xref: /qemu/linux-user/elfload.c (revision f07a5674cf97b8473e5d06d7b1df9b51e97d553f)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "user/page-protection.h"
12 #include "exec/page-protection.h"
13 #include "exec/translation-block.h"
14 #include "user/guest-base.h"
15 #include "user-internals.h"
16 #include "signal-common.h"
17 #include "loader.h"
18 #include "user-mmap.h"
19 #include "disas/disas.h"
20 #include "qemu/bitops.h"
21 #include "qemu/path.h"
22 #include "qemu/queue.h"
23 #include "qemu/guest-random.h"
24 #include "qemu/units.h"
25 #include "qemu/selfmap.h"
26 #include "qemu/lockable.h"
27 #include "qapi/error.h"
28 #include "qemu/error-report.h"
29 #include "target_signal.h"
30 #include "tcg/debuginfo.h"
31 
32 #ifdef TARGET_ARM
33 #include "target/arm/cpu-features.h"
34 #endif
35 
36 #ifdef _ARCH_PPC64
37 #undef ARCH_DLINFO
38 #undef ELF_PLATFORM
39 #undef ELF_HWCAP
40 #undef ELF_HWCAP2
41 #undef ELF_CLASS
42 #undef ELF_DATA
43 #undef ELF_ARCH
44 #endif
45 
46 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
47 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
48 #endif
49 
50 typedef struct {
51     const uint8_t *image;
52     const uint32_t *relocs;
53     unsigned image_size;
54     unsigned reloc_count;
55     unsigned sigreturn_ofs;
56     unsigned rt_sigreturn_ofs;
57 } VdsoImageInfo;
58 
59 #define ELF_OSABI   ELFOSABI_SYSV
60 
61 /* from personality.h */
62 
63 /*
64  * Flags for bug emulation.
65  *
66  * These occupy the top three bytes.
67  */
68 enum {
69     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
70     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
71                                            descriptors (signal handling) */
72     MMAP_PAGE_ZERO =    0x0100000,
73     ADDR_COMPAT_LAYOUT = 0x0200000,
74     READ_IMPLIES_EXEC = 0x0400000,
75     ADDR_LIMIT_32BIT =  0x0800000,
76     SHORT_INODE =       0x1000000,
77     WHOLE_SECONDS =     0x2000000,
78     STICKY_TIMEOUTS =   0x4000000,
79     ADDR_LIMIT_3GB =    0x8000000,
80 };
81 
82 /*
83  * Personality types.
84  *
85  * These go in the low byte.  Avoid using the top bit, it will
86  * conflict with error returns.
87  */
88 enum {
89     PER_LINUX =         0x0000,
90     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
91     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
92     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
93     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
94     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
95     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
96     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
97     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
98     PER_BSD =           0x0006,
99     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
100     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
101     PER_LINUX32 =       0x0008,
102     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
103     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
104     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
105     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
106     PER_RISCOS =        0x000c,
107     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
108     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
109     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
110     PER_HPUX =          0x0010,
111     PER_MASK =          0x00ff,
112 };
113 
114 /*
115  * Return the base personality without flags.
116  */
117 #define personality(pers)       (pers & PER_MASK)
118 
119 int info_is_fdpic(struct image_info *info)
120 {
121     return info->personality == PER_LINUX_FDPIC;
122 }
123 
124 /* this flag is uneffective under linux too, should be deleted */
125 #ifndef MAP_DENYWRITE
126 #define MAP_DENYWRITE 0
127 #endif
128 
129 /* should probably go in elf.h */
130 #ifndef ELIBBAD
131 #define ELIBBAD 80
132 #endif
133 
134 #if TARGET_BIG_ENDIAN
135 #define ELF_DATA        ELFDATA2MSB
136 #else
137 #define ELF_DATA        ELFDATA2LSB
138 #endif
139 
140 #ifdef TARGET_ABI_MIPSN32
141 typedef abi_ullong      target_elf_greg_t;
142 #define tswapreg(ptr)   tswap64(ptr)
143 #else
144 typedef abi_ulong       target_elf_greg_t;
145 #define tswapreg(ptr)   tswapal(ptr)
146 #endif
147 
148 #ifdef USE_UID16
149 typedef abi_ushort      target_uid_t;
150 typedef abi_ushort      target_gid_t;
151 #else
152 typedef abi_uint        target_uid_t;
153 typedef abi_uint        target_gid_t;
154 #endif
155 typedef abi_int         target_pid_t;
156 
157 #ifdef TARGET_I386
158 
159 #define ELF_HWCAP get_elf_hwcap()
160 
161 static uint32_t get_elf_hwcap(void)
162 {
163     X86CPU *cpu = X86_CPU(thread_cpu);
164 
165     return cpu->env.features[FEAT_1_EDX];
166 }
167 
168 #ifdef TARGET_X86_64
169 #define ELF_CLASS      ELFCLASS64
170 #define ELF_ARCH       EM_X86_64
171 
172 #define ELF_PLATFORM   "x86_64"
173 
174 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
175 {
176     regs->rax = 0;
177     regs->rsp = infop->start_stack;
178     regs->rip = infop->entry;
179 }
180 
181 #define ELF_NREG    27
182 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
183 
184 /*
185  * Note that ELF_NREG should be 29 as there should be place for
186  * TRAPNO and ERR "registers" as well but linux doesn't dump
187  * those.
188  *
189  * See linux kernel: arch/x86/include/asm/elf.h
190  */
191 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
192 {
193     (*regs)[0] = tswapreg(env->regs[15]);
194     (*regs)[1] = tswapreg(env->regs[14]);
195     (*regs)[2] = tswapreg(env->regs[13]);
196     (*regs)[3] = tswapreg(env->regs[12]);
197     (*regs)[4] = tswapreg(env->regs[R_EBP]);
198     (*regs)[5] = tswapreg(env->regs[R_EBX]);
199     (*regs)[6] = tswapreg(env->regs[11]);
200     (*regs)[7] = tswapreg(env->regs[10]);
201     (*regs)[8] = tswapreg(env->regs[9]);
202     (*regs)[9] = tswapreg(env->regs[8]);
203     (*regs)[10] = tswapreg(env->regs[R_EAX]);
204     (*regs)[11] = tswapreg(env->regs[R_ECX]);
205     (*regs)[12] = tswapreg(env->regs[R_EDX]);
206     (*regs)[13] = tswapreg(env->regs[R_ESI]);
207     (*regs)[14] = tswapreg(env->regs[R_EDI]);
208     (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
209     (*regs)[16] = tswapreg(env->eip);
210     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
211     (*regs)[18] = tswapreg(env->eflags);
212     (*regs)[19] = tswapreg(env->regs[R_ESP]);
213     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
214     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
215     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
216     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
217     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
218     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
219     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
220 }
221 
222 #if ULONG_MAX > UINT32_MAX
223 #define INIT_GUEST_COMMPAGE
224 static bool init_guest_commpage(void)
225 {
226     /*
227      * The vsyscall page is at a high negative address aka kernel space,
228      * which means that we cannot actually allocate it with target_mmap.
229      * We still should be able to use page_set_flags, unless the user
230      * has specified -R reserved_va, which would trigger an assert().
231      */
232     if (reserved_va != 0 &&
233         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
234         error_report("Cannot allocate vsyscall page");
235         exit(EXIT_FAILURE);
236     }
237     page_set_flags(TARGET_VSYSCALL_PAGE,
238                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
239                    PAGE_EXEC | PAGE_VALID);
240     return true;
241 }
242 #endif
243 #else
244 
245 /*
246  * This is used to ensure we don't load something for the wrong architecture.
247  */
248 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
249 
250 /*
251  * These are used to set parameters in the core dumps.
252  */
253 #define ELF_CLASS       ELFCLASS32
254 #define ELF_ARCH        EM_386
255 
256 #define ELF_PLATFORM get_elf_platform()
257 #define EXSTACK_DEFAULT true
258 
259 static const char *get_elf_platform(void)
260 {
261     static char elf_platform[] = "i386";
262     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
263     if (family > 6) {
264         family = 6;
265     }
266     if (family >= 3) {
267         elf_platform[1] = '0' + family;
268     }
269     return elf_platform;
270 }
271 
272 static inline void init_thread(struct target_pt_regs *regs,
273                                struct image_info *infop)
274 {
275     regs->esp = infop->start_stack;
276     regs->eip = infop->entry;
277 
278     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
279        starts %edx contains a pointer to a function which might be
280        registered using `atexit'.  This provides a mean for the
281        dynamic linker to call DT_FINI functions for shared libraries
282        that have been loaded before the code runs.
283 
284        A value of 0 tells we have no such handler.  */
285     regs->edx = 0;
286 }
287 
288 #define ELF_NREG    17
289 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
290 
291 /*
292  * Note that ELF_NREG should be 19 as there should be place for
293  * TRAPNO and ERR "registers" as well but linux doesn't dump
294  * those.
295  *
296  * See linux kernel: arch/x86/include/asm/elf.h
297  */
298 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
299 {
300     (*regs)[0] = tswapreg(env->regs[R_EBX]);
301     (*regs)[1] = tswapreg(env->regs[R_ECX]);
302     (*regs)[2] = tswapreg(env->regs[R_EDX]);
303     (*regs)[3] = tswapreg(env->regs[R_ESI]);
304     (*regs)[4] = tswapreg(env->regs[R_EDI]);
305     (*regs)[5] = tswapreg(env->regs[R_EBP]);
306     (*regs)[6] = tswapreg(env->regs[R_EAX]);
307     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
308     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
309     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
310     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
311     (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
312     (*regs)[12] = tswapreg(env->eip);
313     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
314     (*regs)[14] = tswapreg(env->eflags);
315     (*regs)[15] = tswapreg(env->regs[R_ESP]);
316     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
317 }
318 
319 /*
320  * i386 is the only target which supplies AT_SYSINFO for the vdso.
321  * All others only supply AT_SYSINFO_EHDR.
322  */
323 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
324 #define ARCH_DLINFO                                     \
325     do {                                                \
326         if (vdso_info) {                                \
327             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
328         }                                               \
329     } while (0)
330 
331 #endif /* TARGET_X86_64 */
332 
333 #define VDSO_HEADER "vdso.c.inc"
334 
335 #define USE_ELF_CORE_DUMP
336 #define ELF_EXEC_PAGESIZE       4096
337 
338 #endif /* TARGET_I386 */
339 
340 #ifdef TARGET_ARM
341 
342 #ifndef TARGET_AARCH64
343 /* 32 bit ARM definitions */
344 
345 #define ELF_ARCH        EM_ARM
346 #define ELF_CLASS       ELFCLASS32
347 #define EXSTACK_DEFAULT true
348 
349 static inline void init_thread(struct target_pt_regs *regs,
350                                struct image_info *infop)
351 {
352     abi_long stack = infop->start_stack;
353     memset(regs, 0, sizeof(*regs));
354 
355     regs->uregs[16] = ARM_CPU_MODE_USR;
356     if (infop->entry & 1) {
357         regs->uregs[16] |= CPSR_T;
358     }
359     regs->uregs[15] = infop->entry & 0xfffffffe;
360     regs->uregs[13] = infop->start_stack;
361     /* FIXME - what to for failure of get_user()? */
362     get_user_ual(regs->uregs[2], stack + 8); /* envp */
363     get_user_ual(regs->uregs[1], stack + 4); /* envp */
364     /* XXX: it seems that r0 is zeroed after ! */
365     regs->uregs[0] = 0;
366     /* For uClinux PIC binaries.  */
367     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
368     regs->uregs[10] = infop->start_data;
369 
370     /* Support ARM FDPIC.  */
371     if (info_is_fdpic(infop)) {
372         /* As described in the ABI document, r7 points to the loadmap info
373          * prepared by the kernel. If an interpreter is needed, r8 points
374          * to the interpreter loadmap and r9 points to the interpreter
375          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
376          * r9 points to the main program PT_DYNAMIC info.
377          */
378         regs->uregs[7] = infop->loadmap_addr;
379         if (infop->interpreter_loadmap_addr) {
380             /* Executable is dynamically loaded.  */
381             regs->uregs[8] = infop->interpreter_loadmap_addr;
382             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
383         } else {
384             regs->uregs[8] = 0;
385             regs->uregs[9] = infop->pt_dynamic_addr;
386         }
387     }
388 }
389 
390 #define ELF_NREG    18
391 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
392 
393 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
394 {
395     (*regs)[0] = tswapreg(env->regs[0]);
396     (*regs)[1] = tswapreg(env->regs[1]);
397     (*regs)[2] = tswapreg(env->regs[2]);
398     (*regs)[3] = tswapreg(env->regs[3]);
399     (*regs)[4] = tswapreg(env->regs[4]);
400     (*regs)[5] = tswapreg(env->regs[5]);
401     (*regs)[6] = tswapreg(env->regs[6]);
402     (*regs)[7] = tswapreg(env->regs[7]);
403     (*regs)[8] = tswapreg(env->regs[8]);
404     (*regs)[9] = tswapreg(env->regs[9]);
405     (*regs)[10] = tswapreg(env->regs[10]);
406     (*regs)[11] = tswapreg(env->regs[11]);
407     (*regs)[12] = tswapreg(env->regs[12]);
408     (*regs)[13] = tswapreg(env->regs[13]);
409     (*regs)[14] = tswapreg(env->regs[14]);
410     (*regs)[15] = tswapreg(env->regs[15]);
411 
412     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
413     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
414 }
415 
416 #define USE_ELF_CORE_DUMP
417 #define ELF_EXEC_PAGESIZE       4096
418 
419 enum
420 {
421     ARM_HWCAP_ARM_SWP       = 1 << 0,
422     ARM_HWCAP_ARM_HALF      = 1 << 1,
423     ARM_HWCAP_ARM_THUMB     = 1 << 2,
424     ARM_HWCAP_ARM_26BIT     = 1 << 3,
425     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
426     ARM_HWCAP_ARM_FPA       = 1 << 5,
427     ARM_HWCAP_ARM_VFP       = 1 << 6,
428     ARM_HWCAP_ARM_EDSP      = 1 << 7,
429     ARM_HWCAP_ARM_JAVA      = 1 << 8,
430     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
431     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
432     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
433     ARM_HWCAP_ARM_NEON      = 1 << 12,
434     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
435     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
436     ARM_HWCAP_ARM_TLS       = 1 << 15,
437     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
438     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
439     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
440     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
441     ARM_HWCAP_ARM_LPAE      = 1 << 20,
442     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
443     ARM_HWCAP_ARM_FPHP      = 1 << 22,
444     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
445     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
446     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
447     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
448     ARM_HWCAP_ARM_I8MM      = 1 << 27,
449 };
450 
451 enum {
452     ARM_HWCAP2_ARM_AES      = 1 << 0,
453     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
454     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
455     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
456     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
457     ARM_HWCAP2_ARM_SB       = 1 << 5,
458     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
459 };
460 
461 /* The commpage only exists for 32 bit kernels */
462 
463 #define HI_COMMPAGE (intptr_t)0xffff0f00u
464 
465 static bool init_guest_commpage(void)
466 {
467     ARMCPU *cpu = ARM_CPU(thread_cpu);
468     int host_page_size = qemu_real_host_page_size();
469     abi_ptr commpage;
470     void *want;
471     void *addr;
472 
473     /*
474      * M-profile allocates maximum of 2GB address space, so can never
475      * allocate the commpage.  Skip it.
476      */
477     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
478         return true;
479     }
480 
481     commpage = HI_COMMPAGE & -host_page_size;
482     want = g2h_untagged(commpage);
483     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
484                 MAP_ANONYMOUS | MAP_PRIVATE |
485                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
486                 -1, 0);
487 
488     if (addr == MAP_FAILED) {
489         perror("Allocating guest commpage");
490         exit(EXIT_FAILURE);
491     }
492     if (addr != want) {
493         return false;
494     }
495 
496     /* Set kernel helper versions; rest of page is 0.  */
497     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
498 
499     if (mprotect(addr, host_page_size, PROT_READ)) {
500         perror("Protecting guest commpage");
501         exit(EXIT_FAILURE);
502     }
503 
504     page_set_flags(commpage, commpage | (host_page_size - 1),
505                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
506     return true;
507 }
508 
509 #define ELF_HWCAP get_elf_hwcap()
510 #define ELF_HWCAP2 get_elf_hwcap2()
511 
512 uint32_t get_elf_hwcap(void)
513 {
514     ARMCPU *cpu = ARM_CPU(thread_cpu);
515     uint32_t hwcaps = 0;
516 
517     hwcaps |= ARM_HWCAP_ARM_SWP;
518     hwcaps |= ARM_HWCAP_ARM_HALF;
519     hwcaps |= ARM_HWCAP_ARM_THUMB;
520     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
521 
522     /* probe for the extra features */
523 #define GET_FEATURE(feat, hwcap) \
524     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
525 
526 #define GET_FEATURE_ID(feat, hwcap) \
527     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
528 
529     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
530     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
531     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
532     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
533     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
534     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
535     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
536     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
537     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
538     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
539 
540     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
541         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
542         hwcaps |= ARM_HWCAP_ARM_VFPv3;
543         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
544             hwcaps |= ARM_HWCAP_ARM_VFPD32;
545         } else {
546             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
547         }
548     }
549     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
550     /*
551      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
552      * isar_feature function for both. The kernel reports them as two hwcaps.
