xref: /qemu/linux-user/elfload.c (revision f1fa787b92c52d1034de164d2a26771ff969454e)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "user/page-protection.h"
12 #include "exec/page-protection.h"
13 #include "exec/mmap-lock.h"
14 #include "exec/translation-block.h"
15 #include "user/guest-base.h"
16 #include "user-internals.h"
17 #include "signal-common.h"
18 #include "loader.h"
19 #include "user-mmap.h"
20 #include "disas/disas.h"
21 #include "qemu/bitops.h"
22 #include "qemu/path.h"
23 #include "qemu/queue.h"
24 #include "qemu/guest-random.h"
25 #include "qemu/units.h"
26 #include "qemu/selfmap.h"
27 #include "qemu/lockable.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "target_signal.h"
31 #include "tcg/debuginfo.h"
32 
33 #ifdef TARGET_ARM
34 #include "target/arm/cpu-features.h"
35 #endif
36 
37 #ifdef _ARCH_PPC64
38 #undef ARCH_DLINFO
39 #undef ELF_PLATFORM
40 #undef ELF_HWCAP
41 #undef ELF_HWCAP2
42 #undef ELF_CLASS
43 #undef ELF_DATA
44 #undef ELF_ARCH
45 #endif
46 
47 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
48 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
49 #endif
50 
51 typedef struct {
52     const uint8_t *image;
53     const uint32_t *relocs;
54     unsigned image_size;
55     unsigned reloc_count;
56     unsigned sigreturn_ofs;
57     unsigned rt_sigreturn_ofs;
58 } VdsoImageInfo;
59 
60 #define ELF_OSABI   ELFOSABI_SYSV
61 
62 /* from personality.h */
63 
64 /*
65  * Flags for bug emulation.
66  *
67  * These occupy the top three bytes.
68  */
69 enum {
70     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
71     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
72                                            descriptors (signal handling) */
73     MMAP_PAGE_ZERO =    0x0100000,
74     ADDR_COMPAT_LAYOUT = 0x0200000,
75     READ_IMPLIES_EXEC = 0x0400000,
76     ADDR_LIMIT_32BIT =  0x0800000,
77     SHORT_INODE =       0x1000000,
78     WHOLE_SECONDS =     0x2000000,
79     STICKY_TIMEOUTS =   0x4000000,
80     ADDR_LIMIT_3GB =    0x8000000,
81 };
82 
83 /*
84  * Personality types.
85  *
86  * These go in the low byte.  Avoid using the top bit, it will
87  * conflict with error returns.
88  */
89 enum {
90     PER_LINUX =         0x0000,
91     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
92     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
93     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
94     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
95     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
96     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
97     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
98     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
99     PER_BSD =           0x0006,
100     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
101     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
102     PER_LINUX32 =       0x0008,
103     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
104     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
105     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
106     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
107     PER_RISCOS =        0x000c,
108     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
109     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
110     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
111     PER_HPUX =          0x0010,
112     PER_MASK =          0x00ff,
113 };
114 
115 /*
116  * Return the base personality without flags.
117  */
118 #define personality(pers)       (pers & PER_MASK)
119 
120 int info_is_fdpic(struct image_info *info)
121 {
122     return info->personality == PER_LINUX_FDPIC;
123 }
124 
125 /* this flag is uneffective under linux too, should be deleted */
126 #ifndef MAP_DENYWRITE
127 #define MAP_DENYWRITE 0
128 #endif
129 
130 /* should probably go in elf.h */
131 #ifndef ELIBBAD
132 #define ELIBBAD 80
133 #endif
134 
135 #if TARGET_BIG_ENDIAN
136 #define ELF_DATA        ELFDATA2MSB
137 #else
138 #define ELF_DATA        ELFDATA2LSB
139 #endif
140 
141 #ifdef TARGET_ABI_MIPSN32
142 typedef abi_ullong      target_elf_greg_t;
143 #define tswapreg(ptr)   tswap64(ptr)
144 #else
145 typedef abi_ulong       target_elf_greg_t;
146 #define tswapreg(ptr)   tswapal(ptr)
147 #endif
148 
149 #ifdef USE_UID16
150 typedef abi_ushort      target_uid_t;
151 typedef abi_ushort      target_gid_t;
152 #else
153 typedef abi_uint        target_uid_t;
154 typedef abi_uint        target_gid_t;
155 #endif
156 typedef abi_int         target_pid_t;
157 
158 #ifdef TARGET_I386
159 
160 #define ELF_HWCAP get_elf_hwcap()
161 
162 static uint32_t get_elf_hwcap(void)
163 {
164     X86CPU *cpu = X86_CPU(thread_cpu);
165 
166     return cpu->env.features[FEAT_1_EDX];
167 }
168 
169 #ifdef TARGET_X86_64
170 #define ELF_CLASS      ELFCLASS64
171 #define ELF_ARCH       EM_X86_64
172 
173 #define ELF_PLATFORM   "x86_64"
174 
175 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
176 {
177     regs->rax = 0;
178     regs->rsp = infop->start_stack;
179     regs->rip = infop->entry;
180 }
181 
182 #define ELF_NREG    27
183 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
184 
185 /*
186  * Note that ELF_NREG should be 29 as there should be place for
187  * TRAPNO and ERR "registers" as well but linux doesn't dump
188  * those.
189  *
190  * See linux kernel: arch/x86/include/asm/elf.h
191  */
192 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
193 {
194     (*regs)[0] = tswapreg(env->regs[15]);
195     (*regs)[1] = tswapreg(env->regs[14]);
196     (*regs)[2] = tswapreg(env->regs[13]);
197     (*regs)[3] = tswapreg(env->regs[12]);
198     (*regs)[4] = tswapreg(env->regs[R_EBP]);
199     (*regs)[5] = tswapreg(env->regs[R_EBX]);
200     (*regs)[6] = tswapreg(env->regs[11]);
201     (*regs)[7] = tswapreg(env->regs[10]);
202     (*regs)[8] = tswapreg(env->regs[9]);
203     (*regs)[9] = tswapreg(env->regs[8]);
204     (*regs)[10] = tswapreg(env->regs[R_EAX]);
205     (*regs)[11] = tswapreg(env->regs[R_ECX]);
206     (*regs)[12] = tswapreg(env->regs[R_EDX]);
207     (*regs)[13] = tswapreg(env->regs[R_ESI]);
208     (*regs)[14] = tswapreg(env->regs[R_EDI]);
209     (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
210     (*regs)[16] = tswapreg(env->eip);
211     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
212     (*regs)[18] = tswapreg(env->eflags);
213     (*regs)[19] = tswapreg(env->regs[R_ESP]);
214     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
215     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
216     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
217     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
218     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
219     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
220     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
221 }
222 
223 #if ULONG_MAX > UINT32_MAX
224 #define INIT_GUEST_COMMPAGE
225 static bool init_guest_commpage(void)
226 {
227     /*
228      * The vsyscall page is at a high negative address aka kernel space,
229      * which means that we cannot actually allocate it with target_mmap.
230      * We still should be able to use page_set_flags, unless the user
231      * has specified -R reserved_va, which would trigger an assert().
232      */
233     if (reserved_va != 0 &&
234         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
235         error_report("Cannot allocate vsyscall page");
236         exit(EXIT_FAILURE);
237     }
238     page_set_flags(TARGET_VSYSCALL_PAGE,
239                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
240                    PAGE_EXEC | PAGE_VALID);
241     return true;
242 }
243 #endif
244 #else
245 
246 /*
247  * This is used to ensure we don't load something for the wrong architecture.
248  */
249 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
250 
251 /*
252  * These are used to set parameters in the core dumps.
253  */
254 #define ELF_CLASS       ELFCLASS32
255 #define ELF_ARCH        EM_386
256 
257 #define ELF_PLATFORM get_elf_platform()
258 #define EXSTACK_DEFAULT true
259 
260 static const char *get_elf_platform(void)
261 {
262     static char elf_platform[] = "i386";
263     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
264     if (family > 6) {
265         family = 6;
266     }
267     if (family >= 3) {
268         elf_platform[1] = '0' + family;
269     }
270     return elf_platform;
271 }
272 
273 static inline void init_thread(struct target_pt_regs *regs,
274                                struct image_info *infop)
275 {
276     regs->esp = infop->start_stack;
277     regs->eip = infop->entry;
278 
279     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
280        starts %edx contains a pointer to a function which might be
281        registered using `atexit'.  This provides a mean for the
282        dynamic linker to call DT_FINI functions for shared libraries
283        that have been loaded before the code runs.
284 
285        A value of 0 tells we have no such handler.  */
286     regs->edx = 0;
287 }
288 
289 #define ELF_NREG    17
290 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
291 
292 /*
293  * Note that ELF_NREG should be 19 as there should be place for
294  * TRAPNO and ERR "registers" as well but linux doesn't dump
295  * those.
296  *
297  * See linux kernel: arch/x86/include/asm/elf.h
298  */
299 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
300 {
301     (*regs)[0] = tswapreg(env->regs[R_EBX]);
302     (*regs)[1] = tswapreg(env->regs[R_ECX]);
303     (*regs)[2] = tswapreg(env->regs[R_EDX]);
304     (*regs)[3] = tswapreg(env->regs[R_ESI]);
305     (*regs)[4] = tswapreg(env->regs[R_EDI]);
306     (*regs)[5] = tswapreg(env->regs[R_EBP]);
307     (*regs)[6] = tswapreg(env->regs[R_EAX]);
308     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
309     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
310     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
311     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
312     (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
313     (*regs)[12] = tswapreg(env->eip);
314     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
315     (*regs)[14] = tswapreg(env->eflags);
316     (*regs)[15] = tswapreg(env->regs[R_ESP]);
317     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
318 }
319 
320 /*
321  * i386 is the only target which supplies AT_SYSINFO for the vdso.
322  * All others only supply AT_SYSINFO_EHDR.
323  */
324 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
325 #define ARCH_DLINFO                                     \
326     do {                                                \
327         if (vdso_info) {                                \
328             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
329         }                                               \
330     } while (0)
331 
332 #endif /* TARGET_X86_64 */
333 
334 #define VDSO_HEADER "vdso.c.inc"
335 
336 #define USE_ELF_CORE_DUMP
337 #define ELF_EXEC_PAGESIZE       4096
338 
339 #endif /* TARGET_I386 */
340 
341 #ifdef TARGET_ARM
342 
343 #ifndef TARGET_AARCH64
344 /* 32 bit ARM definitions */
345 
346 #define ELF_ARCH        EM_ARM
347 #define ELF_CLASS       ELFCLASS32
348 #define EXSTACK_DEFAULT true
349 
350 static inline void init_thread(struct target_pt_regs *regs,
351                                struct image_info *infop)
352 {
353     abi_long stack = infop->start_stack;
354     memset(regs, 0, sizeof(*regs));
355 
356     regs->uregs[16] = ARM_CPU_MODE_USR;
357     if (infop->entry & 1) {
358         regs->uregs[16] |= CPSR_T;
359     }
360     regs->uregs[15] = infop->entry & 0xfffffffe;
361     regs->uregs[13] = infop->start_stack;
362     /* FIXME - what to for failure of get_user()? */
363     get_user_ual(regs->uregs[2], stack + 8); /* envp */
364     get_user_ual(regs->uregs[1], stack + 4); /* envp */
365     /* XXX: it seems that r0 is zeroed after ! */
366     regs->uregs[0] = 0;
367     /* For uClinux PIC binaries.  */
368     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
369     regs->uregs[10] = infop->start_data;
370 
371     /* Support ARM FDPIC.  */
372     if (info_is_fdpic(infop)) {
373         /* As described in the ABI document, r7 points to the loadmap info
374          * prepared by the kernel. If an interpreter is needed, r8 points
375          * to the interpreter loadmap and r9 points to the interpreter
376          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
377          * r9 points to the main program PT_DYNAMIC info.
378          */
379         regs->uregs[7] = infop->loadmap_addr;
380         if (infop->interpreter_loadmap_addr) {
381             /* Executable is dynamically loaded.  */
382             regs->uregs[8] = infop->interpreter_loadmap_addr;
383             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
384         } else {
385             regs->uregs[8] = 0;
386             regs->uregs[9] = infop->pt_dynamic_addr;
387         }
388     }
389 }
390 
391 #define ELF_NREG    18
392 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
393 
394 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
395 {
396     (*regs)[0] = tswapreg(env->regs[0]);
397     (*regs)[1] = tswapreg(env->regs[1]);
398     (*regs)[2] = tswapreg(env->regs[2]);
399     (*regs)[3] = tswapreg(env->regs[3]);
400     (*regs)[4] = tswapreg(env->regs[4]);
401     (*regs)[5] = tswapreg(env->regs[5]);
402     (*regs)[6] = tswapreg(env->regs[6]);
403     (*regs)[7] = tswapreg(env->regs[7]);
404     (*regs)[8] = tswapreg(env->regs[8]);
405     (*regs)[9] = tswapreg(env->regs[9]);
406     (*regs)[10] = tswapreg(env->regs[10]);
407     (*regs)[11] = tswapreg(env->regs[11]);
408     (*regs)[12] = tswapreg(env->regs[12]);
409     (*regs)[13] = tswapreg(env->regs[13]);
410     (*regs)[14] = tswapreg(env->regs[14]);
411     (*regs)[15] = tswapreg(env->regs[15]);
412 
413     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
414     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
415 }
416 
417 #define USE_ELF_CORE_DUMP
418 #define ELF_EXEC_PAGESIZE       4096
419 
420 enum
421 {
422     ARM_HWCAP_ARM_SWP       = 1 << 0,
423     ARM_HWCAP_ARM_HALF      = 1 << 1,
424     ARM_HWCAP_ARM_THUMB     = 1 << 2,
425     ARM_HWCAP_ARM_26BIT     = 1 << 3,
426     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
427     ARM_HWCAP_ARM_FPA       = 1 << 5,
428     ARM_HWCAP_ARM_VFP       = 1 << 6,
429     ARM_HWCAP_ARM_EDSP      = 1 << 7,
430     ARM_HWCAP_ARM_JAVA      = 1 << 8,
431     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
432     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
433     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
434     ARM_HWCAP_ARM_NEON      = 1 << 12,
435     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
436     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
437     ARM_HWCAP_ARM_TLS       = 1 << 15,
438     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
439     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
440     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
441     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
442     ARM_HWCAP_ARM_LPAE      = 1 << 20,
443     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
444     ARM_HWCAP_ARM_FPHP      = 1 << 22,
445     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
446     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
447     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
448     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
449     ARM_HWCAP_ARM_I8MM      = 1 << 27,
450 };
451 
452 enum {
453     ARM_HWCAP2_ARM_AES      = 1 << 0,
454     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
455     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
456     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
457     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
458     ARM_HWCAP2_ARM_SB       = 1 << 5,
459     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
460 };
461 
462 /* The commpage only exists for 32 bit kernels */
463 
464 #define HI_COMMPAGE (intptr_t)0xffff0f00u
465 
466 static bool init_guest_commpage(void)
467 {
468     ARMCPU *cpu = ARM_CPU(thread_cpu);
469     int host_page_size = qemu_real_host_page_size();
470     abi_ptr commpage;
471     void *want;
472     void *addr;
473 
474     /*
475      * M-profile allocates maximum of 2GB address space, so can never
476      * allocate the commpage.  Skip it.
477      */
478     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
479         return true;
480     }
481 
482     commpage = HI_COMMPAGE & -host_page_size;
483     want = g2h_untagged(commpage);
484     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
485                 MAP_ANONYMOUS | MAP_PRIVATE |
486                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
487                 -1, 0);
488 
489     if (addr == MAP_FAILED) {
490         perror("Allocating guest commpage");
491         exit(EXIT_FAILURE);
492     }
493     if (addr != want) {
494         return false;
495     }
496 
497     /* Set kernel helper versions; rest of page is 0.  */
498     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
499 
500     if (mprotect(addr, host_page_size, PROT_READ)) {
501         perror("Protecting guest commpage");
502         exit(EXIT_FAILURE);
503     }
504 
505     page_set_flags(commpage, commpage | (host_page_size - 1),
506                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
507     return true;
508 }
509 
510 #define ELF_HWCAP get_elf_hwcap()
511 #define ELF_HWCAP2 get_elf_hwcap2()
512 
513 uint32_t get_elf_hwcap(void)
514 {
515     ARMCPU *cpu = ARM_CPU(thread_cpu);
516     uint32_t hwcaps = 0;
517 
518     hwcaps |= ARM_HWCAP_ARM_SWP;
519     hwcaps |= ARM_HWCAP_ARM_HALF;
520     hwcaps |= ARM_HWCAP_ARM_THUMB;
521     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
522 
523     /* probe for the extra features */
524 #define GET_FEATURE(feat, hwcap) \
525     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
526 
527 #define GET_FEATURE_ID(feat, hwcap) \
528     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
529 
530     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
531     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
532     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
533     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
534     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
535     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
536     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
537     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
538     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
539     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
540 
541     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
542         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
543         hwcaps |= ARM_HWCAP_ARM_VFPv3;
544         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
545             hwcaps |= ARM_HWCAP_ARM_VFPD32;
546         } else {
547             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
548         }
549     }
550     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
551     /*
552      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
553      * isar_feature function for both. The kernel reports them as two hwcaps.
