 #ifdef TARGET_UNICORE32 110 int swi_errno; 111 #endif 112 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 113 abi_ulong target_v86; 114 struct vm86_saved_state vm86_saved_regs; 115 struct target_vm86plus_struct vm86plus; 116 uint32_t v86flags; 117 uint32_t v86mask; 118 #endif 119 #ifdef CONFIG_USE_NPTL 120 abi_ulong child_tidptr; 121 #endif 122 #ifdef TARGET_M68K 123 int sim_syscalls; 124 #endif 125 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 126 /* Extra fields for semihosted binaries. */ 127 uint32_t heap_base; 128 uint32_t heap_limit; 129 #endif 130 uint32_t stack_base; 131 int used; /* non zero if used */ 132 struct image_info *info; 133 struct linux_binprm *bprm; 134 135 struct emulated_sigtable sigtab[TARGET_NSIG]; 136 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 137 struct sigqueue *first_free; /* first free siginfo queue entry */ 138 int signal_pending; /* non zero if a signal may be pending */ 139 } __attribute__((aligned(16))) TaskState; 140 141 extern char *exec_path; 142 void init_task_state(TaskState *ts); 143 void task_settid(TaskState *); 144 void stop_all_tasks(void); 145 extern const char *qemu_uname_release; 146 extern unsigned long mmap_min_addr; 147 148 /* ??? See if we can avoid exposing so much of the loader internals. */ 149 /* 150 * MAX_ARG_PAGES defines the number of pages allocated for arguments 151 * and envelope for the new program. 32 should suffice, this gives 152 * a maximum env+arg of 128kB w/4KB pages! 153 */ 154 #define MAX_ARG_PAGES 33 155 156 /* Read a good amount of data initially, to hopefully get all the 157 program headers loaded. */ 158 #define BPRM_BUF_SIZE 1024 159 160 /* 161 * This structure is used to hold the arguments that are 162 * used when loading binaries. 163 */ 164 struct linux_binprm { 165 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 166 void *page[MAX_ARG_PAGES]; 167 abi_ulong p; 168 int fd; 169 int e_uid, e_gid; 170 int argc, envc; 171 char **argv; 172 char **envp; 173 char * filename; /* Name of binary */ 174 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 175 }; 176 177 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 178 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 179 abi_ulong stringp, int push_ptr); 180 int loader_exec(const char * filename, char ** argv, char ** envp, 181 struct target_pt_regs * regs, struct image_info *infop, 182 struct linux_binprm *); 183 184 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 185 struct image_info * info); 186 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 187 struct image_info * info); 188 189 abi_long memcpy_to_target(abi_ulong dest, const void *src, 190 unsigned long len); 191 void target_set_brk(abi_ulong new_brk); 192 abi_long do_brk(abi_ulong new_brk); 193 void syscall_init(void); 194 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 195 abi_long arg2, abi_long arg3, abi_long arg4, 196 abi_long arg5, abi_long arg6, abi_long arg7, 197 abi_long arg8); 198 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 199 extern THREAD CPUState *thread_cpu; 200 void cpu_loop(CPUArchState *env); 201 char *target_strerror(int err); 202 int get_osversion(void); 203 void fork_start(void); 204 void fork_end(int child); 205 206 /* Creates the initial guest address space in the host memory space using 207 * the given host start address hint and size. The guest_start parameter 208 * specifies the start address of the guest space. guest_base will be the 209 * difference between the host start address computed by this function and 210 * guest_start. If fixed is specified, then the mapped address space must 211 * start at host_start. The real start address of the mapped memory space is 212 * returned or -1 if there was an error. 213 */ 214 unsigned long init_guest_space(unsigned long host_start, 215 unsigned long host_size, 216 unsigned long guest_start, 217 bool fixed); 218 219 #include "qemu/log.h" 220 221 /* syscall.c */ 222 int host_to_target_waitstatus(int status); 223 224 /* strace.c */ 225 void print_syscall(int num, 226 abi_long arg1, abi_long arg2, abi_long arg3, 227 abi_long arg4, abi_long arg5, abi_long arg6); 228 void print_syscall_ret(int num, abi_long arg1); 229 extern int do_strace; 230 231 /* signal.c */ 232 void process_pending_signals(CPUArchState *cpu_env); 233 void signal_init(void); 234 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 235 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 236 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 237 int target_to_host_signal(int sig); 238 int host_to_target_signal(int sig); 239 long do_sigreturn(CPUArchState *env); 240 long do_rt_sigreturn(CPUArchState *env); 241 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 242 243 #ifdef TARGET_I386 244 /* vm86.c */ 245 void save_v86_state(CPUX86State *env); 246 void handle_vm86_trap(CPUX86State *env, int trapno); 247 void handle_vm86_fault(CPUX86State *env); 248 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 249 #elif defined(TARGET_SPARC64) 250 void sparc64_set_context(CPUSPARCState *env); 251 void sparc64_get_context(CPUSPARCState *env); 252 #endif 253 254 /* mmap.c */ 255 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 256 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 257 int flags, int fd, abi_ulong offset); 258 int target_munmap(abi_ulong start, abi_ulong len); 259 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 260 abi_ulong new_size, unsigned long flags, 261 abi_ulong new_addr); 262 int target_msync(abi_ulong start, abi_ulong len, int flags); 263 extern unsigned long last_brk; 264 extern abi_ulong mmap_next_start; 265 void mmap_lock(void); 266 void mmap_unlock(void); 267 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 268 void cpu_list_lock(void); 269 void cpu_list_unlock(void); 270 #if defined(CONFIG_USE_NPTL) 271 void mmap_fork_start(void); 272 void mmap_fork_end(int child); 273 #endif 274 275 /* main.c */ 276 extern unsigned long guest_stack_size; 277 278 /* user access */ 279 280 #define VERIFY_READ 0 281 #define VERIFY_WRITE 1 /* implies read access */ 282 283 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 284 { 285 return page_check_range((target_ulong)addr, size, 286 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 287 } 288 289 /* NOTE __get_user and __put_user use host pointers and don't check access. 