553      */
554     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
555     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
556     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
557     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
558     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
559     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
560 
561     return hwcaps;
562 }
563 
564 uint64_t get_elf_hwcap2(void)
565 {
566     ARMCPU *cpu = ARM_CPU(thread_cpu);
567     uint64_t hwcaps = 0;
568 
569     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
570     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
571     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
572     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
573     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
574     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
575     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
576     return hwcaps;
577 }
578 
579 const char *elf_hwcap_str(uint32_t bit)
580 {
581     static const char *hwcap_str[] = {
582     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
583     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
584     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
585     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
586     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
587     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
588     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
589     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
590     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
591     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
592     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
593     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
594     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
595     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
596     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
597     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
598     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
599     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
600     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
601     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
602     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
603     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
604     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
605     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
606     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
607     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
608     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
609     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
610     };
611 
612     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
613 }
614 
615 const char *elf_hwcap2_str(uint32_t bit)
616 {
617     static const char *hwcap_str[] = {
618     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
619     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
620     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
621     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
622     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
623     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
624     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
625     };
626 
627     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
628 }
629 
630 #undef GET_FEATURE
631 #undef GET_FEATURE_ID
632 
633 #define ELF_PLATFORM get_elf_platform()
634 
635 static const char *get_elf_platform(void)
636 {
637     CPUARMState *env = cpu_env(thread_cpu);
638 
639 #if TARGET_BIG_ENDIAN
640 # define END  "b"
641 #else
642 # define END  "l"
643 #endif
644 
645     if (arm_feature(env, ARM_FEATURE_V8)) {
646         return "v8" END;
647     } else if (arm_feature(env, ARM_FEATURE_V7)) {
648         if (arm_feature(env, ARM_FEATURE_M)) {
649             return "v7m" END;
650         } else {
651             return "v7" END;
652         }
653     } else if (arm_feature(env, ARM_FEATURE_V6)) {
654         return "v6" END;
655     } else if (arm_feature(env, ARM_FEATURE_V5)) {
656         return "v5" END;
657     } else {
658         return "v4" END;
659     }
660 
661 #undef END
662 }
663 
664 #if TARGET_BIG_ENDIAN
665 #include "elf.h"
666 #include "vdso-be8.c.inc"
667 #include "vdso-be32.c.inc"
668 
669 static const VdsoImageInfo *vdso_image_info(uint32_t elf_flags)
670 {
671     return (EF_ARM_EABI_VERSION(elf_flags) >= EF_ARM_EABI_VER4
672             && (elf_flags & EF_ARM_BE8)
673             ? &vdso_be8_image_info
674             : &vdso_be32_image_info);
675 }
676 #define vdso_image_info vdso_image_info
677 #else
678 # define VDSO_HEADER  "vdso-le.c.inc"
679 #endif
680 
681 #else
682 /* 64 bit ARM definitions */
683 
684 #define ELF_ARCH        EM_AARCH64
685 #define ELF_CLASS       ELFCLASS64
686 #if TARGET_BIG_ENDIAN
687 # define ELF_PLATFORM    "aarch64_be"
688 #else
689 # define ELF_PLATFORM    "aarch64"
690 #endif
691 
692 static inline void init_thread(struct target_pt_regs *regs,
693                                struct image_info *infop)
694 {
695     abi_long stack = infop->start_stack;
696     memset(regs, 0, sizeof(*regs));
697 
698     regs->pc = infop->entry & ~0x3ULL;
699     regs->sp = stack;
700 }
701 
702 #define ELF_NREG    34
703 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
704 
705 static void elf_core_copy_regs(target_elf_gregset_t *regs,
706                                const CPUARMState *env)
707 {
708     int i;
709 
710     for (i = 0; i < 32; i++) {
711         (*regs)[i] = tswapreg(env->xregs[i]);
712     }
713     (*regs)[32] = tswapreg(env->pc);
714     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
715 }
716 
717 #define USE_ELF_CORE_DUMP
718 #define ELF_EXEC_PAGESIZE       4096
719 
720 enum {
721     ARM_HWCAP_A64_FP            = 1 << 0,
722     ARM_HWCAP_A64_ASIMD         = 1 << 1,
723     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
724     ARM_HWCAP_A64_AES           = 1 << 3,
725     ARM_HWCAP_A64_PMULL         = 1 << 4,
726     ARM_HWCAP_A64_SHA1          = 1 << 5,
727     ARM_HWCAP_A64_SHA2          = 1 << 6,
728     ARM_HWCAP_A64_CRC32         = 1 << 7,
729     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
730     ARM_HWCAP_A64_FPHP          = 1 << 9,
731     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
732     ARM_HWCAP_A64_CPUID         = 1 << 11,
733     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
734     ARM_HWCAP_A64_JSCVT         = 1 << 13,
735     ARM_HWCAP_A64_FCMA          = 1 << 14,
736     ARM_HWCAP_A64_LRCPC         = 1 << 15,
737     ARM_HWCAP_A64_DCPOP         = 1 << 16,
738     ARM_HWCAP_A64_SHA3          = 1 << 17,
739     ARM_HWCAP_A64_SM3           = 1 << 18,
740     ARM_HWCAP_A64_SM4           = 1 << 19,
741     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
742     ARM_HWCAP_A64_SHA512        = 1 << 21,
743     ARM_HWCAP_A64_SVE           = 1 << 22,
744     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
745     ARM_HWCAP_A64_DIT           = 1 << 24,
746     ARM_HWCAP_A64_USCAT         = 1 << 25,
747     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
748     ARM_HWCAP_A64_FLAGM         = 1 << 27,
749     ARM_HWCAP_A64_SSBS          = 1 << 28,
750     ARM_HWCAP_A64_SB            = 1 << 29,
751     ARM_HWCAP_A64_PACA          = 1 << 30,
752     ARM_HWCAP_A64_PACG          = 1UL << 31,
753 
754     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
755     ARM_HWCAP2_A64_SVE2         = 1 << 1,
756     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
757     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
758     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
759     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
760     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
761     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
762     ARM_HWCAP2_A64_FRINT        = 1 << 8,
763     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
764     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
765     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
766     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
767     ARM_HWCAP2_A64_I8MM         = 1 << 13,
768     ARM_HWCAP2_A64_BF16         = 1 << 14,
769     ARM_HWCAP2_A64_DGH          = 1 << 15,
770     ARM_HWCAP2_A64_RNG          = 1 << 16,
771     ARM_HWCAP2_A64_BTI          = 1 << 17,
772     ARM_HWCAP2_A64_MTE          = 1 << 18,
773     ARM_HWCAP2_A64_ECV          = 1 << 19,
774     ARM_HWCAP2_A64_AFP          = 1 << 20,
775     ARM_HWCAP2_A64_RPRES        = 1 << 21,
776     ARM_HWCAP2_A64_MTE3         = 1 << 22,
777     ARM_HWCAP2_A64_SME          = 1 << 23,
778     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
779     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
780     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
781     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
782     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
783     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
784     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
785     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
786     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
787     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
788     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
789     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
790     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
791     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
792     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
793     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
794     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
795     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
796     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
797     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
798     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
799 };
800 
801 #define ELF_HWCAP   get_elf_hwcap()
802 #define ELF_HWCAP2  get_elf_hwcap2()
803 
804 #define GET_FEATURE_ID(feat, hwcap) \
805     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
806 
807 uint32_t get_elf_hwcap(void)
808 {
809     ARMCPU *cpu = ARM_CPU(thread_cpu);
810     uint32_t hwcaps = 0;
811 
812     hwcaps |= ARM_HWCAP_A64_FP;
813     hwcaps |= ARM_HWCAP_A64_ASIMD;
814     hwcaps |= ARM_HWCAP_A64_CPUID;
815 
816     /* probe for the extra features */
817 
818     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
819     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
820     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
821     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
822     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
823     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
824     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
825     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
826     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
827     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
828     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
829     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
830     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
831     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
832     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
833     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
834     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
835     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
836     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
837     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
838     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
839     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
840     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
841     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
842     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
843 
844     return hwcaps;
845 }
846 
847 uint64_t get_elf_hwcap2(void)
848 {
849     ARMCPU *cpu = ARM_CPU(thread_cpu);
850     uint64_t hwcaps = 0;
851 
852     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
853     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
854     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
855     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
856     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
857     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
858     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
859     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
860     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
861     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
862     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
863     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
864     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
865     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
866     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
867     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
868     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
869     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
870     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
871     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
872                               ARM_HWCAP2_A64_SME_F32F32 |
873                               ARM_HWCAP2_A64_SME_B16F32 |
874                               ARM_HWCAP2_A64_SME_F16F32 |
875                               ARM_HWCAP2_A64_SME_I8I32));
876     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
877     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
878     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
879     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
880     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
881 
882     return hwcaps;
883 }
884 
885 const char *elf_hwcap_str(uint32_t bit)
886 {
887     static const char *hwcap_str[] = {
888     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
889     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
890     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
891     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
892     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
893     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
894     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
895     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
896     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
897     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
898     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
899     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
900     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
901     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
902     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
903     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
904     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
905     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
906     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
907     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
908     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
909     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
910     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
911     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
912     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
913     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
914     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
915     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
916     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
917     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
918     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
919     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
920     };
921 
922     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
923 }
924 
925 const char *elf_hwcap2_str(uint32_t bit)
926 {
927     static const char *hwcap_str[] = {
928     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
929     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
930     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
931     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
932     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
933     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
934     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
935     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
936     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
937     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
938     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
939     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
940     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
941     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
942     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
943     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
944     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
945     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
946     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
947     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
948     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
949     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
950     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
951     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
952     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
953     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
954     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
955     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
956     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
957     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
958     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
959     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
960     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
961     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
962     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
963     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
964     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
965     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
966     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
967     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
968     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
969     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
970     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
971     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
972     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
973     };
974 
975     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
976 }
977 
978 #undef GET_FEATURE_ID
979 
980 #if TARGET_BIG_ENDIAN
981 # define VDSO_HEADER  "vdso-be.c.inc"
982 #else
983 # define VDSO_HEADER  "vdso-le.c.inc"
984 #endif
985 
986 #endif /* not TARGET_AARCH64 */
987 
988 #endif /* TARGET_ARM */
989 
990 #ifdef TARGET_SPARC
991 
992 #ifndef TARGET_SPARC64
993 # define ELF_CLASS  ELFCLASS32
994 # define ELF_ARCH   EM_SPARC
995 #elif defined(TARGET_ABI32)
996 # define ELF_CLASS  ELFCLASS32
997 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
998 #else
999 # define ELF_CLASS  ELFCLASS64
1000 # define ELF_ARCH   EM_SPARCV9
1001 #endif
1002 
1003 #include "elf.h"
1004 
1005 #define ELF_HWCAP get_elf_hwcap()
1006 
1007 static uint32_t get_elf_hwcap(void)
1008 {
1009     /* There are not many sparc32 hwcap bits -- we have all of them. */
1010     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
1011                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
1012 
1013 #ifdef TARGET_SPARC64
1014     CPUSPARCState *env = cpu_env(thread_cpu);
1015     uint32_t features = env->def.features;
1016 
1017     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
1018     /* 32x32 multiply and divide are efficient. */
1019     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1020     /* We don't have an internal feature bit for this. */
1021     r |= HWCAP_SPARC_POPC;
1022     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1023     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1024     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1025     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
1026     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
1027     r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
1028 #endif
1029 
1030     return r;
1031 }
1032 
1033 static inline void init_thread(struct target_pt_regs *regs,
1034                                struct image_info *infop)
1035 {
1036     /* Note that target_cpu_copy_regs does not read psr/tstate. */
1037     regs->pc = infop->entry;
1038     regs->npc = regs->pc + 4;
1039     regs->y = 0;
1040     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1041                         - TARGET_STACK_BIAS);
1042 }
1043 #endif /* TARGET_SPARC */
1044 
1045 #ifdef TARGET_PPC
1046 
1047 #define ELF_MACHINE    PPC_ELF_MACHINE
1048 
1049 #if defined(TARGET_PPC64)
1050 
1051 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1052 
1053 #define ELF_CLASS       ELFCLASS64
1054 
1055 #else
1056 
1057 #define ELF_CLASS       ELFCLASS32
1058 #define EXSTACK_DEFAULT true
1059 
1060 #endif
1061 
1062 #define ELF_ARCH        EM_PPC
1063 
1064 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1065    See arch/powerpc/include/asm/cputable.h.  */
1066 enum {
1067     QEMU_PPC_FEATURE_32 = 0x80000000,
1068     QEMU_PPC_FEATURE_64 = 0x40000000,
1069     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1070     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1071     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1072     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1073     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1074     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1075     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1076     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1077     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1078     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1079     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1080     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1081     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1082     QEMU_PPC_FEATURE_CELL = 0x00010000,
1083     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1084     QEMU_PPC_FEATURE_SMT = 0x00004000,
1085     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1086     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1087     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1088     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1089     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1090     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1091     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1092     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1093 
1094     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1095     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1096 
1097     /* Feature definitions in AT_HWCAP2.  */
1098     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1099     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1100     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1101     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1102     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1103     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1104     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1105     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1106     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1107     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1108     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1109     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1110     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1111     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1112     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1113 };
1114 
1115 #define ELF_HWCAP get_elf_hwcap()
1116 
1117 static uint32_t get_elf_hwcap(void)
1118 {
1119     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1120     uint32_t features = 0;
1121 
1122     /* We don't have to be terribly complete here; the high points are
1123        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1124 #define GET_FEATURE(flag, feature)                                      \
1125     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1126 #define GET_FEATURE2(flags, feature) \
1127     do { \
1128         if ((cpu->env.insns_flags2 & flags) == flags) { \
1129             features |= feature; \
1130         } \
1131     } while (0)
1132     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1133     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1134     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1135     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1136     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1137     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1138     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1139     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1140     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1141     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1142     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1143                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1144                   QEMU_PPC_FEATURE_ARCH_2_06);
1145 #undef GET_FEATURE
1146 #undef GET_FEATURE2
1147 
1148     return features;
1149 }
1150 
1151 #define ELF_HWCAP2 get_elf_hwcap2()
1152 
1153 static uint32_t get_elf_hwcap2(void)
1154 {
1155     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1156     uint32_t features = 0;
1157 
1158 #define GET_FEATURE(flag, feature)                                      \
1159     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1160 #define GET_FEATURE2(flag, feature)                                      \
1161     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1162 
1163     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1164     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1165     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1166                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1167                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1168     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1169                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1170     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1171                  QEMU_PPC_FEATURE2_MMA);
1172 
1173 #undef GET_FEATURE
1174 #undef GET_FEATURE2
1175 
1176     return features;
1177 }
1178 
1179 /*
1180  * The requirements here are:
1181  * - keep the final alignment of sp (sp & 0xf)
1182  * - make sure the 32-bit value at the first 16 byte aligned position of
1183  *   AUXV is greater than 16 for glibc compatibility.
1184  *   AT_IGNOREPPC is used for that.