554      */
555     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
556     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
557     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
558     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
559     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
560     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
561 
562     return hwcaps;
563 }
564 
565 uint64_t get_elf_hwcap2(void)
566 {
567     ARMCPU *cpu = ARM_CPU(thread_cpu);
568     uint64_t hwcaps = 0;
569 
570     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
571     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
572     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
573     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
574     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
575     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
576     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
577     return hwcaps;
578 }
579 
580 const char *elf_hwcap_str(uint32_t bit)
581 {
582     static const char *hwcap_str[] = {
583     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
584     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
585     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
586     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
587     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
588     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
589     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
590     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
591     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
592     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
593     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
594     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
595     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
596     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
597     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
598     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
599     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
600     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
601     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
602     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
603     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
604     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
605     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
606     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
607     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
608     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
609     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
610     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
611     };
612 
613     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
614 }
615 
616 const char *elf_hwcap2_str(uint32_t bit)
617 {
618     static const char *hwcap_str[] = {
619     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
620     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
621     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
622     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
623     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
624     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
625     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
626     };
627 
628     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
629 }
630 
631 #undef GET_FEATURE
632 #undef GET_FEATURE_ID
633 
634 #define ELF_PLATFORM get_elf_platform()
635 
636 static const char *get_elf_platform(void)
637 {
638     CPUARMState *env = cpu_env(thread_cpu);
639 
640 #if TARGET_BIG_ENDIAN
641 # define END  "b"
642 #else
643 # define END  "l"
644 #endif
645 
646     if (arm_feature(env, ARM_FEATURE_V8)) {
647         return "v8" END;
648     } else if (arm_feature(env, ARM_FEATURE_V7)) {
649         if (arm_feature(env, ARM_FEATURE_M)) {
650             return "v7m" END;
651         } else {
652             return "v7" END;
653         }
654     } else if (arm_feature(env, ARM_FEATURE_V6)) {
655         return "v6" END;
656     } else if (arm_feature(env, ARM_FEATURE_V5)) {
657         return "v5" END;
658     } else {
659         return "v4" END;
660     }
661 
662 #undef END
663 }
664 
665 #if TARGET_BIG_ENDIAN
666 #include "elf.h"
667 #include "vdso-be8.c.inc"
668 #include "vdso-be32.c.inc"
669 
670 static const VdsoImageInfo *vdso_image_info(uint32_t elf_flags)
671 {
672     return (EF_ARM_EABI_VERSION(elf_flags) >= EF_ARM_EABI_VER4
673             && (elf_flags & EF_ARM_BE8)
674             ? &vdso_be8_image_info
675             : &vdso_be32_image_info);
676 }
677 #define vdso_image_info vdso_image_info
678 #else
679 # define VDSO_HEADER  "vdso-le.c.inc"
680 #endif
681 
682 #else
683 /* 64 bit ARM definitions */
684 
685 #define ELF_ARCH        EM_AARCH64
686 #define ELF_CLASS       ELFCLASS64
687 #if TARGET_BIG_ENDIAN
688 # define ELF_PLATFORM    "aarch64_be"
689 #else
690 # define ELF_PLATFORM    "aarch64"
691 #endif
692 
693 static inline void init_thread(struct target_pt_regs *regs,
694                                struct image_info *infop)
695 {
696     abi_long stack = infop->start_stack;
697     memset(regs, 0, sizeof(*regs));
698 
699     regs->pc = infop->entry & ~0x3ULL;
700     regs->sp = stack;
701 }
702 
703 #define ELF_NREG    34
704 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
705 
706 static void elf_core_copy_regs(target_elf_gregset_t *regs,
707                                const CPUARMState *env)
708 {
709     int i;
710 
711     for (i = 0; i < 32; i++) {
712         (*regs)[i] = tswapreg(env->xregs[i]);
713     }
714     (*regs)[32] = tswapreg(env->pc);
715     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
716 }
717 
718 #define USE_ELF_CORE_DUMP
719 #define ELF_EXEC_PAGESIZE       4096
720 
721 enum {
722     ARM_HWCAP_A64_FP            = 1 << 0,
723     ARM_HWCAP_A64_ASIMD         = 1 << 1,
724     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
725     ARM_HWCAP_A64_AES           = 1 << 3,
726     ARM_HWCAP_A64_PMULL         = 1 << 4,
727     ARM_HWCAP_A64_SHA1          = 1 << 5,
728     ARM_HWCAP_A64_SHA2          = 1 << 6,
729     ARM_HWCAP_A64_CRC32         = 1 << 7,
730     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
731     ARM_HWCAP_A64_FPHP          = 1 << 9,
732     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
733     ARM_HWCAP_A64_CPUID         = 1 << 11,
734     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
735     ARM_HWCAP_A64_JSCVT         = 1 << 13,
736     ARM_HWCAP_A64_FCMA          = 1 << 14,
737     ARM_HWCAP_A64_LRCPC         = 1 << 15,
738     ARM_HWCAP_A64_DCPOP         = 1 << 16,
739     ARM_HWCAP_A64_SHA3          = 1 << 17,
740     ARM_HWCAP_A64_SM3           = 1 << 18,
741     ARM_HWCAP_A64_SM4           = 1 << 19,
742     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
743     ARM_HWCAP_A64_SHA512        = 1 << 21,
744     ARM_HWCAP_A64_SVE           = 1 << 22,
745     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
746     ARM_HWCAP_A64_DIT           = 1 << 24,
747     ARM_HWCAP_A64_USCAT         = 1 << 25,
748     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
749     ARM_HWCAP_A64_FLAGM         = 1 << 27,
750     ARM_HWCAP_A64_SSBS          = 1 << 28,
751     ARM_HWCAP_A64_SB            = 1 << 29,
752     ARM_HWCAP_A64_PACA          = 1 << 30,
753     ARM_HWCAP_A64_PACG          = 1UL << 31,
754 
755     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
756     ARM_HWCAP2_A64_SVE2         = 1 << 1,
757     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
758     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
759     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
760     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
761     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
762     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
763     ARM_HWCAP2_A64_FRINT        = 1 << 8,
764     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
765     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
766     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
767     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
768     ARM_HWCAP2_A64_I8MM         = 1 << 13,
769     ARM_HWCAP2_A64_BF16         = 1 << 14,
770     ARM_HWCAP2_A64_DGH          = 1 << 15,
771     ARM_HWCAP2_A64_RNG          = 1 << 16,
772     ARM_HWCAP2_A64_BTI          = 1 << 17,
773     ARM_HWCAP2_A64_MTE          = 1 << 18,
774     ARM_HWCAP2_A64_ECV          = 1 << 19,
775     ARM_HWCAP2_A64_AFP          = 1 << 20,
776     ARM_HWCAP2_A64_RPRES        = 1 << 21,
777     ARM_HWCAP2_A64_MTE3         = 1 << 22,
778     ARM_HWCAP2_A64_SME          = 1 << 23,
779     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
780     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
781     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
782     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
783     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
784     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
785     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
786     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
787     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
788     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
789     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
790     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
791     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
792     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
793     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
794     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
795     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
796     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
797     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
798     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
799     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
800 };
801 
802 #define ELF_HWCAP   get_elf_hwcap()
803 #define ELF_HWCAP2  get_elf_hwcap2()
804 
805 #define GET_FEATURE_ID(feat, hwcap) \
806     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
807 
808 uint32_t get_elf_hwcap(void)
809 {
810     ARMCPU *cpu = ARM_CPU(thread_cpu);
811     uint32_t hwcaps = 0;
812 
813     hwcaps |= ARM_HWCAP_A64_FP;
814     hwcaps |= ARM_HWCAP_A64_ASIMD;
815     hwcaps |= ARM_HWCAP_A64_CPUID;
816 
817     /* probe for the extra features */
818 
819     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
820     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
821     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
822     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
823     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
824     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
825     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
826     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
827     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
828     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
829     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
830     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
831     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
832     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
833     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
834     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
835     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
836     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
837     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
838     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
839     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
840     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
841     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
842     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
843     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
844 
845     return hwcaps;
846 }
847 
848 uint64_t get_elf_hwcap2(void)
849 {
850     ARMCPU *cpu = ARM_CPU(thread_cpu);
851     uint64_t hwcaps = 0;
852 
853     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
854     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
855     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
856     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
857     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
858     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
859     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
860     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
861     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
862     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
863     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
864     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
865     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
866     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
867     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
868     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
869     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
870     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
871     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
872     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
873                               ARM_HWCAP2_A64_SME_F32F32 |
874                               ARM_HWCAP2_A64_SME_B16F32 |
875                               ARM_HWCAP2_A64_SME_F16F32 |
876                               ARM_HWCAP2_A64_SME_I8I32));
877     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
878     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
879     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
880     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
881     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
882 
883     return hwcaps;
884 }
885 
886 const char *elf_hwcap_str(uint32_t bit)
887 {
888     static const char *hwcap_str[] = {
889     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
890     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
891     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
892     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
893     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
894     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
895     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
896     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
897     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
898     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
899     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
900     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
901     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
902     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
903     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
904     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
905     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
906     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
907     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
908     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
909     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
910     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
911     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
912     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
913     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
914     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
915     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
916     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
917     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
918     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
919     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
920     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
921     };
922 
923     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
924 }
925 
926 const char *elf_hwcap2_str(uint32_t bit)
927 {
928     static const char *hwcap_str[] = {
929     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
930     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
931     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
932     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
933     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
934     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
935     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
936     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
937     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
938     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
939     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
940     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
941     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
942     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
943     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
944     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
945     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
946     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
947     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
948     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
949     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
950     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
951     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
952     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
953     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
954     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
955     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
956     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
957     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
958     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
959     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
960     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
961     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
962     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
963     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
964     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
965     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
966     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
967     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
968     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
969     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
970     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
971     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
972     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
973     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
974     };
975 
976     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
977 }
978 
979 #undef GET_FEATURE_ID
980 
981 #if TARGET_BIG_ENDIAN
982 # define VDSO_HEADER  "vdso-be.c.inc"
983 #else
984 # define VDSO_HEADER  "vdso-le.c.inc"
985 #endif
986 
987 #endif /* not TARGET_AARCH64 */
988 
989 #endif /* TARGET_ARM */
990 
991 #ifdef TARGET_SPARC
992 
993 #ifndef TARGET_SPARC64
994 # define ELF_CLASS  ELFCLASS32
995 # define ELF_ARCH   EM_SPARC
996 #elif defined(TARGET_ABI32)
997 # define ELF_CLASS  ELFCLASS32
998 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
999 #else
1000 # define ELF_CLASS  ELFCLASS64
1001 # define ELF_ARCH   EM_SPARCV9
1002 #endif
1003 
1004 #include "elf.h"
1005 
1006 #define ELF_HWCAP get_elf_hwcap()
1007 
1008 static uint32_t get_elf_hwcap(void)
1009 {
1010     /* There are not many sparc32 hwcap bits -- we have all of them. */
1011     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
1012                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
1013 
1014 #ifdef TARGET_SPARC64
1015     CPUSPARCState *env = cpu_env(thread_cpu);
1016     uint32_t features = env->def.features;
1017 
1018     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
1019     /* 32x32 multiply and divide are efficient. */
1020     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1021     /* We don't have an internal feature bit for this. */
1022     r |= HWCAP_SPARC_POPC;
1023     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1024     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1025     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1026     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
1027     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
1028     r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
1029 #endif
1030 
1031     return r;
1032 }
1033 
1034 static inline void init_thread(struct target_pt_regs *regs,
1035                                struct image_info *infop)
1036 {
1037     /* Note that target_cpu_copy_regs does not read psr/tstate. */
1038     regs->pc = infop->entry;
1039     regs->npc = regs->pc + 4;
1040     regs->y = 0;
1041     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1042                         - TARGET_STACK_BIAS);
1043 }
1044 #endif /* TARGET_SPARC */
1045 
1046 #ifdef TARGET_PPC
1047 
1048 #define ELF_MACHINE    PPC_ELF_MACHINE
1049 
1050 #if defined(TARGET_PPC64)
1051 
1052 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1053 
1054 #define ELF_CLASS       ELFCLASS64
1055 
1056 #else
1057 
1058 #define ELF_CLASS       ELFCLASS32
1059 #define EXSTACK_DEFAULT true
1060 
1061 #endif
1062 
1063 #define ELF_ARCH        EM_PPC
1064 
1065 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1066    See arch/powerpc/include/asm/cputable.h.  */
1067 enum {
1068     QEMU_PPC_FEATURE_32 = 0x80000000,
1069     QEMU_PPC_FEATURE_64 = 0x40000000,
1070     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1071     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1072     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1073     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1074     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1075     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1076     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1077     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1078     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1079     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1080     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1081     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1082     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1083     QEMU_PPC_FEATURE_CELL = 0x00010000,
1084     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1085     QEMU_PPC_FEATURE_SMT = 0x00004000,
1086     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1087     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1088     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1089     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1090     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1091     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1092     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1093     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1094 
1095     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1096     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1097 
1098     /* Feature definitions in AT_HWCAP2.  */
1099     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1100     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1101     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1102     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1103     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1104     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1105     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1106     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1107     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1108     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1109     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1110     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1111     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1112     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1113     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1114 };
1115 
1116 #define ELF_HWCAP get_elf_hwcap()
1117 
1118 static uint32_t get_elf_hwcap(void)
1119 {
1120     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1121     uint32_t features = 0;
1122 
1123     /* We don't have to be terribly complete here; the high points are
1124        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1125 #define GET_FEATURE(flag, feature)                                      \
1126     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1127 #define GET_FEATURE2(flags, feature) \
1128     do { \
1129         if ((cpu->env.insns_flags2 & flags) == flags) { \
1130             features |= feature; \
1131         } \
1132     } while (0)
1133     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1134     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1135     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1136     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1137     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1138     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1139     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1140     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1141     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1142     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1143     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1144                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1145                   QEMU_PPC_FEATURE_ARCH_2_06);
1146 #undef GET_FEATURE
1147 #undef GET_FEATURE2
1148 
1149     return features;
1150 }
1151 
1152 #define ELF_HWCAP2 get_elf_hwcap2()
1153 
1154 static uint32_t get_elf_hwcap2(void)
1155 {
1156     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1157     uint32_t features = 0;
1158 
1159 #define GET_FEATURE(flag, feature)                                      \
1160     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1161 #define GET_FEATURE2(flag, feature)                                      \
1162     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1163 
1164     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1165     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1166     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1167                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1168                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1169     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1170                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1171     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1172                  QEMU_PPC_FEATURE2_MMA);
1173 
1174 #undef GET_FEATURE
1175 #undef GET_FEATURE2
1176 
1177     return features;
1178 }
1179 
1180 /*
1181  * The requirements here are:
1182  * - keep the final alignment of sp (sp & 0xf)
1183  * - make sure the 32-bit value at the first 16 byte aligned position of
1184  *   AUXV is greater than 16 for glibc compatibility.
1185  *   AT_IGNOREPPC is used for that.
