1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors 40 * (signal handling) 41 */ 42 MMAP_PAGE_ZERO = 0x0100000, 43 ADDR_COMPAT_LAYOUT = 0x0200000, 44 READ_IMPLIES_EXEC = 0x0400000, 45 ADDR_LIMIT_32BIT = 0x0800000, 46 SHORT_INODE = 0x1000000, 47 WHOLE_SECONDS = 0x2000000, 48 STICKY_TIMEOUTS = 0x4000000, 49 ADDR_LIMIT_3GB = 0x8000000, 50 }; 51 52 /* 53 * Personality types. 54 * 55 * These go in the low byte. Avoid using the top bit, it will 56 * conflict with error returns. 57 */ 58 enum { 59 PER_LINUX = 0x0000, 60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | 65 WHOLE_SECONDS | SHORT_INODE, 66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 69 PER_BSD = 0x0006, 70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 72 PER_LINUX32 = 0x0008, 73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 77 PER_RISCOS = 0x000c, 78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 80 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 81 PER_HPUX = 0x0010, 82 PER_MASK = 0x00ff, 83 }; 84 85 /* 86 * Return the base personality without flags. 87 */ 88 #define personality(pers) (pers & PER_MASK) 89 90 /* this flag is uneffective under linux too, should be deleted */ 91 #ifndef MAP_DENYWRITE 92 #define MAP_DENYWRITE 0 93 #endif 94 95 /* should probably go in elf.h */ 96 #ifndef ELIBBAD 97 #define ELIBBAD 80 98 #endif 99 100 #ifdef TARGET_I386 101 102 #define ELF_PLATFORM get_elf_platform() 103 104 static const char *get_elf_platform(void) 105 { 106 static char elf_platform[] = "i386"; 107 int family = (thread_env->cpuid_version >> 8) & 0xff; 108 if (family > 6) 109 family = 6; 110 if (family >= 3) 111 elf_platform[1] = '0' + family; 112 return elf_platform; 113 } 114 115 #define ELF_HWCAP get_elf_hwcap() 116 117 static uint32_t get_elf_hwcap(void) 118 { 119 return thread_env->cpuid_features; 120 } 121 122 #ifdef TARGET_X86_64 123 #define ELF_START_MMAP 0x2aaaaab000ULL 124 #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) 125 126 #define ELF_CLASS ELFCLASS64 127 #define ELF_DATA ELFDATA2LSB 128 #define ELF_ARCH EM_X86_64 129 130 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 131 { 132 regs->rax = 0; 133 regs->rsp = infop->start_stack; 134 regs->rip = infop->entry; 135 } 136 137 typedef target_ulong elf_greg_t; 138 typedef uint32_t target_uid_t; 139 typedef uint32_t target_gid_t; 140 typedef int32_t target_pid_t; 141 142 #define ELF_NREG 27 143 typedef elf_greg_t elf_gregset_t[ELF_NREG]; 144 145 /* 146 * Note that ELF_NREG should be 29 as there should be place for 147 * TRAPNO and ERR "registers" as well but linux doesn't dump 148 * those. 149 * 150 * See linux kernel: arch/x86/include/asm/elf.h 151 */ 152 static void elf_core_copy_regs(elf_gregset_t *regs, const CPUState *env) 153 { 154 (*regs)[0] = env->regs[15]; 155 (*regs)[1] = env->regs[14]; 156 (*regs)[2] = env->regs[13]; 157 (*regs)[3] = env->regs[12]; 158 (*regs)[4] = env->regs[R_EBP]; 159 (*regs)[5] = env->regs[R_EBX]; 160 (*regs)[6] = env->regs[11]; 161 (*regs)[7] = env->regs[10]; 162 (*regs)[8] = env->regs[9]; 163 (*regs)[9] = env->regs[8]; 164 (*regs)[10] = env->regs[R_EAX]; 165 (*regs)[11] = env->regs[R_ECX]; 166 (*regs)[12] = env->regs[R_EDX]; 167 (*regs)[13] = env->regs[R_ESI]; 168 (*regs)[14] = env->regs[R_EDI]; 169 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 170 (*regs)[16] = env->eip; 171 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 172 (*regs)[18] = env->eflags; 173 (*regs)[19] = env->regs[R_ESP]; 174 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 175 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 176 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 177 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 178 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 179 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 180 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 181 } 182 183 #else 184 185 #define ELF_START_MMAP 0x80000000 186 187 /* 188 * This is used to ensure we don't load something for the wrong architecture. 189 */ 190 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 191 192 /* 193 * These are used to set parameters in the core dumps. 194 */ 195 #define ELF_CLASS ELFCLASS32 196 #define ELF_DATA ELFDATA2LSB 197 #define ELF_ARCH EM_386 198 199 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 200 { 201 regs->esp = infop->start_stack; 202 regs->eip = infop->entry; 203 204 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 205 starts %edx contains a pointer to a function which might be 206 registered using `atexit'. This provides a mean for the 207 dynamic linker to call DT_FINI functions for shared libraries 208 that have been loaded before the code runs. 209 210 A value of 0 tells we have no such handler. */ 211 regs->edx = 0; 212 } 213 214 typedef target_ulong elf_greg_t; 215 typedef uint16_t target_uid_t; 216 typedef uint16_t target_gid_t; 217 typedef int32_t target_pid_t; 218 219 #define ELF_NREG 17 220 typedef elf_greg_t elf_gregset_t[ELF_NREG]; 221 222 /* 223 * Note that ELF_NREG should be 19 as there should be place for 224 * TRAPNO and ERR "registers" as well but linux doesn't dump 225 * those. 226 * 227 * See linux kernel: arch/x86/include/asm/elf.h 228 */ 229 static void elf_core_copy_regs(elf_gregset_t *regs, const CPUState *env) 230 { 231 (*regs)[0] = env->regs[R_EBX]; 232 (*regs)[1] = env->regs[R_ECX]; 233 (*regs)[2] = env->regs[R_EDX]; 234 (*regs)[3] = env->regs[R_ESI]; 235 (*regs)[4] = env->regs[R_EDI]; 236 (*regs)[5] = env->regs[R_EBP]; 237 (*regs)[6] = env->regs[R_EAX]; 238 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 239 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 240 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 241 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 242 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 243 (*regs)[12] = env->eip; 244 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 245 (*regs)[14] = env->eflags; 246 (*regs)[15] = env->regs[R_ESP]; 247 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 248 } 249 #endif 250 251 #define USE_ELF_CORE_DUMP 252 #define ELF_EXEC_PAGESIZE 4096 253 254 #endif 255 256 #ifdef TARGET_ARM 257 258 #define ELF_START_MMAP 0x80000000 259 260 #define elf_check_arch(x) ( (x) == EM_ARM ) 261 262 #define ELF_CLASS ELFCLASS32 263 #ifdef TARGET_WORDS_BIGENDIAN 264 #define ELF_DATA ELFDATA2MSB 265 #else 266 #define ELF_DATA ELFDATA2LSB 267 #endif 268 #define ELF_ARCH EM_ARM 269 270 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 271 { 272 abi_long stack = infop->start_stack; 273 memset(regs, 0, sizeof(*regs)); 274 regs->ARM_cpsr = 0x10; 275 if (infop->entry & 1) 276 regs->ARM_cpsr |= CPSR_T; 277 regs->ARM_pc = infop->entry & 0xfffffffe; 278 regs->ARM_sp = infop->start_stack; 279 /* FIXME - what to for failure of get_user()? */ 280 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 281 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 282 /* XXX: it seems that r0 is zeroed after ! */ 283 regs->ARM_r0 = 0; 284 /* For uClinux PIC binaries. */ 285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 286 regs->ARM_r10 = infop->start_data; 287 } 288 289 typedef uint32_t elf_greg_t; 290 typedef uint16_t target_uid_t; 291 typedef uint16_t target_gid_t; 292 typedef int32_t target_pid_t; 293 294 #define ELF_NREG 18 295 typedef elf_greg_t elf_gregset_t[ELF_NREG]; 296 297 static void elf_core_copy_regs(elf_gregset_t *regs, const CPUState *env) 298 { 299 (*regs)[0] = env->regs[0]; 300 (*regs)[1] = env->regs[1]; 301 (*regs)[2] = env->regs[2]; 302 (*regs)[3] = env->regs[3]; 303 (*regs)[4] = env->regs[4]; 304 (*regs)[5] = env->regs[5]; 305 (*regs)[6] = env->regs[6]; 306 (*regs)[7] = env->regs[7]; 307 (*regs)[8] = env->regs[8]; 308 (*regs)[9] = env->regs[9]; 309 (*regs)[10] = env->regs[10]; 310 (*regs)[11] = env->regs[11]; 311 (*regs)[12] = env->regs[12]; 312 (*regs)[13] = env->regs[13]; 313 (*regs)[14] = env->regs[14]; 314 (*regs)[15] = env->regs[15]; 315 316 (*regs)[16] = cpsr_read((CPUState *)env); 317 (*regs)[17] = env->regs[0]; /* XXX */ 318 } 319 320 #define USE_ELF_CORE_DUMP 321 #define ELF_EXEC_PAGESIZE 4096 322 323 enum 324 { 325 ARM_HWCAP_ARM_SWP = 1 << 0, 326 ARM_HWCAP_ARM_HALF = 1 << 1, 327 ARM_HWCAP_ARM_THUMB = 1 << 2, 328 ARM_HWCAP_ARM_26BIT = 1 << 3, 329 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 330 ARM_HWCAP_ARM_FPA = 1 << 5, 331 ARM_HWCAP_ARM_VFP = 1 << 6, 332 ARM_HWCAP_ARM_EDSP = 1 << 7, 333 }; 334 335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ 336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ 337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP) 338 339 #endif 340 341 #ifdef TARGET_SPARC 342 #ifdef TARGET_SPARC64 343 344 #define ELF_START_MMAP 0x80000000 345 346 #ifndef TARGET_ABI32 347 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 348 #else 349 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 350 #endif 351 352 #define ELF_CLASS ELFCLASS64 353 #define ELF_DATA ELFDATA2MSB 354 #define ELF_ARCH EM_SPARCV9 355 356 #define STACK_BIAS 2047 357 358 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 359 { 360 #ifndef TARGET_ABI32 361 regs->tstate = 0; 362 #endif 363 regs->pc = infop->entry; 364 regs->npc = regs->pc + 4; 365 regs->y = 0; 366 #ifdef TARGET_ABI32 367 regs->u_regs[14] = infop->start_stack - 16 * 4; 368 #else 369 if (personality(infop->personality) == PER_LINUX32) 370 regs->u_regs[14] = infop->start_stack - 16 * 4; 371 else 372 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 373 #endif 374 } 375 376 #else 377 #define ELF_START_MMAP 0x80000000 378 379 #define elf_check_arch(x) ( (x) == EM_SPARC ) 380 381 #define ELF_CLASS ELFCLASS32 382 #define ELF_DATA ELFDATA2MSB 383 #define ELF_ARCH EM_SPARC 384 385 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 386 { 387 regs->psr = 0; 388 regs->pc = infop->entry; 389 regs->npc = regs->pc + 4; 390 regs->y = 0; 391 regs->u_regs[14] = infop->start_stack - 16 * 4; 392 } 393 394 #endif 395 #endif 396 397 #ifdef TARGET_PPC 398 399 #define ELF_START_MMAP 0x80000000 400 401 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 402 403 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 404 405 #define ELF_CLASS ELFCLASS64 406 407 #else 408 409 #define elf_check_arch(x) ( (x) == EM_PPC ) 410 411 #define ELF_CLASS ELFCLASS32 412 413 #endif 414 415 #ifdef TARGET_WORDS_BIGENDIAN 416 #define ELF_DATA ELFDATA2MSB 417 #else 418 #define ELF_DATA ELFDATA2LSB 419 #endif 420 #define ELF_ARCH EM_PPC 421 422 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 423 See arch/powerpc/include/asm/cputable.h. */ 424 enum { 425 PPC_FEATURE_32 = 0x80000000, 426 PPC_FEATURE_64 = 0x40000000, 427 PPC_FEATURE_601_INSTR = 0x20000000, 428 PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 429 PPC_FEATURE_HAS_FPU = 0x08000000, 430 PPC_FEATURE_HAS_MMU = 0x04000000, 431 PPC_FEATURE_HAS_4xxMAC = 0x02000000, 432 PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 433 PPC_FEATURE_HAS_SPE = 0x00800000, 434 PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 435 PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 436 PPC_FEATURE_NO_TB = 0x00100000, 437 PPC_FEATURE_POWER4 = 0x00080000, 438 PPC_FEATURE_POWER5 = 0x00040000, 439 PPC_FEATURE_POWER5_PLUS = 0x00020000, 440 PPC_FEATURE_CELL = 0x00010000, 441 PPC_FEATURE_BOOKE = 0x00008000, 442 PPC_FEATURE_SMT = 0x00004000, 443 PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 444 PPC_FEATURE_ARCH_2_05 = 0x00001000, 445 PPC_FEATURE_PA6T = 0x00000800, 446 PPC_FEATURE_HAS_DFP = 0x00000400, 447 PPC_FEATURE_POWER6_EXT = 0x00000200, 448 PPC_FEATURE_ARCH_2_06 = 0x00000100, 449 PPC_FEATURE_HAS_VSX = 0x00000080, 450 PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 451 452 PPC_FEATURE_TRUE_LE = 0x00000002, 453 PPC_FEATURE_PPC_LE = 0x00000001, 454 }; 455 456 #define ELF_HWCAP get_elf_hwcap() 457 458 static uint32_t get_elf_hwcap(void) 459 { 460 CPUState *e = thread_env; 461 uint32_t features = 0; 462 463 /* We don't have to be terribly complete here; the high points are 464 Altivec/FP/SPE support. Anything else is just a bonus. */ 465 #define GET_FEATURE(flag, feature) \ 466 do {if (e->insns_flags & flag) features |= feature; } while(0) 467 GET_FEATURE(PPC_64B, PPC_FEATURE_64); 468 GET_FEATURE(PPC_FLOAT, PPC_FEATURE_HAS_FPU); 469 GET_FEATURE(PPC_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC); 470 GET_FEATURE(PPC_SPE, PPC_FEATURE_HAS_SPE); 471 GET_FEATURE(PPC_SPE_SINGLE, PPC_FEATURE_HAS_EFP_SINGLE); 472 GET_FEATURE(PPC_SPE_DOUBLE, PPC_FEATURE_HAS_EFP_DOUBLE); 473 GET_FEATURE(PPC_BOOKE, PPC_FEATURE_BOOKE); 474 GET_FEATURE(PPC_405_MAC, PPC_FEATURE_HAS_4xxMAC); 475 #undef GET_FEATURE 476 477 return features; 478 } 479 480 /* 481 * We need to put in some extra aux table entries to tell glibc what 482 * the cache block size is, so it can use the dcbz instruction safely. 483 */ 484 #define AT_DCACHEBSIZE 19 485 #define AT_ICACHEBSIZE 20 486 #define AT_UCACHEBSIZE 21 487 /* A special ignored type value for PPC, for glibc compatibility. */ 488 #define AT_IGNOREPPC 22 489 /* 490 * The requirements here are: 491 * - keep the final alignment of sp (sp & 0xf) 492 * - make sure the 32-bit value at the first 16 byte aligned position of 493 * AUXV is greater than 16 for glibc compatibility. 494 * AT_IGNOREPPC is used for that. 495 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 496 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 497 */ 498 #define DLINFO_ARCH_ITEMS 5 499 #define ARCH_DLINFO \ 500 do { \ 501 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ 502 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ 503 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 504 /* \ 505 * Now handle glibc compatibility. \ 506 */ \ 507 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 508 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 509 } while (0) 510 511 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 512 { 513 abi_ulong pos = infop->start_stack; 514 abi_ulong tmp; 515 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 516 abi_ulong entry, toc; 517 #endif 518 519 _regs->gpr[1] = infop->start_stack; 520 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 521 entry = ldq_raw(infop->entry) + infop->load_addr; 522 toc = ldq_raw(infop->entry + 8) + infop->load_addr; 523 _regs->gpr[2] = toc; 524 infop->entry = entry; 525 #endif 526 _regs->nip = infop->entry; 527 /* Note that isn't exactly what regular kernel does 528 * but this is what the ABI wants and is needed to allow 529 * execution of PPC BSD programs. 530 */ 531 /* FIXME - what to for failure of get_user()? */ 532 get_user_ual(_regs->gpr[3], pos); 533 pos += sizeof(abi_ulong); 534 _regs->gpr[4] = pos; 535 for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong)) 536 tmp = ldl(pos); 537 _regs->gpr[5] = pos; 538 } 539 540 #define ELF_EXEC_PAGESIZE 4096 541 542 #endif 543 544 #ifdef TARGET_MIPS 545 546 #define ELF_START_MMAP 0x80000000 547 548 #define elf_check_arch(x) ( (x) == EM_MIPS ) 549 550 #ifdef TARGET_MIPS64 551 #define ELF_CLASS ELFCLASS64 552 #else 553 #define ELF_CLASS ELFCLASS32 554 #endif 555 #ifdef TARGET_WORDS_BIGENDIAN 556 #define ELF_DATA ELFDATA2MSB 557 #else 558 #define ELF_DATA ELFDATA2LSB 559 #endif 560 #define ELF_ARCH EM_MIPS 561 562 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 563 { 564 regs->cp0_status = 2 << CP0St_KSU; 565 regs->cp0_epc = infop->entry; 566 regs->regs[29] = infop->start_stack; 567 } 568 569 #define ELF_EXEC_PAGESIZE 4096 570 571 #endif /* TARGET_MIPS */ 572 573 #ifdef TARGET_MICROBLAZE 574 575 #define ELF_START_MMAP 0x80000000 576 577 #define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE ) 578 579 #define ELF_CLASS ELFCLASS32 580 #define ELF_DATA ELFDATA2MSB 581 #define ELF_ARCH EM_MIPS 582 583 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 584 { 585 regs->pc = infop->entry; 586 regs->r1 = infop->start_stack; 587 588 } 589 590 #define ELF_EXEC_PAGESIZE 4096 591 592 #endif /* TARGET_MICROBLAZE */ 593 594 #ifdef TARGET_SH4 595 596 #define ELF_START_MMAP 0x80000000 597 598 #define elf_check_arch(x) ( (x) == EM_SH ) 599 600 #define ELF_CLASS ELFCLASS32 601 #define ELF_DATA ELFDATA2LSB 602 #define ELF_ARCH EM_SH 603 604 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 605 { 606 /* Check other registers XXXXX */ 607 regs->pc = infop->entry; 608 regs->regs[15] = infop->start_stack; 609 } 610 611 #define ELF_EXEC_PAGESIZE 4096 612 613 #endif 614 615 #ifdef TARGET_CRIS 616 617 #define ELF_START_MMAP 0x80000000 618 619 #define elf_check_arch(x) ( (x) == EM_CRIS ) 620 621 #define ELF_CLASS ELFCLASS32 622 #define ELF_DATA ELFDATA2LSB 623 #define ELF_ARCH EM_CRIS 624 625 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 626 { 627 regs->erp = infop->entry; 628 } 629 630 #define ELF_EXEC_PAGESIZE 8192 631 632 #endif 633 634 #ifdef TARGET_M68K 635 636 #define ELF_START_MMAP 0x80000000 637 638 #define elf_check_arch(x) ( (x) == EM_68K ) 639 640 #define ELF_CLASS ELFCLASS32 641 #define ELF_DATA ELFDATA2MSB 642 #define ELF_ARCH EM_68K 643 644 /* ??? Does this need to do anything? 645 #define ELF_PLAT_INIT(_r) */ 646 647 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 648 { 649 regs->usp = infop->start_stack; 650 regs->sr = 0; 651 regs->pc = infop->entry; 652 } 653 654 #define ELF_EXEC_PAGESIZE 8192 655 656 #endif 657 658 #ifdef TARGET_ALPHA 659 660 #define ELF_START_MMAP (0x30000000000ULL) 661 662 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 663 664 #define ELF_CLASS ELFCLASS64 665 #define ELF_DATA ELFDATA2MSB 666 #define ELF_ARCH EM_ALPHA 667 668 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 669 { 670 regs->pc = infop->entry; 671 regs->ps = 8; 672 regs->usp = infop->start_stack; 673 regs->unique = infop->start_data; /* ? */ 674 printf("Set unique value to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", 675 regs->unique, infop->start_data); 676 } 677 678 #define ELF_EXEC_PAGESIZE 8192 679 680 #endif /* TARGET_ALPHA */ 681 682 #ifndef ELF_PLATFORM 683 #define ELF_PLATFORM (NULL) 684 #endif 685 686 #ifndef ELF_HWCAP 687 #define ELF_HWCAP 0 688 #endif 689 690 #ifdef TARGET_ABI32 691 #undef ELF_CLASS 692 #define ELF_CLASS ELFCLASS32 693 #undef bswaptls 694 #define bswaptls(ptr) bswap32s(ptr) 695 #endif 696 697 #include "elf.h" 698 699 struct exec 700 { 701 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 702 unsigned int a_text; /* length of text, in bytes */ 703 unsigned int a_data; /* length of data, in bytes */ 704 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 705 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 706 unsigned int a_entry; /* start address */ 707 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 708 