1185  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1186  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1187  */
1188 #define DLINFO_ARCH_ITEMS       5
1189 #define ARCH_DLINFO                                     \
1190     do {                                                \
1191         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1192         /*                                              \
1193          * Handle glibc compatibility: these magic entries must \
1194          * be at the lowest addresses in the final auxv.        \
1195          */                                             \
1196         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1197         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1198         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1199         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1200         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1201     } while (0)
1202 
1203 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1204 {
1205     _regs->gpr[1] = infop->start_stack;
1206 #if defined(TARGET_PPC64)
1207     if (get_ppc64_abi(infop) < 2) {
1208         uint64_t val;
1209         get_user_u64(val, infop->entry + 8);
1210         _regs->gpr[2] = val + infop->load_bias;
1211         get_user_u64(val, infop->entry);
1212         infop->entry = val + infop->load_bias;
1213     } else {
1214         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1215     }
1216 #endif
1217     _regs->nip = infop->entry;
1218 }
1219 
1220 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1221 #define ELF_NREG 48
1222 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1223 
1224 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1225 {
1226     int i;
1227     target_ulong ccr = 0;
1228 
1229     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1230         (*regs)[i] = tswapreg(env->gpr[i]);
1231     }
1232 
1233     (*regs)[32] = tswapreg(env->nip);
1234     (*regs)[33] = tswapreg(env->msr);
1235     (*regs)[35] = tswapreg(env->ctr);
1236     (*regs)[36] = tswapreg(env->lr);
1237     (*regs)[37] = tswapreg(cpu_read_xer(env));
1238 
1239     ccr = ppc_get_cr(env);
1240     (*regs)[38] = tswapreg(ccr);
1241 }
1242 
1243 #define USE_ELF_CORE_DUMP
1244 #define ELF_EXEC_PAGESIZE       4096
1245 
1246 #ifndef TARGET_PPC64
1247 # define VDSO_HEADER  "vdso-32.c.inc"
1248 #elif TARGET_BIG_ENDIAN
1249 # define VDSO_HEADER  "vdso-64.c.inc"
1250 #else
1251 # define VDSO_HEADER  "vdso-64le.c.inc"
1252 #endif
1253 
1254 #endif
1255 
1256 #ifdef TARGET_LOONGARCH64
1257 
1258 #define ELF_CLASS   ELFCLASS64
1259 #define ELF_ARCH    EM_LOONGARCH
1260 #define EXSTACK_DEFAULT true
1261 
1262 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1263 
1264 #define VDSO_HEADER "vdso.c.inc"
1265 
1266 static inline void init_thread(struct target_pt_regs *regs,
1267                                struct image_info *infop)
1268 {
1269     /*Set crmd PG,DA = 1,0 */
1270     regs->csr.crmd = 2 << 3;
1271     regs->csr.era = infop->entry;
1272     regs->regs[3] = infop->start_stack;
1273 }
1274 
1275 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1276 #define ELF_NREG 45
1277 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1278 
1279 enum {
1280     TARGET_EF_R0 = 0,
1281     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1282     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1283 };
1284 
1285 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1286                                const CPULoongArchState *env)
1287 {
1288     int i;
1289 
1290     (*regs)[TARGET_EF_R0] = 0;
1291 
1292     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1293         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1294     }
1295 
1296     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1297     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1298 }
1299 
1300 #define USE_ELF_CORE_DUMP
1301 #define ELF_EXEC_PAGESIZE        4096
1302 
1303 #define ELF_HWCAP get_elf_hwcap()
1304 
1305 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1306 enum {
1307     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1308     HWCAP_LOONGARCH_LAM      = (1 << 1),
1309     HWCAP_LOONGARCH_UAL      = (1 << 2),
1310     HWCAP_LOONGARCH_FPU      = (1 << 3),
1311     HWCAP_LOONGARCH_LSX      = (1 << 4),
1312     HWCAP_LOONGARCH_LASX     = (1 << 5),
1313     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1314     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1315     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1316     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1317     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1318     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1319     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1320 };
1321 
1322 static uint32_t get_elf_hwcap(void)
1323 {
1324     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1325     uint32_t hwcaps = 0;
1326 
1327     hwcaps |= HWCAP_LOONGARCH_CRC32;
1328 
1329     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1330         hwcaps |= HWCAP_LOONGARCH_UAL;
1331     }
1332 
1333     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1334         hwcaps |= HWCAP_LOONGARCH_FPU;
1335     }
1336 
1337     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1338         hwcaps |= HWCAP_LOONGARCH_LAM;
1339     }
1340 
1341     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1342         hwcaps |= HWCAP_LOONGARCH_LSX;
1343     }
1344 
1345     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1346         hwcaps |= HWCAP_LOONGARCH_LASX;
1347     }
1348 
1349     return hwcaps;
1350 }
1351 
1352 #define ELF_PLATFORM "loongarch"
1353 
1354 #endif /* TARGET_LOONGARCH64 */
1355 
1356 #ifdef TARGET_MIPS
1357 
1358 #ifdef TARGET_MIPS64
1359 #define ELF_CLASS   ELFCLASS64
1360 #else
1361 #define ELF_CLASS   ELFCLASS32
1362 #endif
1363 #define ELF_ARCH    EM_MIPS
1364 #define EXSTACK_DEFAULT true
1365 
1366 #ifdef TARGET_ABI_MIPSN32
1367 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1368 #else
1369 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1370 #endif
1371 
1372 #define ELF_BASE_PLATFORM get_elf_base_platform()
1373 
1374 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1375     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1376     { return _base_platform; } } while (0)
1377 
1378 static const char *get_elf_base_platform(void)
1379 {
1380     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1381 
1382     /* 64 bit ISAs goes first */
1383     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1384     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1385     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1386     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1387     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1388     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1389     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1390 
1391     /* 32 bit ISAs */
1392     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1393     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1394     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1395     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1396     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1397 
1398     /* Fallback */
1399     return "mips";
1400 }
1401 #undef MATCH_PLATFORM_INSN
1402 
1403 static inline void init_thread(struct target_pt_regs *regs,
1404                                struct image_info *infop)
1405 {
1406     regs->cp0_status = 2 << CP0St_KSU;
1407     regs->cp0_epc = infop->entry;
1408     regs->regs[29] = infop->start_stack;
1409 }
1410 
1411 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1412 #define ELF_NREG 45
1413 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1414 
1415 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1416 enum {
1417 #ifdef TARGET_MIPS64
1418     TARGET_EF_R0 = 0,
1419 #else
1420     TARGET_EF_R0 = 6,
1421 #endif
1422     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1423     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1424     TARGET_EF_LO = TARGET_EF_R0 + 32,
1425     TARGET_EF_HI = TARGET_EF_R0 + 33,
1426     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1427     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1428     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1429     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1430 };
1431 
1432 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1433 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1434 {
1435     int i;
1436 
1437     for (i = 0; i < TARGET_EF_R0; i++) {
1438         (*regs)[i] = 0;
1439     }
1440     (*regs)[TARGET_EF_R0] = 0;
1441 
1442     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1443         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1444     }
1445 
1446     (*regs)[TARGET_EF_R26] = 0;
1447     (*regs)[TARGET_EF_R27] = 0;
1448     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1449     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1450     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1451     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1452     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1453     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1454 }
1455 
1456 #define USE_ELF_CORE_DUMP
1457 #define ELF_EXEC_PAGESIZE        4096
1458 
1459 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1460 enum {
1461     HWCAP_MIPS_R6           = (1 << 0),
1462     HWCAP_MIPS_MSA          = (1 << 1),
1463     HWCAP_MIPS_CRC32        = (1 << 2),
1464     HWCAP_MIPS_MIPS16       = (1 << 3),
1465     HWCAP_MIPS_MDMX         = (1 << 4),
1466     HWCAP_MIPS_MIPS3D       = (1 << 5),
1467     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1468     HWCAP_MIPS_DSP          = (1 << 7),
1469     HWCAP_MIPS_DSP2         = (1 << 8),
1470     HWCAP_MIPS_DSP3         = (1 << 9),
1471     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1472     HWCAP_LOONGSON_MMI      = (1 << 11),
1473     HWCAP_LOONGSON_EXT      = (1 << 12),
1474     HWCAP_LOONGSON_EXT2     = (1 << 13),
1475     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1476 };
1477 
1478 #define ELF_HWCAP get_elf_hwcap()
1479 
1480 #define GET_FEATURE_INSN(_flag, _hwcap) \
1481     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1482 
1483 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1484     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1485 
1486 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1487     do { \
1488         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1489             hwcaps |= _hwcap; \
1490         } \
1491     } while (0)
1492 
1493 static uint32_t get_elf_hwcap(void)
1494 {
1495     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1496     uint32_t hwcaps = 0;
1497 
1498     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1499                         2, HWCAP_MIPS_R6);
1500     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1501     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1502     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1503 
1504     return hwcaps;
1505 }
1506 
1507 #undef GET_FEATURE_REG_EQU
1508 #undef GET_FEATURE_REG_SET
1509 #undef GET_FEATURE_INSN
1510 
1511 #endif /* TARGET_MIPS */
1512 
1513 #ifdef TARGET_MICROBLAZE
1514 
1515 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1516 
1517 #define ELF_CLASS   ELFCLASS32
1518 #define ELF_ARCH    EM_MICROBLAZE
1519 
1520 static inline void init_thread(struct target_pt_regs *regs,
1521                                struct image_info *infop)
1522 {
1523     regs->pc = infop->entry;
1524     regs->r1 = infop->start_stack;
1525 
1526 }
1527 
1528 #define ELF_EXEC_PAGESIZE        4096
1529 
1530 #define USE_ELF_CORE_DUMP
1531 #define ELF_NREG 38
1532 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1533 
1534 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1535 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1536 {
1537     int i, pos = 0;
1538 
1539     for (i = 0; i < 32; i++) {
1540         (*regs)[pos++] = tswapreg(env->regs[i]);
1541     }
1542 
1543     (*regs)[pos++] = tswapreg(env->pc);
1544     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1545     (*regs)[pos++] = 0;
1546     (*regs)[pos++] = tswapreg(env->ear);
1547     (*regs)[pos++] = 0;
1548     (*regs)[pos++] = tswapreg(env->esr);
1549 }
1550 
1551 #endif /* TARGET_MICROBLAZE */
1552 
1553 #ifdef TARGET_OPENRISC
1554 
1555 #define ELF_ARCH EM_OPENRISC
1556 #define ELF_CLASS ELFCLASS32
1557 #define ELF_DATA  ELFDATA2MSB
1558 
1559 static inline void init_thread(struct target_pt_regs *regs,
1560                                struct image_info *infop)
1561 {
1562     regs->pc = infop->entry;
1563     regs->gpr[1] = infop->start_stack;
1564 }
1565 
1566 #define USE_ELF_CORE_DUMP
1567 #define ELF_EXEC_PAGESIZE 8192
1568 
1569 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1570 #define ELF_NREG 34 /* gprs and pc, sr */
1571 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1572 
1573 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1574                                const CPUOpenRISCState *env)
1575 {
1576     int i;
1577 
1578     for (i = 0; i < 32; i++) {
1579         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1580     }
1581     (*regs)[32] = tswapreg(env->pc);
1582     (*regs)[33] = tswapreg(cpu_get_sr(env));
1583 }
1584 #define ELF_HWCAP 0
1585 #define ELF_PLATFORM NULL
1586 
1587 #endif /* TARGET_OPENRISC */
1588 
1589 #ifdef TARGET_SH4
1590 
1591 #define ELF_CLASS ELFCLASS32
1592 #define ELF_ARCH  EM_SH
1593 
1594 static inline void init_thread(struct target_pt_regs *regs,
1595                                struct image_info *infop)
1596 {
1597     /* Check other registers XXXXX */
1598     regs->pc = infop->entry;
1599     regs->regs[15] = infop->start_stack;
1600 }
1601 
1602 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1603 #define ELF_NREG 23
1604 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1605 
1606 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1607 enum {
1608     TARGET_REG_PC = 16,
1609     TARGET_REG_PR = 17,
1610     TARGET_REG_SR = 18,
1611     TARGET_REG_GBR = 19,
1612     TARGET_REG_MACH = 20,
1613     TARGET_REG_MACL = 21,
1614     TARGET_REG_SYSCALL = 22
1615 };
1616 
1617 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1618                                       const CPUSH4State *env)
1619 {
1620     int i;
1621 
1622     for (i = 0; i < 16; i++) {
1623         (*regs)[i] = tswapreg(env->gregs[i]);
1624     }
1625 
1626     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1627     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1628     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1629     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1630     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1631     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1632     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1633 }
1634 
1635 #define USE_ELF_CORE_DUMP
1636 #define ELF_EXEC_PAGESIZE        4096
1637 
1638 enum {
1639     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1640     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1641     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1642     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1643     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1644     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1645     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1646     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1647     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1648     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1649 };
1650 
1651 #define ELF_HWCAP get_elf_hwcap()
1652 
1653 static uint32_t get_elf_hwcap(void)
1654 {
1655     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1656     uint32_t hwcap = 0;
1657 
1658     hwcap |= SH_CPU_HAS_FPU;
1659 
1660     if (cpu->env.features & SH_FEATURE_SH4A) {
1661         hwcap |= SH_CPU_HAS_LLSC;
1662     }
1663 
1664     return hwcap;
1665 }
1666 
1667 #endif
1668 
1669 #ifdef TARGET_M68K
1670 
1671 #define ELF_CLASS       ELFCLASS32
1672 #define ELF_ARCH        EM_68K
1673 
1674 /* ??? Does this need to do anything?
1675    #define ELF_PLAT_INIT(_r) */
1676 
1677 static inline void init_thread(struct target_pt_regs *regs,
1678                                struct image_info *infop)
1679 {
1680     regs->usp = infop->start_stack;
1681     regs->sr = 0;
1682     regs->pc = infop->entry;
1683 }
1684 
1685 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1686 #define ELF_NREG 20
1687 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1688 
1689 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1690 {
1691     (*regs)[0] = tswapreg(env->dregs[1]);
1692     (*regs)[1] = tswapreg(env->dregs[2]);
1693     (*regs)[2] = tswapreg(env->dregs[3]);
1694     (*regs)[3] = tswapreg(env->dregs[4]);
1695     (*regs)[4] = tswapreg(env->dregs[5]);
1696     (*regs)[5] = tswapreg(env->dregs[6]);
1697     (*regs)[6] = tswapreg(env->dregs[7]);
1698     (*regs)[7] = tswapreg(env->aregs[0]);
1699     (*regs)[8] = tswapreg(env->aregs[1]);
1700     (*regs)[9] = tswapreg(env->aregs[2]);
1701     (*regs)[10] = tswapreg(env->aregs[3]);
1702     (*regs)[11] = tswapreg(env->aregs[4]);
1703     (*regs)[12] = tswapreg(env->aregs[5]);
1704     (*regs)[13] = tswapreg(env->aregs[6]);
1705     (*regs)[14] = tswapreg(env->dregs[0]);
1706     (*regs)[15] = tswapreg(env->aregs[7]);
1707     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1708     (*regs)[17] = tswapreg(env->sr);
1709     (*regs)[18] = tswapreg(env->pc);
1710     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1711 }
1712 
1713 #define USE_ELF_CORE_DUMP
1714 #define ELF_EXEC_PAGESIZE       8192
1715 
1716 #endif
1717 
1718 #ifdef TARGET_ALPHA
1719 
1720 #define ELF_CLASS      ELFCLASS64
1721 #define ELF_ARCH       EM_ALPHA
1722 
1723 static inline void init_thread(struct target_pt_regs *regs,
1724                                struct image_info *infop)
1725 {
1726     regs->pc = infop->entry;
1727     regs->ps = 8;
1728     regs->usp = infop->start_stack;
1729 }
1730 
1731 #define ELF_EXEC_PAGESIZE        8192
1732 
1733 #endif /* TARGET_ALPHA */
1734 
1735 #ifdef TARGET_S390X
1736 
1737 #define ELF_CLASS	ELFCLASS64
1738 #define ELF_DATA	ELFDATA2MSB
1739 #define ELF_ARCH	EM_S390
1740 
1741 #include "elf.h"
1742 
1743 #define ELF_HWCAP get_elf_hwcap()
1744 
1745 #define GET_FEATURE(_feat, _hwcap) \
1746     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1747 
1748 uint32_t get_elf_hwcap(void)
1749 {
1750     /*
1751      * Let's assume we always have esan3 and zarch.
1752      * 31-bit processes can use 64-bit registers (high gprs).
