xref: /qemu/linux-user/elfload.c (revision 450cb7ec2c5fda51b9650ca25e59ac9deeb60d1b)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "target_signal.h"
23 #include "accel/tcg/debuginfo.h"
24 
25 #ifdef _ARCH_PPC64
26 #undef ARCH_DLINFO
27 #undef ELF_PLATFORM
28 #undef ELF_HWCAP
29 #undef ELF_HWCAP2
30 #undef ELF_CLASS
31 #undef ELF_DATA
32 #undef ELF_ARCH
33 #endif
34 
35 #define ELF_OSABI   ELFOSABI_SYSV
36 
37 /* from personality.h */
38 
39 /*
40  * Flags for bug emulation.
41  *
42  * These occupy the top three bytes.
43  */
44 enum {
45     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
46     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
47                                            descriptors (signal handling) */
48     MMAP_PAGE_ZERO =    0x0100000,
49     ADDR_COMPAT_LAYOUT = 0x0200000,
50     READ_IMPLIES_EXEC = 0x0400000,
51     ADDR_LIMIT_32BIT =  0x0800000,
52     SHORT_INODE =       0x1000000,
53     WHOLE_SECONDS =     0x2000000,
54     STICKY_TIMEOUTS =   0x4000000,
55     ADDR_LIMIT_3GB =    0x8000000,
56 };
57 
58 /*
59  * Personality types.
60  *
61  * These go in the low byte.  Avoid using the top bit, it will
62  * conflict with error returns.
63  */
64 enum {
65     PER_LINUX =         0x0000,
66     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
67     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
68     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
69     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
71     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
72     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
73     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
74     PER_BSD =           0x0006,
75     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
76     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
77     PER_LINUX32 =       0x0008,
78     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
79     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
80     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
81     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
82     PER_RISCOS =        0x000c,
83     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
84     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
85     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
86     PER_HPUX =          0x0010,
87     PER_MASK =          0x00ff,
88 };
89 
90 /*
91  * Return the base personality without flags.
92  */
93 #define personality(pers)       (pers & PER_MASK)
94 
95 int info_is_fdpic(struct image_info *info)
96 {
97     return info->personality == PER_LINUX_FDPIC;
98 }
99 
100 /* this flag is uneffective under linux too, should be deleted */
101 #ifndef MAP_DENYWRITE
102 #define MAP_DENYWRITE 0
103 #endif
104 
105 /* should probably go in elf.h */
106 #ifndef ELIBBAD
107 #define ELIBBAD 80
108 #endif
109 
110 #if TARGET_BIG_ENDIAN
111 #define ELF_DATA        ELFDATA2MSB
112 #else
113 #define ELF_DATA        ELFDATA2LSB
114 #endif
115 
116 #ifdef TARGET_ABI_MIPSN32
117 typedef abi_ullong      target_elf_greg_t;
118 #define tswapreg(ptr)   tswap64(ptr)
119 #else
120 typedef abi_ulong       target_elf_greg_t;
121 #define tswapreg(ptr)   tswapal(ptr)
122 #endif
123 
124 #ifdef USE_UID16
125 typedef abi_ushort      target_uid_t;
126 typedef abi_ushort      target_gid_t;
127 #else
128 typedef abi_uint        target_uid_t;
129 typedef abi_uint        target_gid_t;
130 #endif
131 typedef abi_int         target_pid_t;
132 
133 #ifdef TARGET_I386
134 
135 #define ELF_HWCAP get_elf_hwcap()
136 
137 static uint32_t get_elf_hwcap(void)
138 {
139     X86CPU *cpu = X86_CPU(thread_cpu);
140 
141     return cpu->env.features[FEAT_1_EDX];
142 }
143 
144 #ifdef TARGET_X86_64
145 #define ELF_START_MMAP 0x2aaaaab000ULL
146 
147 #define ELF_CLASS      ELFCLASS64
148 #define ELF_ARCH       EM_X86_64
149 
150 #define ELF_PLATFORM   "x86_64"