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 709 }; 710 711 712 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 713 #define OMAGIC 0407 714 #define NMAGIC 0410 715 #define ZMAGIC 0413 716 #define QMAGIC 0314 717 718 /* max code+data+bss space allocated to elf interpreter */ 719 #define INTERP_MAP_SIZE (32 * 1024 * 1024) 720 721 /* max code+data+bss+brk space allocated to ET_DYN executables */ 722 #define ET_DYN_MAP_SIZE (128 * 1024 * 1024) 723 724 /* Necessary parameters */ 725 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 726 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) 727 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 728 729 #define INTERPRETER_NONE 0 730 #define INTERPRETER_AOUT 1 731 #define INTERPRETER_ELF 2 732 733 #define DLINFO_ITEMS 12 734 735 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 736 { 737 memcpy(to, from, n); 738 } 739 740 static int load_aout_interp(void * exptr, int interp_fd); 741 742 #ifdef BSWAP_NEEDED 743 static void bswap_ehdr(struct elfhdr *ehdr) 744 { 745 bswap16s(&ehdr->e_type); /* Object file type */ 746 bswap16s(&ehdr->e_machine); /* Architecture */ 747 bswap32s(&ehdr->e_version); /* Object file version */ 748 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 749 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 750 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 751 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 752 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 753 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 754 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 755 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 756 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 757 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 758 } 759 760 static void bswap_phdr(struct elf_phdr *phdr) 761 { 762 bswap32s(&phdr->p_type); /* Segment type */ 763 bswaptls(&phdr->p_offset); /* Segment file offset */ 764 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 765 bswaptls(&phdr->p_paddr); /* Segment physical address */ 766 bswaptls(&phdr->p_filesz); /* Segment size in file */ 767 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 768 bswap32s(&phdr->p_flags); /* Segment flags */ 769 bswaptls(&phdr->p_align); /* Segment alignment */ 770 } 771 772 static void bswap_shdr(struct elf_shdr *shdr) 773 { 774 bswap32s(&shdr->sh_name); 775 bswap32s(&shdr->sh_type); 776 bswaptls(&shdr->sh_flags); 777 bswaptls(&shdr->sh_addr); 778 bswaptls(&shdr->sh_offset); 779 bswaptls(&shdr->sh_size); 780 bswap32s(&shdr->sh_link); 781 bswap32s(&shdr->sh_info); 782 bswaptls(&shdr->sh_addralign); 783 bswaptls(&shdr->sh_entsize); 784 } 785 786 static void bswap_sym(struct elf_sym *sym) 787 { 788 bswap32s(&sym->st_name); 789 bswaptls(&sym->st_value); 790 bswaptls(&sym->st_size); 791 bswap16s(&sym->st_shndx); 792 } 793 #endif 794 795 #ifdef USE_ELF_CORE_DUMP 796 static int elf_core_dump(int, const CPUState *); 797 798 #ifdef BSWAP_NEEDED 799 static void bswap_note(struct elf_note *en) 800 { 801 bswaptls(&en->n_namesz); 802 bswaptls(&en->n_descsz); 803 bswaptls(&en->n_type); 804 } 805 #endif /* BSWAP_NEEDED */ 806 807 #endif /* USE_ELF_CORE_DUMP */ 808 809 /* 810 * 'copy_elf_strings()' copies argument/envelope strings from user 811 * memory to free pages in kernel mem. These are in a format ready 812 * to be put directly into the top of new user memory. 813 * 814 */ 815 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, 816 abi_ulong p) 817 { 818 char *tmp, *tmp1, *pag = NULL; 819 int len, offset = 0; 820 821 if (!p) { 822 return 0; /* bullet-proofing */ 823 } 824 while (argc-- > 0) { 825 tmp = argv[argc]; 826 if (!tmp) { 827 fprintf(stderr, "VFS: argc is wrong"); 828 exit(-1); 829 } 830 tmp1 = tmp; 831 while (*tmp++); 832 len = tmp - tmp1; 833 if (p < len) { /* this shouldn't happen - 128kB */ 834 return 0; 835 } 836 while (len) { 837 --p; --tmp; --len; 838 if (--offset < 0) { 839 offset = p % TARGET_PAGE_SIZE; 840 pag = (char *)page[p/TARGET_PAGE_SIZE]; 841 if (!pag) { 842 pag = (char *)malloc(TARGET_PAGE_SIZE); 843 memset(pag, 0, TARGET_PAGE_SIZE); 844 page[p/TARGET_PAGE_SIZE] = pag; 845 if (!pag) 846 return 0; 847 } 848 } 849 if (len == 0 || offset == 0) { 850 *(pag + offset) = *tmp; 851 } 852 else { 853 int bytes_to_copy = (len > offset) ? offset : len; 854 tmp -= bytes_to_copy; 855 p -= bytes_to_copy; 856 offset -= bytes_to_copy; 857 len -= bytes_to_copy; 858 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 859 } 860 } 861 } 862 return p; 863 } 864 865 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, 866 struct image_info *info) 867 { 868 abi_ulong stack_base, size, error; 869 int i; 870 871 /* Create enough stack to hold everything. If we don't use 872 * it for args, we'll use it for something else... 873 */ 874 size = x86_stack_size; 875 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) 876 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; 877 error = target_mmap(0, 878 size + qemu_host_page_size, 879 PROT_READ | PROT_WRITE, 880 MAP_PRIVATE | MAP_ANONYMOUS, 881 -1, 0); 882 if (error == -1) { 883 perror("stk mmap"); 884 exit(-1); 885 } 886 /* we reserve one extra page at the top of the stack as guard */ 887 target_mprotect(error + size, qemu_host_page_size, PROT_NONE); 888 889 stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; 890 p += stack_base; 891 892 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 893 if (bprm->page[i]) { 894 info->rss++; 895 /* FIXME - check return value of memcpy_to_target() for failure */ 896 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); 897 free(bprm->page[i]); 898 } 899 stack_base += TARGET_PAGE_SIZE; 900 } 901 return p; 902 } 903 904 static void set_brk(abi_ulong start, abi_ulong end) 905 { 906 /* page-align the start and end addresses... */ 907 start = HOST_PAGE_ALIGN(start); 908 end = HOST_PAGE_ALIGN(end); 909 if (end <= start) 910 return; 911 if(target_mmap(start, end - start, 912 PROT_READ | PROT_WRITE | PROT_EXEC, 913 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) { 914 perror("cannot mmap brk"); 915 exit(-1); 916 } 917 } 918 919 920 /* We need to explicitly zero any fractional pages after the data 921 section (i.e. bss). This would contain the junk from the file that 922 should not be in memory. */ 923 static void padzero(abi_ulong elf_bss, abi_ulong last_bss) 924 { 925 abi_ulong nbyte; 926 927 if (elf_bss >= last_bss) 928 return; 929 930 /* XXX: this is really a hack : if the real host page size is 931 smaller than the target page size, some pages after the end 932 of the file may not be mapped. A better fix would be to 933 patch target_mmap(), but it is more complicated as the file 934 size must be known */ 935 if (qemu_real_host_page_size < qemu_host_page_size) { 936 abi_ulong end_addr, end_addr1; 937 end_addr1 = (elf_bss + qemu_real_host_page_size - 1) & 938 ~(qemu_real_host_page_size - 1); 939 end_addr = HOST_PAGE_ALIGN(elf_bss); 940 if (end_addr1 < end_addr) { 941 mmap((void *)g2h(end_addr1), end_addr - end_addr1, 942 PROT_READ|PROT_WRITE|PROT_EXEC, 943 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 944 } 945 } 946 947 nbyte = elf_bss & (qemu_host_page_size-1); 948 if (nbyte) { 949 nbyte = qemu_host_page_size - nbyte; 950 do { 951 /* FIXME - what to do if put_user() fails? */ 952 put_user_u8(0, elf_bss); 953 elf_bss++; 954 } while (--nbyte); 955 } 956 } 957 958 959 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 960 struct elfhdr * exec, 961 abi_ulong load_addr, 962 abi_ulong load_bias, 963 abi_ulong interp_load_addr, int ibcs, 964 struct image_info *info) 965 { 966 abi_ulong sp; 967 int size; 968 abi_ulong u_platform; 969 const char *k_platform; 970 const int n = sizeof(elf_addr_t); 971 972 sp = p; 973 u_platform = 0; 974 k_platform = ELF_PLATFORM; 975 if (k_platform) { 976 size_t len = strlen(k_platform) + 1; 977 sp -= (len + n - 1) & ~(n - 1); 978 u_platform = sp; 979 /* FIXME - check return value of memcpy_to_target() for failure */ 980 memcpy_to_target(sp, k_platform, len); 981 } 982 /* 983 * Force 16 byte _final_ alignment here for generality. 984 */ 985 sp = sp &~ (abi_ulong)15; 986 size = (DLINFO_ITEMS + 1) * 2; 987 if (k_platform) 988 size += 2; 989 #ifdef DLINFO_ARCH_ITEMS 990 size += DLINFO_ARCH_ITEMS * 2; 991 #endif 992 size += envc + argc + 2; 993 size += (!ibcs ? 3 : 1); /* argc itself */ 994 size *= n; 995 if (size & 15) 996 sp -= 16 - (size & 15); 997 998 /* This is correct because Linux defines 999 * elf_addr_t as Elf32_Off / Elf64_Off 1000 */ 1001 #define NEW_AUX_ENT(id, val) do { \ 1002 sp -= n; put_user_ual(val, sp); \ 1003 sp -= n; put_user_ual(id, sp); \ 1004 } while(0) 1005 1006 NEW_AUX_ENT (AT_NULL, 0); 1007 1008 /* There must be exactly DLINFO_ITEMS entries here. */ 1009 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff)); 1010 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1011 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1012 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1013 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr)); 1014 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1015 NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry); 1016 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1017 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1018 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1019 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1020 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1021 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1022 if (k_platform) 1023 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1024 #ifdef ARCH_DLINFO 1025 /* 1026 * ARCH_DLINFO must come last so platform specific code can enforce 1027 * special alignment requirements on the AUXV if necessary (eg. PPC). 