1753      */
1754     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1755 
1756     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1757     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1758     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1759     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1760     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1761         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1762         hwcap |= HWCAP_S390_ETF3EH;
1763     }
1764     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1765     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1766     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1767 
1768     return hwcap;
1769 }
1770 
1771 const char *elf_hwcap_str(uint32_t bit)
1772 {
1773     static const char *hwcap_str[] = {
1774         [HWCAP_S390_NR_ESAN3]     = "esan3",
1775         [HWCAP_S390_NR_ZARCH]     = "zarch",
1776         [HWCAP_S390_NR_STFLE]     = "stfle",
1777         [HWCAP_S390_NR_MSA]       = "msa",
1778         [HWCAP_S390_NR_LDISP]     = "ldisp",
1779         [HWCAP_S390_NR_EIMM]      = "eimm",
1780         [HWCAP_S390_NR_DFP]       = "dfp",
1781         [HWCAP_S390_NR_HPAGE]     = "edat",
1782         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1783         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1784         [HWCAP_S390_NR_TE]        = "te",
1785         [HWCAP_S390_NR_VXRS]      = "vx",
1786         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1787         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1788         [HWCAP_S390_NR_GS]        = "gs",
1789         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1790         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1791         [HWCAP_S390_NR_SORT]      = "sort",
1792         [HWCAP_S390_NR_DFLT]      = "dflt",
1793         [HWCAP_S390_NR_NNPA]      = "nnpa",
1794         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1795         [HWCAP_S390_NR_SIE]       = "sie",
1796     };
1797 
1798     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1799 }
1800 
1801 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1802 {
1803     regs->psw.addr = infop->entry;
1804     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1805                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1806                      PSW_MASK_32;
1807     regs->gprs[15] = infop->start_stack;
1808 }
1809 
1810 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1811 #define ELF_NREG 27
1812 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1813 
1814 enum {
1815     TARGET_REG_PSWM = 0,
1816     TARGET_REG_PSWA = 1,
1817     TARGET_REG_GPRS = 2,
1818     TARGET_REG_ARS = 18,
1819     TARGET_REG_ORIG_R2 = 26,
1820 };
1821 
1822 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1823                                const CPUS390XState *env)
1824 {
1825     int i;
1826     uint32_t *aregs;
1827 
1828     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1829     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1830     for (i = 0; i < 16; i++) {
1831         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1832     }
1833     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1834     for (i = 0; i < 16; i++) {
1835         aregs[i] = tswap32(env->aregs[i]);
1836     }
1837     (*regs)[TARGET_REG_ORIG_R2] = 0;
1838 }
1839 
1840 #define USE_ELF_CORE_DUMP
1841 #define ELF_EXEC_PAGESIZE 4096
1842 
1843 #define VDSO_HEADER "vdso.c.inc"
1844 
1845 #endif /* TARGET_S390X */
1846 
1847 #ifdef TARGET_RISCV
1848 
1849 #define ELF_ARCH  EM_RISCV
1850 
1851 #ifdef TARGET_RISCV32
1852 #define ELF_CLASS ELFCLASS32
1853 #define VDSO_HEADER "vdso-32.c.inc"
1854 #else
1855 #define ELF_CLASS ELFCLASS64
1856 #define VDSO_HEADER "vdso-64.c.inc"
1857 #endif
1858 
1859 #define ELF_HWCAP get_elf_hwcap()
1860 
1861 static uint32_t get_elf_hwcap(void)
1862 {
1863 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1864     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1865     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1866                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1867                     | MISA_BIT('V');
1868 
1869     return cpu->env.misa_ext & mask;
1870 #undef MISA_BIT
1871 }
1872 
1873 static inline void init_thread(struct target_pt_regs *regs,
1874                                struct image_info *infop)
1875 {
1876     regs->sepc = infop->entry;
1877     regs->sp = infop->start_stack;
1878 }
1879 
1880 #define ELF_EXEC_PAGESIZE 4096
1881 
1882 #endif /* TARGET_RISCV */
1883 
1884 #ifdef TARGET_HPPA
1885 
1886 #define ELF_CLASS       ELFCLASS32
1887 #define ELF_ARCH        EM_PARISC
1888 #define ELF_PLATFORM    "PARISC"
1889 #define STACK_GROWS_DOWN 0
1890 #define STACK_ALIGNMENT  64
1891 
1892 #define VDSO_HEADER "vdso.c.inc"
1893 
1894 static inline void init_thread(struct target_pt_regs *regs,
1895                                struct image_info *infop)
1896 {
1897     regs->iaoq[0] = infop->entry | PRIV_USER;
1898     regs->iaoq[1] = regs->iaoq[0] + 4;
1899     regs->gr[23] = 0;
1900     regs->gr[24] = infop->argv;
1901     regs->gr[25] = infop->argc;
1902     /* The top-of-stack contains a linkage buffer.  */
1903     regs->gr[30] = infop->start_stack + 64;
1904     regs->gr[31] = infop->entry;
1905 }
1906 
1907 #define LO_COMMPAGE  0
1908 
1909 static bool init_guest_commpage(void)
1910 {
1911     /* If reserved_va, then we have already mapped 0 page on the host. */
1912     if (!reserved_va) {
1913         void *want, *addr;
1914 
1915         want = g2h_untagged(LO_COMMPAGE);
1916         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1917                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1918         if (addr == MAP_FAILED) {
1919             perror("Allocating guest commpage");
1920             exit(EXIT_FAILURE);
1921         }
1922         if (addr != want) {
1923             return false;
1924         }
1925     }
1926 
1927     /*
1928      * On Linux, page zero is normally marked execute only + gateway.
1929      * Normal read or write is supposed to fail (thus PROT_NONE above),
1930      * but specific offsets have kernel code mapped to raise permissions
1931      * and implement syscalls.  Here, simply mark the page executable.
1932      * Special case the entry points during translation (see do_page_zero).
1933      */
1934     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1935                    PAGE_EXEC | PAGE_VALID);
1936     return true;
1937 }
1938 
1939 #endif /* TARGET_HPPA */
1940 
1941 #ifdef TARGET_XTENSA
1942 
1943 #define ELF_CLASS       ELFCLASS32
1944 #define ELF_ARCH        EM_XTENSA
1945 
1946 static inline void init_thread(struct target_pt_regs *regs,
1947                                struct image_info *infop)
1948 {
1949     regs->windowbase = 0;
1950     regs->windowstart = 1;
1951     regs->areg[1] = infop->start_stack;
1952     regs->pc = infop->entry;
1953     if (info_is_fdpic(infop)) {
1954         regs->areg[4] = infop->loadmap_addr;
1955         regs->areg[5] = infop->interpreter_loadmap_addr;
1956         if (infop->interpreter_loadmap_addr) {
1957             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1958         } else {
1959             regs->areg[6] = infop->pt_dynamic_addr;
1960         }
1961     }
1962 }
1963 
1964 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1965 #define ELF_NREG 128
1966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1967 
1968 enum {
1969     TARGET_REG_PC,
1970     TARGET_REG_PS,
1971     TARGET_REG_LBEG,
1972     TARGET_REG_LEND,
1973     TARGET_REG_LCOUNT,
1974     TARGET_REG_SAR,
1975     TARGET_REG_WINDOWSTART,
1976     TARGET_REG_WINDOWBASE,
1977     TARGET_REG_THREADPTR,
1978     TARGET_REG_AR0 = 64,
1979 };
1980 
1981 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1982                                const CPUXtensaState *env)
1983 {
1984     unsigned i;
1985 
1986     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1987     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1988     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1989     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1990     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1991     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1992     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1993     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1994     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1995     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1996     for (i = 0; i < env->config->nareg; ++i) {
1997         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1998     }
1999 }
2000 
2001 #define USE_ELF_CORE_DUMP
2002 #define ELF_EXEC_PAGESIZE       4096
2003 
2004 #endif /* TARGET_XTENSA */
2005 
2006 #ifdef TARGET_HEXAGON
2007 
2008 #define ELF_CLASS       ELFCLASS32
2009 #define ELF_ARCH        EM_HEXAGON
2010 
2011 static inline void init_thread(struct target_pt_regs *regs,
2012                                struct image_info *infop)
2013 {
2014     regs->sepc = infop->entry;
2015     regs->sp = infop->start_stack;
2016 }
2017 
2018 #endif /* TARGET_HEXAGON */
2019 
2020 #ifndef ELF_BASE_PLATFORM
2021 #define ELF_BASE_PLATFORM (NULL)
2022 #endif
2023 
2024 #ifndef ELF_PLATFORM
2025 #define ELF_PLATFORM (NULL)
2026 #endif
2027 
2028 #ifndef ELF_MACHINE
2029 #define ELF_MACHINE ELF_ARCH
2030 #endif
2031 
2032 #ifndef elf_check_arch
2033 #define elf_check_arch(x) ((x) == ELF_ARCH)
2034 #endif
2035 
2036 #ifndef elf_check_abi
2037 #define elf_check_abi(x) (1)
2038 #endif
2039 
2040 #ifndef ELF_HWCAP
2041 #define ELF_HWCAP 0
2042 #endif
2043 
2044 #ifndef STACK_GROWS_DOWN
2045 #define STACK_GROWS_DOWN 1
2046 #endif
2047 
2048 #ifndef STACK_ALIGNMENT
2049 #define STACK_ALIGNMENT 16
2050 #endif
2051 
2052 #ifdef TARGET_ABI32
2053 #undef ELF_CLASS
2054 #define ELF_CLASS ELFCLASS32
2055 #undef bswaptls
2056 #define bswaptls(ptr) bswap32s(ptr)
2057 #endif
2058 
2059 #ifndef EXSTACK_DEFAULT
2060 #define EXSTACK_DEFAULT false
2061 #endif
2062 
2063 #include "elf.h"
2064 
2065 /* We must delay the following stanzas until after "elf.h". */
2066 #if defined(TARGET_AARCH64)
2067 
2068 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2069                                     const uint32_t *data,
2070                                     struct image_info *info,
2071                                     Error **errp)
2072 {
2073     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2074         if (pr_datasz != sizeof(uint32_t)) {
2075             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2076             return false;
2077         }
2078         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2079         info->note_flags = *data;
2080     }
2081     return true;
2082 }
2083 #define ARCH_USE_GNU_PROPERTY 1
2084 
2085 #else
2086 
2087 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2088                                     const uint32_t *data,
2089                                     struct image_info *info,
2090                                     Error **errp)
2091 {
2092     g_assert_not_reached();
2093 }
2094 #define ARCH_USE_GNU_PROPERTY 0
2095 
2096 #endif
2097 
2098 struct exec
2099 {
2100     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2101     unsigned int a_text;   /* length of text, in bytes */
2102     unsigned int a_data;   /* length of data, in bytes */
2103     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2104     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2105     unsigned int a_entry;  /* start address */
2106     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2107     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2108 };
2109 
2110 
2111 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2112 #define OMAGIC 0407
2113 #define NMAGIC 0410
2114 #define ZMAGIC 0413
2115 #define QMAGIC 0314
2116 
2117 #define DLINFO_ITEMS 16
2118 
2119 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2120 {
2121     memcpy(to, from, n);
2122 }
2123 
2124 #ifdef BSWAP_NEEDED
2125 static void bswap_ehdr(struct elfhdr *ehdr)
2126 {
2127     bswap16s(&ehdr->e_type);            /* Object file type */
2128     bswap16s(&ehdr->e_machine);         /* Architecture */
2129     bswap32s(&ehdr->e_version);         /* Object file version */
2130     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2131     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2132     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2133     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2134     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2135     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2136     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2137     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2138     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2139     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2140 }
2141 
2142 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2143 {
2144     int i;
2145     for (i = 0; i < phnum; ++i, ++phdr) {
2146         bswap32s(&phdr->p_type);        /* Segment type */
2147         bswap32s(&phdr->p_flags);       /* Segment flags */
2148         bswaptls(&phdr->p_offset);      /* Segment file offset */
2149         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2150         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2151         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2152         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2153         bswaptls(&phdr->p_align);       /* Segment alignment */
2154     }
2155 }
2156 
2157 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2158 {
2159     int i;
2160     for (i = 0; i < shnum; ++i, ++shdr) {
2161         bswap32s(&shdr->sh_name);
2162         bswap32s(&shdr->sh_type);
2163         bswaptls(&shdr->sh_flags);
2164         bswaptls(&shdr->sh_addr);
2165         bswaptls(&shdr->sh_offset);
2166         bswaptls(&shdr->sh_size);
2167         bswap32s(&shdr->sh_link);
2168         bswap32s(&shdr->sh_info);
2169         bswaptls(&shdr->sh_addralign);
2170         bswaptls(&shdr->sh_entsize);
2171     }
2172 }
2173 
2174 static void bswap_sym(struct elf_sym *sym)
2175 {
2176     bswap32s(&sym->st_name);
2177     bswaptls(&sym->st_value);
2178     bswaptls(&sym->st_size);
2179     bswap16s(&sym->st_shndx);
2180 }
2181 
2182 #ifdef TARGET_MIPS
2183 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2184 {
2185     bswap16s(&abiflags->version);
2186     bswap32s(&abiflags->ases);
2187     bswap32s(&abiflags->isa_ext);
2188     bswap32s(&abiflags->flags1);
2189     bswap32s(&abiflags->flags2);
2190 }
2191 #endif
2192 #else
2193 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2194 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2195 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2196 static inline void bswap_sym(struct elf_sym *sym) { }
2197 #ifdef TARGET_MIPS
2198 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2199 #endif
2200 #endif
2201 
2202 #ifdef USE_ELF_CORE_DUMP
2203 static int elf_core_dump(int, const CPUArchState *);
2204 #endif /* USE_ELF_CORE_DUMP */
2205 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2206                          abi_ulong load_bias);
2207 
2208 /* Verify the portions of EHDR within E_IDENT for the target.
2209    This can be performed before bswapping the entire header.  */
2210 static bool elf_check_ident(struct elfhdr *ehdr)
2211 {
2212     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2213             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2214             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2215             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2216             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2217             && ehdr->e_ident[EI_DATA] == ELF_DATA
2218             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2219 }
2220 
2221 /* Verify the portions of EHDR outside of E_IDENT for the target.
2222    This has to wait until after bswapping the header.  */
2223 static bool elf_check_ehdr(struct elfhdr *ehdr)
2224 {
2225     return (elf_check_arch(ehdr->e_machine)
2226             && elf_check_abi(ehdr->e_flags)
2227             && ehdr->e_ehsize == sizeof(struct elfhdr)
2228             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2229             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2230 }
2231 
2232 /*
2233  * 'copy_elf_strings()' copies argument/envelope strings from user
2234  * memory to free pages in kernel mem. These are in a format ready
2235  * to be put directly into the top of new user memory.
2236  *
2237  */
2238 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2239                                   abi_ulong p, abi_ulong stack_limit)
2240 {
2241     char *tmp;
2242     int len, i;
2243     abi_ulong top = p;
2244 
2245     if (!p) {
2246         return 0;       /* bullet-proofing */
2247     }
2248 
2249     if (STACK_GROWS_DOWN) {
2250         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2251         for (i = argc - 1; i >= 0; --i) {
2252             tmp = argv[i];
2253             if (!tmp) {
2254                 fprintf(stderr, "VFS: argc is wrong");
2255                 exit(-1);
2256             }
2257             len = strlen(tmp) + 1;
2258             tmp += len;
2259 
2260             if (len > (p - stack_limit)) {
2261                 return 0;
2262             }
2263             while (len) {
2264                 int bytes_to_copy = (len > offset) ? offset : len;
2265                 tmp -= bytes_to_copy;
2266                 p -= bytes_to_copy;
2267                 offset -= bytes_to_copy;
2268                 len -= bytes_to_copy;
2269 
2270                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2271 
2272                 if (offset == 0) {
2273                     memcpy_to_target(p, scratch, top - p);
2274                     top = p;
2275                     offset = TARGET_PAGE_SIZE;
2276                 }
2277             }
2278         }
2279         if (p != top) {
2280             memcpy_to_target(p, scratch + offset, top - p);
2281         }
2282     } else {
2283         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2284         for (i = 0; i < argc; ++i) {
2285             tmp = argv[i];
2286             if (!tmp) {
2287                 fprintf(stderr, "VFS: argc is wrong");
2288                 exit(-1);
2289             }
2290             len = strlen(tmp) + 1;
2291             if (len > (stack_limit - p)) {
2292                 return 0;
2293             }
2294             while (len) {
2295                 int bytes_to_copy = (len > remaining) ? remaining : len;
2296 
2297                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2298 
2299                 tmp += bytes_to_copy;
2300                 remaining -= bytes_to_copy;
2301                 p += bytes_to_copy;
2302                 len -= bytes_to_copy;
2303 
2304                 if (remaining == 0) {
2305                     memcpy_to_target(top, scratch, p - top);
2306                     top = p;
2307                     remaining = TARGET_PAGE_SIZE;
2308                 }
2309             }
2310         }
2311         if (p != top) {
2312             memcpy_to_target(top, scratch, p - top);
2313         }
2314     }
2315 
2316     return p;
2317 }
2318 
2319 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2320  * argument/environment space. Newer kernels (>2.6.33) allow more,
2321  * dependent on stack size, but guarantee at least 32 pages for
2322  * backwards compatibility.