1186  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1187  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1188  */
1189 #define DLINFO_ARCH_ITEMS       5
1190 #define ARCH_DLINFO                                     \
1191     do {                                                \
1192         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1193         /*                                              \
1194          * Handle glibc compatibility: these magic entries must \
1195          * be at the lowest addresses in the final auxv.        \
1196          */                                             \
1197         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1198         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1199         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1200         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1201         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1202     } while (0)
1203 
1204 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1205 {
1206     _regs->gpr[1] = infop->start_stack;
1207 #if defined(TARGET_PPC64)
1208     if (get_ppc64_abi(infop) < 2) {
1209         uint64_t val;
1210         get_user_u64(val, infop->entry + 8);
1211         _regs->gpr[2] = val + infop->load_bias;
1212         get_user_u64(val, infop->entry);
1213         infop->entry = val + infop->load_bias;
1214     } else {
1215         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1216     }
1217 #endif
1218     _regs->nip = infop->entry;
1219 }
1220 
1221 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1222 #define ELF_NREG 48
1223 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1224 
1225 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1226 {
1227     int i;
1228     target_ulong ccr = 0;
1229 
1230     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1231         (*regs)[i] = tswapreg(env->gpr[i]);
1232     }
1233 
1234     (*regs)[32] = tswapreg(env->nip);
1235     (*regs)[33] = tswapreg(env->msr);
1236     (*regs)[35] = tswapreg(env->ctr);
1237     (*regs)[36] = tswapreg(env->lr);
1238     (*regs)[37] = tswapreg(cpu_read_xer(env));
1239 
1240     ccr = ppc_get_cr(env);
1241     (*regs)[38] = tswapreg(ccr);
1242 }
1243 
1244 #define USE_ELF_CORE_DUMP
1245 #define ELF_EXEC_PAGESIZE       4096
1246 
1247 #ifndef TARGET_PPC64
1248 # define VDSO_HEADER  "vdso-32.c.inc"
1249 #elif TARGET_BIG_ENDIAN
1250 # define VDSO_HEADER  "vdso-64.c.inc"
1251 #else
1252 # define VDSO_HEADER  "vdso-64le.c.inc"
1253 #endif
1254 
1255 #endif
1256 
1257 #ifdef TARGET_LOONGARCH64
1258 
1259 #define ELF_CLASS   ELFCLASS64
1260 #define ELF_ARCH    EM_LOONGARCH
1261 #define EXSTACK_DEFAULT true
1262 
1263 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1264 
1265 #define VDSO_HEADER "vdso.c.inc"
1266 
1267 static inline void init_thread(struct target_pt_regs *regs,
1268                                struct image_info *infop)
1269 {
1270     /*Set crmd PG,DA = 1,0 */
1271     regs->csr.crmd = 2 << 3;
1272     regs->csr.era = infop->entry;
1273     regs->regs[3] = infop->start_stack;
1274 }
1275 
1276 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1277 #define ELF_NREG 45
1278 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1279 
1280 enum {
1281     TARGET_EF_R0 = 0,
1282     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1283     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1284 };
1285 
1286 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1287                                const CPULoongArchState *env)
1288 {
1289     int i;
1290 
1291     (*regs)[TARGET_EF_R0] = 0;
1292 
1293     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1294         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1295     }
1296 
1297     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1298     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1299 }
1300 
1301 #define USE_ELF_CORE_DUMP
1302 #define ELF_EXEC_PAGESIZE        4096
1303 
1304 #define ELF_HWCAP get_elf_hwcap()
1305 
1306 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1307 enum {
1308     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1309     HWCAP_LOONGARCH_LAM      = (1 << 1),
1310     HWCAP_LOONGARCH_UAL      = (1 << 2),
1311     HWCAP_LOONGARCH_FPU      = (1 << 3),
1312     HWCAP_LOONGARCH_LSX      = (1 << 4),
1313     HWCAP_LOONGARCH_LASX     = (1 << 5),
1314     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1315     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1316     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1317     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1318     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1319     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1320     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1321 };
1322 
1323 static uint32_t get_elf_hwcap(void)
1324 {
1325     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1326     uint32_t hwcaps = 0;
1327 
1328     hwcaps |= HWCAP_LOONGARCH_CRC32;
1329 
1330     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1331         hwcaps |= HWCAP_LOONGARCH_UAL;
1332     }
1333 
1334     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1335         hwcaps |= HWCAP_LOONGARCH_FPU;
1336     }
1337 
1338     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1339         hwcaps |= HWCAP_LOONGARCH_LAM;
1340     }
1341 
1342     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1343         hwcaps |= HWCAP_LOONGARCH_LSX;
1344     }
1345 
1346     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1347         hwcaps |= HWCAP_LOONGARCH_LASX;
1348     }
1349 
1350     return hwcaps;
1351 }
1352 
1353 #define ELF_PLATFORM "loongarch"
1354 
1355 #endif /* TARGET_LOONGARCH64 */
1356 
1357 #ifdef TARGET_MIPS
1358 
1359 #ifdef TARGET_MIPS64
1360 #define ELF_CLASS   ELFCLASS64
1361 #else
1362 #define ELF_CLASS   ELFCLASS32
1363 #endif
1364 #define ELF_ARCH    EM_MIPS
1365 #define EXSTACK_DEFAULT true
1366 
1367 #ifdef TARGET_ABI_MIPSN32
1368 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1369 #else
1370 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1371 #endif
1372 
1373 #define ELF_BASE_PLATFORM get_elf_base_platform()
1374 
1375 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1376     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1377     { return _base_platform; } } while (0)
1378 
1379 static const char *get_elf_base_platform(void)
1380 {
1381     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1382 
1383     /* 64 bit ISAs goes first */
1384     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1385     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1386     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1387     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1388     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1389     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1390     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1391 
1392     /* 32 bit ISAs */
1393     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1394     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1395     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1396     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1397     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1398 
1399     /* Fallback */
1400     return "mips";
1401 }
1402 #undef MATCH_PLATFORM_INSN
1403 
1404 static inline void init_thread(struct target_pt_regs *regs,
1405                                struct image_info *infop)
1406 {
1407     regs->cp0_status = 2 << CP0St_KSU;
1408     regs->cp0_epc = infop->entry;
1409     regs->regs[29] = infop->start_stack;
1410 }
1411 
1412 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1413 #define ELF_NREG 45
1414 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1415 
1416 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1417 enum {
1418 #ifdef TARGET_MIPS64
1419     TARGET_EF_R0 = 0,
1420 #else
1421     TARGET_EF_R0 = 6,
1422 #endif
1423     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1424     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1425     TARGET_EF_LO = TARGET_EF_R0 + 32,
1426     TARGET_EF_HI = TARGET_EF_R0 + 33,
1427     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1428     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1429     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1430     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1431 };
1432 
1433 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1434 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1435 {
1436     int i;
1437 
1438     for (i = 0; i < TARGET_EF_R0; i++) {
1439         (*regs)[i] = 0;
1440     }
1441     (*regs)[TARGET_EF_R0] = 0;
1442 
1443     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1444         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1445     }
1446 
1447     (*regs)[TARGET_EF_R26] = 0;
1448     (*regs)[TARGET_EF_R27] = 0;
1449     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1450     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1451     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1452     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1453     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1454     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1455 }
1456 
1457 #define USE_ELF_CORE_DUMP
1458 #define ELF_EXEC_PAGESIZE        4096
1459 
1460 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1461 enum {
1462     HWCAP_MIPS_R6           = (1 << 0),
1463     HWCAP_MIPS_MSA          = (1 << 1),
1464     HWCAP_MIPS_CRC32        = (1 << 2),
1465     HWCAP_MIPS_MIPS16       = (1 << 3),
1466     HWCAP_MIPS_MDMX         = (1 << 4),
1467     HWCAP_MIPS_MIPS3D       = (1 << 5),
1468     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1469     HWCAP_MIPS_DSP          = (1 << 7),
1470     HWCAP_MIPS_DSP2         = (1 << 8),
1471     HWCAP_MIPS_DSP3         = (1 << 9),
1472     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1473     HWCAP_LOONGSON_MMI      = (1 << 11),
1474     HWCAP_LOONGSON_EXT      = (1 << 12),
1475     HWCAP_LOONGSON_EXT2     = (1 << 13),
1476     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1477 };
1478 
1479 #define ELF_HWCAP get_elf_hwcap()
1480 
1481 #define GET_FEATURE_INSN(_flag, _hwcap) \
1482     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1483 
1484 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1485     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1486 
1487 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1488     do { \
1489         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1490             hwcaps |= _hwcap; \
1491         } \
1492     } while (0)
1493 
1494 static uint32_t get_elf_hwcap(void)
1495 {
1496     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1497     uint32_t hwcaps = 0;
1498 
1499     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1500                         2, HWCAP_MIPS_R6);
1501     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1502     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1503     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1504 
1505     return hwcaps;
1506 }
1507 
1508 #undef GET_FEATURE_REG_EQU
1509 #undef GET_FEATURE_REG_SET
1510 #undef GET_FEATURE_INSN
1511 
1512 #endif /* TARGET_MIPS */
1513 
1514 #ifdef TARGET_MICROBLAZE
1515 
1516 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1517 
1518 #define ELF_CLASS   ELFCLASS32
1519 #define ELF_ARCH    EM_MICROBLAZE
1520 
1521 static inline void init_thread(struct target_pt_regs *regs,
1522                                struct image_info *infop)
1523 {
1524     regs->pc = infop->entry;
1525     regs->r1 = infop->start_stack;
1526 
1527 }
1528 
1529 #define ELF_EXEC_PAGESIZE        4096
1530 
1531 #define USE_ELF_CORE_DUMP
1532 #define ELF_NREG 38
1533 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1534 
1535 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1536 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1537 {
1538     int i, pos = 0;
1539 
1540     for (i = 0; i < 32; i++) {
1541         (*regs)[pos++] = tswapreg(env->regs[i]);
1542     }
1543 
1544     (*regs)[pos++] = tswapreg(env->pc);
1545     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1546     (*regs)[pos++] = 0;
1547     (*regs)[pos++] = tswapreg(env->ear);
1548     (*regs)[pos++] = 0;
1549     (*regs)[pos++] = tswapreg(env->esr);
1550 }
1551 
1552 #endif /* TARGET_MICROBLAZE */
1553 
1554 #ifdef TARGET_OPENRISC
1555 
1556 #define ELF_ARCH EM_OPENRISC
1557 #define ELF_CLASS ELFCLASS32
1558 #define ELF_DATA  ELFDATA2MSB
1559 
1560 static inline void init_thread(struct target_pt_regs *regs,
1561                                struct image_info *infop)
1562 {
1563     regs->pc = infop->entry;
1564     regs->gpr[1] = infop->start_stack;
1565 }
1566 
1567 #define USE_ELF_CORE_DUMP
1568 #define ELF_EXEC_PAGESIZE 8192
1569 
1570 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1571 #define ELF_NREG 34 /* gprs and pc, sr */
1572 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1573 
1574 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1575                                const CPUOpenRISCState *env)
1576 {
1577     int i;
1578 
1579     for (i = 0; i < 32; i++) {
1580         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1581     }
1582     (*regs)[32] = tswapreg(env->pc);
1583     (*regs)[33] = tswapreg(cpu_get_sr(env));
1584 }
1585 #define ELF_HWCAP 0
1586 #define ELF_PLATFORM NULL
1587 
1588 #endif /* TARGET_OPENRISC */
1589 
1590 #ifdef TARGET_SH4
1591 
1592 #define ELF_CLASS ELFCLASS32
1593 #define ELF_ARCH  EM_SH
1594 
1595 static inline void init_thread(struct target_pt_regs *regs,
1596                                struct image_info *infop)
1597 {
1598     /* Check other registers XXXXX */
1599     regs->pc = infop->entry;
1600     regs->regs[15] = infop->start_stack;
1601 }
1602 
1603 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1604 #define ELF_NREG 23
1605 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1606 
1607 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1608 enum {
1609     TARGET_REG_PC = 16,
1610     TARGET_REG_PR = 17,
1611     TARGET_REG_SR = 18,
1612     TARGET_REG_GBR = 19,
1613     TARGET_REG_MACH = 20,
1614     TARGET_REG_MACL = 21,
1615     TARGET_REG_SYSCALL = 22
1616 };
1617 
1618 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1619                                       const CPUSH4State *env)
1620 {
1621     int i;
1622 
1623     for (i = 0; i < 16; i++) {
1624         (*regs)[i] = tswapreg(env->gregs[i]);
1625     }
1626 
1627     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1628     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1629     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1630     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1631     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1632     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1633     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1634 }
1635 
1636 #define USE_ELF_CORE_DUMP
1637 #define ELF_EXEC_PAGESIZE        4096
1638 
1639 enum {
1640     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1641     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1642     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1643     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1644     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1645     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1646     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1647     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1648     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1649     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1650 };
1651 
1652 #define ELF_HWCAP get_elf_hwcap()
1653 
1654 static uint32_t get_elf_hwcap(void)
1655 {
1656     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1657     uint32_t hwcap = 0;
1658 
1659     hwcap |= SH_CPU_HAS_FPU;
1660 
1661     if (cpu->env.features & SH_FEATURE_SH4A) {
1662         hwcap |= SH_CPU_HAS_LLSC;
1663     }
1664 
1665     return hwcap;
1666 }
1667 
1668 #endif
1669 
1670 #ifdef TARGET_M68K
1671 
1672 #define ELF_CLASS       ELFCLASS32
1673 #define ELF_ARCH        EM_68K
1674 
1675 /* ??? Does this need to do anything?
1676    #define ELF_PLAT_INIT(_r) */
1677 
1678 static inline void init_thread(struct target_pt_regs *regs,
1679                                struct image_info *infop)
1680 {
1681     regs->usp = infop->start_stack;
1682     regs->sr = 0;
1683     regs->pc = infop->entry;
1684 }
1685 
1686 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1687 #define ELF_NREG 20
1688 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1689 
1690 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1691 {
1692     (*regs)[0] = tswapreg(env->dregs[1]);
1693     (*regs)[1] = tswapreg(env->dregs[2]);
1694     (*regs)[2] = tswapreg(env->dregs[3]);
1695     (*regs)[3] = tswapreg(env->dregs[4]);
1696     (*regs)[4] = tswapreg(env->dregs[5]);
1697     (*regs)[5] = tswapreg(env->dregs[6]);
1698     (*regs)[6] = tswapreg(env->dregs[7]);
1699     (*regs)[7] = tswapreg(env->aregs[0]);
1700     (*regs)[8] = tswapreg(env->aregs[1]);
1701     (*regs)[9] = tswapreg(env->aregs[2]);
1702     (*regs)[10] = tswapreg(env->aregs[3]);
1703     (*regs)[11] = tswapreg(env->aregs[4]);
1704     (*regs)[12] = tswapreg(env->aregs[5]);
1705     (*regs)[13] = tswapreg(env->aregs[6]);
1706     (*regs)[14] = tswapreg(env->dregs[0]);
1707     (*regs)[15] = tswapreg(env->aregs[7]);
1708     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1709     (*regs)[17] = tswapreg(env->sr);
1710     (*regs)[18] = tswapreg(env->pc);
1711     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1712 }
1713 
1714 #define USE_ELF_CORE_DUMP
1715 #define ELF_EXEC_PAGESIZE       8192
1716 
1717 #endif
1718 
1719 #ifdef TARGET_ALPHA
1720 
1721 #define ELF_CLASS      ELFCLASS64
1722 #define ELF_ARCH       EM_ALPHA
1723 
1724 static inline void init_thread(struct target_pt_regs *regs,
1725                                struct image_info *infop)
1726 {
1727     regs->pc = infop->entry;
1728     regs->ps = 8;
1729     regs->usp = infop->start_stack;
1730 }
1731 
1732 #define ELF_EXEC_PAGESIZE        8192
1733 
1734 #endif /* TARGET_ALPHA */
1735 
1736 #ifdef TARGET_S390X
1737 
1738 #define ELF_CLASS	ELFCLASS64
1739 #define ELF_DATA	ELFDATA2MSB
1740 #define ELF_ARCH	EM_S390
1741 
1742 #include "elf.h"
1743 
1744 #define ELF_HWCAP get_elf_hwcap()
1745 
1746 #define GET_FEATURE(_feat, _hwcap) \
1747     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1748 
1749 uint32_t get_elf_hwcap(void)
1750 {
1751     /*
1752      * Let's assume we always have esan3 and zarch.
1753      * 31-bit processes can use 64-bit registers (high gprs).