1028 */ 1029 ARCH_DLINFO; 1030 #endif 1031 #undef NEW_AUX_ENT 1032 1033 info->saved_auxv = sp; 1034 1035 sp = loader_build_argptr(envc, argc, sp, p, !ibcs); 1036 return sp; 1037 } 1038 1039 1040 static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex, 1041 int interpreter_fd, 1042 abi_ulong *interp_load_addr) 1043 { 1044 struct elf_phdr *elf_phdata = NULL; 1045 struct elf_phdr *eppnt; 1046 abi_ulong load_addr = 0; 1047 int load_addr_set = 0; 1048 int retval; 1049 abi_ulong last_bss, elf_bss; 1050 abi_ulong error; 1051 int i; 1052 1053 elf_bss = 0; 1054 last_bss = 0; 1055 error = 0; 1056 1057 #ifdef BSWAP_NEEDED 1058 bswap_ehdr(interp_elf_ex); 1059 #endif 1060 /* First of all, some simple consistency checks */ 1061 if ((interp_elf_ex->e_type != ET_EXEC && 1062 interp_elf_ex->e_type != ET_DYN) || 1063 !elf_check_arch(interp_elf_ex->e_machine)) { 1064 return ~((abi_ulong)0UL); 1065 } 1066 1067 1068 /* Now read in all of the header information */ 1069 1070 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) 1071 return ~(abi_ulong)0UL; 1072 1073 elf_phdata = (struct elf_phdr *) 1074 malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); 1075 1076 if (!elf_phdata) 1077 return ~((abi_ulong)0UL); 1078 1079 /* 1080 * If the size of this structure has changed, then punt, since 1081 * we will be doing the wrong thing. 1082 */ 1083 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) { 1084 free(elf_phdata); 1085 return ~((abi_ulong)0UL); 1086 } 1087 1088 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET); 1089 if(retval >= 0) { 1090 retval = read(interpreter_fd, 1091 (char *) elf_phdata, 1092 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); 1093 } 1094 if (retval < 0) { 1095 perror("load_elf_interp"); 1096 exit(-1); 1097 free (elf_phdata); 1098 return retval; 1099 } 1100 #ifdef BSWAP_NEEDED 1101 eppnt = elf_phdata; 1102 for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) { 1103 bswap_phdr(eppnt); 1104 } 1105 #endif 1106 1107 if (interp_elf_ex->e_type == ET_DYN) { 1108 /* in order to avoid hardcoding the interpreter load 1109 address in qemu, we allocate a big enough memory zone */ 1110 error = target_mmap(0, INTERP_MAP_SIZE, 1111 PROT_NONE, MAP_PRIVATE | MAP_ANON, 1112 -1, 0); 1113 if (error == -1) { 1114 perror("mmap"); 1115 exit(-1); 1116 } 1117 load_addr = error; 1118 load_addr_set = 1; 1119 } 1120 1121 eppnt = elf_phdata; 1122 for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) 1123 if (eppnt->p_type == PT_LOAD) { 1124 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 1125 int elf_prot = 0; 1126 abi_ulong vaddr = 0; 1127 abi_ulong k; 1128 1129 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1130 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1131 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1132 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) { 1133 elf_type |= MAP_FIXED; 1134 vaddr = eppnt->p_vaddr; 1135 } 1136 error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr), 1137 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr), 1138 elf_prot, 1139 elf_type, 1140 interpreter_fd, 1141 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr)); 1142 1143 if (error == -1) { 1144 /* Real error */ 1145 close(interpreter_fd); 1146 free(elf_phdata); 1147 return ~((abi_ulong)0UL); 1148 } 1149 1150 if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) { 1151 load_addr = error; 1152 load_addr_set = 1; 1153 } 1154 1155 /* 1156 * Find the end of the file mapping for this phdr, and keep 1157 * track of the largest address we see for this. 1158 */ 1159 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 1160 if (k > elf_bss) elf_bss = k; 1161 1162 /* 1163 * Do the same thing for the memory mapping - between 1164 * elf_bss and last_bss is the bss section. 1165 */ 1166 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; 1167 if (k > last_bss) last_bss = k; 1168 } 1169 1170 /* Now use mmap to map the library into memory. */ 1171 1172 close(interpreter_fd); 1173 1174 /* 1175 * Now fill out the bss section. First pad the last page up 1176 * to the page boundary, and then perform a mmap to make sure 1177 * that there are zeromapped pages up to and including the last 1178 * bss page. 1179 */ 1180 padzero(elf_bss, last_bss); 1181 elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */ 1182 1183 /* Map the last of the bss segment */ 1184 if (last_bss > elf_bss) { 1185 target_mmap(elf_bss, last_bss-elf_bss, 1186 PROT_READ|PROT_WRITE|PROT_EXEC, 1187 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 1188 } 1189 free(elf_phdata); 1190 1191 *interp_load_addr = load_addr; 1192 return ((abi_ulong) interp_elf_ex->e_entry) + load_addr; 1193 } 1194 1195 static int symfind(const void *s0, const void *s1) 1196 { 1197 struct elf_sym *key = (struct elf_sym *)s0; 1198 struct elf_sym *sym = (struct elf_sym *)s1; 1199 int result = 0; 1200 if (key->st_value < sym->st_value) { 1201 result = -1; 1202 } else if (key->st_value > sym->st_value + sym->st_size) { 1203 result = 1; 1204 } 1205 return result; 1206 } 1207 1208 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 1209 { 1210 #if ELF_CLASS == ELFCLASS32 1211 struct elf_sym *syms = s->disas_symtab.elf32; 1212 #else 1213 struct elf_sym *syms = s->disas_symtab.elf64; 1214 #endif 1215 1216 // binary search 1217 struct elf_sym key; 1218 struct elf_sym *sym; 1219 1220 key.st_value = orig_addr; 1221 1222 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); 1223 if (sym != 0) { 1224 return s->disas_strtab + sym->st_name; 1225 } 1226 1227 return ""; 1228 } 1229 1230 /* FIXME: This should use elf_ops.h */ 1231 static int symcmp(const void *s0, const void *s1) 1232 { 1233 struct elf_sym *sym0 = (struct elf_sym *)s0; 1234 struct elf_sym *sym1 = (struct elf_sym *)s1; 1235 return (sym0->st_value < sym1->st_value) 1236 ? -1 1237 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 1238 } 1239 1240 /* Best attempt to load symbols from this ELF object. */ 1241 static void load_symbols(struct elfhdr *hdr, int fd) 1242 { 1243 unsigned int i, nsyms; 1244 struct elf_shdr sechdr, symtab, strtab; 1245 char *strings; 1246 struct syminfo *s; 1247 struct elf_sym *syms; 1248 1249 lseek(fd, hdr->e_shoff, SEEK_SET); 1250 for (i = 0; i < hdr->e_shnum; i++) { 1251 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) 1252 return; 1253 #ifdef BSWAP_NEEDED 1254 bswap_shdr(&sechdr); 1255 #endif 1256 if (sechdr.sh_type == SHT_SYMTAB) { 1257 symtab = sechdr; 1258 lseek(fd, hdr->e_shoff 1259 + sizeof(sechdr) * sechdr.sh_link, SEEK_SET); 1260 if (read(fd, &strtab, sizeof(strtab)) 1261 != sizeof(strtab)) 1262 return; 1263 #ifdef BSWAP_NEEDED 1264 bswap_shdr(&strtab); 1265 #endif 1266 goto found; 1267 } 1268 } 1269 return; /* Shouldn't happen... */ 1270 1271 found: 1272 /* Now know where the strtab and symtab are. Snarf them. */ 1273 s = malloc(sizeof(*s)); 1274 syms = malloc(symtab.sh_size); 1275 if (!syms) 1276 return; 1277 s->disas_strtab = strings = malloc(strtab.sh_size); 1278 if (!s->disas_strtab) 1279 return; 1280 1281 lseek(fd, symtab.sh_offset, SEEK_SET); 1282 if (read(fd, syms, symtab.sh_size) != symtab.sh_size) 1283 return; 1284 1285 nsyms = symtab.sh_size / sizeof(struct elf_sym); 1286 1287 i = 0; 1288 while (i < nsyms) { 1289 #ifdef BSWAP_NEEDED 1290 bswap_sym(syms + i); 1291 #endif 1292 // Throw away entries which we do not need. 1293 if (syms[i].st_shndx == SHN_UNDEF || 1294 syms[i].st_shndx >= SHN_LORESERVE || 1295 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 1296 nsyms--; 1297 if (i < nsyms) { 1298 syms[i] = syms[nsyms]; 1299 } 1300 continue; 1301 } 1302 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 1303 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 1304 syms[i].st_value &= ~(target_ulong)1; 1305 #endif 1306 i++; 1307 } 1308 syms = realloc(syms, nsyms * sizeof(*syms)); 1309 1310 qsort(syms, nsyms, sizeof(*syms), symcmp); 1311 1312 lseek(fd, strtab.sh_offset, SEEK_SET); 1313 if (read(fd, strings, strtab.sh_size) != strtab.sh_size) 1314 return; 1315 s->disas_num_syms = nsyms; 1316 #if ELF_CLASS == ELFCLASS32 1317 s->disas_symtab.elf32 = syms; 1318 s->lookup_symbol = lookup_symbolxx; 1319 #else 1320 s->disas_symtab.elf64 = syms; 1321 s->lookup_symbol = lookup_symbolxx; 1322 #endif 1323 s->next = syminfos; 1324 syminfos = s; 1325 } 1326 1327 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 1328 struct image_info * info) 1329 { 1330 struct elfhdr elf_ex; 1331 struct elfhdr interp_elf_ex; 1332 struct exec interp_ex; 1333 int interpreter_fd = -1; /* avoid warning */ 1334 abi_ulong load_addr, load_bias; 1335 int load_addr_set = 0; 1336 unsigned int interpreter_type = INTERPRETER_NONE; 1337 unsigned char ibcs2_interpreter; 1338 int i; 1339 abi_ulong mapped_addr; 1340 struct elf_phdr * elf_ppnt; 1341 struct elf_phdr *elf_phdata; 1342 abi_ulong elf_bss, k, elf_brk; 1343 int retval; 1344 char * elf_interpreter; 1345 abi_ulong elf_entry, interp_load_addr = 0; 1346 int status; 1347 abi_ulong start_code, end_code, start_data, end_data; 1348 abi_ulong reloc_func_desc = 0; 1349 abi_ulong elf_stack; 1350 char passed_fileno[6]; 1351 1352 ibcs2_interpreter = 0; 1353 status = 0; 1354 load_addr = 0; 1355 load_bias = 0; 1356 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */ 1357 #ifdef BSWAP_NEEDED 1358 bswap_ehdr(&elf_ex); 1359 #endif 1360 1361 /* First of all, some simple consistency checks */ 1362 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || 1363 (! elf_check_arch(elf_ex.e_machine))) { 1364 return -ENOEXEC; 1365 } 1366 1367 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 1368 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); 1369 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); 1370 if (!bprm->p) { 1371 retval = -E2BIG; 1372 } 1373 1374 /* Now read in all of the header information */ 1375 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum); 1376 if (elf_phdata == NULL) { 1377 return -ENOMEM; 1378 } 1379 1380 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET); 1381 if(retval > 0) { 1382 retval = read(bprm->fd, (char *) elf_phdata, 1383 elf_ex.e_phentsize * elf_ex.e_phnum); 1384 } 1385 1386 if (retval < 0) { 1387 perror("load_elf_binary"); 1388 exit(-1); 1389 free (elf_phdata); 1390 return -errno; 1391 } 1392 1393 #ifdef BSWAP_NEEDED 1394 elf_ppnt = elf_phdata; 1395 for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) { 1396 bswap_phdr(elf_ppnt); 1397 } 1398 #endif 1399 elf_ppnt = elf_phdata; 1400 1401 elf_bss = 0; 1402 elf_brk = 0; 1403 1404 1405 elf_stack = ~((abi_ulong)0UL); 1406 elf_interpreter = NULL; 1407 start_code = ~((abi_ulong)0UL); 1408 end_code = 0; 1409 start_data = 0; 1410 end_data = 0; 1411 interp_ex.a_info = 0; 1412 1413 for(i=0;i < elf_ex.e_phnum; i++) { 1414 if (elf_ppnt->p_type == PT_INTERP) { 1415 if ( elf_interpreter != NULL ) 1416 { 1417 free (elf_phdata); 1418 free(elf_interpreter); 1419 close(bprm->fd); 1420 return -EINVAL; 1421 } 1422 1423 /* This is the program interpreter used for 1424 * shared libraries - for now assume that this 1425 * is an a.out format binary 1426 */ 1427 1428 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); 1429 1430 if (elf_interpreter == NULL) { 1431 free (elf_phdata); 1432 close(bprm->fd); 1433 return -ENOMEM; 1434 } 1435 1436 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET); 1437 if(retval >= 0) { 1438 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz); 1439 } 1440 if(retval < 0) { 1441 perror("load_elf_binary2"); 1442 exit(-1); 1443 } 1444 1445 /* If the program interpreter is one of these two, 1446 then assume an iBCS2 image. Otherwise assume 1447 a native linux image. */ 1448 1449 /* JRP - Need to add X86 lib dir stuff here... */ 1450 1451 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || 1452 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) { 1453 ibcs2_interpreter = 1; 1454 } 1455 1456 #if 0 1457 printf("Using ELF interpreter %s\n", elf_interpreter); 1458 #endif 1459 if (retval >= 0) { 1460 retval = open(path(elf_interpreter), O_RDONLY); 1461 if(retval >= 0) { 1462 interpreter_fd = retval; 1463 } 1464 else { 1465 perror(elf_interpreter); 1466 exit(-1); 1467 /* retval = -errno; */ 1468 } 1469 } 1470 1471 if (retval >= 0) { 1472 retval = lseek(interpreter_fd, 0, SEEK_SET); 1473 if(retval >= 0) { 1474 retval = read(interpreter_fd,bprm->buf,128); 1475 } 1476 } 1477 if (retval >= 0) { 1478 interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */ 1479 interp_elf_ex=*((struct elfhdr *) bprm->buf); /* elf exec-header */ 1480 } 1481 if (retval < 0) { 1482 perror("load_elf_binary3"); 1483 exit(-1); 1484 free (elf_phdata); 1485 free(elf_interpreter); 1486 close(bprm->fd); 1487 return retval; 1488 } 1489 } 1490 elf_ppnt++; 1491 } 1492 1493 /* Some simple consistency checks for the interpreter */ 1494 if (elf_interpreter){ 1495 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; 1496 1497 /* Now figure out which format our binary is */ 1498 if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) && 1499 (N_MAGIC(interp_ex) != QMAGIC)) { 1500 interpreter_type = INTERPRETER_ELF; 1501 } 1502 1503 if (interp_elf_ex.e_ident[0] != 0x7f || 1504 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) { 1505 interpreter_type &= ~INTERPRETER_ELF; 1506 } 1507 1508 if (!interpreter_type) { 1509 free(elf_interpreter); 1510 free(elf_phdata); 1511 close(bprm->fd); 1512 return -ELIBBAD; 1513 } 1514 } 1515 1516 /* OK, we are done with that, now set up the arg stuff, 1517 and then start this sucker up */ 1518 1519 { 1520 char * passed_p; 1521 1522 if (interpreter_type == INTERPRETER_AOUT) { 1523 snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd); 1524 passed_p = passed_fileno; 1525 1526 if (elf_interpreter) { 1527 bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p); 1528 bprm->argc++; 1529 } 1530 } 1531 if (!bprm->p) { 1532 if (elf_interpreter) { 1533 free(elf_interpreter); 1534 } 1535 free (elf_phdata); 1536 close(bprm->fd); 1537 return -E2BIG; 1538 } 1539 } 1540 1541 /* OK, This is the point of no return */ 1542 info->end_data = 0; 1543 info->end_code = 0; 1544 info->start_mmap = (abi_ulong)ELF_START_MMAP; 1545 info->mmap = 0; 1546 elf_entry = (abi_ulong) elf_ex.e_entry; 1547 1548 /* Do this so that we can load the interpreter, if need be. We will 1549 change some of these later */ 1550 info->rss = 0; 1551 bprm->p = setup_arg_pages(bprm->p, bprm, info); 1552 info->start_stack = bprm->p; 1553 1554 /* Now we do a little grungy work by mmaping the ELF image into 1555 * the correct location in memory. At this point, we assume that 1556 * the image should be loaded at fixed address, not at a variable 1557 * address. 1558 */ 1559 1560 for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { 1561 int elf_prot = 0; 1562 int elf_flags = 0; 1563 abi_ulong error; 1564 1565 if (elf_ppnt->p_type != PT_LOAD) 1566 continue; 1567 1568 if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ; 1569 if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1570 if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1571 elf_flags = MAP_PRIVATE | MAP_DENYWRITE; 1572 if (elf_ex.e_type == ET_EXEC || load_addr_set) { 1573 elf_flags |= MAP_FIXED; 1574 } else if (elf_ex.e_type == ET_DYN) { 1575 /* Try and get dynamic programs out of the way of the default mmap 1576 base, as well as whatever program they might try to exec. This 1577 is because the brk will follow the loader, and is not movable. */ 1578 /* NOTE: for qemu, we do a big mmap to get enough space 1579 without hardcoding any address */ 1580 error = target_mmap(0, ET_DYN_MAP_SIZE, 1581 PROT_NONE, MAP_PRIVATE | MAP_ANON, 1582 -1, 0); 1583 if (error == -1) { 1584 perror("mmap"); 1585 exit(-1); 1586 } 1587 load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr); 1588 } 1589 1590 error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr), 1591 (elf_ppnt->p_filesz + 1592 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), 1593 elf_prot, 1594 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), 1595 bprm->fd, 1596 (elf_ppnt->p_offset - 1597 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); 1598 if (error == -1) { 1599 perror("mmap"); 1600 exit(-1); 1601 } 1602 1603 #ifdef LOW_ELF_STACK 1604 if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack) 1605 elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr); 1606 #endif 1607 1608 if (!load_addr_set) { 1609 load_addr_set = 1; 1610 load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset; 1611 if (elf_ex.e_type == ET_DYN) { 1612 load_bias += error - 1613 TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr); 1614 load_addr += load_bias; 1615 reloc_func_desc = load_bias; 1616 } 1617 } 1618 k = elf_ppnt->p_vaddr; 1619 if (k < start_code) 1620 start_code = k; 1621 if (start_data < k) 1622 start_data = k; 1623 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1624 if (k > elf_bss) 1625 elf_bss = k; 1626 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1627 end_code = k; 1628 if (end_data < k) 1629 end_data = k; 1630 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1631 if (k > elf_brk) elf_brk = k; 1632 } 1633 1634 elf_entry += load_bias; 1635 elf_bss += load_bias; 1636 elf_brk += load_bias; 1637 start_code += load_bias; 1638 end_code += load_bias; 1639 start_data += load_bias; 1640 end_data += load_bias; 1641 1642 if (elf_interpreter) { 1643 if (interpreter_type & 1) { 1644 elf_entry = load_aout_interp(&interp_ex, interpreter_fd); 1645 } 1646 else if (interpreter_type & 2) { 1647 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, 1648 &interp_load_addr); 1649 } 1650 reloc_func_desc = interp_load_addr; 1651 1652 close(interpreter_fd); 1653 free(elf_interpreter); 1654 1655 if (elf_entry == ~((abi_ulong)0UL)) { 1656 printf("Unable to load interpreter\n"); 1657 free(elf_phdata); 1658 exit(-1); 1659 return 0; 1660 } 1661 } 1662 1663 free(elf_phdata); 1664 1665 if (qemu_log_enabled()) 1666 load_symbols(&elf_ex, bprm->fd); 1667 1668 if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd); 1669 info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX); 1670 1671 #ifdef LOW_ELF_STACK 1672 info->start_stack = bprm->p = elf_stack - 4; 1673 #endif 1674 bprm->p = create_elf_tables(bprm->p, 1675 bprm->argc, 1676 bprm->envc, 1677 &elf_ex, 1678 load_addr, load_bias, 1679 interp_load_addr, 1680 (interpreter_type == INTERPRETER_AOUT ? 