2323  */
2324 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2325 
2326 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2327                                  struct image_info *info)
2328 {
2329     abi_ulong size, error, guard;
2330     int prot;
2331 
2332     size = guest_stack_size;
2333     if (size < STACK_LOWER_LIMIT) {
2334         size = STACK_LOWER_LIMIT;
2335     }
2336 
2337     if (STACK_GROWS_DOWN) {
2338         guard = TARGET_PAGE_SIZE;
2339         if (guard < qemu_real_host_page_size()) {
2340             guard = qemu_real_host_page_size();
2341         }
2342     } else {
2343         /* no guard page for hppa target where stack grows upwards. */
2344         guard = 0;
2345     }
2346 
2347     prot = PROT_READ | PROT_WRITE;
2348     if (info->exec_stack) {
2349         prot |= PROT_EXEC;
2350     }
2351     error = target_mmap(0, size + guard, prot,
2352                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2353     if (error == -1) {
2354         perror("mmap stack");
2355         exit(-1);
2356     }
2357 
2358     /* We reserve one extra page at the top of the stack as guard.  */
2359     if (STACK_GROWS_DOWN) {
2360         target_mprotect(error, guard, PROT_NONE);
2361         info->stack_limit = error + guard;
2362         return info->stack_limit + size - sizeof(void *);
2363     } else {
2364         info->stack_limit = error + size;
2365         return error;
2366     }
2367 }
2368 
2369 /**
2370  * zero_bss:
2371  *
2372  * Map and zero the bss.  We need to explicitly zero any fractional pages
2373  * after the data section (i.e. bss).  Return false on mapping failure.
2374  */
2375 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2376                      int prot, Error **errp)
2377 {
2378     abi_ulong align_bss;
2379 
2380     /* We only expect writable bss; the code segment shouldn't need this. */
2381     if (!(prot & PROT_WRITE)) {
2382         error_setg(errp, "PT_LOAD with non-writable bss");
2383         return false;
2384     }
2385 
2386     align_bss = TARGET_PAGE_ALIGN(start_bss);
2387     end_bss = TARGET_PAGE_ALIGN(end_bss);
2388 
2389     if (start_bss < align_bss) {
2390         int flags = page_get_flags(start_bss);
2391 
2392         if (!(flags & PAGE_RWX)) {
2393             /*
2394              * The whole address space of the executable was reserved
2395              * at the start, therefore all pages will be VALID.
2396              * But assuming there are no PROT_NONE PT_LOAD segments,
2397              * a PROT_NONE page means no data all bss, and we can
2398              * simply extend the new anon mapping back to the start
2399              * of the page of bss.
2400              */
2401             align_bss -= TARGET_PAGE_SIZE;
2402         } else {
2403             /*
2404              * The start of the bss shares a page with something.
2405              * The only thing that we expect is the data section,
2406              * which would already be marked writable.
2407              * Overlapping the RX code segment seems malformed.
2408              */
2409             if (!(flags & PAGE_WRITE)) {
2410                 error_setg(errp, "PT_LOAD with bss overlapping "
2411                            "non-writable page");
2412                 return false;
2413             }
2414 
2415             /* The page is already mapped and writable. */
2416             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2417         }
2418     }
2419 
2420     if (align_bss < end_bss &&
2421         target_mmap(align_bss, end_bss - align_bss, prot,
2422                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2423         error_setg_errno(errp, errno, "Error mapping bss");
2424         return false;
2425     }
2426     return true;
2427 }
2428 
2429 #if defined(TARGET_ARM)
2430 static int elf_is_fdpic(struct elfhdr *exec)
2431 {
2432     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2433 }
2434 #elif defined(TARGET_XTENSA)
2435 static int elf_is_fdpic(struct elfhdr *exec)
2436 {
2437     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2438 }
2439 #else
2440 /* Default implementation, always false.  */
2441 static int elf_is_fdpic(struct elfhdr *exec)
2442 {
2443     return 0;
2444 }
2445 #endif
2446 
2447 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2448 {
2449     uint16_t n;
2450     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2451 
2452     /* elf32_fdpic_loadseg */
2453     n = info->nsegs;
2454     while (n--) {
2455         sp -= 12;
2456         put_user_u32(loadsegs[n].addr, sp+0);
2457         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2458         put_user_u32(loadsegs[n].p_memsz, sp+8);
2459     }
2460 
2461     /* elf32_fdpic_loadmap */
2462     sp -= 4;
2463     put_user_u16(0, sp+0); /* version */
2464     put_user_u16(info->nsegs, sp+2); /* nsegs */
2465 
2466     info->personality = PER_LINUX_FDPIC;
2467     info->loadmap_addr = sp;
2468 
2469     return sp;
2470 }
2471 
2472 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2473                                    struct elfhdr *exec,
2474                                    struct image_info *info,
2475                                    struct image_info *interp_info,
2476                                    struct image_info *vdso_info)
2477 {
2478     abi_ulong sp;
2479     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2480     int size;
2481     int i;
2482     abi_ulong u_rand_bytes;
2483     uint8_t k_rand_bytes[16];
2484     abi_ulong u_platform, u_base_platform;
2485     const char *k_platform, *k_base_platform;
2486     const int n = sizeof(elf_addr_t);
2487 
2488     sp = p;
2489 
2490     /* Needs to be before we load the env/argc/... */
2491     if (elf_is_fdpic(exec)) {
2492         /* Need 4 byte alignment for these structs */
2493         sp &= ~3;
2494         sp = loader_build_fdpic_loadmap(info, sp);
2495         info->other_info = interp_info;
2496         if (interp_info) {
2497             interp_info->other_info = info;
2498             sp = loader_build_fdpic_loadmap(interp_info, sp);
2499             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2500             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2501         } else {
2502             info->interpreter_loadmap_addr = 0;
2503             info->interpreter_pt_dynamic_addr = 0;
2504         }
2505     }
2506 
2507     u_base_platform = 0;
2508     k_base_platform = ELF_BASE_PLATFORM;
2509     if (k_base_platform) {
2510         size_t len = strlen(k_base_platform) + 1;
2511         if (STACK_GROWS_DOWN) {
2512             sp -= (len + n - 1) & ~(n - 1);
2513             u_base_platform = sp;
2514             /* FIXME - check return value of memcpy_to_target() for failure */
2515             memcpy_to_target(sp, k_base_platform, len);
2516         } else {
2517             memcpy_to_target(sp, k_base_platform, len);
2518             u_base_platform = sp;
2519             sp += len + 1;
2520         }
2521     }
2522 
2523     u_platform = 0;
2524     k_platform = ELF_PLATFORM;
2525     if (k_platform) {
2526         size_t len = strlen(k_platform) + 1;
2527         if (STACK_GROWS_DOWN) {
2528             sp -= (len + n - 1) & ~(n - 1);
2529             u_platform = sp;
2530             /* FIXME - check return value of memcpy_to_target() for failure */
2531             memcpy_to_target(sp, k_platform, len);
2532         } else {
2533             memcpy_to_target(sp, k_platform, len);
2534             u_platform = sp;
2535             sp += len + 1;
2536         }
2537     }
2538 
2539     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2540      * the argv and envp pointers.
2541      */
2542     if (STACK_GROWS_DOWN) {
2543         sp = QEMU_ALIGN_DOWN(sp, 16);
2544     } else {
2545         sp = QEMU_ALIGN_UP(sp, 16);
2546     }
2547 
2548     /*
2549      * Generate 16 random bytes for userspace PRNG seeding.
2550      */
2551     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2552     if (STACK_GROWS_DOWN) {
2553         sp -= 16;
2554         u_rand_bytes = sp;
2555         /* FIXME - check return value of memcpy_to_target() for failure */
2556         memcpy_to_target(sp, k_rand_bytes, 16);
2557     } else {
2558         memcpy_to_target(sp, k_rand_bytes, 16);
2559         u_rand_bytes = sp;
2560         sp += 16;
2561     }
2562 
2563     size = (DLINFO_ITEMS + 1) * 2;
2564     if (k_base_platform) {
2565         size += 2;
2566     }
2567     if (k_platform) {
2568         size += 2;
2569     }
2570     if (vdso_info) {
2571         size += 2;
2572     }
2573 #ifdef DLINFO_ARCH_ITEMS
2574     size += DLINFO_ARCH_ITEMS * 2;
2575 #endif
2576 #ifdef ELF_HWCAP2
2577     size += 2;
2578 #endif
2579     info->auxv_len = size * n;
2580 
2581     size += envc + argc + 2;
2582     size += 1;  /* argc itself */
2583     size *= n;
2584 
2585     /* Allocate space and finalize stack alignment for entry now.  */
2586     if (STACK_GROWS_DOWN) {
2587         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2588         sp = u_argc;
2589     } else {
2590         u_argc = sp;
2591         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2592     }
2593 
2594     u_argv = u_argc + n;
2595     u_envp = u_argv + (argc + 1) * n;
2596     u_auxv = u_envp + (envc + 1) * n;
2597     info->saved_auxv = u_auxv;
2598     info->argc = argc;
2599     info->envc = envc;
2600     info->argv = u_argv;
2601     info->envp = u_envp;
2602 
2603     /* This is correct because Linux defines
2604      * elf_addr_t as Elf32_Off / Elf64_Off
2605      */
2606 #define NEW_AUX_ENT(id, val) do {               \
2607         put_user_ual(id, u_auxv);  u_auxv += n; \
2608         put_user_ual(val, u_auxv); u_auxv += n; \
2609     } while(0)
2610 
2611 #ifdef ARCH_DLINFO
2612     /*
2613      * ARCH_DLINFO must come first so platform specific code can enforce
2614      * special alignment requirements on the AUXV if necessary (eg. PPC).
2615      */
2616     ARCH_DLINFO;
2617 #endif
2618     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2619      * on info->auxv_len will trigger.
2620      */
2621     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2622     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2623     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2624     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2625     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2626     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2627     NEW_AUX_ENT(AT_ENTRY, info->entry);
2628     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2629     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2630     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2631     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2632     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2633     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2634     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2635     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2636     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2637 
2638 #ifdef ELF_HWCAP2
2639     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2640 #endif
2641 
2642     if (u_base_platform) {
2643         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2644     }
2645     if (u_platform) {
2646         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2647     }
2648     if (vdso_info) {
2649         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2650     }
2651     NEW_AUX_ENT (AT_NULL, 0);
2652 #undef NEW_AUX_ENT
2653 
2654     /* Check that our initial calculation of the auxv length matches how much
2655      * we actually put into it.
2656      */
2657     assert(info->auxv_len == u_auxv - info->saved_auxv);
2658 
2659     put_user_ual(argc, u_argc);
2660 
2661     p = info->arg_strings;
2662     for (i = 0; i < argc; ++i) {
2663         put_user_ual(p, u_argv);
2664         u_argv += n;
2665         p += target_strlen(p) + 1;
2666     }
2667     put_user_ual(0, u_argv);
2668 
2669     p = info->env_strings;
2670     for (i = 0; i < envc; ++i) {
2671         put_user_ual(p, u_envp);
2672         u_envp += n;
2673         p += target_strlen(p) + 1;
2674     }
2675     put_user_ual(0, u_envp);
2676 
2677     return sp;
2678 }
2679 
2680 #if defined(HI_COMMPAGE)
2681 #define LO_COMMPAGE -1
2682 #elif defined(LO_COMMPAGE)
2683 #define HI_COMMPAGE 0
2684 #else
2685 #define HI_COMMPAGE 0
2686 #define LO_COMMPAGE -1
2687 #ifndef INIT_GUEST_COMMPAGE
2688 #define init_guest_commpage() true
2689 #endif
2690 #endif
2691 
2692 /**
2693  * pgb_try_mmap:
2694  * @addr: host start address
2695  * @addr_last: host last address
2696  * @keep: do not unmap the probe region
2697  *
2698  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2699  * return 0 if it is not available to map, and -1 on mmap error.
2700  * If @keep, the region is left mapped on success, otherwise unmapped.
2701  */
2702 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2703 {
2704     size_t size = addr_last - addr + 1;
2705     void *p = mmap((void *)addr, size, PROT_NONE,
2706                    MAP_ANONYMOUS | MAP_PRIVATE |
2707                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2708     int ret;
2709 
2710     if (p == MAP_FAILED) {
2711         return errno == EEXIST ? 0 : -1;
2712     }
2713     ret = p == (void *)addr;
2714     if (!keep || !ret) {
2715         munmap(p, size);
2716     }
2717     return ret;
2718 }
2719 
2720 /**
2721  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2722  * @addr: host address
2723  * @addr_last: host last address
2724  * @brk: host brk
2725  *
2726  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2727  */
2728 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2729                                  uintptr_t brk, bool keep)
2730 {
2731     uintptr_t brk_last = brk + 16 * MiB - 1;
2732 
2733     /* Do not map anything close to the host brk. */
2734     if (addr <= brk_last && brk <= addr_last) {
2735         return 0;
2736     }
2737     return pgb_try_mmap(addr, addr_last, keep);
2738 }
2739 
2740 /**
2741  * pgb_try_mmap_set:
2742  * @ga: set of guest addrs
2743  * @base: guest_base
2744  * @brk: host brk
2745  *
2746  * Return true if all @ga can be mapped by the host at @base.
2747  * On success, retain the mapping at index 0 for reserved_va.
2748  */
2749 
2750 typedef struct PGBAddrs {
2751     uintptr_t bounds[3][2]; /* start/last pairs */
2752     int nbounds;
2753 } PGBAddrs;
2754 
2755 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2756 {
2757     for (int i = ga->nbounds - 1; i >= 0; --i) {
2758         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2759                                   ga->bounds[i][1] + base,
2760                                   brk, i == 0 && reserved_va) <= 0) {
2761             return false;
2762         }
2763     }
2764     return true;
2765 }
2766 
2767 /**
2768  * pgb_addr_set:
2769  * @ga: output set of guest addrs
2770  * @guest_loaddr: guest image low address
2771  * @guest_loaddr: guest image high address
2772  * @identity: create for identity mapping
2773  *
2774  * Fill in @ga with the image, COMMPAGE and NULL page.
2775  */
2776 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2777                          abi_ulong guest_hiaddr, bool try_identity)
2778 {
2779     int n;
2780 
2781     /*
2782      * With a low commpage, or a guest mapped very low,
2783      * we may not be able to use the identity map.
2784      */
2785     if (try_identity) {
2786         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2787             return false;
2788         }
2789         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2790             return false;
2791         }
2792     }
2793 
2794     memset(ga, 0, sizeof(*ga));
2795     n = 0;
2796 
2797     if (reserved_va) {
2798         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2799         ga->bounds[n][1] = reserved_va;
2800         n++;
2801         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2802     } else {
2803         /* Add any LO_COMMPAGE or NULL page. */
2804         if (LO_COMMPAGE != -1) {
2805             ga->bounds[n][0] = 0;
2806             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2807             n++;
2808         } else if (!try_identity) {
2809             ga->bounds[n][0] = 0;
2810             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2811             n++;
2812         }
2813 
2814         /* Add the guest image for ET_EXEC. */
2815         if (guest_loaddr) {
2816             ga->bounds[n][0] = guest_loaddr;
2817             ga->bounds[n][1] = guest_hiaddr;
2818             n++;
2819         }
2820     }
2821 
2822     /*
2823      * Temporarily disable
2824      *   "comparison is always false due to limited range of data type"
2825      * due to comparison between unsigned and (possible) 0.
2826      */
2827 #pragma GCC diagnostic push
2828 #pragma GCC diagnostic ignored "-Wtype-limits"
2829 
2830     /* Add any HI_COMMPAGE not covered by reserved_va. */
2831     if (reserved_va < HI_COMMPAGE) {
2832         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2833         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2834         n++;
2835     }
2836 
2837 #pragma GCC diagnostic pop
2838 
2839     ga->nbounds = n;
2840     return true;
2841 }
2842 
2843 static void pgb_fail_in_use(const char *image_name)
2844 {
2845     error_report("%s: requires virtual address space that is in use "
2846                  "(omit the -B option or choose a different value)",
2847                  image_name);
2848     exit(EXIT_FAILURE);
2849 }
2850 
2851 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2852                       uintptr_t guest_hiaddr, uintptr_t align)
2853 {
2854     PGBAddrs ga;
2855     uintptr_t brk = (uintptr_t)sbrk(0);
2856 
2857     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2858         fprintf(stderr, "Requested guest base %p does not satisfy "
2859                 "host minimum alignment (0x%" PRIxPTR ")\n",
2860                 (void *)guest_base, align);
2861         exit(EXIT_FAILURE);
2862     }
2863 
2864     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2865         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2866         pgb_fail_in_use(image_name);
2867     }
2868 }
2869 
2870 /**
2871  * pgb_find_fallback:
2872  *
2873  * This is a fallback method for finding holes in the host address space
2874  * if we don't have the benefit of being able to access /proc/self/map.