1754      */
1755     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1756 
1757     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1758     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1759     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1760     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1761     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1762         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1763         hwcap |= HWCAP_S390_ETF3EH;
1764     }
1765     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1766     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1767     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1768 
1769     return hwcap;
1770 }
1771 
1772 const char *elf_hwcap_str(uint32_t bit)
1773 {
1774     static const char *hwcap_str[] = {
1775         [HWCAP_S390_NR_ESAN3]     = "esan3",
1776         [HWCAP_S390_NR_ZARCH]     = "zarch",
1777         [HWCAP_S390_NR_STFLE]     = "stfle",
1778         [HWCAP_S390_NR_MSA]       = "msa",
1779         [HWCAP_S390_NR_LDISP]     = "ldisp",
1780         [HWCAP_S390_NR_EIMM]      = "eimm",
1781         [HWCAP_S390_NR_DFP]       = "dfp",
1782         [HWCAP_S390_NR_HPAGE]     = "edat",
1783         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1784         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1785         [HWCAP_S390_NR_TE]        = "te",
1786         [HWCAP_S390_NR_VXRS]      = "vx",
1787         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1788         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1789         [HWCAP_S390_NR_GS]        = "gs",
1790         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1791         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1792         [HWCAP_S390_NR_SORT]      = "sort",
1793         [HWCAP_S390_NR_DFLT]      = "dflt",
1794         [HWCAP_S390_NR_NNPA]      = "nnpa",
1795         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1796         [HWCAP_S390_NR_SIE]       = "sie",
1797     };
1798 
1799     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1800 }
1801 
1802 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1803 {
1804     regs->psw.addr = infop->entry;
1805     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1806                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1807                      PSW_MASK_32;
1808     regs->gprs[15] = infop->start_stack;
1809 }
1810 
1811 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1812 #define ELF_NREG 27
1813 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1814 
1815 enum {
1816     TARGET_REG_PSWM = 0,
1817     TARGET_REG_PSWA = 1,
1818     TARGET_REG_GPRS = 2,
1819     TARGET_REG_ARS = 18,
1820     TARGET_REG_ORIG_R2 = 26,
1821 };
1822 
1823 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1824                                const CPUS390XState *env)
1825 {
1826     int i;
1827     uint32_t *aregs;
1828 
1829     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1830     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1831     for (i = 0; i < 16; i++) {
1832         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1833     }
1834     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1835     for (i = 0; i < 16; i++) {
1836         aregs[i] = tswap32(env->aregs[i]);
1837     }
1838     (*regs)[TARGET_REG_ORIG_R2] = 0;
1839 }
1840 
1841 #define USE_ELF_CORE_DUMP
1842 #define ELF_EXEC_PAGESIZE 4096
1843 
1844 #define VDSO_HEADER "vdso.c.inc"
1845 
1846 #endif /* TARGET_S390X */
1847 
1848 #ifdef TARGET_RISCV
1849 
1850 #define ELF_ARCH  EM_RISCV
1851 
1852 #ifdef TARGET_RISCV32
1853 #define ELF_CLASS ELFCLASS32
1854 #define VDSO_HEADER "vdso-32.c.inc"
1855 #else
1856 #define ELF_CLASS ELFCLASS64
1857 #define VDSO_HEADER "vdso-64.c.inc"
1858 #endif
1859 
1860 #define ELF_HWCAP get_elf_hwcap()
1861 
1862 static uint32_t get_elf_hwcap(void)
1863 {
1864 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1865     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1866     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1867                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1868                     | MISA_BIT('V');
1869 
1870     return cpu->env.misa_ext & mask;
1871 #undef MISA_BIT
1872 }
1873 
1874 static inline void init_thread(struct target_pt_regs *regs,
1875                                struct image_info *infop)
1876 {
1877     regs->sepc = infop->entry;
1878     regs->sp = infop->start_stack;
1879 }
1880 
1881 #define ELF_EXEC_PAGESIZE 4096
1882 
1883 #endif /* TARGET_RISCV */
1884 
1885 #ifdef TARGET_HPPA
1886 
1887 #define ELF_CLASS       ELFCLASS32
1888 #define ELF_ARCH        EM_PARISC
1889 #define ELF_PLATFORM    "PARISC"
1890 #define STACK_GROWS_DOWN 0
1891 #define STACK_ALIGNMENT  64
1892 
1893 #define VDSO_HEADER "vdso.c.inc"
1894 
1895 static inline void init_thread(struct target_pt_regs *regs,
1896                                struct image_info *infop)
1897 {
1898     regs->iaoq[0] = infop->entry | PRIV_USER;
1899     regs->iaoq[1] = regs->iaoq[0] + 4;
1900     regs->gr[23] = 0;
1901     regs->gr[24] = infop->argv;
1902     regs->gr[25] = infop->argc;
1903     /* The top-of-stack contains a linkage buffer.  */
1904     regs->gr[30] = infop->start_stack + 64;
1905     regs->gr[31] = infop->entry;
1906 }
1907 
1908 #define LO_COMMPAGE  0
1909 
1910 static bool init_guest_commpage(void)
1911 {
1912     /* If reserved_va, then we have already mapped 0 page on the host. */
1913     if (!reserved_va) {
1914         void *want, *addr;
1915 
1916         want = g2h_untagged(LO_COMMPAGE);
1917         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1918                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1919         if (addr == MAP_FAILED) {
1920             perror("Allocating guest commpage");
1921             exit(EXIT_FAILURE);
1922         }
1923         if (addr != want) {
1924             return false;
1925         }
1926     }
1927 
1928     /*
1929      * On Linux, page zero is normally marked execute only + gateway.
1930      * Normal read or write is supposed to fail (thus PROT_NONE above),
1931      * but specific offsets have kernel code mapped to raise permissions
1932      * and implement syscalls.  Here, simply mark the page executable.
1933      * Special case the entry points during translation (see do_page_zero).
1934      */
1935     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1936                    PAGE_EXEC | PAGE_VALID);
1937     return true;
1938 }
1939 
1940 #endif /* TARGET_HPPA */
1941 
1942 #ifdef TARGET_XTENSA
1943 
1944 #define ELF_CLASS       ELFCLASS32
1945 #define ELF_ARCH        EM_XTENSA
1946 
1947 static inline void init_thread(struct target_pt_regs *regs,
1948                                struct image_info *infop)
1949 {
1950     regs->windowbase = 0;
1951     regs->windowstart = 1;
1952     regs->areg[1] = infop->start_stack;
1953     regs->pc = infop->entry;
1954     if (info_is_fdpic(infop)) {
1955         regs->areg[4] = infop->loadmap_addr;
1956         regs->areg[5] = infop->interpreter_loadmap_addr;
1957         if (infop->interpreter_loadmap_addr) {
1958             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1959         } else {
1960             regs->areg[6] = infop->pt_dynamic_addr;
1961         }
1962     }
1963 }
1964 
1965 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1966 #define ELF_NREG 128
1967 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1968 
1969 enum {
1970     TARGET_REG_PC,
1971     TARGET_REG_PS,
1972     TARGET_REG_LBEG,
1973     TARGET_REG_LEND,
1974     TARGET_REG_LCOUNT,
1975     TARGET_REG_SAR,
1976     TARGET_REG_WINDOWSTART,
1977     TARGET_REG_WINDOWBASE,
1978     TARGET_REG_THREADPTR,
1979     TARGET_REG_AR0 = 64,
1980 };
1981 
1982 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1983                                const CPUXtensaState *env)
1984 {
1985     unsigned i;
1986 
1987     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1988     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1989     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1990     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1991     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1992     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1993     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1994     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1995     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1996     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1997     for (i = 0; i < env->config->nareg; ++i) {
1998         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1999     }
2000 }
2001 
2002 #define USE_ELF_CORE_DUMP
2003 #define ELF_EXEC_PAGESIZE       4096
2004 
2005 #endif /* TARGET_XTENSA */
2006 
2007 #ifdef TARGET_HEXAGON
2008 
2009 #define ELF_CLASS       ELFCLASS32
2010 #define ELF_ARCH        EM_HEXAGON
2011 
2012 static inline void init_thread(struct target_pt_regs *regs,
2013                                struct image_info *infop)
2014 {
2015     regs->sepc = infop->entry;
2016     regs->sp = infop->start_stack;
2017 }
2018 
2019 #endif /* TARGET_HEXAGON */
2020 
2021 #ifndef ELF_BASE_PLATFORM
2022 #define ELF_BASE_PLATFORM (NULL)
2023 #endif
2024 
2025 #ifndef ELF_PLATFORM
2026 #define ELF_PLATFORM (NULL)
2027 #endif
2028 
2029 #ifndef ELF_MACHINE
2030 #define ELF_MACHINE ELF_ARCH
2031 #endif
2032 
2033 #ifndef elf_check_arch
2034 #define elf_check_arch(x) ((x) == ELF_ARCH)
2035 #endif
2036 
2037 #ifndef elf_check_abi
2038 #define elf_check_abi(x) (1)
2039 #endif
2040 
2041 #ifndef ELF_HWCAP
2042 #define ELF_HWCAP 0
2043 #endif
2044 
2045 #ifndef STACK_GROWS_DOWN
2046 #define STACK_GROWS_DOWN 1
2047 #endif
2048 
2049 #ifndef STACK_ALIGNMENT
2050 #define STACK_ALIGNMENT 16
2051 #endif
2052 
2053 #ifdef TARGET_ABI32
2054 #undef ELF_CLASS
2055 #define ELF_CLASS ELFCLASS32
2056 #undef bswaptls
2057 #define bswaptls(ptr) bswap32s(ptr)
2058 #endif
2059 
2060 #ifndef EXSTACK_DEFAULT
2061 #define EXSTACK_DEFAULT false
2062 #endif
2063 
2064 #include "elf.h"
2065 
2066 /* We must delay the following stanzas until after "elf.h". */
2067 #if defined(TARGET_AARCH64)
2068 
2069 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2070                                     const uint32_t *data,
2071                                     struct image_info *info,
2072                                     Error **errp)
2073 {
2074     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2075         if (pr_datasz != sizeof(uint32_t)) {
2076             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2077             return false;
2078         }
2079         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2080         info->note_flags = *data;
2081     }
2082     return true;
2083 }
2084 #define ARCH_USE_GNU_PROPERTY 1
2085 
2086 #else
2087 
2088 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2089                                     const uint32_t *data,
2090                                     struct image_info *info,
2091                                     Error **errp)
2092 {
2093     g_assert_not_reached();
2094 }
2095 #define ARCH_USE_GNU_PROPERTY 0
2096 
2097 #endif
2098 
2099 struct exec
2100 {
2101     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2102     unsigned int a_text;   /* length of text, in bytes */
2103     unsigned int a_data;   /* length of data, in bytes */
2104     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2105     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2106     unsigned int a_entry;  /* start address */
2107     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2108     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2109 };
2110 
2111 
2112 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2113 #define OMAGIC 0407
2114 #define NMAGIC 0410
2115 #define ZMAGIC 0413
2116 #define QMAGIC 0314
2117 
2118 #define DLINFO_ITEMS 16
2119 
2120 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2121 {
2122     memcpy(to, from, n);
2123 }
2124 
2125 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2126 static void bswap_ehdr(struct elfhdr *ehdr)
2127 {
2128     bswap16s(&ehdr->e_type);            /* Object file type */
2129     bswap16s(&ehdr->e_machine);         /* Architecture */
2130     bswap32s(&ehdr->e_version);         /* Object file version */
2131     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2132     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2133     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2134     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2135     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2136     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2137     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2138     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2139     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2140     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2141 }
2142 
2143 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2144 {
2145     int i;
2146     for (i = 0; i < phnum; ++i, ++phdr) {
2147         bswap32s(&phdr->p_type);        /* Segment type */
2148         bswap32s(&phdr->p_flags);       /* Segment flags */
2149         bswaptls(&phdr->p_offset);      /* Segment file offset */
2150         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2151         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2152         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2153         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2154         bswaptls(&phdr->p_align);       /* Segment alignment */
2155     }
2156 }
2157 
2158 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2159 {
2160     int i;
2161     for (i = 0; i < shnum; ++i, ++shdr) {
2162         bswap32s(&shdr->sh_name);
2163         bswap32s(&shdr->sh_type);
2164         bswaptls(&shdr->sh_flags);
2165         bswaptls(&shdr->sh_addr);
2166         bswaptls(&shdr->sh_offset);
2167         bswaptls(&shdr->sh_size);
2168         bswap32s(&shdr->sh_link);
2169         bswap32s(&shdr->sh_info);
2170         bswaptls(&shdr->sh_addralign);
2171         bswaptls(&shdr->sh_entsize);
2172     }
2173 }
2174 
2175 static void bswap_sym(struct elf_sym *sym)
2176 {
2177     bswap32s(&sym->st_name);
2178     bswaptls(&sym->st_value);
2179     bswaptls(&sym->st_size);
2180     bswap16s(&sym->st_shndx);
2181 }
2182 
2183 #ifdef TARGET_MIPS
2184 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2185 {
2186     bswap16s(&abiflags->version);
2187     bswap32s(&abiflags->ases);
2188     bswap32s(&abiflags->isa_ext);
2189     bswap32s(&abiflags->flags1);
2190     bswap32s(&abiflags->flags2);
2191 }
2192 #endif
2193 #else
2194 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2195 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2196 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2197 static inline void bswap_sym(struct elf_sym *sym) { }
2198 #ifdef TARGET_MIPS
2199 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2200 #endif
2201 #endif
2202 
2203 #ifdef USE_ELF_CORE_DUMP
2204 static int elf_core_dump(int, const CPUArchState *);
2205 #endif /* USE_ELF_CORE_DUMP */
2206 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2207                          abi_ulong load_bias);
2208 
2209 /* Verify the portions of EHDR within E_IDENT for the target.
2210    This can be performed before bswapping the entire header.  */
2211 static bool elf_check_ident(struct elfhdr *ehdr)
2212 {
2213     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2214             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2215             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2216             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2217             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2218             && ehdr->e_ident[EI_DATA] == ELF_DATA
2219             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2220 }
2221 
2222 /* Verify the portions of EHDR outside of E_IDENT for the target.
2223    This has to wait until after bswapping the header.  */
2224 static bool elf_check_ehdr(struct elfhdr *ehdr)
2225 {
2226     return (elf_check_arch(ehdr->e_machine)
2227             && elf_check_abi(ehdr->e_flags)
2228             && ehdr->e_ehsize == sizeof(struct elfhdr)
2229             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2230             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2231 }
2232 
2233 /*
2234  * 'copy_elf_strings()' copies argument/envelope strings from user
2235  * memory to free pages in kernel mem. These are in a format ready
2236  * to be put directly into the top of new user memory.
2237  *
2238  */
2239 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2240                                   abi_ulong p, abi_ulong stack_limit)
2241 {
2242     char *tmp;
2243     int len, i;
2244     abi_ulong top = p;
2245 
2246     if (!p) {
2247         return 0;       /* bullet-proofing */
2248     }
2249 
2250     if (STACK_GROWS_DOWN) {
2251         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2252         for (i = argc - 1; i >= 0; --i) {
2253             tmp = argv[i];
2254             if (!tmp) {
2255                 fprintf(stderr, "VFS: argc is wrong");
2256                 exit(-1);
2257             }
2258             len = strlen(tmp) + 1;
2259             tmp += len;
2260 
2261             if (len > (p - stack_limit)) {
2262                 return 0;
2263             }
2264             while (len) {
2265                 int bytes_to_copy = (len > offset) ? offset : len;
2266                 tmp -= bytes_to_copy;
2267                 p -= bytes_to_copy;
2268                 offset -= bytes_to_copy;
2269                 len -= bytes_to_copy;
2270 
2271                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2272 
2273                 if (offset == 0) {
2274                     memcpy_to_target(p, scratch, top - p);
2275                     top = p;
2276                     offset = TARGET_PAGE_SIZE;
2277                 }
2278             }
2279         }
2280         if (p != top) {
2281             memcpy_to_target(p, scratch + offset, top - p);
2282         }
2283     } else {
2284         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2285         for (i = 0; i < argc; ++i) {
2286             tmp = argv[i];
2287             if (!tmp) {
2288                 fprintf(stderr, "VFS: argc is wrong");
2289                 exit(-1);
2290             }
2291             len = strlen(tmp) + 1;
2292             if (len > (stack_limit - p)) {
2293                 return 0;
2294             }
2295             while (len) {
2296                 int bytes_to_copy = (len > remaining) ? remaining : len;
2297 
2298                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2299 
2300                 tmp += bytes_to_copy;
2301                 remaining -= bytes_to_copy;
2302                 p += bytes_to_copy;
2303                 len -= bytes_to_copy;
2304 
2305                 if (remaining == 0) {
2306                     memcpy_to_target(top, scratch, p - top);
2307                     top = p;
2308                     remaining = TARGET_PAGE_SIZE;
2309                 }
2310             }
2311         }
2312         if (p != top) {
2313             memcpy_to_target(top, scratch, p - top);
2314         }
2315     }
2316 
2317     return p;
2318 }
2319 
2320 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2321  * argument/environment space. Newer kernels (>2.6.33) allow more,
2322  * dependent on stack size, but guarantee at least 32 pages for
2323  * backwards compatibility.