290 These are usually used to access struct data members once the struct has 291 been locked - usually with lock_user_struct. */ 292 293 /* Tricky points: 294 - Use __builtin_choose_expr to avoid type promotion from ?:, 295 - Invalid sizes result in a compile time error stemming from 296 the fact that abort has no parameters. 297 - It's easier to use the endian-specific unaligned load/store 298 functions than host-endian unaligned load/store plus tswapN. */ 299 300 #define __put_user_e(x, hptr, e) \ 301 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 302 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 303 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 304 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 305 ((hptr), (x)), 0) 306 307 #define __get_user_e(x, hptr, e) \ 308 ((x) = (typeof(*hptr))( \ 309 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 310 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 311 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 312 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 313 (hptr)), 0) 314 315 #ifdef TARGET_WORDS_BIGENDIAN 316 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 317 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 318 #else 319 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 320 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 321 #endif 322 323 /* put_user()/get_user() take a guest address and check access */ 324 /* These are usually used to access an atomic data type, such as an int, 325 * that has been passed by address. These internally perform locking 326 * and unlocking on the data type. 327 */ 328 #define put_user(x, gaddr, target_type) \ 329 ({ \ 330 abi_ulong __gaddr = (gaddr); \ 331 target_type *__hptr; \ 332 abi_long __ret; \ 333 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 334 __ret = __put_user((x), __hptr); \ 335 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 336 } else \ 337 __ret = -TARGET_EFAULT; \ 338 __ret; \ 339 }) 340 341 #define get_user(x, gaddr, target_type) \ 342 ({ \ 343 abi_ulong __gaddr = (gaddr); \ 344 target_type *__hptr; \ 345 abi_long __ret; \ 346 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 347 __ret = __get_user((x), __hptr); \ 348 unlock_user(__hptr, __gaddr, 0); \ 349 } else { \ 350 /* avoid warning */ \ 351 (x) = 0; \ 352 __ret = -TARGET_EFAULT; \ 353 } \ 354 __ret; \ 355 }) 356 357 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 358 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 359 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 360 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 361 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 362 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 363 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 364 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 365 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 366 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 367 368 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 369 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 370 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 371 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 372 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 373 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 374 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 375 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 376 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 377 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 378 379 /* copy_from_user() and copy_to_user() are usually used to copy data 380 * buffers between the target and host. These internally perform 381 * locking/unlocking of the memory. 382 */ 383 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 384 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 385 386 /* Functions for accessing guest memory. The tget and tput functions 387 read/write single values, byteswapping as necessary. The lock_user 388 gets a pointer to a contiguous area of guest memory, but does not perform 389 and byteswapping. lock_user may return either a pointer to the guest 390 memory, or a temporary buffer. */ 391 392 /* Lock an area of guest memory into the host. If copy is true then the 393 host area will have the same contents as the guest. */ 394 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 395 { 396 if (!access_ok(type, guest_addr, len)) 397 return NULL; 398 #ifdef DEBUG_REMAP 399 { 400 void *addr; 401 addr = malloc(len); 402 if (copy) 403 memcpy(addr, g2h(guest_addr), len); 404 else 405 memset(addr, 0, len); 406 return addr; 407 } 408 #else 409 return g2h(guest_addr); 410 #endif 411 } 412 413 /* Unlock an area of guest memory. The first LEN bytes must be 414 flushed back to guest memory. host_ptr = NULL is explicitly 415 allowed and does nothing. */ 416 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 417 long len) 418 { 419 420 #ifdef DEBUG_REMAP 421 if (!host_ptr) 422 return; 423 if (host_ptr == g2h(guest_addr)) 424 return; 425 if (len > 0) 426 memcpy(g2h(guest_addr), host_ptr, len); 427 free(host_ptr); 428 #endif 429 } 430 431 /* Return the length of a string in target memory or -TARGET_EFAULT if 432 access error. */ 433 abi_long target_strlen(abi_ulong gaddr); 434 435 /* Like lock_user but for null terminated strings. */ 436 static inline void *lock_user_string(abi_ulong guest_addr) 437 { 438 abi_long len; 439 len = target_strlen(guest_addr); 440 if (len < 0) 441 return NULL; 442 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 443 } 444 445 /* Helper macros for locking/ulocking a target struct. */ 446 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 447 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 448 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 449 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 450 451 #if defined(CONFIG_USE_NPTL) 452 #include <pthread.h> 453 #endif 454 455 /* Include target-specific struct and function definitions; 456 * they may need access to the target-independent structures 457 * above, so include them last. 458 */ 459 #include "target_cpu.h" 460 #include "target_signal.h" 461 462 #endif /* QEMU_H */ 463