0 : 1), 1681 info); 1682 info->load_addr = reloc_func_desc; 1683 info->start_brk = info->brk = elf_brk; 1684 info->end_code = end_code; 1685 info->start_code = start_code; 1686 info->start_data = start_data; 1687 info->end_data = end_data; 1688 info->start_stack = bprm->p; 1689 1690 /* Calling set_brk effectively mmaps the pages that we need for the bss and break 1691 sections */ 1692 set_brk(elf_bss, elf_brk); 1693 1694 padzero(elf_bss, elf_brk); 1695 1696 #if 0 1697 printf("(start_brk) %x\n" , info->start_brk); 1698 printf("(end_code) %x\n" , info->end_code); 1699 printf("(start_code) %x\n" , info->start_code); 1700 printf("(end_data) %x\n" , info->end_data); 1701 printf("(start_stack) %x\n" , info->start_stack); 1702 printf("(brk) %x\n" , info->brk); 1703 #endif 1704 1705 if ( info->personality == PER_SVR4 ) 1706 { 1707 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1708 and some applications "depend" upon this behavior. 1709 Since we do not have the power to recompile these, we 1710 emulate the SVr4 behavior. Sigh. */ 1711 mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 1712 MAP_FIXED | MAP_PRIVATE, -1, 0); 1713 } 1714 1715 info->entry = elf_entry; 1716 1717 #ifdef USE_ELF_CORE_DUMP 1718 bprm->core_dump = &elf_core_dump; 1719 #endif 1720 1721 return 0; 1722 } 1723 1724 #ifdef USE_ELF_CORE_DUMP 1725 1726 /* 1727 * Definitions to generate Intel SVR4-like core files. 1728 * These mostly have the same names as the SVR4 types with "elf_" 1729 * tacked on the front to prevent clashes with linux definitions, 1730 * and the typedef forms have been avoided. This is mostly like 1731 * the SVR4 structure, but more Linuxy, with things that Linux does 1732 * not support and which gdb doesn't really use excluded. 1733 * 1734 * Fields we don't dump (their contents is zero) in linux-user qemu 1735 * are marked with XXX. 1736 * 1737 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 1738 * 1739 * Porting ELF coredump for target is (quite) simple process. First you 1740 * define ELF_USE_CORE_DUMP in target ELF code (where init_thread() for 1741 * the target resides): 1742 * 1743 * #define USE_ELF_CORE_DUMP 1744 * 1745 * Next you define type of register set used for dumping. ELF specification 1746 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 1747 * 1748 * typedef <target_regtype> elf_greg_t; 1749 * #define ELF_NREG <number of registers> 1750 * typedef elf_greg_t elf_gregset_t[ELF_NREG]; 1751 * 1752 * Then define following types to match target types. Actual types can 1753 * be found from linux kernel (arch/<ARCH>/include/asm/posix_types.h): 1754 * 1755 * typedef <target_uid_type> target_uid_t; 1756 * typedef <target_gid_type> target_gid_t; 1757 * typedef <target_pid_type> target_pid_t; 1758 * 1759 * Last step is to implement target specific function that copies registers 1760 * from given cpu into just specified register set. Prototype is: 1761 * 1762 * static void elf_core_copy_regs(elf_gregset_t *regs, const CPUState *env); 1763 * 1764 * Parameters: 1765 * regs - copy register values into here (allocated and zeroed by caller) 1766 * env - copy registers from here 1767 * 1768 * Example for ARM target is provided in this file. 1769 */ 1770 1771 /* An ELF note in memory */ 1772 struct memelfnote { 1773 const char *name; 1774 size_t namesz; 1775 size_t namesz_rounded; 1776 int type; 1777 size_t datasz; 1778 void *data; 1779 size_t notesz; 1780 }; 1781 1782 struct elf_siginfo { 1783 int si_signo; /* signal number */ 1784 int si_code; /* extra code */ 1785 int si_errno; /* errno */ 1786 }; 1787 1788 struct elf_prstatus { 1789 struct elf_siginfo pr_info; /* Info associated with signal */ 1790 short pr_cursig; /* Current signal */ 1791 target_ulong pr_sigpend; /* XXX */ 1792 target_ulong pr_sighold; /* XXX */ 1793 target_pid_t pr_pid; 1794 target_pid_t pr_ppid; 1795 target_pid_t pr_pgrp; 1796 target_pid_t pr_sid; 1797 struct target_timeval pr_utime; /* XXX User time */ 1798 struct target_timeval pr_stime; /* XXX System time */ 1799 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 1800 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 1801 elf_gregset_t pr_reg; /* GP registers */ 1802 int pr_fpvalid; /* XXX */ 1803 }; 1804 1805 #define ELF_PRARGSZ (80) /* Number of chars for args */ 1806 1807 struct elf_prpsinfo { 1808 char pr_state; /* numeric process state */ 1809 char pr_sname; /* char for pr_state */ 1810 char pr_zomb; /* zombie */ 1811 char pr_nice; /* nice val */ 1812 target_ulong pr_flag; /* flags */ 1813 target_uid_t pr_uid; 1814 target_gid_t pr_gid; 1815 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 1816 /* Lots missing */ 1817 char pr_fname[16]; /* filename of executable */ 1818 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 1819 }; 1820 1821 /* Here is the structure in which status of each thread is captured. */ 1822 struct elf_thread_status { 1823 TAILQ_ENTRY(elf_thread_status) ets_link; 1824 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1825 #if 0 1826 elf_fpregset_t fpu; /* NT_PRFPREG */ 1827 struct task_struct *thread; 1828 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1829 #endif 1830 struct memelfnote notes[1]; 1831 int num_notes; 1832 }; 1833 1834 struct elf_note_info { 1835 struct memelfnote *notes; 1836 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1837 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1838 1839 TAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 1840 #if 0 1841 /* 1842 * Current version of ELF coredump doesn't support 1843 * dumping fp regs etc. 1844 */ 1845 elf_fpregset_t *fpu; 1846 elf_fpxregset_t *xfpu; 1847 int thread_status_size; 1848 #endif 1849 int notes_size; 1850 int numnote; 1851 }; 1852 1853 struct vm_area_struct { 1854 abi_ulong vma_start; /* start vaddr of memory region */ 1855 abi_ulong vma_end; /* end vaddr of memory region */ 1856 abi_ulong vma_flags; /* protection etc. flags for the region */ 1857 TAILQ_ENTRY(vm_area_struct) vma_link; 1858 }; 1859 1860 struct mm_struct { 1861 TAILQ_HEAD(, vm_area_struct) mm_mmap; 1862 int mm_count; /* number of mappings */ 1863 }; 1864 1865 static struct mm_struct *vma_init(void); 1866 static void vma_delete(struct mm_struct *); 1867 static int vma_add_mapping(struct mm_struct *, abi_ulong, 1868 abi_ulong, abi_ulong); 1869 static int vma_get_mapping_count(const struct mm_struct *); 1870 static struct vm_area_struct *vma_first(const struct mm_struct *); 1871 static struct vm_area_struct *vma_next(struct vm_area_struct *); 1872 static abi_ulong vma_dump_size(const struct vm_area_struct *); 1873 static int vma_walker(void *priv, unsigned long start, unsigned long end, 1874 unsigned long flags); 1875 1876 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 1877 static void fill_note(struct memelfnote *, const char *, int, 1878 unsigned int, void *); 1879 static void fill_prstatus(struct elf_prstatus *, const TaskState *, int); 1880 static int fill_psinfo(struct elf_prpsinfo *, const TaskState *); 1881 static void fill_auxv_note(struct memelfnote *, const TaskState *); 1882 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 1883 static size_t note_size(const struct memelfnote *); 1884 static void free_note_info(struct elf_note_info *); 1885 static int fill_note_info(struct elf_note_info *, long, const CPUState *); 1886 static void fill_thread_info(struct elf_note_info *, const CPUState *); 1887 static int core_dump_filename(const TaskState *, char *, size_t); 1888 1889 static int dump_write(int, const void *, size_t); 1890 static int write_note(struct memelfnote *, int); 1891 static int write_note_info(struct elf_note_info *, int); 1892 1893 #ifdef BSWAP_NEEDED 1894 static void bswap_prstatus(struct elf_prstatus *); 1895 static void bswap_psinfo(struct elf_prpsinfo *); 1896 1897 static void bswap_prstatus(struct elf_prstatus *prstatus) 1898 { 1899 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo); 1900 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code); 1901 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno); 1902 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 1903 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend); 1904 prstatus->pr_sighold = tswapl(prstatus->pr_sighold); 1905 prstatus->pr_pid = tswap32(prstatus->pr_pid); 1906 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 1907 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 1908 prstatus->pr_sid = tswap32(prstatus->pr_sid); 1909 /* cpu times are not filled, so we skip them */ 1910 /* regs should be in correct format already */ 1911 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 1912 } 1913 1914 static void bswap_psinfo(struct elf_prpsinfo *psinfo) 1915 { 1916 psinfo->pr_flag = tswapl(psinfo->pr_flag); 1917 psinfo->pr_uid = tswap16(psinfo->pr_uid); 1918 psinfo->pr_gid = tswap16(psinfo->pr_gid); 1919 psinfo->pr_pid = tswap32(psinfo->pr_pid); 1920 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 1921 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 1922 psinfo->pr_sid = tswap32(psinfo->pr_sid); 1923 } 1924 #endif /* BSWAP_NEEDED */ 1925 1926 /* 1927 * Minimal support for linux memory regions. These are needed 1928 * when we are finding out what memory exactly belongs to 1929 * emulated process. No locks needed here, as long as 1930 * thread that received the signal is stopped. 