2324  */
2325 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2326 
2327 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2328                                  struct image_info *info)
2329 {
2330     abi_ulong size, error, guard;
2331     int prot;
2332 
2333     size = guest_stack_size;
2334     if (size < STACK_LOWER_LIMIT) {
2335         size = STACK_LOWER_LIMIT;
2336     }
2337 
2338     if (STACK_GROWS_DOWN) {
2339         guard = TARGET_PAGE_SIZE;
2340         if (guard < qemu_real_host_page_size()) {
2341             guard = qemu_real_host_page_size();
2342         }
2343     } else {
2344         /* no guard page for hppa target where stack grows upwards. */
2345         guard = 0;
2346     }
2347 
2348     prot = PROT_READ | PROT_WRITE;
2349     if (info->exec_stack) {
2350         prot |= PROT_EXEC;
2351     }
2352     error = target_mmap(0, size + guard, prot,
2353                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2354     if (error == -1) {
2355         perror("mmap stack");
2356         exit(-1);
2357     }
2358 
2359     /* We reserve one extra page at the top of the stack as guard.  */
2360     if (STACK_GROWS_DOWN) {
2361         target_mprotect(error, guard, PROT_NONE);
2362         info->stack_limit = error + guard;
2363         return info->stack_limit + size - sizeof(void *);
2364     } else {
2365         info->stack_limit = error + size;
2366         return error;
2367     }
2368 }
2369 
2370 /**
2371  * zero_bss:
2372  *
2373  * Map and zero the bss.  We need to explicitly zero any fractional pages
2374  * after the data section (i.e. bss).  Return false on mapping failure.
2375  */
2376 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2377                      int prot, Error **errp)
2378 {
2379     abi_ulong align_bss;
2380 
2381     /* We only expect writable bss; the code segment shouldn't need this. */
2382     if (!(prot & PROT_WRITE)) {
2383         error_setg(errp, "PT_LOAD with non-writable bss");
2384         return false;
2385     }
2386 
2387     align_bss = TARGET_PAGE_ALIGN(start_bss);
2388     end_bss = TARGET_PAGE_ALIGN(end_bss);
2389 
2390     if (start_bss < align_bss) {
2391         int flags = page_get_flags(start_bss);
2392 
2393         if (!(flags & PAGE_RWX)) {
2394             /*
2395              * The whole address space of the executable was reserved
2396              * at the start, therefore all pages will be VALID.
2397              * But assuming there are no PROT_NONE PT_LOAD segments,
2398              * a PROT_NONE page means no data all bss, and we can
2399              * simply extend the new anon mapping back to the start
2400              * of the page of bss.
2401              */
2402             align_bss -= TARGET_PAGE_SIZE;
2403         } else {
2404             /*
2405              * The start of the bss shares a page with something.
2406              * The only thing that we expect is the data section,
2407              * which would already be marked writable.
2408              * Overlapping the RX code segment seems malformed.
2409              */
2410             if (!(flags & PAGE_WRITE)) {
2411                 error_setg(errp, "PT_LOAD with bss overlapping "
2412                            "non-writable page");
2413                 return false;
2414             }
2415 
2416             /* The page is already mapped and writable. */
2417             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2418         }
2419     }
2420 
2421     if (align_bss < end_bss &&
2422         target_mmap(align_bss, end_bss - align_bss, prot,
2423                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2424         error_setg_errno(errp, errno, "Error mapping bss");
2425         return false;
2426     }
2427     return true;
2428 }
2429 
2430 #if defined(TARGET_ARM)
2431 static int elf_is_fdpic(struct elfhdr *exec)
2432 {
2433     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2434 }
2435 #elif defined(TARGET_XTENSA)
2436 static int elf_is_fdpic(struct elfhdr *exec)
2437 {
2438     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2439 }
2440 #else
2441 /* Default implementation, always false.  */
2442 static int elf_is_fdpic(struct elfhdr *exec)
2443 {
2444     return 0;
2445 }
2446 #endif
2447 
2448 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2449 {
2450     uint16_t n;
2451     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2452 
2453     /* elf32_fdpic_loadseg */
2454     n = info->nsegs;
2455     while (n--) {
2456         sp -= 12;
2457         put_user_u32(loadsegs[n].addr, sp+0);
2458         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2459         put_user_u32(loadsegs[n].p_memsz, sp+8);
2460     }
2461 
2462     /* elf32_fdpic_loadmap */
2463     sp -= 4;
2464     put_user_u16(0, sp+0); /* version */
2465     put_user_u16(info->nsegs, sp+2); /* nsegs */
2466 
2467     info->personality = PER_LINUX_FDPIC;
2468     info->loadmap_addr = sp;
2469 
2470     return sp;
2471 }
2472 
2473 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2474                                    struct elfhdr *exec,
2475                                    struct image_info *info,
2476                                    struct image_info *interp_info,
2477                                    struct image_info *vdso_info)
2478 {
2479     abi_ulong sp;
2480     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2481     int size;
2482     int i;
2483     abi_ulong u_rand_bytes;
2484     uint8_t k_rand_bytes[16];
2485     abi_ulong u_platform, u_base_platform;
2486     const char *k_platform, *k_base_platform;
2487     const int n = sizeof(elf_addr_t);
2488 
2489     sp = p;
2490 
2491     /* Needs to be before we load the env/argc/... */
2492     if (elf_is_fdpic(exec)) {
2493         /* Need 4 byte alignment for these structs */
2494         sp &= ~3;
2495         sp = loader_build_fdpic_loadmap(info, sp);
2496         info->other_info = interp_info;
2497         if (interp_info) {
2498             interp_info->other_info = info;
2499             sp = loader_build_fdpic_loadmap(interp_info, sp);
2500             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2501             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2502         } else {
2503             info->interpreter_loadmap_addr = 0;
2504             info->interpreter_pt_dynamic_addr = 0;
2505         }
2506     }
2507 
2508     u_base_platform = 0;
2509     k_base_platform = ELF_BASE_PLATFORM;
2510     if (k_base_platform) {
2511         size_t len = strlen(k_base_platform) + 1;
2512         if (STACK_GROWS_DOWN) {
2513             sp -= (len + n - 1) & ~(n - 1);
2514             u_base_platform = sp;
2515             /* FIXME - check return value of memcpy_to_target() for failure */
2516             memcpy_to_target(sp, k_base_platform, len);
2517         } else {
2518             memcpy_to_target(sp, k_base_platform, len);
2519             u_base_platform = sp;
2520             sp += len + 1;
2521         }
2522     }
2523 
2524     u_platform = 0;
2525     k_platform = ELF_PLATFORM;
2526     if (k_platform) {
2527         size_t len = strlen(k_platform) + 1;
2528         if (STACK_GROWS_DOWN) {
2529             sp -= (len + n - 1) & ~(n - 1);
2530             u_platform = sp;
2531             /* FIXME - check return value of memcpy_to_target() for failure */
2532             memcpy_to_target(sp, k_platform, len);
2533         } else {
2534             memcpy_to_target(sp, k_platform, len);
2535             u_platform = sp;
2536             sp += len + 1;
2537         }
2538     }
2539 
2540     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2541      * the argv and envp pointers.
2542      */
2543     if (STACK_GROWS_DOWN) {
2544         sp = QEMU_ALIGN_DOWN(sp, 16);
2545     } else {
2546         sp = QEMU_ALIGN_UP(sp, 16);
2547     }
2548 
2549     /*
2550      * Generate 16 random bytes for userspace PRNG seeding.
2551      */
2552     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2553     if (STACK_GROWS_DOWN) {
2554         sp -= 16;
2555         u_rand_bytes = sp;
2556         /* FIXME - check return value of memcpy_to_target() for failure */
2557         memcpy_to_target(sp, k_rand_bytes, 16);
2558     } else {
2559         memcpy_to_target(sp, k_rand_bytes, 16);
2560         u_rand_bytes = sp;
2561         sp += 16;
2562     }
2563 
2564     size = (DLINFO_ITEMS + 1) * 2;
2565     if (k_base_platform) {
2566         size += 2;
2567     }
2568     if (k_platform) {
2569         size += 2;
2570     }
2571     if (vdso_info) {
2572         size += 2;
2573     }
2574 #ifdef DLINFO_ARCH_ITEMS
2575     size += DLINFO_ARCH_ITEMS * 2;
2576 #endif
2577 #ifdef ELF_HWCAP2
2578     size += 2;
2579 #endif
2580     info->auxv_len = size * n;
2581 
2582     size += envc + argc + 2;
2583     size += 1;  /* argc itself */
2584     size *= n;
2585 
2586     /* Allocate space and finalize stack alignment for entry now.  */
2587     if (STACK_GROWS_DOWN) {
2588         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2589         sp = u_argc;
2590     } else {
2591         u_argc = sp;
2592         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2593     }
2594 
2595     u_argv = u_argc + n;
2596     u_envp = u_argv + (argc + 1) * n;
2597     u_auxv = u_envp + (envc + 1) * n;
2598     info->saved_auxv = u_auxv;
2599     info->argc = argc;
2600     info->envc = envc;
2601     info->argv = u_argv;
2602     info->envp = u_envp;
2603 
2604     /* This is correct because Linux defines
2605      * elf_addr_t as Elf32_Off / Elf64_Off
2606      */
2607 #define NEW_AUX_ENT(id, val) do {               \
2608         put_user_ual(id, u_auxv);  u_auxv += n; \
2609         put_user_ual(val, u_auxv); u_auxv += n; \
2610     } while(0)
2611 
2612 #ifdef ARCH_DLINFO
2613     /*
2614      * ARCH_DLINFO must come first so platform specific code can enforce
2615      * special alignment requirements on the AUXV if necessary (eg. PPC).
2616      */
2617     ARCH_DLINFO;
2618 #endif
2619     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2620      * on info->auxv_len will trigger.
2621      */
2622     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2623     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2624     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2625     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2626     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2627     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2628     NEW_AUX_ENT(AT_ENTRY, info->entry);
2629     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2630     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2631     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2632     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2633     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2634     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2635     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2636     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2637     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2638 
2639 #ifdef ELF_HWCAP2
2640     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2641 #endif
2642 
2643     if (u_base_platform) {
2644         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2645     }
2646     if (u_platform) {
2647         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2648     }
2649     if (vdso_info) {
2650         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2651     }
2652     NEW_AUX_ENT (AT_NULL, 0);
2653 #undef NEW_AUX_ENT
2654 
2655     /* Check that our initial calculation of the auxv length matches how much
2656      * we actually put into it.
2657      */
2658     assert(info->auxv_len == u_auxv - info->saved_auxv);
2659 
2660     put_user_ual(argc, u_argc);
2661 
2662     p = info->arg_strings;
2663     for (i = 0; i < argc; ++i) {
2664         put_user_ual(p, u_argv);
2665         u_argv += n;
2666         p += target_strlen(p) + 1;
2667     }
2668     put_user_ual(0, u_argv);
2669 
2670     p = info->env_strings;
2671     for (i = 0; i < envc; ++i) {
2672         put_user_ual(p, u_envp);
2673         u_envp += n;
2674         p += target_strlen(p) + 1;
2675     }
2676     put_user_ual(0, u_envp);
2677 
2678     return sp;
2679 }
2680 
2681 #if defined(HI_COMMPAGE)
2682 #define LO_COMMPAGE -1
2683 #elif defined(LO_COMMPAGE)
2684 #define HI_COMMPAGE 0
2685 #else
2686 #define HI_COMMPAGE 0
2687 #define LO_COMMPAGE -1
2688 #ifndef INIT_GUEST_COMMPAGE
2689 #define init_guest_commpage() true
2690 #endif
2691 #endif
2692 
2693 /**
2694  * pgb_try_mmap:
2695  * @addr: host start address
2696  * @addr_last: host last address
2697  * @keep: do not unmap the probe region
2698  *
2699  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2700  * return 0 if it is not available to map, and -1 on mmap error.
2701  * If @keep, the region is left mapped on success, otherwise unmapped.
2702  */
2703 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2704 {
2705     size_t size = addr_last - addr + 1;
2706     void *p = mmap((void *)addr, size, PROT_NONE,
2707                    MAP_ANONYMOUS | MAP_PRIVATE |
2708                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2709     int ret;
2710 
2711     if (p == MAP_FAILED) {
2712         return errno == EEXIST ? 0 : -1;
2713     }
2714     ret = p == (void *)addr;
2715     if (!keep || !ret) {
2716         munmap(p, size);
2717     }
2718     return ret;
2719 }
2720 
2721 /**
2722  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2723  * @addr: host address
2724  * @addr_last: host last address
2725  * @brk: host brk
2726  *
2727  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2728  */
2729 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2730                                  uintptr_t brk, bool keep)
2731 {
2732     uintptr_t brk_last = brk + 16 * MiB - 1;
2733 
2734     /* Do not map anything close to the host brk. */
2735     if (addr <= brk_last && brk <= addr_last) {
2736         return 0;
2737     }
2738     return pgb_try_mmap(addr, addr_last, keep);
2739 }
2740 
2741 /**
2742  * pgb_try_mmap_set:
2743  * @ga: set of guest addrs
2744  * @base: guest_base
2745  * @brk: host brk
2746  *
2747  * Return true if all @ga can be mapped by the host at @base.
2748  * On success, retain the mapping at index 0 for reserved_va.
2749  */
2750 
2751 typedef struct PGBAddrs {
2752     uintptr_t bounds[3][2]; /* start/last pairs */
2753     int nbounds;
2754 } PGBAddrs;
2755 
2756 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2757 {
2758     for (int i = ga->nbounds - 1; i >= 0; --i) {
2759         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2760                                   ga->bounds[i][1] + base,
2761                                   brk, i == 0 && reserved_va) <= 0) {
2762             return false;
2763         }
2764     }
2765     return true;
2766 }
2767 
2768 /**
2769  * pgb_addr_set:
2770  * @ga: output set of guest addrs
2771  * @guest_loaddr: guest image low address
2772  * @guest_loaddr: guest image high address
2773  * @identity: create for identity mapping
2774  *
2775  * Fill in @ga with the image, COMMPAGE and NULL page.
2776  */
2777 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2778                          abi_ulong guest_hiaddr, bool try_identity)
2779 {
2780     int n;
2781 
2782     /*
2783      * With a low commpage, or a guest mapped very low,
2784      * we may not be able to use the identity map.
2785      */
2786     if (try_identity) {
2787         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2788             return false;
2789         }
2790         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2791             return false;
2792         }
2793     }
2794 
2795     memset(ga, 0, sizeof(*ga));
2796     n = 0;
2797 
2798     if (reserved_va) {
2799         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2800         ga->bounds[n][1] = reserved_va;
2801         n++;
2802         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2803     } else {
2804         /* Add any LO_COMMPAGE or NULL page. */
2805         if (LO_COMMPAGE != -1) {
2806             ga->bounds[n][0] = 0;
2807             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2808             n++;
2809         } else if (!try_identity) {
2810             ga->bounds[n][0] = 0;
2811             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2812             n++;
2813         }
2814 
2815         /* Add the guest image for ET_EXEC. */
2816         if (guest_loaddr) {
2817             ga->bounds[n][0] = guest_loaddr;
2818             ga->bounds[n][1] = guest_hiaddr;
2819             n++;
2820         }
2821     }
2822 
2823     /*
2824      * Temporarily disable
2825      *   "comparison is always false due to limited range of data type"
2826      * due to comparison between unsigned and (possible) 0.
2827      */
2828 #pragma GCC diagnostic push
2829 #pragma GCC diagnostic ignored "-Wtype-limits"
2830 
2831     /* Add any HI_COMMPAGE not covered by reserved_va. */
2832     if (reserved_va < HI_COMMPAGE) {
2833         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2834         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2835         n++;
2836     }
2837 
2838 #pragma GCC diagnostic pop
2839 
2840     ga->nbounds = n;
2841     return true;
2842 }
2843 
2844 static void pgb_fail_in_use(const char *image_name)
2845 {
2846     error_report("%s: requires virtual address space that is in use "
2847                  "(omit the -B option or choose a different value)",
2848                  image_name);
2849     exit(EXIT_FAILURE);
2850 }
2851 
2852 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2853                       uintptr_t guest_hiaddr, uintptr_t align)
2854 {
2855     PGBAddrs ga;
2856     uintptr_t brk = (uintptr_t)sbrk(0);
2857 
2858     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2859         fprintf(stderr, "Requested guest base %p does not satisfy "
2860                 "host minimum alignment (0x%" PRIxPTR ")\n",
2861                 (void *)guest_base, align);
2862         exit(EXIT_FAILURE);
2863     }
2864 
2865     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2866         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2867         pgb_fail_in_use(image_name);
2868     }
2869 }
2870 
2871 /**
2872  * pgb_find_fallback:
2873  *
2874  * This is a fallback method for finding holes in the host address space
2875  * if we don't have the benefit of being able to access /proc/self/map.