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = tswapreg(env->regs[15]);
172     (*regs)[1] = tswapreg(env->regs[14]);
173     (*regs)[2] = tswapreg(env->regs[13]);
174     (*regs)[3] = tswapreg(env->regs[12]);
175     (*regs)[4] = tswapreg(env->regs[R_EBP]);
176     (*regs)[5] = tswapreg(env->regs[R_EBX]);
177     (*regs)[6] = tswapreg(env->regs[11]);
178     (*regs)[7] = tswapreg(env->regs[10]);
179     (*regs)[8] = tswapreg(env->regs[9]);
180     (*regs)[9] = tswapreg(env->regs[8]);
181     (*regs)[10] = tswapreg(env->regs[R_EAX]);
182     (*regs)[11] = tswapreg(env->regs[R_ECX]);
183     (*regs)[12] = tswapreg(env->regs[R_EDX]);
184     (*regs)[13] = tswapreg(env->regs[R_ESI]);
185     (*regs)[14] = tswapreg(env->regs[R_EDI]);
186     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
187     (*regs)[16] = tswapreg(env->eip);
188     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
189     (*regs)[18] = tswapreg(env->eflags);
190     (*regs)[19] = tswapreg(env->regs[R_ESP]);
191     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
192     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
193     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
194     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
195     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
196     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
197     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
198 }
199 
200 #if ULONG_MAX > UINT32_MAX
201 #define INIT_GUEST_COMMPAGE
202 static bool init_guest_commpage(void)
203 {
204     /*
205      * The vsyscall page is at a high negative address aka kernel space,
206      * which means that we cannot actually allocate it with target_mmap.
207      * We still should be able to use page_set_flags, unless the user
208      * has specified -R reserved_va, which would trigger an assert().
209      */
210     if (reserved_va != 0 &&
211         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
212         error_report("Cannot allocate vsyscall page");
213         exit(EXIT_FAILURE);
214     }
215     page_set_flags(TARGET_VSYSCALL_PAGE,
216                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
217                    PAGE_EXEC | PAGE_VALID);
218     return true;
219 }
220 #endif
221 #else
222 
223 #define ELF_START_MMAP 0x80000000
224 
225 /*
226  * This is used to ensure we don't load something for the wrong architecture.
227  */
228 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
229 
230 /*
231  * These are used to set parameters in the core dumps.
232  */
233 #define ELF_CLASS       ELFCLASS32
234 #define ELF_ARCH        EM_386
235 
236 #define ELF_PLATFORM get_elf_platform()
237 #define EXSTACK_DEFAULT true
238 
239 static const char *get_elf_platform(void)
240 {
241     static char elf_platform[] = "i386";
242     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
243     if (family > 6) {
244         family = 6;
245     }
246     if (family >= 3) {
247         elf_platform[1] = '0' + family;
248     }
249     return elf_platform;
250 }
251 
252 static inline void init_thread(struct target_pt_regs *regs,
253                                struct image_info *infop)
254 {
255     regs->esp = infop->start_stack;
256     regs->eip = infop->entry;
257 
258     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
259        starts %edx contains a pointer to a function which might be
260        registered using `atexit'.  This provides a mean for the
261        dynamic linker to call DT_FINI functions for shared libraries
262        that have been loaded before the code runs.
263 
264        A value of 0 tells we have no such handler.  */
265     regs->edx = 0;
266 }
267 
268 #define ELF_NREG    17
269 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
270 
271 /*
272  * Note that ELF_NREG should be 19 as there should be place for
273  * TRAPNO and ERR "registers" as well but linux doesn't dump
274  * those.