1931 */ 1932 1933 static struct mm_struct *vma_init(void) 1934 { 1935 struct mm_struct *mm; 1936 1937 if ((mm = qemu_malloc(sizeof (*mm))) == NULL) 1938 return (NULL); 1939 1940 mm->mm_count = 0; 1941 TAILQ_INIT(&mm->mm_mmap); 1942 1943 return (mm); 1944 } 1945 1946 static void vma_delete(struct mm_struct *mm) 1947 { 1948 struct vm_area_struct *vma; 1949 1950 while ((vma = vma_first(mm)) != NULL) { 1951 TAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 1952 qemu_free(vma); 1953 } 1954 qemu_free(mm); 1955 } 1956 1957 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, 1958 abi_ulong end, abi_ulong flags) 1959 { 1960 struct vm_area_struct *vma; 1961 1962 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL) 1963 return (-1); 1964 1965 vma->vma_start = start; 1966 vma->vma_end = end; 1967 vma->vma_flags = flags; 1968 1969 TAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 1970 mm->mm_count++; 1971 1972 return (0); 1973 } 1974 1975 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 1976 { 1977 return (TAILQ_FIRST(&mm->mm_mmap)); 1978 } 1979 1980 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 1981 { 1982 return (TAILQ_NEXT(vma, vma_link)); 1983 } 1984 1985 static int vma_get_mapping_count(const struct mm_struct *mm) 1986 { 1987 return (mm->mm_count); 1988 } 1989 1990 /* 1991 * Calculate file (dump) size of given memory region. 1992 */ 1993 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 1994 { 1995 /* if we cannot even read the first page, skip it */ 1996 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 1997 return (0); 1998 1999 /* 2000 * Usually we don't dump executable pages as they contain 2001 * non-writable code that debugger can read directly from 2002 * target library etc. However, thread stacks are marked 2003 * also executable so we read in first page of given region 2004 * and check whether it contains elf header. If there is 2005 * no elf header, we dump it. 2006 */ 2007 if (vma->vma_flags & PROT_EXEC) { 2008 char page[TARGET_PAGE_SIZE]; 2009 2010 copy_from_user(page, vma->vma_start, sizeof (page)); 2011 if ((page[EI_MAG0] == ELFMAG0) && 2012 (page[EI_MAG1] == ELFMAG1) && 2013 (page[EI_MAG2] == ELFMAG2) && 2014 (page[EI_MAG3] == ELFMAG3)) { 2015 /* 2016 * Mappings are possibly from ELF binary. Don't dump 2017 * them. 2018 */ 2019 return (0); 2020 } 2021 } 2022 2023 return (vma->vma_end - vma->vma_start); 2024 } 2025 2026 static int vma_walker(void *priv, unsigned long start, unsigned long end, 2027 unsigned long flags) 2028 { 2029 struct mm_struct *mm = (struct mm_struct *)priv; 2030 2031 /* 2032 * Don't dump anything that qemu has reserved for internal use. 2033 */ 2034 if (flags & PAGE_RESERVED) 2035 return (0); 2036 2037 vma_add_mapping(mm, start, end, flags); 2038 return (0); 2039 } 2040 2041 static void fill_note(struct memelfnote *note, const char *name, int type, 2042 unsigned int sz, void *data) 2043 { 2044 unsigned int namesz; 2045 2046 namesz = strlen(name) + 1; 2047 note->name = name; 2048 note->namesz = namesz; 2049 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2050 note->type = type; 2051 note->datasz = roundup(sz, sizeof (int32_t));; 2052 note->data = data; 2053 2054 /* 2055 * We calculate rounded up note size here as specified by 2056 * ELF document. 2057 */ 2058 note->notesz = sizeof (struct elf_note) + 2059 note->namesz_rounded + note->datasz; 2060 } 2061 2062 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2063 uint32_t flags) 2064 { 2065 (void) memset(elf, 0, sizeof(*elf)); 2066 2067 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2068 elf->e_ident[EI_CLASS] = ELF_CLASS; 2069 elf->e_ident[EI_DATA] = ELF_DATA; 2070 elf->e_ident[EI_VERSION] = EV_CURRENT; 2071 elf->e_ident[EI_OSABI] = ELF_OSABI; 2072 2073 elf->e_type = ET_CORE; 2074 elf->e_machine = machine; 2075 elf->e_version = EV_CURRENT; 2076 elf->e_phoff = sizeof(struct elfhdr); 2077 elf->e_flags = flags; 2078 elf->e_ehsize = sizeof(struct elfhdr); 2079 elf->e_phentsize = sizeof(struct elf_phdr); 2080 elf->e_phnum = segs; 2081 2082 #ifdef BSWAP_NEEDED 2083 bswap_ehdr(elf); 2084 #endif 2085 } 2086 2087 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2088 { 2089 phdr->p_type = PT_NOTE; 2090 phdr->p_offset = offset; 2091 phdr->p_vaddr = 0; 2092 phdr->p_paddr = 0; 2093 phdr->p_filesz = sz; 2094 phdr->p_memsz = 0; 2095 phdr->p_flags = 0; 2096 phdr->p_align = 0; 2097 2098 #ifdef BSWAP_NEEDED 2099 bswap_phdr(phdr); 2100 #endif 2101 } 2102 2103 static size_t note_size(const struct memelfnote *note) 2104 { 2105 return (note->notesz); 2106 } 2107 2108 static void fill_prstatus(struct elf_prstatus *prstatus, 2109 const TaskState *ts, int signr) 2110 { 2111 (void) memset(prstatus, 0, sizeof (*prstatus)); 2112 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2113 prstatus->pr_pid = ts->ts_tid; 2114 prstatus->pr_ppid = getppid(); 2115 prstatus->pr_pgrp = getpgrp(); 2116 prstatus->pr_sid = getsid(0); 2117 2118 #ifdef BSWAP_NEEDED 2119 bswap_prstatus(prstatus); 2120 #endif 2121 } 2122 2123 static int fill_psinfo(struct elf_prpsinfo *psinfo, const TaskState *ts) 2124 { 2125 char *filename, *base_filename; 2126 unsigned int i, len; 2127 2128 (void) memset(psinfo, 0, sizeof (*psinfo)); 2129 2130 len = ts->info->arg_end - ts->info->arg_start; 2131 if (len >= ELF_PRARGSZ) 2132 len = ELF_PRARGSZ - 1; 2133 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2134 return -EFAULT; 2135 for (i = 0; i < len; i++) 2136 if (psinfo->pr_psargs[i] == 0) 2137 psinfo->pr_psargs[i] = ' '; 2138 psinfo->pr_psargs[len] = 0; 2139 2140 psinfo->pr_pid = getpid(); 2141 psinfo->pr_ppid = getppid(); 2142 psinfo->pr_pgrp = getpgrp(); 2143 psinfo->pr_sid = getsid(0); 2144 psinfo->pr_uid = getuid(); 2145 psinfo->pr_gid = getgid(); 2146 2147 filename = strdup(ts->bprm->filename); 2148 base_filename = strdup(basename(filename)); 2149 (void) strncpy(psinfo->pr_fname, base_filename, 2150 sizeof(psinfo->pr_fname)); 2151 free(base_filename); 2152 free(filename); 2153 2154 #ifdef BSWAP_NEEDED 2155 bswap_psinfo(psinfo); 2156 #endif 2157 return (0); 2158 } 2159 2160 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2161 { 2162 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2163 elf_addr_t orig_auxv = auxv; 2164 abi_ulong val; 2165 void *ptr; 2166 int i, len; 2167 2168 /* 2169 * Auxiliary vector is stored in target process stack. It contains 2170 * {type, value} pairs that we need to dump into note. This is not 2171 * strictly necessary but we do it here for sake of completeness. 2172 */ 2173 2174 /* find out lenght of the vector, AT_NULL is terminator */ 2175 i = len = 0; 2176 do { 2177 get_user_ual(val, auxv); 2178 i += 2; 2179 auxv += 2 * sizeof (elf_addr_t); 2180 } while (val != AT_NULL); 2181 len = i * sizeof (elf_addr_t); 2182 2183 /* read in whole auxv vector and copy it to memelfnote */ 2184 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2185 if (ptr != NULL) { 2186 fill_note(note, "CORE", NT_AUXV, len, ptr); 2187 unlock_user(ptr, auxv, len); 2188 } 2189 } 2190 2191 /* 2192 * Constructs name of coredump file. We have following convention 2193 * for the name: 2194 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2195 * 2196 * Returns 0 in case of success, -1 otherwise (errno is set). 2197 */ 2198 static int core_dump_filename(const TaskState *ts, char *buf, 2199 size_t bufsize) 2200 { 2201 char timestamp[64]; 2202 char *filename = NULL; 2203 char *base_filename = NULL; 2204 struct timeval tv; 2205 struct tm tm; 2206 2207 assert(bufsize >= PATH_MAX); 2208 2209 if (gettimeofday(&tv, NULL) < 0) { 2210 (void) fprintf(stderr, "unable to get current timestamp: %s", 2211 strerror(errno)); 2212 return (-1); 2213 } 2214 2215 filename = strdup(ts->bprm->filename); 2216 base_filename = strdup(basename(filename)); 2217 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2218 localtime_r(&tv.tv_sec, &tm)); 2219 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2220 base_filename, timestamp, (int)getpid()); 2221 free(base_filename); 2222 free(filename); 2223 2224 return (0); 2225 } 2226 2227 static int dump_write(int fd, const void *ptr, size_t size) 2228 { 2229 const char *bufp = (const char *)ptr; 2230 ssize_t bytes_written, bytes_left; 2231 struct rlimit dumpsize; 2232 off_t pos; 2233 2234 bytes_written = 0; 2235 getrlimit(RLIMIT_CORE, &dumpsize); 2236 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2237 if (errno == ESPIPE) { /* not a seekable stream */ 2238 bytes_left = size; 2239 } else { 2240 return pos; 2241 } 2242 } else { 2243 if (dumpsize.rlim_cur <= pos) { 2244 return -1; 2245 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2246 bytes_left = size; 2247 } else { 2248 size_t limit_left=dumpsize.rlim_cur - pos; 2249 bytes_left = limit_left >= size ? size : limit_left ; 2250 } 2251 } 2252 2253 /* 2254 * In normal conditions, single write(2) should do but 2255 * in case of socket etc. this mechanism is more portable. 