2876  * It can potentially take a very long time as we can only dumbly iterate
2877  * up the host address space seeing if the allocation would work.
2878  */
2879 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2880                                    uintptr_t brk)
2881 {
2882     /* TODO: come up with a better estimate of how much to skip. */
2883     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2884 
2885     for (uintptr_t base = skip; ; base += skip) {
2886         base = ROUND_UP(base, align);
2887         if (pgb_try_mmap_set(ga, base, brk)) {
2888             return base;
2889         }
2890         if (base >= -skip) {
2891             return -1;
2892         }
2893     }
2894 }
2895 
2896 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2897                                IntervalTreeRoot *root)
2898 {
2899     for (int i = ga->nbounds - 1; i >= 0; --i) {
2900         uintptr_t s = base + ga->bounds[i][0];
2901         uintptr_t l = base + ga->bounds[i][1];
2902         IntervalTreeNode *n;
2903 
2904         if (l < s) {
2905             /* Wraparound. Skip to advance S to mmap_min_addr. */
2906             return mmap_min_addr - s;
2907         }
2908 
2909         n = interval_tree_iter_first(root, s, l);
2910         if (n != NULL) {
2911             /* Conflict.  Skip to advance S to LAST + 1. */
2912             return n->last - s + 1;
2913         }
2914     }
2915     return 0;  /* success */
2916 }
2917 
2918 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2919                                 uintptr_t align, uintptr_t brk)
2920 {
2921     uintptr_t last = sizeof(uintptr_t) == 4 ? MiB : GiB;
2922     uintptr_t base, skip;
2923 
2924     while (true) {
2925         base = ROUND_UP(last, align);
2926         if (base < last) {
2927             return -1;
2928         }
2929 
2930         skip = pgb_try_itree(ga, base, root);
2931         if (skip == 0) {
2932             break;
2933         }
2934 
2935         last = base + skip;
2936         if (last < base) {
2937             return -1;
2938         }
2939     }
2940 
2941     /*
2942      * We've chosen 'base' based on holes in the interval tree,
2943      * but we don't yet know if it is a valid host address.
2944      * Because it is the first matching hole, if the host addresses
2945      * are invalid we know there are no further matches.
2946      */
2947     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2948 }
2949 
2950 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2951                         uintptr_t guest_hiaddr, uintptr_t align)
2952 {
2953     IntervalTreeRoot *root;
2954     uintptr_t brk, ret;
2955     PGBAddrs ga;
2956 
2957     /* Try the identity map first. */
2958     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2959         brk = (uintptr_t)sbrk(0);
2960         if (pgb_try_mmap_set(&ga, 0, brk)) {
2961             guest_base = 0;
2962             return;
2963         }
2964     }
2965 
2966     /*
2967      * Rebuild the address set for non-identity map.
2968      * This differs in the mapping of the guest NULL page.
2969      */
2970     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2971 
2972     root = read_self_maps();
2973 
2974     /* Read brk after we've read the maps, which will malloc. */
2975     brk = (uintptr_t)sbrk(0);
2976 
2977     if (!root) {
2978         ret = pgb_find_fallback(&ga, align, brk);
2979     } else {
2980         /*
2981          * Reserve the area close to the host brk.
2982          * This will be freed with the rest of the tree.
2983          */
2984         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2985         b->start = brk;
2986         b->last = brk + 16 * MiB - 1;
2987         interval_tree_insert(b, root);
2988 
2989         ret = pgb_find_itree(&ga, root, align, brk);
2990         free_self_maps(root);
2991     }
2992 
2993     if (ret == -1) {
2994         int w = TARGET_LONG_BITS / 4;
2995 
2996         error_report("%s: Unable to find a guest_base to satisfy all "
2997                      "guest address mapping requirements", image_name);
2998 
2999         for (int i = 0; i < ga.nbounds; ++i) {
3000             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
3001                          w, (uint64_t)ga.bounds[i][0],
3002                          w, (uint64_t)ga.bounds[i][1]);
3003         }
3004         exit(EXIT_FAILURE);
3005     }
3006     guest_base = ret;
3007 }
3008 
3009 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3010                       abi_ulong guest_hiaddr)
3011 {
3012     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3013     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3014 
3015     /* Sanity check the guest binary. */
3016     if (reserved_va) {
3017         if (guest_hiaddr > reserved_va) {
3018             error_report("%s: requires more than reserved virtual "
3019                          "address space (0x%" PRIx64 " > 0x%lx)",
3020                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3021             exit(EXIT_FAILURE);
3022         }
3023     } else {
3024         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3025             error_report("%s: requires more virtual address space "
3026                          "than the host can provide (0x%" PRIx64 ")",
3027                          image_name, (uint64_t)guest_hiaddr + 1);
3028             exit(EXIT_FAILURE);
3029         }
3030     }
3031 
3032     if (have_guest_base) {
3033         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3034     } else {
3035         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3036     }
3037 
3038     /* Reserve and initialize the commpage. */
3039     if (!init_guest_commpage()) {
3040         /* We have already probed for the commpage being free. */
3041         g_assert_not_reached();
3042     }
3043 
3044     assert(QEMU_IS_ALIGNED(guest_base, align));
3045     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3046                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3047 }
3048 
3049 enum {
3050     /* The string "GNU\0" as a magic number. */
3051     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3052     NOTE_DATA_SZ = 1 * KiB,
3053     NOTE_NAME_SZ = 4,
3054     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3055 };
3056 
3057 /*
3058  * Process a single gnu_property entry.
3059  * Return false for error.
3060  */
3061 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3062                                struct image_info *info, bool have_prev_type,
3063                                uint32_t *prev_type, Error **errp)
3064 {
3065     uint32_t pr_type, pr_datasz, step;
3066 
3067     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3068         goto error_data;
3069     }
3070     datasz -= *off;
3071     data += *off / sizeof(uint32_t);
3072 
3073     if (datasz < 2 * sizeof(uint32_t)) {
3074         goto error_data;
3075     }
3076     pr_type = data[0];
3077     pr_datasz = data[1];
3078     data += 2;
3079     datasz -= 2 * sizeof(uint32_t);
3080     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3081     if (step > datasz) {
3082         goto error_data;
3083     }
3084 
3085     /* Properties are supposed to be unique and sorted on pr_type. */
3086     if (have_prev_type && pr_type <= *prev_type) {
3087         if (pr_type == *prev_type) {
3088             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3089         } else {
3090             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3091         }
3092         return false;
3093     }
3094     *prev_type = pr_type;
3095 
3096     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3097         return false;
3098     }
3099 
3100     *off += 2 * sizeof(uint32_t) + step;
3101     return true;
3102 
3103  error_data:
3104     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3105     return false;
3106 }
3107 
3108 /* Process NT_GNU_PROPERTY_TYPE_0. */
3109 static bool parse_elf_properties(const ImageSource *src,
3110                                  struct image_info *info,
3111                                  const struct elf_phdr *phdr,
3112                                  Error **errp)
3113 {
3114     union {
3115         struct elf_note nhdr;
3116         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3117     } note;
3118 
3119     int n, off, datasz;
3120     bool have_prev_type;
3121     uint32_t prev_type;
3122 
3123     /* Unless the arch requires properties, ignore them. */
3124     if (!ARCH_USE_GNU_PROPERTY) {
3125         return true;
3126     }
3127 
3128     /* If the properties are crazy large, that's too bad. */
3129     n = phdr->p_filesz;
3130     if (n > sizeof(note)) {
3131         error_setg(errp, "PT_GNU_PROPERTY too large");
3132         return false;
3133     }
3134     if (n < sizeof(note.nhdr)) {
3135         error_setg(errp, "PT_GNU_PROPERTY too small");
3136         return false;
3137     }
3138 
3139     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3140         return false;
3141     }
3142 
3143     /*
3144      * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t.
3145      * Swap most of them now, beyond the header and namesz.
3146      */
3147 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3148     for (int i = 4; i < n / 4; i++) {
3149         bswap32s(note.data + i);
3150     }
3151 #endif
3152 
3153     /*
3154      * Note that nhdr is 3 words, and that the "name" described by namesz
3155      * immediately follows nhdr and is thus at the 4th word.  Further, all
3156      * of the inputs to the kernel's round_up are multiples of 4.
3157      */
3158     if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 ||
3159         tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ ||
3160         note.data[3] != GNU0_MAGIC) {
3161         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3162         return false;
3163     }
3164     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3165 
3166     datasz = tswap32(note.nhdr.n_descsz) + off;
3167     if (datasz > n) {
3168         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3169         return false;
3170     }
3171 
3172     have_prev_type = false;
3173     prev_type = 0;
3174     while (1) {
3175         if (off == datasz) {
3176             return true;  /* end, exit ok */
3177         }
3178         if (!parse_elf_property(note.data, &off, datasz, info,
3179                                 have_prev_type, &prev_type, errp)) {
3180             return false;
3181         }
3182         have_prev_type = true;
3183     }
3184 }
3185 
3186 /**
3187  * load_elf_image: Load an ELF image into the address space.
3188  * @image_name: the filename of the image, to use in error messages.
3189  * @src: the ImageSource from which to read.
3190  * @info: info collected from the loaded image.
3191  * @ehdr: the ELF header, not yet bswapped.
3192  * @pinterp_name: record any PT_INTERP string found.
3193  *
3194  * On return: @info values will be filled in, as necessary or available.
3195  */
3196 
3197 static void load_elf_image(const char *image_name, const ImageSource *src,
3198                            struct image_info *info, struct elfhdr *ehdr,
3199                            char **pinterp_name)
3200 {
3201     g_autofree struct elf_phdr *phdr = NULL;
3202     abi_ulong load_addr, load_bias, loaddr, hiaddr, error, align;
3203     size_t reserve_size, align_size;
3204     int i, prot_exec;
3205     Error *err = NULL;
3206 
3207     /*
3208      * First of all, some simple consistency checks.
3209      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3210      * for later use by load_elf_binary and create_elf_tables.
3211      */
3212     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3213         goto exit_errmsg;
3214     }
3215     if (!elf_check_ident(ehdr)) {
3216         error_setg(&err, "Invalid ELF image for this architecture");
3217         goto exit_errmsg;
3218     }
3219     bswap_ehdr(ehdr);
3220     if (!elf_check_ehdr(ehdr)) {
3221         error_setg(&err, "Invalid ELF image for this architecture");
3222         goto exit_errmsg;
3223     }
3224 
3225     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3226                              ehdr->e_phnum * sizeof(struct elf_phdr),
3227                              src, &err);
3228     if (phdr == NULL) {
3229         goto exit_errmsg;
3230     }
3231     bswap_phdr(phdr, ehdr->e_phnum);
3232 
3233     info->nsegs = 0;
3234     info->pt_dynamic_addr = 0;
3235 
3236     mmap_lock();
3237 
3238     /*
3239      * Find the maximum size of the image and allocate an appropriate
3240      * amount of memory to handle that.  Locate the interpreter, if any.
3241      */
3242     loaddr = -1, hiaddr = 0;
3243     align = 0;
3244     info->exec_stack = EXSTACK_DEFAULT;
3245     for (i = 0; i < ehdr->e_phnum; ++i) {
3246         struct elf_phdr *eppnt = phdr + i;
3247         if (eppnt->p_type == PT_LOAD) {
3248             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3249             if (a < loaddr) {
3250                 loaddr = a;
3251             }
3252             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3253             if (a > hiaddr) {
3254                 hiaddr = a;
3255             }
3256             ++info->nsegs;
3257             align |= eppnt->p_align;
3258         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3259             g_autofree char *interp_name = NULL;
3260 
3261             if (*pinterp_name) {
3262                 error_setg(&err, "Multiple PT_INTERP entries");
3263                 goto exit_errmsg;
3264             }
3265 
3266             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3267                                             src, &err);
3268             if (interp_name == NULL) {
3269                 goto exit_errmsg;
3270             }
3271             if (interp_name[eppnt->p_filesz - 1] != 0) {
3272                 error_setg(&err, "Invalid PT_INTERP entry");
3273                 goto exit_errmsg;
3274             }
3275             *pinterp_name = g_steal_pointer(&interp_name);
3276         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3277             if (!parse_elf_properties(src, info, eppnt, &err)) {
3278                 goto exit_errmsg;
3279             }
3280         } else if (eppnt->p_type == PT_GNU_STACK) {
3281             info->exec_stack = eppnt->p_flags & PF_X;
3282         }
3283     }
3284 
3285     load_addr = loaddr;
3286 
3287     align = pow2ceil(align);
3288 
3289     if (pinterp_name != NULL) {
3290         if (ehdr->e_type == ET_EXEC) {
3291             /*
3292              * Make sure that the low address does not conflict with
3293              * MMAP_MIN_ADDR or the QEMU application itself.
3294              */
3295             probe_guest_base(image_name, loaddr, hiaddr);
3296         } else {
3297             /*
3298              * The binary is dynamic, but we still need to
3299              * select guest_base.  In this case we pass a size.
3300              */
3301             probe_guest_base(image_name, 0, hiaddr - loaddr);
3302 
3303             /*
3304              * Avoid collision with the loader by providing a different
3305              * default load address.
3306              */
3307             load_addr += elf_et_dyn_base;
3308 
3309             /*
3310              * TODO: Better support for mmap alignment is desirable.
3311              * Since we do not have complete control over the guest
3312              * address space, we prefer the kernel to choose some address
3313              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3314              */
3315             if (align) {
3316                 load_addr &= -align;
3317             }
3318         }
3319     }
3320 
3321     /*
3322      * Reserve address space for all of this.
3323      *
3324      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3325      * exactly the address range that is required.  Without reserved_va,
3326      * the guest address space is not isolated.  We have attempted to avoid
3327      * conflict with the host program itself via probe_guest_base, but using
3328      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3329      *
3330      * Otherwise this is ET_DYN, and we are searching for a location
3331      * that can hold the memory space required.  If the image is
3332      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3333      * honor that address if it happens to be free.
3334      *
3335      * In both cases, we will overwrite pages in this range with mappings
3336      * from the executable.
3337      */
3338     reserve_size = (size_t)hiaddr - loaddr + 1;
3339     align_size = reserve_size;
3340 
3341     if (ehdr->e_type != ET_EXEC && align > qemu_real_host_page_size()) {
3342         align_size += align - 1;
3343     }
3344 
3345     load_addr = target_mmap(load_addr, align_size, PROT_NONE,
3346                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3347                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3348                             -1, 0);
3349     if (load_addr == -1) {
3350         goto exit_mmap;
3351     }
3352 
3353     if (align_size != reserve_size) {
3354         abi_ulong align_addr = ROUND_UP(load_addr, align);
3355         abi_ulong align_end = TARGET_PAGE_ALIGN(align_addr + reserve_size);
3356         abi_ulong load_end = TARGET_PAGE_ALIGN(load_addr + align_size);
3357 
3358         if (align_addr != load_addr) {
3359             target_munmap(load_addr, align_addr - load_addr);
3360         }
3361         if (align_end != load_end) {
3362             target_munmap(align_end, load_end - align_end);
3363         }
3364         load_addr = align_addr;
3365     }
3366 
3367     load_bias = load_addr - loaddr;
3368 
3369     if (elf_is_fdpic(ehdr)) {
3370         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3371             g_malloc(sizeof(*loadsegs) * info->nsegs);
3372 
3373         for (i = 0; i < ehdr->e_phnum; ++i) {
3374             switch (phdr[i].p_type) {
3375             case PT_DYNAMIC:
3376                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3377                 break;
3378             case PT_LOAD:
3379                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3380                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3381                 loadsegs->p_memsz = phdr[i].p_memsz;
3382                 ++loadsegs;
3383                 break;
3384             }
3385         }
3386     }
3387 
3388     info->load_bias = load_bias;
3389     info->code_offset = load_bias;
3390     info->data_offset = load_bias;
3391     info->load_addr = load_addr;
3392     info->entry = ehdr->e_entry + load_bias;
3393     info->start_code = -1;
3394     info->end_code = 0;
3395     info->start_data = -1;
3396     info->end_data = 0;
3397     /* Usual start for brk is after all sections of the main executable. */
3398     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3399     info->elf_flags = ehdr->e_flags;
3400 
3401     prot_exec = PROT_EXEC;
3402 #ifdef TARGET_AARCH64
3403     /*
3404      * If the BTI feature is present, this indicates that the executable
3405      * pages of the startup binary should be mapped with PROT_BTI, so that
3406      * branch targets are enforced.