275  *
276  * See linux kernel: arch/x86/include/asm/elf.h
277  */
278 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
279 {
280     (*regs)[0] = tswapreg(env->regs[R_EBX]);
281     (*regs)[1] = tswapreg(env->regs[R_ECX]);
282     (*regs)[2] = tswapreg(env->regs[R_EDX]);
283     (*regs)[3] = tswapreg(env->regs[R_ESI]);
284     (*regs)[4] = tswapreg(env->regs[R_EDI]);
285     (*regs)[5] = tswapreg(env->regs[R_EBP]);
286     (*regs)[6] = tswapreg(env->regs[R_EAX]);
287     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
288     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
289     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
290     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
291     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
292     (*regs)[12] = tswapreg(env->eip);
293     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
294     (*regs)[14] = tswapreg(env->eflags);
295     (*regs)[15] = tswapreg(env->regs[R_ESP]);
296     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
297 }
298 #endif
299 
300 #define USE_ELF_CORE_DUMP
301 #define ELF_EXEC_PAGESIZE       4096
302 
303 #endif
304 
305 #ifdef TARGET_ARM
306 
307 #ifndef TARGET_AARCH64
308 /* 32 bit ARM definitions */
309 
310 #define ELF_START_MMAP 0x80000000
311 
312 #define ELF_ARCH        EM_ARM
313 #define ELF_CLASS       ELFCLASS32
314 #define EXSTACK_DEFAULT true
315 
316 static inline void init_thread(struct target_pt_regs *regs,
317                                struct image_info *infop)
318 {
319     abi_long stack = infop->start_stack;
320     memset(regs, 0, sizeof(*regs));
321 
322     regs->uregs[16] = ARM_CPU_MODE_USR;
323     if (infop->entry & 1) {
324         regs->uregs[16] |= CPSR_T;
325     }
326     regs->uregs[15] = infop->entry & 0xfffffffe;
327     regs->uregs[13] = infop->start_stack;
328     /* FIXME - what to for failure of get_user()? */
329     get_user_ual(regs->uregs[2], stack + 8); /* envp */
330     get_user_ual(regs->uregs[1], stack + 4); /* envp */
331     /* XXX: it seems that r0 is zeroed after ! */
332     regs->uregs[0] = 0;
333     /* For uClinux PIC binaries.  */
334     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
335     regs->uregs[10] = infop->start_data;
336 
337     /* Support ARM FDPIC.  */
338     if (info_is_fdpic(infop)) {
339         /* As described in the ABI document, r7 points to the loadmap info
340          * prepared by the kernel. If an interpreter is needed, r8 points
341          * to the interpreter loadmap and r9 points to the interpreter
342          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
343          * r9 points to the main program PT_DYNAMIC info.
344          */
345         regs->uregs[7] = infop->loadmap_addr;
346         if (infop->interpreter_loadmap_addr) {
347             /* Executable is dynamically loaded.  */
348             regs->uregs[8] = infop->interpreter_loadmap_addr;
349             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
350         } else {
351             regs->uregs[8] = 0;
352             regs->uregs[9] = infop->pt_dynamic_addr;
353         }
354     }
355 }
356 
357 #define ELF_NREG    18
358 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
359 
360 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
361 {
362     (*regs)[0] = tswapreg(env->regs[0]);
363     (*regs)[1] = tswapreg(env->regs[1]);
364     (*regs)[2] = tswapreg(env->regs[2]);
365     (*regs)[3] = tswapreg(env->regs[3]);
366     (*regs)[4] = tswapreg(env->regs[4]);
367     (*regs)[5] = tswapreg(env->regs[5]);
368     (*regs)[6] = tswapreg(env->regs[6]);
369     (*regs)[7] = tswapreg(env->regs[7]);
370     (*regs)[8] = tswapreg(env->regs[8]);
371     (*regs)[9] = tswapreg(env->regs[9]);
372     (*regs)[10] = tswapreg(env->regs[10]);
373     (*regs)[11] = tswapreg(env->regs[11]);
374     (*regs)[12] = tswapreg(env->regs[12]);
375     (*regs)[13] = tswapreg(env->regs[13]);
376     (*regs)[14] = tswapreg(env->regs[14]);
377     (*regs)[15] = tswapreg(env->regs[15]);
378 
379     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
380     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
381 }
382 
383 #define USE_ELF_CORE_DUMP
384 #define ELF_EXEC_PAGESIZE       4096
385 
386 enum
387 {
388     ARM_HWCAP_ARM_SWP       = 1 << 0,
389     ARM_HWCAP_ARM_HALF      = 1 << 1,
390     ARM_HWCAP_ARM_THUMB     = 1 << 2,
391     ARM_HWCAP_ARM_26BIT     = 1 << 3,
392     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
393     ARM_HWCAP_ARM_FPA       = 1 << 5,
394     ARM_HWCAP_ARM_VFP       = 1 << 6,
395     ARM_HWCAP_ARM_EDSP      = 1 << 7,
396     ARM_HWCAP_ARM_JAVA      = 1 << 8,
397     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
398     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
399     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
400     ARM_HWCAP_ARM_NEON      = 1 << 12,
401     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
402     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
403     ARM_HWCAP_ARM_TLS       = 1 << 15,
404     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
405     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
406     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
407     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
408     ARM_HWCAP_ARM_LPAE      = 1 << 20,
409     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
410 };
411 
412 enum {
413     ARM_HWCAP2_ARM_AES      = 1 << 0,
414     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
415     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
416     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
417     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
418 };
419 
420 /* The commpage only exists for 32 bit kernels */
421 
422 #define HI_COMMPAGE (intptr_t)0xffff0f00u
423 
424 static bool init_guest_commpage(void)
425 {
426     ARMCPU *cpu = ARM_CPU(thread_cpu);
427     abi_ptr want = HI_COMMPAGE & TARGET_PAGE_MASK;
428     abi_ptr addr;
429 
430     /*
431      * M-profile allocates maximum of 2GB address space, so can never
432      * allocate the commpage.  Skip it.