2256 */ 2257 do { 2258 bytes_written = write(fd, bufp, bytes_left); 2259 if (bytes_written < 0) { 2260 if (errno == EINTR) 2261 continue; 2262 return (-1); 2263 } else if (bytes_written == 0) { /* eof */ 2264 return (-1); 2265 } 2266 bufp += bytes_written; 2267 bytes_left -= bytes_written; 2268 } while (bytes_left > 0); 2269 2270 return (0); 2271 } 2272 2273 static int write_note(struct memelfnote *men, int fd) 2274 { 2275 struct elf_note en; 2276 2277 en.n_namesz = men->namesz; 2278 en.n_type = men->type; 2279 en.n_descsz = men->datasz; 2280 2281 #ifdef BSWAP_NEEDED 2282 bswap_note(&en); 2283 #endif 2284 2285 if (dump_write(fd, &en, sizeof(en)) != 0) 2286 return (-1); 2287 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2288 return (-1); 2289 if (dump_write(fd, men->data, men->datasz) != 0) 2290 return (-1); 2291 2292 return (0); 2293 } 2294 2295 static void fill_thread_info(struct elf_note_info *info, const CPUState *env) 2296 { 2297 TaskState *ts = (TaskState *)env->opaque; 2298 struct elf_thread_status *ets; 2299 2300 ets = qemu_mallocz(sizeof (*ets)); 2301 ets->num_notes = 1; /* only prstatus is dumped */ 2302 fill_prstatus(&ets->prstatus, ts, 0); 2303 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2304 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2305 &ets->prstatus); 2306 2307 TAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2308 2309 info->notes_size += note_size(&ets->notes[0]); 2310 } 2311 2312 static int fill_note_info(struct elf_note_info *info, 2313 long signr, const CPUState *env) 2314 { 2315 #define NUMNOTES 3 2316 CPUState *cpu = NULL; 2317 TaskState *ts = (TaskState *)env->opaque; 2318 int i; 2319 2320 (void) memset(info, 0, sizeof (*info)); 2321 2322 TAILQ_INIT(&info->thread_list); 2323 2324 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote)); 2325 if (info->notes == NULL) 2326 return (-ENOMEM); 2327 info->prstatus = qemu_mallocz(sizeof (*info->prstatus)); 2328 if (info->prstatus == NULL) 2329 return (-ENOMEM); 2330 info->psinfo = qemu_mallocz(sizeof (*info->psinfo)); 2331 if (info->prstatus == NULL) 2332 return (-ENOMEM); 2333 2334 /* 2335 * First fill in status (and registers) of current thread 2336 * including process info & aux vector. 2337 */ 2338 fill_prstatus(info->prstatus, ts, signr); 2339 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2340 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2341 sizeof (*info->prstatus), info->prstatus); 2342 fill_psinfo(info->psinfo, ts); 2343 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2344 sizeof (*info->psinfo), info->psinfo); 2345 fill_auxv_note(&info->notes[2], ts); 2346 info->numnote = 3; 2347 2348 info->notes_size = 0; 2349 for (i = 0; i < info->numnote; i++) 2350 info->notes_size += note_size(&info->notes[i]); 2351 2352 /* read and fill status of all threads */ 2353 cpu_list_lock(); 2354 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { 2355 if (cpu == thread_env) 2356 continue; 2357 fill_thread_info(info, cpu); 2358 } 2359 cpu_list_unlock(); 2360 2361 return (0); 2362 } 2363 2364 static void free_note_info(struct elf_note_info *info) 2365 { 2366 struct elf_thread_status *ets; 2367 2368 while (!TAILQ_EMPTY(&info->thread_list)) { 2369 ets = TAILQ_FIRST(&info->thread_list); 2370 TAILQ_REMOVE(&info->thread_list, ets, ets_link); 2371 qemu_free(ets); 2372 } 2373 2374 qemu_free(info->prstatus); 2375 qemu_free(info->psinfo); 2376 qemu_free(info->notes); 2377 } 2378 2379 static int write_note_info(struct elf_note_info *info, int fd) 2380 { 2381 struct elf_thread_status *ets; 2382 int i, error = 0; 2383 2384 /* write prstatus, psinfo and auxv for current thread */ 2385 for (i = 0; i < info->numnote; i++) 2386 if ((error = write_note(&info->notes[i], fd)) != 0) 2387 return (error); 2388 2389 /* write prstatus for each thread */ 2390 for (ets = info->thread_list.tqh_first; ets != NULL; 2391 ets = ets->ets_link.tqe_next) { 2392 if ((error = write_note(&ets->notes[0], fd)) != 0) 2393 return (error); 2394 } 2395 2396 return (0); 2397 } 2398 2399 /* 2400 * Write out ELF coredump. 2401 * 2402 * See documentation of ELF object file format in: 2403 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2404 * 2405 * Coredump format in linux is following: 2406 * 2407 * 0 +----------------------+ \ 2408 * | ELF header | ET_CORE | 2409 * +----------------------+ | 2410 * | ELF program headers | |--- headers 2411 * | - NOTE section | | 2412 * | - PT_LOAD sections | | 2413 * +----------------------+ / 2414 * | NOTEs: | 2415 * | - NT_PRSTATUS | 2416 * | - NT_PRSINFO | 2417 * | - NT_AUXV | 2418 * +----------------------+ <-- aligned to target page 2419 * | Process memory dump | 2420 * : : 2421 * . . 2422 * : : 2423 * | | 2424 * +----------------------+ 2425 * 2426 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2427 * NT_PRSINFO -> struct elf_prpsinfo 2428 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2429 * 2430 * Format follows System V format as close as possible. Current 2431 * version limitations are as follows: 2432 * - no floating point registers are dumped 2433 * 2434 * Function returns 0 in case of success, negative errno otherwise. 2435 * 2436 * TODO: make this work also during runtime: it should be 2437 * possible to force coredump from running process and then 2438 * continue processing. For example qemu could set up SIGUSR2 2439 * handler (provided that target process haven't registered 2440 * handler for that) that does the dump when signal is received. 2441 */ 2442 static int elf_core_dump(int signr, const CPUState *env) 2443 { 2444 const TaskState *ts = (const TaskState *)env->opaque; 2445 struct vm_area_struct *vma = NULL; 2446 char corefile[PATH_MAX]; 2447 struct elf_note_info info; 2448 struct elfhdr elf; 2449 struct elf_phdr phdr; 2450 struct rlimit dumpsize; 2451 struct mm_struct *mm = NULL; 2452 off_t offset = 0, data_offset = 0; 2453 int segs = 0; 2454 int fd = -1; 2455 2456 errno = 0; 2457 getrlimit(RLIMIT_CORE, &dumpsize); 2458 if (dumpsize.rlim_cur == 0) 2459 return 0; 2460 2461 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2462 return (-errno); 2463 2464 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2465 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2466 return (-errno); 2467 2468 /* 2469 * Walk through target process memory mappings and 2470 * set up structure containing this information. After 2471 * this point vma_xxx functions can be used. 2472 */ 2473 if ((mm = vma_init()) == NULL) 2474 goto out; 2475 2476 walk_memory_regions(mm, vma_walker); 2477 segs = vma_get_mapping_count(mm); 2478 2479 /* 2480 * Construct valid coredump ELF header. We also 2481 * add one more segment for notes. 2482 */ 2483 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 2484 if (dump_write(fd, &elf, sizeof (elf)) != 0) 2485 goto out; 2486 2487 /* fill in in-memory version of notes */ 2488 if (fill_note_info(&info, signr, env) < 0) 2489 goto out; 2490 2491 offset += sizeof (elf); /* elf header */ 2492 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 2493 2494 /* write out notes program header */ 2495 fill_elf_note_phdr(&phdr, info.notes_size, offset); 2496 2497 offset += info.notes_size; 2498 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 2499 goto out; 2500 2501 /* 2502 * ELF specification wants data to start at page boundary so 2503 * we align it here. 2504 */ 2505 offset = roundup(offset, ELF_EXEC_PAGESIZE); 2506 2507 /* 2508 * Write program headers for memory regions mapped in 2509 * the target process. 2510 */ 2511 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 2512 (void) memset(&phdr, 0, sizeof (phdr)); 2513 2514 phdr.p_type = PT_LOAD; 2515 phdr.p_offset = offset; 2516 phdr.p_vaddr = vma->vma_start; 2517 phdr.p_paddr = 0; 2518 phdr.p_filesz = vma_dump_size(vma); 2519 offset += phdr.p_filesz; 2520 phdr.p_memsz = vma->vma_end - vma->vma_start; 2521 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 2522 if (vma->vma_flags & PROT_WRITE) 2523 phdr.p_flags |= PF_W; 2524 if (vma->vma_flags & PROT_EXEC) 2525 phdr.p_flags |= PF_X; 2526 phdr.p_align = ELF_EXEC_PAGESIZE; 2527 2528 dump_write(fd, &phdr, sizeof (phdr)); 2529 } 2530 2531 /* 2532 * Next we write notes just after program headers. No 2533 * alignment needed here. 2534 */ 2535 if (write_note_info(&info, fd) < 0) 2536 goto out; 2537 2538 /* align data to page boundary */ 2539 data_offset = lseek(fd, 0, SEEK_CUR); 2540 data_offset = TARGET_PAGE_ALIGN(data_offset); 2541 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 2542 goto out; 2543 2544 /* 2545 * Finally we can dump process memory into corefile as well. 2546 */ 2547 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 2548 abi_ulong addr; 2549 abi_ulong end; 2550 2551 end = vma->vma_start + vma_dump_size(vma); 2552 2553 for (addr = vma->vma_start; addr < end; 2554 addr += TARGET_PAGE_SIZE) { 2555 char page[TARGET_PAGE_SIZE]; 2556 int error; 2557 2558 /* 2559 * Read in page from target process memory and 2560 * write it to coredump file. 2561 */ 2562 error = copy_from_user(page, addr, sizeof (page)); 2563 if (error != 0) { 2564 (void) fprintf(stderr, "unable to dump " TARGET_FMT_lx "\n", 2565 addr); 2566 errno = -error; 2567 goto out; 2568 } 2569 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 2570 goto out; 2571 } 2572 } 2573 2574 out: 2575 free_note_info(&info); 2576 if (mm != NULL) 2577 vma_delete(mm); 2578 (void) close(fd); 2579 2580 if (errno != 0) 2581 return (-errno); 2582 return (0); 2583 } 2584 2585 #endif /* USE_ELF_CORE_DUMP */ 2586 2587 static int load_aout_interp(void * exptr, int interp_fd) 2588 { 2589 printf("a.out interpreter not yet supported\n"); 2590 return(0); 2591 } 2592 2593 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 2594 { 2595 init_thread(regs, infop); 2596 } 2597