3407      *
3408      * The startup binary is either the interpreter or the static executable.
3409      * The interpreter is responsible for all pages of a dynamic executable.
3410      *
3411      * Elf notes are backward compatible to older cpus.
3412      * Do not enable BTI unless it is supported.
3413      */
3414     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3415         && (pinterp_name == NULL || *pinterp_name == 0)
3416         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3417         prot_exec |= TARGET_PROT_BTI;
3418     }
3419 #endif
3420 
3421     for (i = 0; i < ehdr->e_phnum; i++) {
3422         struct elf_phdr *eppnt = phdr + i;
3423         if (eppnt->p_type == PT_LOAD) {
3424             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3425             int elf_prot = 0;
3426 
3427             if (eppnt->p_flags & PF_R) {
3428                 elf_prot |= PROT_READ;
3429             }
3430             if (eppnt->p_flags & PF_W) {
3431                 elf_prot |= PROT_WRITE;
3432             }
3433             if (eppnt->p_flags & PF_X) {
3434                 elf_prot |= prot_exec;
3435             }
3436 
3437             vaddr = load_bias + eppnt->p_vaddr;
3438             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3439             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3440 
3441             vaddr_ef = vaddr + eppnt->p_filesz;
3442             vaddr_em = vaddr + eppnt->p_memsz;
3443 
3444             /*
3445              * Some segments may be completely empty, with a non-zero p_memsz
3446              * but no backing file segment.
3447              */
3448             if (eppnt->p_filesz != 0) {
3449                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3450                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3451                                     src, eppnt->p_offset - vaddr_po);
3452                 if (error == -1) {
3453                     goto exit_mmap;
3454                 }
3455             }
3456 
3457             /* If the load segment requests extra zeros (e.g. bss), map it. */
3458             if (vaddr_ef < vaddr_em &&
3459                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3460                 goto exit_errmsg;
3461             }
3462 
3463             /* Find the full program boundaries.  */
3464             if (elf_prot & PROT_EXEC) {
3465                 if (vaddr < info->start_code) {
3466                     info->start_code = vaddr;
3467                 }
3468                 if (vaddr_ef > info->end_code) {
3469                     info->end_code = vaddr_ef;
3470                 }
3471             }
3472             if (elf_prot & PROT_WRITE) {
3473                 if (vaddr < info->start_data) {
3474                     info->start_data = vaddr;
3475                 }
3476                 if (vaddr_ef > info->end_data) {
3477                     info->end_data = vaddr_ef;
3478                 }
3479             }
3480 #ifdef TARGET_MIPS
3481         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3482             Mips_elf_abiflags_v0 abiflags;
3483 
3484             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3485                              src, &err)) {
3486                 goto exit_errmsg;
3487             }
3488             bswap_mips_abiflags(&abiflags);
3489             info->fp_abi = abiflags.fp_abi;
3490 #endif
3491         }
3492     }
3493 
3494     if (info->end_data == 0) {
3495         info->start_data = info->end_code;
3496         info->end_data = info->end_code;
3497     }
3498 
3499     if (qemu_log_enabled()) {
3500         load_symbols(ehdr, src, load_bias);
3501     }
3502 
3503     debuginfo_report_elf(image_name, src->fd, load_bias);
3504 
3505     mmap_unlock();
3506 
3507     close(src->fd);
3508     return;
3509 
3510  exit_mmap:
3511     error_setg_errno(&err, errno, "Error mapping file");
3512     goto exit_errmsg;
3513  exit_errmsg:
3514     error_reportf_err(err, "%s: ", image_name);
3515     exit(-1);
3516 }
3517 
3518 static void load_elf_interp(const char *filename, struct image_info *info,
3519                             char bprm_buf[BPRM_BUF_SIZE])
3520 {
3521     struct elfhdr ehdr;
3522     ImageSource src;
3523     int fd, retval;
3524     Error *err = NULL;
3525 
3526     fd = open(path(filename), O_RDONLY);
3527     if (fd < 0) {
3528         error_setg_file_open(&err, errno, filename);
3529         error_report_err(err);
3530         exit(-1);
3531     }
3532 
3533     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3534     if (retval < 0) {
3535         error_setg_errno(&err, errno, "Error reading file header");
3536         error_reportf_err(err, "%s: ", filename);
3537         exit(-1);
3538     }
3539 
3540     src.fd = fd;
3541     src.cache = bprm_buf;
3542     src.cache_size = retval;
3543 
3544     load_elf_image(filename, &src, info, &ehdr, NULL);
3545 }
3546 
3547 #ifndef vdso_image_info
3548 #ifdef VDSO_HEADER
3549 #include VDSO_HEADER
3550 #define  vdso_image_info(flags)  &vdso_image_info
3551 #else
3552 #define  vdso_image_info(flags)  NULL
3553 #endif /* VDSO_HEADER */
3554 #endif /* vdso_image_info */
3555 
3556 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3557 {
3558     ImageSource src;
3559     struct elfhdr ehdr;
3560     abi_ulong load_bias, load_addr;
3561 
3562     src.fd = -1;
3563     src.cache = vdso->image;
3564     src.cache_size = vdso->image_size;
3565 
3566     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3567     load_addr = info->load_addr;
3568     load_bias = info->load_bias;
3569 
3570     /*
3571      * We need to relocate the VDSO image.  The one built into the kernel
3572      * is built for a fixed address.  The one built for QEMU is not, since
3573      * that requires close control of the guest address space.
3574      * We pre-processed the image to locate all of the addresses that need
3575      * to be updated.
3576      */
3577     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3578         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3579         *addr = tswapal(tswapal(*addr) + load_bias);
3580     }
3581 
3582     /* Install signal trampolines, if present. */
3583     if (vdso->sigreturn_ofs) {
3584         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3585     }
3586     if (vdso->rt_sigreturn_ofs) {
3587         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3588     }
3589 
3590     /* Remove write from VDSO segment. */
3591     target_mprotect(info->start_data, info->end_data - info->start_data,
3592                     PROT_READ | PROT_EXEC);
3593 }
3594 
3595 static int symfind(const void *s0, const void *s1)
3596 {
3597     struct elf_sym *sym = (struct elf_sym *)s1;
3598     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3599     int result = 0;
3600 
3601     if (addr < sym->st_value) {
3602         result = -1;
3603     } else if (addr >= sym->st_value + sym->st_size) {
3604         result = 1;
3605     }
3606     return result;
3607 }
3608 
3609 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3610 {
3611 #if ELF_CLASS == ELFCLASS32
3612     struct elf_sym *syms = s->disas_symtab.elf32;
3613 #else
3614     struct elf_sym *syms = s->disas_symtab.elf64;
3615 #endif
3616 
3617     // binary search
3618     struct elf_sym *sym;
3619 
3620     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3621     if (sym != NULL) {
3622         return s->disas_strtab + sym->st_name;
3623     }
3624 
3625     return "";
3626 }
3627 
3628 /* FIXME: This should use elf_ops.h.inc  */
3629 static int symcmp(const void *s0, const void *s1)
3630 {
3631     struct elf_sym *sym0 = (struct elf_sym *)s0;
3632     struct elf_sym *sym1 = (struct elf_sym *)s1;
3633     return (sym0->st_value < sym1->st_value)
3634         ? -1
3635         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3636 }
3637 
3638 /* Best attempt to load symbols from this ELF object. */
3639 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3640                          abi_ulong load_bias)
3641 {
3642     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3643     g_autofree struct elf_shdr *shdr = NULL;
3644     char *strings = NULL;
3645     struct elf_sym *syms = NULL;
3646     struct elf_sym *new_syms;
3647     uint64_t segsz;
3648 
3649     shnum = hdr->e_shnum;
3650     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3651                              src, NULL);
3652     if (shdr == NULL) {
3653         return;
3654     }
3655 
3656     bswap_shdr(shdr, shnum);
3657     for (i = 0; i < shnum; ++i) {
3658         if (shdr[i].sh_type == SHT_SYMTAB) {
3659             sym_idx = i;
3660             str_idx = shdr[i].sh_link;
3661             goto found;
3662         }
3663     }
3664 
3665     /* There will be no symbol table if the file was stripped.  */
3666     return;
3667 
3668  found:
3669     /* Now know where the strtab and symtab are.  Snarf them.  */
3670 
3671     segsz = shdr[str_idx].sh_size;
3672     strings = g_try_malloc(segsz);
3673     if (!strings) {
3674         goto give_up;
3675     }
3676     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3677         goto give_up;
3678     }
3679 
3680     segsz = shdr[sym_idx].sh_size;
3681     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3682         /*
3683          * Implausibly large symbol table: give up rather than ploughing
3684          * on with the number of symbols calculation overflowing.
3685          */
3686         goto give_up;
3687     }
3688     nsyms = segsz / sizeof(struct elf_sym);
3689     syms = g_try_malloc(segsz);
3690     if (!syms) {
3691         goto give_up;
3692     }
3693     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3694         goto give_up;
3695     }
3696 
3697     for (i = 0; i < nsyms; ) {
3698         bswap_sym(syms + i);
3699         /* Throw away entries which we do not need.  */
3700         if (syms[i].st_shndx == SHN_UNDEF
3701             || syms[i].st_shndx >= SHN_LORESERVE
3702             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3703             if (i < --nsyms) {
3704                 syms[i] = syms[nsyms];
3705             }
3706         } else {
3707 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3708             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3709             syms[i].st_value &= ~(target_ulong)1;
3710 #endif
3711             syms[i].st_value += load_bias;
3712             i++;
3713         }
3714     }
3715 
3716     /* No "useful" symbol.  */
3717     if (nsyms == 0) {
3718         goto give_up;
3719     }
3720 
3721     /*
3722      * Attempt to free the storage associated with the local symbols
3723      * that we threw away.  Whether or not this has any effect on the
3724      * memory allocation depends on the malloc implementation and how
3725      * many symbols we managed to discard.
3726      */
3727     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3728     if (new_syms == NULL) {
3729         goto give_up;
3730     }
3731     syms = new_syms;
3732 
3733     qsort(syms, nsyms, sizeof(*syms), symcmp);
3734 
3735     {
3736         struct syminfo *s = g_new(struct syminfo, 1);
3737 
3738         s->disas_strtab = strings;
3739         s->disas_num_syms = nsyms;
3740 #if ELF_CLASS == ELFCLASS32
3741         s->disas_symtab.elf32 = syms;
3742 #else
3743         s->disas_symtab.elf64 = syms;
3744 #endif
3745         s->lookup_symbol = lookup_symbolxx;
3746         s->next = syminfos;
3747         syminfos = s;
3748     }
3749     return;
3750 
3751  give_up:
3752     g_free(strings);
3753     g_free(syms);
3754 }
3755 
3756 uint32_t get_elf_eflags(int fd)
3757 {
3758     struct elfhdr ehdr;
3759     off_t offset;
3760     int ret;
3761 
3762     /* Read ELF header */
3763     offset = lseek(fd, 0, SEEK_SET);
3764     if (offset == (off_t) -1) {
3765         return 0;
3766     }
3767     ret = read(fd, &ehdr, sizeof(ehdr));
3768     if (ret < sizeof(ehdr)) {
3769         return 0;
3770     }
3771     offset = lseek(fd, offset, SEEK_SET);
3772     if (offset == (off_t) -1) {
3773         return 0;
3774     }
3775 
3776     /* Check ELF signature */
3777     if (!elf_check_ident(&ehdr)) {
3778         return 0;
3779     }
3780 
3781     /* check header */
3782     bswap_ehdr(&ehdr);
3783     if (!elf_check_ehdr(&ehdr)) {
3784         return 0;
3785     }
3786 
3787     /* return architecture id */
3788     return ehdr.e_flags;
3789 }
3790 
3791 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3792 {
3793     /*
3794      * We need a copy of the elf header for passing to create_elf_tables.
3795      * We will have overwritten the original when we re-use bprm->buf
3796      * while loading the interpreter.  Allocate the storage for this now
3797      * and let elf_load_image do any swapping that may be required.
3798      */
3799     struct elfhdr ehdr;
3800     struct image_info interp_info, vdso_info;
3801     char *elf_interpreter = NULL;
3802     char *scratch;
3803 
3804     memset(&interp_info, 0, sizeof(interp_info));
3805 #ifdef TARGET_MIPS
3806     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3807 #endif
3808 
3809     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3810 
3811     /* Do this so that we can load the interpreter, if need be.  We will
3812        change some of these later */
3813     bprm->p = setup_arg_pages(bprm, info);
3814 
3815     scratch = g_new0(char, TARGET_PAGE_SIZE);
3816     if (STACK_GROWS_DOWN) {
3817         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3818                                    bprm->p, info->stack_limit);
3819         info->file_string = bprm->p;
3820         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3821                                    bprm->p, info->stack_limit);
3822         info->env_strings = bprm->p;
3823         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3824                                    bprm->p, info->stack_limit);
3825         info->arg_strings = bprm->p;
3826     } else {
3827         info->arg_strings = bprm->p;
3828         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3829                                    bprm->p, info->stack_limit);
3830         info->env_strings = bprm->p;
3831         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3832                                    bprm->p, info->stack_limit);
3833         info->file_string = bprm->p;
3834         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3835                                    bprm->p, info->stack_limit);
3836     }
3837 
3838     g_free(scratch);
3839 
3840     if (!bprm->p) {
3841         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3842         exit(-1);
3843     }
3844 
3845     if (elf_interpreter) {
3846         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3847 
3848         /*
3849          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3850          * with the mappings the interpreter can be loaded above but
3851          * near the main executable, which can leave very little room
3852          * for the heap.
3853          * If the current brk has less than 16MB, use the end of the
3854          * interpreter.
3855          */
3856         if (interp_info.brk > info->brk &&
3857             interp_info.load_bias - info->brk < 16 * MiB)  {
3858             info->brk = interp_info.brk;
3859         }
3860 
3861         /* If the program interpreter is one of these two, then assume
3862            an iBCS2 image.  Otherwise assume a native linux image.  */
3863 
3864         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3865             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3866             info->personality = PER_SVR4;
3867 
3868             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3869                and some applications "depend" upon this behavior.  Since
3870                we do not have the power to recompile these, we emulate
3871                the SVr4 behavior.  Sigh.  */
3872             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3873                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3874                         -1, 0);
3875         }
3876 #ifdef TARGET_MIPS
3877         info->interp_fp_abi = interp_info.fp_abi;
3878 #endif
3879     }
3880 
3881     /*
3882      * Load a vdso if available, which will amongst other things contain the
3883      * signal trampolines.  Otherwise, allocate a separate page for them.
3884      */
3885     const VdsoImageInfo *vdso = vdso_image_info(info->elf_flags);
3886     if (vdso) {
3887         load_elf_vdso(&vdso_info, vdso);
3888         info->vdso = vdso_info.load_bias;
3889     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3890         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3891                                           PROT_READ | PROT_WRITE,
3892                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3893         if (tramp_page == -1) {
3894             return -errno;
3895         }
3896 
3897         setup_sigtramp(tramp_page);
3898         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3899     }
3900 
3901     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3902                                 elf_interpreter ? &interp_info : NULL,
3903                                 vdso ? &vdso_info : NULL);
3904     info->start_stack = bprm->p;
3905 
3906     /* If we have an interpreter, set that as the program's entry point.
3907        Copy the load_bias as well, to help PPC64 interpret the entry
3908        point as a function descriptor.  Do this after creating elf tables
3909        so that we copy the original program entry point into the AUXV.  */
3910     if (elf_interpreter) {
3911         info->load_bias = interp_info.load_bias;
3912         info->entry = interp_info.entry;
3913         g_free(elf_interpreter);
3914     }
3915 
3916 #ifdef USE_ELF_CORE_DUMP
3917     bprm->core_dump = &elf_core_dump;
3918 #endif
3919 
3920     return 0;
3921 }
3922 
3923 #ifdef USE_ELF_CORE_DUMP
3924 
3925 /*
3926  * Definitions to generate Intel SVR4-like core files.
3927  * These mostly have the same names as the SVR4 types with "target_elf_"
3928  * tacked on the front to prevent clashes with linux definitions,
3929  * and the typedef forms have been avoided.  This is mostly like
3930  * the SVR4 structure, but more Linuxy, with things that Linux does
3931  * not support and which gdb doesn't really use excluded.