2875  * It can potentially take a very long time as we can only dumbly iterate
2876  * up the host address space seeing if the allocation would work.
2877  */
2878 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2879                                    uintptr_t brk)
2880 {
2881     /* TODO: come up with a better estimate of how much to skip. */
2882     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2883 
2884     for (uintptr_t base = skip; ; base += skip) {
2885         base = ROUND_UP(base, align);
2886         if (pgb_try_mmap_set(ga, base, brk)) {
2887             return base;
2888         }
2889         if (base >= -skip) {
2890             return -1;
2891         }
2892     }
2893 }
2894 
2895 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2896                                IntervalTreeRoot *root)
2897 {
2898     for (int i = ga->nbounds - 1; i >= 0; --i) {
2899         uintptr_t s = base + ga->bounds[i][0];
2900         uintptr_t l = base + ga->bounds[i][1];
2901         IntervalTreeNode *n;
2902 
2903         if (l < s) {
2904             /* Wraparound. Skip to advance S to mmap_min_addr. */
2905             return mmap_min_addr - s;
2906         }
2907 
2908         n = interval_tree_iter_first(root, s, l);
2909         if (n != NULL) {
2910             /* Conflict.  Skip to advance S to LAST + 1. */
2911             return n->last - s + 1;
2912         }
2913     }
2914     return 0;  /* success */
2915 }
2916 
2917 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2918                                 uintptr_t align, uintptr_t brk)
2919 {
2920     uintptr_t last = sizeof(uintptr_t) == 4 ? MiB : GiB;
2921     uintptr_t base, skip;
2922 
2923     while (true) {
2924         base = ROUND_UP(last, align);
2925         if (base < last) {
2926             return -1;
2927         }
2928 
2929         skip = pgb_try_itree(ga, base, root);
2930         if (skip == 0) {
2931             break;
2932         }
2933 
2934         last = base + skip;
2935         if (last < base) {
2936             return -1;
2937         }
2938     }
2939 
2940     /*
2941      * We've chosen 'base' based on holes in the interval tree,
2942      * but we don't yet know if it is a valid host address.
2943      * Because it is the first matching hole, if the host addresses
2944      * are invalid we know there are no further matches.
2945      */
2946     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2947 }
2948 
2949 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2950                         uintptr_t guest_hiaddr, uintptr_t align)
2951 {
2952     IntervalTreeRoot *root;
2953     uintptr_t brk, ret;
2954     PGBAddrs ga;
2955 
2956     /* Try the identity map first. */
2957     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2958         brk = (uintptr_t)sbrk(0);
2959         if (pgb_try_mmap_set(&ga, 0, brk)) {
2960             guest_base = 0;
2961             return;
2962         }
2963     }
2964 
2965     /*
2966      * Rebuild the address set for non-identity map.
2967      * This differs in the mapping of the guest NULL page.
2968      */
2969     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2970 
2971     root = read_self_maps();
2972 
2973     /* Read brk after we've read the maps, which will malloc. */
2974     brk = (uintptr_t)sbrk(0);
2975 
2976     if (!root) {
2977         ret = pgb_find_fallback(&ga, align, brk);
2978     } else {
2979         /*
2980          * Reserve the area close to the host brk.
2981          * This will be freed with the rest of the tree.
2982          */
2983         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2984         b->start = brk;
2985         b->last = brk + 16 * MiB - 1;
2986         interval_tree_insert(b, root);
2987 
2988         ret = pgb_find_itree(&ga, root, align, brk);
2989         free_self_maps(root);
2990     }
2991 
2992     if (ret == -1) {
2993         int w = TARGET_LONG_BITS / 4;
2994 
2995         error_report("%s: Unable to find a guest_base to satisfy all "
2996                      "guest address mapping requirements", image_name);
2997 
2998         for (int i = 0; i < ga.nbounds; ++i) {
2999             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
3000                          w, (uint64_t)ga.bounds[i][0],
3001                          w, (uint64_t)ga.bounds[i][1]);
3002         }
3003         exit(EXIT_FAILURE);
3004     }
3005     guest_base = ret;
3006 }
3007 
3008 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3009                       abi_ulong guest_hiaddr)
3010 {
3011     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3012     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3013 
3014     /* Sanity check the guest binary. */
3015     if (reserved_va) {
3016         if (guest_hiaddr > reserved_va) {
3017             error_report("%s: requires more than reserved virtual "
3018                          "address space (0x%" PRIx64 " > 0x%lx)",
3019                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3020             exit(EXIT_FAILURE);
3021         }
3022     } else {
3023         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3024             error_report("%s: requires more virtual address space "
3025                          "than the host can provide (0x%" PRIx64 ")",
3026                          image_name, (uint64_t)guest_hiaddr + 1);
3027             exit(EXIT_FAILURE);
3028         }
3029     }
3030 
3031     if (have_guest_base) {
3032         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3033     } else {
3034         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3035     }
3036 
3037     /* Reserve and initialize the commpage. */
3038     if (!init_guest_commpage()) {
3039         /* We have already probed for the commpage being free. */
3040         g_assert_not_reached();
3041     }
3042 
3043     assert(QEMU_IS_ALIGNED(guest_base, align));
3044     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3045                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3046 }
3047 
3048 enum {
3049     /* The string "GNU\0" as a magic number. */
3050     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3051     NOTE_DATA_SZ = 1 * KiB,
3052     NOTE_NAME_SZ = 4,
3053     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3054 };
3055 
3056 /*
3057  * Process a single gnu_property entry.
3058  * Return false for error.
3059  */
3060 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3061                                struct image_info *info, bool have_prev_type,
3062                                uint32_t *prev_type, Error **errp)
3063 {
3064     uint32_t pr_type, pr_datasz, step;
3065 
3066     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3067         goto error_data;
3068     }
3069     datasz -= *off;
3070     data += *off / sizeof(uint32_t);
3071 
3072     if (datasz < 2 * sizeof(uint32_t)) {
3073         goto error_data;
3074     }
3075     pr_type = data[0];
3076     pr_datasz = data[1];
3077     data += 2;
3078     datasz -= 2 * sizeof(uint32_t);
3079     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3080     if (step > datasz) {
3081         goto error_data;
3082     }
3083 
3084     /* Properties are supposed to be unique and sorted on pr_type. */
3085     if (have_prev_type && pr_type <= *prev_type) {
3086         if (pr_type == *prev_type) {
3087             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3088         } else {
3089             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3090         }
3091         return false;
3092     }
3093     *prev_type = pr_type;
3094 
3095     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3096         return false;
3097     }
3098 
3099     *off += 2 * sizeof(uint32_t) + step;
3100     return true;
3101 
3102  error_data:
3103     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3104     return false;
3105 }
3106 
3107 /* Process NT_GNU_PROPERTY_TYPE_0. */
3108 static bool parse_elf_properties(const ImageSource *src,
3109                                  struct image_info *info,
3110                                  const struct elf_phdr *phdr,
3111                                  Error **errp)
3112 {
3113     union {
3114         struct elf_note nhdr;
3115         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3116     } note;
3117 
3118     int n, off, datasz;
3119     bool have_prev_type;
3120     uint32_t prev_type;
3121 
3122     /* Unless the arch requires properties, ignore them. */
3123     if (!ARCH_USE_GNU_PROPERTY) {
3124         return true;
3125     }
3126 
3127     /* If the properties are crazy large, that's too bad. */
3128     n = phdr->p_filesz;
3129     if (n > sizeof(note)) {
3130         error_setg(errp, "PT_GNU_PROPERTY too large");
3131         return false;
3132     }
3133     if (n < sizeof(note.nhdr)) {
3134         error_setg(errp, "PT_GNU_PROPERTY too small");
3135         return false;
3136     }
3137 
3138     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3139         return false;
3140     }
3141 
3142     /*
3143      * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t.
3144      * Swap most of them now, beyond the header and namesz.
3145      */
3146 #ifdef BSWAP_NEEDED
3147     for (int i = 4; i < n / 4; i++) {
3148         bswap32s(note.data + i);
3149     }
3150 #endif
3151 
3152     /*
3153      * Note that nhdr is 3 words, and that the "name" described by namesz
3154      * immediately follows nhdr and is thus at the 4th word.  Further, all
3155      * of the inputs to the kernel's round_up are multiples of 4.
3156      */
3157     if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 ||
3158         tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ ||
3159         note.data[3] != GNU0_MAGIC) {
3160         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3161         return false;
3162     }
3163     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3164 
3165     datasz = tswap32(note.nhdr.n_descsz) + off;
3166     if (datasz > n) {
3167         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3168         return false;
3169     }
3170 
3171     have_prev_type = false;
3172     prev_type = 0;
3173     while (1) {
3174         if (off == datasz) {
3175             return true;  /* end, exit ok */
3176         }
3177         if (!parse_elf_property(note.data, &off, datasz, info,
3178                                 have_prev_type, &prev_type, errp)) {
3179             return false;
3180         }
3181         have_prev_type = true;
3182     }
3183 }
3184 
3185 /**
3186  * load_elf_image: Load an ELF image into the address space.
3187  * @image_name: the filename of the image, to use in error messages.
3188  * @src: the ImageSource from which to read.
3189  * @info: info collected from the loaded image.
3190  * @ehdr: the ELF header, not yet bswapped.
3191  * @pinterp_name: record any PT_INTERP string found.
3192  *
3193  * On return: @info values will be filled in, as necessary or available.
3194  */
3195 
3196 static void load_elf_image(const char *image_name, const ImageSource *src,
3197                            struct image_info *info, struct elfhdr *ehdr,
3198                            char **pinterp_name)
3199 {
3200     g_autofree struct elf_phdr *phdr = NULL;
3201     abi_ulong load_addr, load_bias, loaddr, hiaddr, error, align;
3202     size_t reserve_size, align_size;
3203     int i, prot_exec;
3204     Error *err = NULL;
3205 
3206     /*
3207      * First of all, some simple consistency checks.
3208      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3209      * for later use by load_elf_binary and create_elf_tables.
3210      */
3211     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3212         goto exit_errmsg;
3213     }
3214     if (!elf_check_ident(ehdr)) {
3215         error_setg(&err, "Invalid ELF image for this architecture");
3216         goto exit_errmsg;
3217     }
3218     bswap_ehdr(ehdr);
3219     if (!elf_check_ehdr(ehdr)) {
3220         error_setg(&err, "Invalid ELF image for this architecture");
3221         goto exit_errmsg;
3222     }
3223 
3224     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3225                              ehdr->e_phnum * sizeof(struct elf_phdr),
3226                              src, &err);
3227     if (phdr == NULL) {
3228         goto exit_errmsg;
3229     }
3230     bswap_phdr(phdr, ehdr->e_phnum);
3231 
3232     info->nsegs = 0;
3233     info->pt_dynamic_addr = 0;
3234 
3235     mmap_lock();
3236 
3237     /*
3238      * Find the maximum size of the image and allocate an appropriate
3239      * amount of memory to handle that.  Locate the interpreter, if any.
3240      */
3241     loaddr = -1, hiaddr = 0;
3242     align = 0;
3243     info->exec_stack = EXSTACK_DEFAULT;
3244     for (i = 0; i < ehdr->e_phnum; ++i) {
3245         struct elf_phdr *eppnt = phdr + i;
3246         if (eppnt->p_type == PT_LOAD) {
3247             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3248             if (a < loaddr) {
3249                 loaddr = a;
3250             }
3251             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3252             if (a > hiaddr) {
3253                 hiaddr = a;
3254             }
3255             ++info->nsegs;
3256             align |= eppnt->p_align;
3257         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3258             g_autofree char *interp_name = NULL;
3259 
3260             if (*pinterp_name) {
3261                 error_setg(&err, "Multiple PT_INTERP entries");
3262                 goto exit_errmsg;
3263             }
3264 
3265             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3266                                             src, &err);
3267             if (interp_name == NULL) {
3268                 goto exit_errmsg;
3269             }
3270             if (interp_name[eppnt->p_filesz - 1] != 0) {
3271                 error_setg(&err, "Invalid PT_INTERP entry");
3272                 goto exit_errmsg;
3273             }
3274             *pinterp_name = g_steal_pointer(&interp_name);
3275         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3276             if (!parse_elf_properties(src, info, eppnt, &err)) {
3277                 goto exit_errmsg;
3278             }
3279         } else if (eppnt->p_type == PT_GNU_STACK) {
3280             info->exec_stack = eppnt->p_flags & PF_X;
3281         }
3282     }
3283 
3284     load_addr = loaddr;
3285 
3286     align = pow2ceil(align);
3287 
3288     if (pinterp_name != NULL) {
3289         if (ehdr->e_type == ET_EXEC) {
3290             /*
3291              * Make sure that the low address does not conflict with
3292              * MMAP_MIN_ADDR or the QEMU application itself.
3293              */
3294             probe_guest_base(image_name, loaddr, hiaddr);
3295         } else {
3296             /*
3297              * The binary is dynamic, but we still need to
3298              * select guest_base.  In this case we pass a size.
3299              */
3300             probe_guest_base(image_name, 0, hiaddr - loaddr);
3301 
3302             /*
3303              * Avoid collision with the loader by providing a different
3304              * default load address.
3305              */
3306             load_addr += elf_et_dyn_base;
3307 
3308             /*
3309              * TODO: Better support for mmap alignment is desirable.
3310              * Since we do not have complete control over the guest
3311              * address space, we prefer the kernel to choose some address
3312              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3313              */
3314             if (align) {
3315                 load_addr &= -align;
3316             }
3317         }
3318     }
3319 
3320     /*
3321      * Reserve address space for all of this.
3322      *
3323      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3324      * exactly the address range that is required.  Without reserved_va,
3325      * the guest address space is not isolated.  We have attempted to avoid
3326      * conflict with the host program itself via probe_guest_base, but using
3327      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3328      *
3329      * Otherwise this is ET_DYN, and we are searching for a location
3330      * that can hold the memory space required.  If the image is
3331      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3332      * honor that address if it happens to be free.
3333      *
3334      * In both cases, we will overwrite pages in this range with mappings
3335      * from the executable.
3336      */
3337     reserve_size = (size_t)hiaddr - loaddr + 1;
3338     align_size = reserve_size;
3339 
3340     if (ehdr->e_type != ET_EXEC && align > qemu_real_host_page_size()) {
3341         align_size += align - 1;
3342     }
3343 
3344     load_addr = target_mmap(load_addr, align_size, PROT_NONE,
3345                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3346                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3347                             -1, 0);
3348     if (load_addr == -1) {
3349         goto exit_mmap;
3350     }
3351 
3352     if (align_size != reserve_size) {
3353         abi_ulong align_addr = ROUND_UP(load_addr, align);
3354         abi_ulong align_end = TARGET_PAGE_ALIGN(align_addr + reserve_size);
3355         abi_ulong load_end = TARGET_PAGE_ALIGN(load_addr + align_size);
3356 
3357         if (align_addr != load_addr) {
3358             target_munmap(load_addr, align_addr - load_addr);
3359         }
3360         if (align_end != load_end) {
3361             target_munmap(align_end, load_end - align_end);
3362         }
3363         load_addr = align_addr;
3364     }
3365 
3366     load_bias = load_addr - loaddr;
3367 
3368     if (elf_is_fdpic(ehdr)) {
3369         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3370             g_malloc(sizeof(*loadsegs) * info->nsegs);
3371 
3372         for (i = 0; i < ehdr->e_phnum; ++i) {
3373             switch (phdr[i].p_type) {
3374             case PT_DYNAMIC:
3375                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3376                 break;
3377             case PT_LOAD:
3378                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3379                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3380                 loadsegs->p_memsz = phdr[i].p_memsz;
3381                 ++loadsegs;
3382                 break;
3383             }
3384         }
3385     }
3386 
3387     info->load_bias = load_bias;
3388     info->code_offset = load_bias;
3389     info->data_offset = load_bias;
3390     info->load_addr = load_addr;
3391     info->entry = ehdr->e_entry + load_bias;
3392     info->start_code = -1;
3393     info->end_code = 0;
3394     info->start_data = -1;
3395     info->end_data = 0;
3396     /* Usual start for brk is after all sections of the main executable. */
3397     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3398     info->elf_flags = ehdr->e_flags;
3399 
3400     prot_exec = PROT_EXEC;
3401 #ifdef TARGET_AARCH64
3402     /*
3403      * If the BTI feature is present, this indicates that the executable
3404      * pages of the startup binary should be mapped with PROT_BTI, so that
3405      * branch targets are enforced.
3406      *
3407      * The startup binary is either the interpreter or the static executable.
3408      * The interpreter is responsible for all pages of a dynamic executable.
3409      *
3410      * Elf notes are backward compatible to older cpus.
3411      * Do not enable BTI unless it is supported.
3412      */
3413     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3414         && (pinterp_name == NULL || *pinterp_name == 0)
3415         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3416         prot_exec |= TARGET_PROT_BTI;
3417     }
3418 #endif
3419 
3420     for (i = 0; i < ehdr->e_phnum; i++) {
3421         struct elf_phdr *eppnt = phdr + i;
3422         if (eppnt->p_type == PT_LOAD) {
3423             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3424             int elf_prot = 0;
3425 
3426             if (eppnt->p_flags & PF_R) {
3427                 elf_prot |= PROT_READ;
3428             }
3429             if (eppnt->p_flags & PF_W) {
3430                 elf_prot |= PROT_WRITE;
3431             }
3432             if (eppnt->p_flags & PF_X) {
3433                 elf_prot |= prot_exec;
3434             }
3435 
3436             vaddr = load_bias + eppnt->p_vaddr;
3437             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3438             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3439 
3440             vaddr_ef = vaddr + eppnt->p_filesz;
3441             vaddr_em = vaddr + eppnt->p_memsz;
3442 
3443             /*
3444              * Some segments may be completely empty, with a non-zero p_memsz
3445              * but no backing file segment.
3446              */
3447             if (eppnt->p_filesz != 0) {
3448                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3449                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3450                                     src, eppnt->p_offset - vaddr_po);
3451                 if (error == -1) {
3452                     goto exit_mmap;
3453                 }
3454             }
3455 
3456             /* If the load segment requests extra zeros (e.g. bss), map it. */
3457             if (vaddr_ef < vaddr_em &&
3458                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3459                 goto exit_errmsg;
3460             }
3461 
3462             /* Find the full program boundaries.  */
3463             if (elf_prot & PROT_EXEC) {
3464                 if (vaddr < info->start_code) {
3465                     info->start_code = vaddr;
3466                 }
3467                 if (vaddr_ef > info->end_code) {
3468                     info->end_code = vaddr_ef;
3469                 }
3470             }
3471             if (elf_prot & PROT_WRITE) {
3472                 if (vaddr < info->start_data) {
3473                     info->start_data = vaddr;
3474                 }
3475                 if (vaddr_ef > info->end_data) {
3476                     info->end_data = vaddr_ef;
3477                 }
3478             }
3479 #ifdef TARGET_MIPS
3480         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3481             Mips_elf_abiflags_v0 abiflags;
3482 
3483             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3484                              src, &err)) {
3485                 goto exit_errmsg;
3486             }
3487             bswap_mips_abiflags(&abiflags);
3488             info->fp_abi = abiflags.fp_abi;
3489 #endif
3490         }
3491     }
3492 
3493     if (info->end_data == 0) {
3494         info->start_data = info->end_code;
3495         info->end_data = info->end_code;
3496     }
3497 
3498     if (qemu_log_enabled()) {
3499         load_symbols(ehdr, src, load_bias);
3500     }
3501 
3502     debuginfo_report_elf(image_name, src->fd, load_bias);
3503 
3504     mmap_unlock();
3505 
3506     close(src->fd);
3507     return;
3508 
3509  exit_mmap:
3510     error_setg_errno(&err, errno, "Error mapping file");
3511     goto exit_errmsg;
3512  exit_errmsg:
3513     error_reportf_err(err, "%s: ", image_name);
3514     exit(-1);
3515 }
3516 
3517 static void load_elf_interp(const char *filename, struct image_info *info,
3518                             char bprm_buf[BPRM_BUF_SIZE])
3519 {
3520     struct elfhdr ehdr;
3521     ImageSource src;
3522     int fd, retval;
3523     Error *err = NULL;
3524 
3525     fd = open(path(filename), O_RDONLY);
3526     if (fd < 0) {
3527         error_setg_file_open(&err, errno, filename);
3528         error_report_err(err);
3529         exit(-1);
3530     }
3531 
3532     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3533     if (retval < 0) {
3534         error_setg_errno(&err, errno, "Error reading file header");
3535         error_reportf_err(err, "%s: ", filename);
3536         exit(-1);
3537     }
3538 
3539     src.fd = fd;
3540     src.cache = bprm_buf;
3541     src.cache_size = retval;
3542 
3543     load_elf_image(filename, &src, info, &ehdr, NULL);
3544 }
3545 
3546 #ifndef vdso_image_info
3547 #ifdef VDSO_HEADER
3548 #include VDSO_HEADER
3549 #define  vdso_image_info(flags)  &vdso_image_info
3550 #else
3551 #define  vdso_image_info(flags)  NULL
3552 #endif /* VDSO_HEADER */
3553 #endif /* vdso_image_info */
3554 
3555 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3556 {
3557     ImageSource src;
3558     struct elfhdr ehdr;
3559     abi_ulong load_bias, load_addr;
3560 
3561     src.fd = -1;
3562     src.cache = vdso->image;
3563     src.cache_size = vdso->image_size;
3564 
3565     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3566     load_addr = info->load_addr;
3567     load_bias = info->load_bias;
3568 
3569     /*
3570      * We need to relocate the VDSO image.  The one built into the kernel
3571      * is built for a fixed address.  The one built for QEMU is not, since
3572      * that requires close control of the guest address space.
3573      * We pre-processed the image to locate all of the addresses that need
3574      * to be updated.
3575      */
3576     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3577         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3578         *addr = tswapal(tswapal(*addr) + load_bias);
3579     }
3580 
3581     /* Install signal trampolines, if present. */
3582     if (vdso->sigreturn_ofs) {
3583         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3584     }
3585     if (vdso->rt_sigreturn_ofs) {
3586         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3587     }
3588 
3589     /* Remove write from VDSO segment. */
3590     target_mprotect(info->start_data, info->end_data - info->start_data,
3591                     PROT_READ | PROT_EXEC);
3592 }
3593 
3594 static int symfind(const void *s0, const void *s1)
3595 {
3596     struct elf_sym *sym = (struct elf_sym *)s1;
3597     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3598     int result = 0;
3599 
3600     if (addr < sym->st_value) {
3601         result = -1;
3602     } else if (addr >= sym->st_value + sym->st_size) {
3603         result = 1;
3604     }
3605     return result;
3606 }
3607 
3608 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3609 {
3610 #if ELF_CLASS == ELFCLASS32
3611     struct elf_sym *syms = s->disas_symtab.elf32;
3612 #else
3613     struct elf_sym *syms = s->disas_symtab.elf64;
3614 #endif
3615 
3616     // binary search
3617     struct elf_sym *sym;
3618 
3619     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3620     if (sym != NULL) {
3621         return s->disas_strtab + sym->st_name;
3622     }
3623 
3624     return "";
3625 }
3626 
3627 /* FIXME: This should use elf_ops.h.inc  */
3628 static int symcmp(const void *s0, const void *s1)
3629 {
3630     struct elf_sym *sym0 = (struct elf_sym *)s0;
3631     struct elf_sym *sym1 = (struct elf_sym *)s1;
3632     return (sym0->st_value < sym1->st_value)
3633         ? -1
3634         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3635 }
3636 
3637 /* Best attempt to load symbols from this ELF object. */
3638 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3639                          abi_ulong load_bias)
3640 {
3641     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3642     g_autofree struct elf_shdr *shdr = NULL;
3643     char *strings = NULL;
3644     struct elf_sym *syms = NULL;
3645     struct elf_sym *new_syms;
3646     uint64_t segsz;
3647 
3648     shnum = hdr->e_shnum;
3649     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3650                              src, NULL);
3651     if (shdr == NULL) {
3652         return;
3653     }
3654 
3655     bswap_shdr(shdr, shnum);
3656     for (i = 0; i < shnum; ++i) {
3657         if (shdr[i].sh_type == SHT_SYMTAB) {
3658             sym_idx = i;
3659             str_idx = shdr[i].sh_link;
3660             goto found;
3661         }
3662     }
3663 
3664     /* There will be no symbol table if the file was stripped.  */
3665     return;
3666 
3667  found:
3668     /* Now know where the strtab and symtab are.  Snarf them.  */
3669 
3670     segsz = shdr[str_idx].sh_size;
3671     strings = g_try_malloc(segsz);
3672     if (!strings) {
3673         goto give_up;
3674     }
3675     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3676         goto give_up;
3677     }
3678 
3679     segsz = shdr[sym_idx].sh_size;
3680     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3681         /*
3682          * Implausibly large symbol table: give up rather than ploughing
3683          * on with the number of symbols calculation overflowing.
3684          */
3685         goto give_up;
3686     }
3687     nsyms = segsz / sizeof(struct elf_sym);
3688     syms = g_try_malloc(segsz);
3689     if (!syms) {
3690         goto give_up;
3691     }
3692     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3693         goto give_up;
3694     }
3695 
3696     for (i = 0; i < nsyms; ) {
3697         bswap_sym(syms + i);
3698         /* Throw away entries which we do not need.  */
3699         if (syms[i].st_shndx == SHN_UNDEF
3700             || syms[i].st_shndx >= SHN_LORESERVE
3701             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3702             if (i < --nsyms) {
3703                 syms[i] = syms[nsyms];
3704             }
3705         } else {
3706 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3707             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3708             syms[i].st_value &= ~(target_ulong)1;
3709 #endif
3710             syms[i].st_value += load_bias;
3711             i++;
3712         }
3713     }
3714 
3715     /* No "useful" symbol.  */
3716     if (nsyms == 0) {
3717         goto give_up;
3718     }
3719 
3720     /*
3721      * Attempt to free the storage associated with the local symbols
3722      * that we threw away.  Whether or not this has any effect on the
3723      * memory allocation depends on the malloc implementation and how
3724      * many symbols we managed to discard.
3725      */
3726     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3727     if (new_syms == NULL) {
3728         goto give_up;
3729     }
3730     syms = new_syms;
3731 
3732     qsort(syms, nsyms, sizeof(*syms), symcmp);
3733 
3734     {
3735         struct syminfo *s = g_new(struct syminfo, 1);
3736 
3737         s->disas_strtab = strings;
3738         s->disas_num_syms = nsyms;
3739 #if ELF_CLASS == ELFCLASS32
3740         s->disas_symtab.elf32 = syms;
3741 #else
3742         s->disas_symtab.elf64 = syms;
3743 #endif
3744         s->lookup_symbol = lookup_symbolxx;
3745         s->next = syminfos;
3746         syminfos = s;
3747     }
3748     return;
3749 
3750  give_up:
3751     g_free(strings);
3752     g_free(syms);
3753 }
3754 
3755 uint32_t get_elf_eflags(int fd)
3756 {
3757     struct elfhdr ehdr;
3758     off_t offset;
3759     int ret;
3760 
3761     /* Read ELF header */
3762     offset = lseek(fd, 0, SEEK_SET);
3763     if (offset == (off_t) -1) {
3764         return 0;
3765     }
3766     ret = read(fd, &ehdr, sizeof(ehdr));
3767     if (ret < sizeof(ehdr)) {
3768         return 0;
3769     }
3770     offset = lseek(fd, offset, SEEK_SET);
3771     if (offset == (off_t) -1) {
3772         return 0;
3773     }
3774 
3775     /* Check ELF signature */
3776     if (!elf_check_ident(&ehdr)) {
3777         return 0;
3778     }
3779 
3780     /* check header */
3781     bswap_ehdr(&ehdr);
3782     if (!elf_check_ehdr(&ehdr)) {
3783         return 0;
3784     }
3785 
3786     /* return architecture id */
3787     return ehdr.e_flags;
3788 }
3789 
3790 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3791 {
3792     /*
3793      * We need a copy of the elf header for passing to create_elf_tables.
3794      * We will have overwritten the original when we re-use bprm->buf
3795      * while loading the interpreter.  Allocate the storage for this now
3796      * and let elf_load_image do any swapping that may be required.
3797      */
3798     struct elfhdr ehdr;
3799     struct image_info interp_info, vdso_info;
3800     char *elf_interpreter = NULL;
3801     char *scratch;
3802 
3803     memset(&interp_info, 0, sizeof(interp_info));
3804 #ifdef TARGET_MIPS
3805     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3806 #endif
3807 
3808     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3809 
3810     /* Do this so that we can load the interpreter, if need be.  We will
3811        change some of these later */
3812     bprm->p = setup_arg_pages(bprm, info);
3813 
3814     scratch = g_new0(char, TARGET_PAGE_SIZE);
3815     if (STACK_GROWS_DOWN) {
3816         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3817                                    bprm->p, info->stack_limit);
3818         info->file_string = bprm->p;
3819         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3820                                    bprm->p, info->stack_limit);
3821         info->env_strings = bprm->p;
3822         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3823                                    bprm->p, info->stack_limit);
3824         info->arg_strings = bprm->p;
3825     } else {
3826         info->arg_strings = bprm->p;
3827         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3828                                    bprm->p, info->stack_limit);
3829         info->env_strings = bprm->p;
3830         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3831                                    bprm->p, info->stack_limit);
3832         info->file_string = bprm->p;
3833         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3834                                    bprm->p, info->stack_limit);
3835     }
3836 
3837     g_free(scratch);
3838 
3839     if (!bprm->p) {
3840         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3841         exit(-1);
3842     }
3843 
3844     if (elf_interpreter) {
3845         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3846 
3847         /*
3848          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3849          * with the mappings the interpreter can be loaded above but
3850          * near the main executable, which can leave very little room
3851          * for the heap.
3852          * If the current brk has less than 16MB, use the end of the
3853          * interpreter.
3854          */
3855         if (interp_info.brk > info->brk &&
3856             interp_info.load_bias - info->brk < 16 * MiB)  {
3857             info->brk = interp_info.brk;
3858         }
3859 
3860         /* If the program interpreter is one of these two, then assume
3861            an iBCS2 image.  Otherwise assume a native linux image.  */
3862 
3863         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3864             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3865             info->personality = PER_SVR4;
3866 
3867             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3868                and some applications "depend" upon this behavior.  Since
3869                we do not have the power to recompile these, we emulate
3870                the SVr4 behavior.  Sigh.  */
3871             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3872                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3873                         -1, 0);
3874         }
3875 #ifdef TARGET_MIPS
3876         info->interp_fp_abi = interp_info.fp_abi;
3877 #endif
3878     }
3879 
3880     /*
3881      * Load a vdso if available, which will amongst other things contain the
3882      * signal trampolines.  Otherwise, allocate a separate page for them.
3883      */
3884     const VdsoImageInfo *vdso = vdso_image_info(info->elf_flags);
3885     if (vdso) {
3886         load_elf_vdso(&vdso_info, vdso);
3887         info->vdso = vdso_info.load_bias;
3888     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3889         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3890                                           PROT_READ | PROT_WRITE,
3891                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3892         if (tramp_page == -1) {
3893             return -errno;
3894         }
3895 
3896         setup_sigtramp(tramp_page);
3897         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3898     }
3899 
3900     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3901                                 elf_interpreter ? &interp_info : NULL,
3902                                 vdso ? &vdso_info : NULL);
3903     info->start_stack = bprm->p;
3904 
3905     /* If we have an interpreter, set that as the program's entry point.
3906        Copy the load_bias as well, to help PPC64 interpret the entry
3907        point as a function descriptor.  Do this after creating elf tables
3908        so that we copy the original program entry point into the AUXV.  */
3909     if (elf_interpreter) {
3910         info->load_bias = interp_info.load_bias;
3911         info->entry = interp_info.entry;
3912         g_free(elf_interpreter);
3913     }
3914 
3915 #ifdef USE_ELF_CORE_DUMP
3916     bprm->core_dump = &elf_core_dump;
3917 #endif
3918 
3919     return 0;
3920 }
3921 
3922 #ifdef USE_ELF_CORE_DUMP
3923 
3924 /*
3925  * Definitions to generate Intel SVR4-like core files.
3926  * These mostly have the same names as the SVR4 types with "target_elf_"
3927  * tacked on the front to prevent clashes with linux definitions,
3928  * and the typedef forms have been avoided.  This is mostly like
3929  * the SVR4 structure, but more Linuxy, with things that Linux does
3930  * not support and which gdb doesn't really use excluded.