3932  *
3933  * Fields we don't dump (their contents is zero) in linux-user qemu
3934  * are marked with XXX.
3935  *
3936  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3937  *
3938  * Porting ELF coredump for target is (quite) simple process.  First you
3939  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3940  * the target resides):
3941  *
3942  * #define USE_ELF_CORE_DUMP
3943  *
3944  * Next you define type of register set used for dumping.  ELF specification
3945  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3946  *
3947  * typedef <target_regtype> target_elf_greg_t;
3948  * #define ELF_NREG <number of registers>
3949  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3950  *
3951  * Last step is to implement target specific function that copies registers
3952  * from given cpu into just specified register set.  Prototype is:
3953  *
3954  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3955  *                                const CPUArchState *env);
3956  *
3957  * Parameters:
3958  *     regs - copy register values into here (allocated and zeroed by caller)
3959  *     env - copy registers from here
3960  *
3961  * Example for ARM target is provided in this file.
3962  */
3963 
3964 struct target_elf_siginfo {
3965     abi_int    si_signo; /* signal number */
3966     abi_int    si_code;  /* extra code */
3967     abi_int    si_errno; /* errno */
3968 };
3969 
3970 struct target_elf_prstatus {
3971     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3972     abi_short          pr_cursig;    /* Current signal */
3973     abi_ulong          pr_sigpend;   /* XXX */
3974     abi_ulong          pr_sighold;   /* XXX */
3975     target_pid_t       pr_pid;
3976     target_pid_t       pr_ppid;
3977     target_pid_t       pr_pgrp;
3978     target_pid_t       pr_sid;
3979     struct target_timeval pr_utime;  /* XXX User time */
3980     struct target_timeval pr_stime;  /* XXX System time */
3981     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3982     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3983     target_elf_gregset_t      pr_reg;       /* GP registers */
3984     abi_int            pr_fpvalid;   /* XXX */
3985 };
3986 
3987 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3988 
3989 struct target_elf_prpsinfo {
3990     char         pr_state;       /* numeric process state */
3991     char         pr_sname;       /* char for pr_state */
3992     char         pr_zomb;        /* zombie */
3993     char         pr_nice;        /* nice val */
3994     abi_ulong    pr_flag;        /* flags */
3995     target_uid_t pr_uid;
3996     target_gid_t pr_gid;
3997     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3998     /* Lots missing */
3999     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
4000     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
4001 };
4002 
4003 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
4004 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4005 {
4006     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4007     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4008     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4009     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4010     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4011     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4012     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4013     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4014     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4015     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4016     /* cpu times are not filled, so we skip them */
4017     /* regs should be in correct format already */
4018     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4019 }
4020 
4021 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4022 {
4023     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4024     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4025     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4026     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4027     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4028     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4029     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4030 }
4031 
4032 static void bswap_note(struct elf_note *en)
4033 {
4034     bswap32s(&en->n_namesz);
4035     bswap32s(&en->n_descsz);
4036     bswap32s(&en->n_type);
4037 }
4038 #else
4039 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4040 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4041 static inline void bswap_note(struct elf_note *en) { }
4042 #endif /* HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN */
4043 
4044 /*
4045  * Calculate file (dump) size of given memory region.
4046  */
4047 static size_t vma_dump_size(target_ulong start, target_ulong end,
4048                             unsigned long flags)
4049 {
4050     /* The area must be readable. */
4051     if (!(flags & PAGE_READ)) {
4052         return 0;
4053     }
4054 
4055     /*
4056      * Usually we don't dump executable pages as they contain
4057      * non-writable code that debugger can read directly from
4058      * target library etc. If there is no elf header, we dump it.
4059      */
4060     if (!(flags & PAGE_WRITE_ORG) &&
4061         (flags & PAGE_EXEC) &&
4062         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4063         return 0;
4064     }
4065 
4066     return end - start;
4067 }
4068 
4069 static size_t size_note(const char *name, size_t datasz)
4070 {
4071     size_t namesz = strlen(name) + 1;
4072 
4073     namesz = ROUND_UP(namesz, 4);
4074     datasz = ROUND_UP(datasz, 4);
4075 
4076     return sizeof(struct elf_note) + namesz + datasz;
4077 }
4078 
4079 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4080 {
4081     void *ptr = *pptr;
4082     struct elf_note *n = ptr;
4083     size_t namesz = strlen(name) + 1;
4084 
4085     n->n_namesz = namesz;
4086     n->n_descsz = datasz;
4087     n->n_type = type;
4088     bswap_note(n);
4089 
4090     ptr += sizeof(*n);
4091     memcpy(ptr, name, namesz);
4092 
4093     namesz = ROUND_UP(namesz, 4);
4094     datasz = ROUND_UP(datasz, 4);
4095 
4096     *pptr = ptr + namesz + datasz;
4097     return ptr + namesz;
4098 }
4099 
4100 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4101                             uint32_t flags)
4102 {
4103     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4104 
4105     elf->e_ident[EI_CLASS] = ELF_CLASS;
4106     elf->e_ident[EI_DATA] = ELF_DATA;
4107     elf->e_ident[EI_VERSION] = EV_CURRENT;
4108     elf->e_ident[EI_OSABI] = ELF_OSABI;
4109 
4110     elf->e_type = ET_CORE;
4111     elf->e_machine = machine;
4112     elf->e_version = EV_CURRENT;
4113     elf->e_phoff = sizeof(struct elfhdr);
4114     elf->e_flags = flags;
4115     elf->e_ehsize = sizeof(struct elfhdr);
4116     elf->e_phentsize = sizeof(struct elf_phdr);
4117     elf->e_phnum = segs;
4118 
4119     bswap_ehdr(elf);
4120 }
4121 
4122 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4123 {
4124     phdr->p_type = PT_NOTE;
4125     phdr->p_offset = offset;
4126     phdr->p_filesz = sz;
4127 
4128     bswap_phdr(phdr, 1);
4129 }
4130 
4131 static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
4132 {
4133     /*
4134      * Because note memory is only aligned to 4, and target_elf_prstatus
4135      * may well have higher alignment requirements, fill locally and
4136      * memcpy to the destination afterward.
4137      */
4138     struct target_elf_prstatus prstatus = {
4139         .pr_info.si_signo = signr,
4140         .pr_cursig = signr,
4141         .pr_pid = get_task_state(cpu)->ts_tid,
4142         .pr_ppid = getppid(),
4143         .pr_pgrp = getpgrp(),
4144         .pr_sid = getsid(0),
4145     };
4146 
4147     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4148     bswap_prstatus(&prstatus);
4149     memcpy(data, &prstatus, sizeof(prstatus));
4150 }
4151 
4152 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4153 {
4154     /*
4155      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4156      * may well have higher alignment requirements, fill locally and
4157      * memcpy to the destination afterward.
4158      */
4159     struct target_elf_prpsinfo psinfo = {
4160         .pr_pid = getpid(),
4161         .pr_ppid = getppid(),
4162         .pr_pgrp = getpgrp(),
4163         .pr_sid = getsid(0),
4164         .pr_uid = getuid(),
4165         .pr_gid = getgid(),
4166     };
4167     char *base_filename;
4168     size_t len;
4169 
4170     len = ts->info->env_strings - ts->info->arg_strings;
4171     len = MIN(len, ELF_PRARGSZ);
4172     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4173     for (size_t i = 0; i < len; i++) {
4174         if (psinfo.pr_psargs[i] == 0) {
4175             psinfo.pr_psargs[i] = ' ';
4176         }
4177     }
4178 
4179     base_filename = g_path_get_basename(ts->bprm->filename);
4180     /*
4181      * Using strncpy here is fine: at max-length,
4182      * this field is not NUL-terminated.
4183      */
4184     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4185     g_free(base_filename);
4186 
4187     bswap_psinfo(&psinfo);
4188     memcpy(data, &psinfo, sizeof(psinfo));
4189 }
4190 
4191 static void fill_auxv_note(void *data, const TaskState *ts)
4192 {
4193     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4194 }
4195 
4196 /*
4197  * Constructs name of coredump file.  We have following convention
4198  * for the name:
4199  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4200  *
4201  * Returns the filename
4202  */
4203 static char *core_dump_filename(const TaskState *ts)
4204 {
4205     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4206     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4207     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4208 
4209     return g_strdup_printf("qemu_%s_%s_%d.core",
4210                            base_filename, nowstr, (int)getpid());
4211 }
4212 
4213 static int dump_write(int fd, const void *ptr, size_t size)
4214 {
4215     const char *bufp = (const char *)ptr;
4216     ssize_t bytes_written, bytes_left;
4217 
4218     bytes_written = 0;
4219     bytes_left = size;
4220 
4221     /*
4222      * In normal conditions, single write(2) should do but
4223      * in case of socket etc. this mechanism is more portable.
4224      */
4225     do {
4226         bytes_written = write(fd, bufp, bytes_left);
4227         if (bytes_written < 0) {
4228             if (errno == EINTR)
4229                 continue;
4230             return (-1);
4231         } else if (bytes_written == 0) { /* eof */
4232             return (-1);
4233         }
4234         bufp += bytes_written;
4235         bytes_left -= bytes_written;
4236     } while (bytes_left > 0);
4237 
4238     return (0);
4239 }
4240 
4241 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4242                                       target_ulong end, unsigned long flags)
4243 {
4244     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4245         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4246 
4247         while (1) {
4248             page_unprotect(start, 0);
4249             if (end - start <= step) {
4250                 break;
4251             }
4252             start += step;
4253         }
4254     }
4255     return 0;
4256 }
4257 
4258 typedef struct {
4259     unsigned count;
4260     size_t size;
4261 } CountAndSizeRegions;
4262 
4263 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4264                                       target_ulong end, unsigned long flags)
4265 {
4266     CountAndSizeRegions *css = opaque;
4267 
4268     css->count++;
4269     css->size += vma_dump_size(start, end, flags);
4270     return 0;
4271 }
4272 
4273 typedef struct {
4274     struct elf_phdr *phdr;
4275     off_t offset;
4276 } FillRegionPhdr;
4277 
4278 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4279                                 target_ulong end, unsigned long flags)
4280 {
4281     FillRegionPhdr *d = opaque;
4282     struct elf_phdr *phdr = d->phdr;
4283 
4284     phdr->p_type = PT_LOAD;
4285     phdr->p_vaddr = start;
4286     phdr->p_paddr = 0;
4287     phdr->p_filesz = vma_dump_size(start, end, flags);
4288     phdr->p_offset = d->offset;
4289     d->offset += phdr->p_filesz;
4290     phdr->p_memsz = end - start;
4291     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4292                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4293                   | (flags & PAGE_EXEC ? PF_X : 0);
4294     phdr->p_align = ELF_EXEC_PAGESIZE;
4295 
4296     bswap_phdr(phdr, 1);
4297     d->phdr = phdr + 1;
4298     return 0;
4299 }
4300 
4301 static int wmr_write_region(void *opaque, target_ulong start,
4302                             target_ulong end, unsigned long flags)
4303 {
4304     int fd = *(int *)opaque;
4305     size_t size = vma_dump_size(start, end, flags);
4306 
4307     if (!size) {
4308         return 0;
4309     }
4310     return dump_write(fd, g2h_untagged(start), size);
4311 }
4312 
4313 /*
4314  * Write out ELF coredump.
4315  *
4316  * See documentation of ELF object file format in:
4317  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4318  *
4319  * Coredump format in linux is following:
4320  *
4321  * 0   +----------------------+         \
4322  *     | ELF header           | ET_CORE  |
4323  *     +----------------------+          |
4324  *     | ELF program headers  |          |--- headers
4325  *     | - NOTE section       |          |
4326  *     | - PT_LOAD sections   |          |
4327  *     +----------------------+         /
4328  *     | NOTEs:               |
4329  *     | - NT_PRSTATUS        |
4330  *     | - NT_PRSINFO         |
4331  *     | - NT_AUXV            |
4332  *     +----------------------+ <-- aligned to target page
4333  *     | Process memory dump  |
4334  *     :                      :
4335  *     .                      .
4336  *     :                      :
4337  *     |                      |
4338  *     +----------------------+
4339  *
4340  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4341  * NT_PRSINFO  -> struct elf_prpsinfo
4342  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4343  *
4344  * Format follows System V format as close as possible.  Current
4345  * version limitations are as follows:
4346  *     - no floating point registers are dumped
4347  *
4348  * Function returns 0 in case of success, negative errno otherwise.
4349  *
4350  * TODO: make this work also during runtime: it should be
4351  * possible to force coredump from running process and then
4352  * continue processing.  For example qemu could set up SIGUSR2
4353  * handler (provided that target process haven't registered
4354  * handler for that) that does the dump when signal is received.
4355  */
4356 static int elf_core_dump(int signr, const CPUArchState *env)
4357 {
4358     const CPUState *cpu = env_cpu_const(env);
4359     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4360     struct rlimit dumpsize;
4361     CountAndSizeRegions css;
4362     off_t offset, note_offset, data_offset;
4363     size_t note_size;
4364     int cpus, ret;
4365     int fd = -1;
4366     CPUState *cpu_iter;
4367 
4368     if (prctl(PR_GET_DUMPABLE) == 0) {
4369         return 0;
4370     }
4371 
4372     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4373         return 0;
4374     }
4375 
4376     cpu_list_lock();
4377     mmap_lock();
4378 
4379     /* By unprotecting, we merge vmas that might be split. */
4380     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4381 
4382     /*
4383      * Walk through target process memory mappings and
4384      * set up structure containing this information.
4385      */
4386     memset(&css, 0, sizeof(css));
4387     walk_memory_regions(&css, wmr_count_and_size_regions);
4388 
4389     cpus = 0;
4390     CPU_FOREACH(cpu_iter) {
4391         cpus++;
4392     }
4393 
4394     offset = sizeof(struct elfhdr);
4395     offset += (css.count + 1) * sizeof(struct elf_phdr);
4396     note_offset = offset;
4397 
4398     offset += size_note("CORE", ts->info->auxv_len);
4399     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4400     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4401     note_size = offset - note_offset;
4402     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4403 
4404     /* Do not dump if the corefile size exceeds the limit. */
4405     if (dumpsize.rlim_cur != RLIM_INFINITY
4406         && dumpsize.rlim_cur < data_offset + css.size) {
4407         errno = 0;
4408         goto out;
4409     }
4410 
4411     {
4412         g_autofree char *corefile = core_dump_filename(ts);
4413         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4414                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4415     }
4416     if (fd < 0) {
4417         goto out;
4418     }
4419 
4420     /*
4421      * There is a fair amount of alignment padding within the notes
4422      * as well as preceeding the process memory.  Allocate a zeroed
4423      * block to hold it all.  Write all of the headers directly into
4424      * this buffer and then write it out as a block.
4425      */
4426     {
4427         g_autofree void *header = g_malloc0(data_offset);
4428         FillRegionPhdr frp;
4429         void *hptr, *dptr;
4430 
4431         /* Create elf file header. */
4432         hptr = header;
4433         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4434         hptr += sizeof(struct elfhdr);
4435 
4436         /* Create elf program headers. */
4437         fill_elf_note_phdr(hptr, note_size, note_offset);
4438         hptr += sizeof(struct elf_phdr);
4439 
4440         frp.phdr = hptr;
4441         frp.offset = data_offset;
4442         walk_memory_regions(&frp, wmr_fill_region_phdr);
4443         hptr = frp.phdr;
4444 
4445         /* Create the notes. */
4446         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4447         fill_auxv_note(dptr, ts);
4448 
4449         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4450                          sizeof(struct target_elf_prpsinfo));
4451         fill_prpsinfo_note(dptr, ts);
4452 
4453         CPU_FOREACH(cpu_iter) {
4454             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4455                              sizeof(struct target_elf_prstatus));
4456             fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
4457         }
4458 
4459         if (dump_write(fd, header, data_offset) < 0) {
4460             goto out;
4461         }
4462     }
4463 
4464     /*
4465      * Finally write process memory into the corefile as well.
4466      */
4467     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4468         goto out;
4469     }
4470     errno = 0;
4471 
4472  out:
4473     ret = -errno;
4474     mmap_unlock();
4475     cpu_list_unlock();
4476     if (fd >= 0) {
4477         close(fd);
4478     }
4479     return ret;
4480 }
4481 #endif /* USE_ELF_CORE_DUMP */
4482 
4483 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4484 {
4485     init_thread(regs, infop);
4486 }
4487