3931  *
3932  * Fields we don't dump (their contents is zero) in linux-user qemu
3933  * are marked with XXX.
3934  *
3935  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3936  *
3937  * Porting ELF coredump for target is (quite) simple process.  First you
3938  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3939  * the target resides):
3940  *
3941  * #define USE_ELF_CORE_DUMP
3942  *
3943  * Next you define type of register set used for dumping.  ELF specification
3944  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3945  *
3946  * typedef <target_regtype> target_elf_greg_t;
3947  * #define ELF_NREG <number of registers>
3948  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3949  *
3950  * Last step is to implement target specific function that copies registers
3951  * from given cpu into just specified register set.  Prototype is:
3952  *
3953  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3954  *                                const CPUArchState *env);
3955  *
3956  * Parameters:
3957  *     regs - copy register values into here (allocated and zeroed by caller)
3958  *     env - copy registers from here
3959  *
3960  * Example for ARM target is provided in this file.
3961  */
3962 
3963 struct target_elf_siginfo {
3964     abi_int    si_signo; /* signal number */
3965     abi_int    si_code;  /* extra code */
3966     abi_int    si_errno; /* errno */
3967 };
3968 
3969 struct target_elf_prstatus {
3970     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3971     abi_short          pr_cursig;    /* Current signal */
3972     abi_ulong          pr_sigpend;   /* XXX */
3973     abi_ulong          pr_sighold;   /* XXX */
3974     target_pid_t       pr_pid;
3975     target_pid_t       pr_ppid;
3976     target_pid_t       pr_pgrp;
3977     target_pid_t       pr_sid;
3978     struct target_timeval pr_utime;  /* XXX User time */
3979     struct target_timeval pr_stime;  /* XXX System time */
3980     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3981     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3982     target_elf_gregset_t      pr_reg;       /* GP registers */
3983     abi_int            pr_fpvalid;   /* XXX */
3984 };
3985 
3986 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3987 
3988 struct target_elf_prpsinfo {
3989     char         pr_state;       /* numeric process state */
3990     char         pr_sname;       /* char for pr_state */
3991     char         pr_zomb;        /* zombie */
3992     char         pr_nice;        /* nice val */
3993     abi_ulong    pr_flag;        /* flags */
3994     target_uid_t pr_uid;
3995     target_gid_t pr_gid;
3996     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3997     /* Lots missing */
3998     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3999     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
4000 };
4001 
4002 #ifdef BSWAP_NEEDED
4003 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4004 {
4005     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4006     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4007     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4008     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4009     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4010     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4011     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4012     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4013     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4014     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4015     /* cpu times are not filled, so we skip them */
4016     /* regs should be in correct format already */
4017     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4018 }
4019 
4020 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4021 {
4022     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4023     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4024     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4025     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4026     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4027     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4028     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4029 }
4030 
4031 static void bswap_note(struct elf_note *en)
4032 {
4033     bswap32s(&en->n_namesz);
4034     bswap32s(&en->n_descsz);
4035     bswap32s(&en->n_type);
4036 }
4037 #else
4038 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4039 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4040 static inline void bswap_note(struct elf_note *en) { }
4041 #endif /* BSWAP_NEEDED */
4042 
4043 /*
4044  * Calculate file (dump) size of given memory region.
4045  */
4046 static size_t vma_dump_size(target_ulong start, target_ulong end,
4047                             unsigned long flags)
4048 {
4049     /* The area must be readable. */
4050     if (!(flags & PAGE_READ)) {
4051         return 0;
4052     }
4053 
4054     /*
4055      * Usually we don't dump executable pages as they contain
4056      * non-writable code that debugger can read directly from
4057      * target library etc. If there is no elf header, we dump it.
4058      */
4059     if (!(flags & PAGE_WRITE_ORG) &&
4060         (flags & PAGE_EXEC) &&
4061         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4062         return 0;
4063     }
4064 
4065     return end - start;
4066 }
4067 
4068 static size_t size_note(const char *name, size_t datasz)
4069 {
4070     size_t namesz = strlen(name) + 1;
4071 
4072     namesz = ROUND_UP(namesz, 4);
4073     datasz = ROUND_UP(datasz, 4);
4074 
4075     return sizeof(struct elf_note) + namesz + datasz;
4076 }
4077 
4078 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4079 {
4080     void *ptr = *pptr;
4081     struct elf_note *n = ptr;
4082     size_t namesz = strlen(name) + 1;
4083 
4084     n->n_namesz = namesz;
4085     n->n_descsz = datasz;
4086     n->n_type = type;
4087     bswap_note(n);
4088 
4089     ptr += sizeof(*n);
4090     memcpy(ptr, name, namesz);
4091 
4092     namesz = ROUND_UP(namesz, 4);
4093     datasz = ROUND_UP(datasz, 4);
4094 
4095     *pptr = ptr + namesz + datasz;
4096     return ptr + namesz;
4097 }
4098 
4099 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4100                             uint32_t flags)
4101 {
4102     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4103 
4104     elf->e_ident[EI_CLASS] = ELF_CLASS;
4105     elf->e_ident[EI_DATA] = ELF_DATA;
4106     elf->e_ident[EI_VERSION] = EV_CURRENT;
4107     elf->e_ident[EI_OSABI] = ELF_OSABI;
4108 
4109     elf->e_type = ET_CORE;
4110     elf->e_machine = machine;
4111     elf->e_version = EV_CURRENT;
4112     elf->e_phoff = sizeof(struct elfhdr);
4113     elf->e_flags = flags;
4114     elf->e_ehsize = sizeof(struct elfhdr);
4115     elf->e_phentsize = sizeof(struct elf_phdr);
4116     elf->e_phnum = segs;
4117 
4118     bswap_ehdr(elf);
4119 }
4120 
4121 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4122 {
4123     phdr->p_type = PT_NOTE;
4124     phdr->p_offset = offset;
4125     phdr->p_filesz = sz;
4126 
4127     bswap_phdr(phdr, 1);
4128 }
4129 
4130 static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
4131 {
4132     /*
4133      * Because note memory is only aligned to 4, and target_elf_prstatus
4134      * may well have higher alignment requirements, fill locally and
4135      * memcpy to the destination afterward.
4136      */
4137     struct target_elf_prstatus prstatus = {
4138         .pr_info.si_signo = signr,
4139         .pr_cursig = signr,
4140         .pr_pid = get_task_state(cpu)->ts_tid,
4141         .pr_ppid = getppid(),
4142         .pr_pgrp = getpgrp(),
4143         .pr_sid = getsid(0),
4144     };
4145 
4146     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4147     bswap_prstatus(&prstatus);
4148     memcpy(data, &prstatus, sizeof(prstatus));
4149 }
4150 
4151 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4152 {
4153     /*
4154      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4155      * may well have higher alignment requirements, fill locally and
4156      * memcpy to the destination afterward.
4157      */
4158     struct target_elf_prpsinfo psinfo = {
4159         .pr_pid = getpid(),
4160         .pr_ppid = getppid(),
4161         .pr_pgrp = getpgrp(),
4162         .pr_sid = getsid(0),
4163         .pr_uid = getuid(),
4164         .pr_gid = getgid(),
4165     };
4166     char *base_filename;
4167     size_t len;
4168 
4169     len = ts->info->env_strings - ts->info->arg_strings;
4170     len = MIN(len, ELF_PRARGSZ);
4171     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4172     for (size_t i = 0; i < len; i++) {
4173         if (psinfo.pr_psargs[i] == 0) {
4174             psinfo.pr_psargs[i] = ' ';
4175         }
4176     }
4177 
4178     base_filename = g_path_get_basename(ts->bprm->filename);
4179     /*
4180      * Using strncpy here is fine: at max-length,
4181      * this field is not NUL-terminated.
4182      */
4183     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4184     g_free(base_filename);
4185 
4186     bswap_psinfo(&psinfo);
4187     memcpy(data, &psinfo, sizeof(psinfo));
4188 }
4189 
4190 static void fill_auxv_note(void *data, const TaskState *ts)
4191 {
4192     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4193 }
4194 
4195 /*
4196  * Constructs name of coredump file.  We have following convention
4197  * for the name:
4198  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4199  *
4200  * Returns the filename
4201  */
4202 static char *core_dump_filename(const TaskState *ts)
4203 {
4204     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4205     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4206     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4207 
4208     return g_strdup_printf("qemu_%s_%s_%d.core",
4209                            base_filename, nowstr, (int)getpid());
4210 }
4211 
4212 static int dump_write(int fd, const void *ptr, size_t size)
4213 {
4214     const char *bufp = (const char *)ptr;
4215     ssize_t bytes_written, bytes_left;
4216 
4217     bytes_written = 0;
4218     bytes_left = size;
4219 
4220     /*
4221      * In normal conditions, single write(2) should do but
4222      * in case of socket etc. this mechanism is more portable.
4223      */
4224     do {
4225         bytes_written = write(fd, bufp, bytes_left);
4226         if (bytes_written < 0) {
4227             if (errno == EINTR)
4228                 continue;
4229             return (-1);
4230         } else if (bytes_written == 0) { /* eof */
4231             return (-1);
4232         }
4233         bufp += bytes_written;
4234         bytes_left -= bytes_written;
4235     } while (bytes_left > 0);
4236 
4237     return (0);
4238 }
4239 
4240 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4241                                       target_ulong end, unsigned long flags)
4242 {
4243     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4244         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4245 
4246         while (1) {
4247             page_unprotect(start, 0);
4248             if (end - start <= step) {
4249                 break;
4250             }
4251             start += step;
4252         }
4253     }
4254     return 0;
4255 }
4256 
4257 typedef struct {
4258     unsigned count;
4259     size_t size;
4260 } CountAndSizeRegions;
4261 
4262 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4263                                       target_ulong end, unsigned long flags)
4264 {
4265     CountAndSizeRegions *css = opaque;
4266 
4267     css->count++;
4268     css->size += vma_dump_size(start, end, flags);
4269     return 0;
4270 }
4271 
4272 typedef struct {
4273     struct elf_phdr *phdr;
4274     off_t offset;
4275 } FillRegionPhdr;
4276 
4277 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4278                                 target_ulong end, unsigned long flags)
4279 {
4280     FillRegionPhdr *d = opaque;
4281     struct elf_phdr *phdr = d->phdr;
4282 
4283     phdr->p_type = PT_LOAD;
4284     phdr->p_vaddr = start;
4285     phdr->p_paddr = 0;
4286     phdr->p_filesz = vma_dump_size(start, end, flags);
4287     phdr->p_offset = d->offset;
4288     d->offset += phdr->p_filesz;
4289     phdr->p_memsz = end - start;
4290     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4291                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4292                   | (flags & PAGE_EXEC ? PF_X : 0);
4293     phdr->p_align = ELF_EXEC_PAGESIZE;
4294 
4295     bswap_phdr(phdr, 1);
4296     d->phdr = phdr + 1;
4297     return 0;
4298 }
4299 
4300 static int wmr_write_region(void *opaque, target_ulong start,
4301                             target_ulong end, unsigned long flags)
4302 {
4303     int fd = *(int *)opaque;
4304     size_t size = vma_dump_size(start, end, flags);
4305 
4306     if (!size) {
4307         return 0;
4308     }
4309     return dump_write(fd, g2h_untagged(start), size);
4310 }
4311 
4312 /*
4313  * Write out ELF coredump.
4314  *
4315  * See documentation of ELF object file format in:
4316  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4317  *
4318  * Coredump format in linux is following:
4319  *
4320  * 0   +----------------------+         \
4321  *     | ELF header           | ET_CORE  |
4322  *     +----------------------+          |
4323  *     | ELF program headers  |          |--- headers
4324  *     | - NOTE section       |          |
4325  *     | - PT_LOAD sections   |          |
4326  *     +----------------------+         /
4327  *     | NOTEs:               |
4328  *     | - NT_PRSTATUS        |
4329  *     | - NT_PRSINFO         |
4330  *     | - NT_AUXV            |
4331  *     +----------------------+ <-- aligned to target page
4332  *     | Process memory dump  |
4333  *     :                      :
4334  *     .                      .
4335  *     :                      :
4336  *     |                      |
4337  *     +----------------------+
4338  *
4339  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4340  * NT_PRSINFO  -> struct elf_prpsinfo
4341  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4342  *
4343  * Format follows System V format as close as possible.  Current
4344  * version limitations are as follows:
4345  *     - no floating point registers are dumped
4346  *
4347  * Function returns 0 in case of success, negative errno otherwise.
4348  *
4349  * TODO: make this work also during runtime: it should be
4350  * possible to force coredump from running process and then
4351  * continue processing.  For example qemu could set up SIGUSR2
4352  * handler (provided that target process haven't registered
4353  * handler for that) that does the dump when signal is received.
4354  */
4355 static int elf_core_dump(int signr, const CPUArchState *env)
4356 {
4357     const CPUState *cpu = env_cpu_const(env);
4358     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4359     struct rlimit dumpsize;
4360     CountAndSizeRegions css;
4361     off_t offset, note_offset, data_offset;
4362     size_t note_size;
4363     int cpus, ret;
4364     int fd = -1;
4365     CPUState *cpu_iter;
4366 
4367     if (prctl(PR_GET_DUMPABLE) == 0) {
4368         return 0;
4369     }
4370 
4371     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4372         return 0;
4373     }
4374 
4375     cpu_list_lock();
4376     mmap_lock();
4377 
4378     /* By unprotecting, we merge vmas that might be split. */
4379     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4380 
4381     /*
4382      * Walk through target process memory mappings and
4383      * set up structure containing this information.
4384      */
4385     memset(&css, 0, sizeof(css));
4386     walk_memory_regions(&css, wmr_count_and_size_regions);
4387 
4388     cpus = 0;
4389     CPU_FOREACH(cpu_iter) {
4390         cpus++;
4391     }
4392 
4393     offset = sizeof(struct elfhdr);
4394     offset += (css.count + 1) * sizeof(struct elf_phdr);
4395     note_offset = offset;
4396 
4397     offset += size_note("CORE", ts->info->auxv_len);
4398     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4399     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4400     note_size = offset - note_offset;
4401     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4402 
4403     /* Do not dump if the corefile size exceeds the limit. */
4404     if (dumpsize.rlim_cur != RLIM_INFINITY
4405         && dumpsize.rlim_cur < data_offset + css.size) {
4406         errno = 0;
4407         goto out;
4408     }
4409 
4410     {
4411         g_autofree char *corefile = core_dump_filename(ts);
4412         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4413                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4414     }
4415     if (fd < 0) {
4416         goto out;
4417     }
4418 
4419     /*
4420      * There is a fair amount of alignment padding within the notes
4421      * as well as preceeding the process memory.  Allocate a zeroed
4422      * block to hold it all.  Write all of the headers directly into
4423      * this buffer and then write it out as a block.
4424      */
4425     {
4426         g_autofree void *header = g_malloc0(data_offset);
4427         FillRegionPhdr frp;
4428         void *hptr, *dptr;
4429 
4430         /* Create elf file header. */
4431         hptr = header;
4432         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4433         hptr += sizeof(struct elfhdr);
4434 
4435         /* Create elf program headers. */
4436         fill_elf_note_phdr(hptr, note_size, note_offset);
4437         hptr += sizeof(struct elf_phdr);
4438 
4439         frp.phdr = hptr;
4440         frp.offset = data_offset;
4441         walk_memory_regions(&frp, wmr_fill_region_phdr);
4442         hptr = frp.phdr;
4443 
4444         /* Create the notes. */
4445         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4446         fill_auxv_note(dptr, ts);
4447 
4448         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4449                          sizeof(struct target_elf_prpsinfo));
4450         fill_prpsinfo_note(dptr, ts);
4451 
4452         CPU_FOREACH(cpu_iter) {
4453             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4454                              sizeof(struct target_elf_prstatus));
4455             fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
4456         }
4457 
4458         if (dump_write(fd, header, data_offset) < 0) {
4459             goto out;
4460         }
4461     }
4462 
4463     /*
4464      * Finally write process memory into the corefile as well.
4465      */
4466     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4467         goto out;
4468     }
4469     errno = 0;
4470 
4471  out:
4472     ret = -errno;
4473     mmap_unlock();
4474     cpu_list_unlock();
4475     if (fd >= 0) {
4476         close(fd);
4477     }
4478     return ret;
4479 }
4480 #endif /* USE_ELF_CORE_DUMP */
4481 
4482 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4483 {
4484     init_thread(regs, infop);
4485 }
4486