433      */
434     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
435         return true;
436     }
437 
438     /*
439      * If reserved_va does not cover the commpage, we get an assert
440      * in page_set_flags.  Produce an intelligent error instead.
441      */
442     if (reserved_va != 0 && want + TARGET_PAGE_SIZE - 1 > reserved_va) {
443         error_report("Allocating guest commpage: -R 0x%" PRIx64 " too small",
444                      (uint64_t)reserved_va + 1);
445         exit(EXIT_FAILURE);
446     }
447 
448     addr = target_mmap(want, TARGET_PAGE_SIZE, PROT_READ | PROT_WRITE,
449                        MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
450 
451     if (addr == -1) {
452         perror("Allocating guest commpage");
453         exit(EXIT_FAILURE);
454     }
455     if (addr != want) {
456         return false;
457     }
458 
459     /* Set kernel helper versions; rest of page is 0.  */
460     put_user_u32(5, 0xffff0ffcu);
461 
462     if (target_mprotect(addr, qemu_host_page_size, PROT_READ | PROT_EXEC)) {
463         perror("Protecting guest commpage");
464         exit(EXIT_FAILURE);
465     }
466     return true;
467 }
468 
469 #define ELF_HWCAP get_elf_hwcap()
470 #define ELF_HWCAP2 get_elf_hwcap2()
471 
472 static uint32_t get_elf_hwcap(void)
473 {
474     ARMCPU *cpu = ARM_CPU(thread_cpu);
475     uint32_t hwcaps = 0;
476 
477     hwcaps |= ARM_HWCAP_ARM_SWP;
478     hwcaps |= ARM_HWCAP_ARM_HALF;
479     hwcaps |= ARM_HWCAP_ARM_THUMB;
480     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
481 
482     /* probe for the extra features */
483 #define GET_FEATURE(feat, hwcap) \
484     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
485 
486 #define GET_FEATURE_ID(feat, hwcap) \
487     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
488 
489     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
490     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
491     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
492     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
493     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
494     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
495     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
496     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
497     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
498     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
499 
500     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
501         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
502         hwcaps |= ARM_HWCAP_ARM_VFPv3;
503         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
504             hwcaps |= ARM_HWCAP_ARM_VFPD32;
505         } else {
506             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
507         }
508     }
509     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
510 
511     return hwcaps;
512 }
513 
514 static uint32_t get_elf_hwcap2(void)
515 {
516     ARMCPU *cpu = ARM_CPU(thread_cpu);
517     uint32_t hwcaps = 0;
518 
519     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
520     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
521     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
522     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
523     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
524     return hwcaps;
525 }
526 
527 #undef GET_FEATURE
528 #undef GET_FEATURE_ID
529 
530 #define ELF_PLATFORM get_elf_platform()
531 
532 static const char *get_elf_platform(void)
533 {
534     CPUARMState *env = thread_cpu->env_ptr;
535 
536 #if TARGET_BIG_ENDIAN
537 # define END  "b"
538 #else
539 # define END  "l"
540 #endif
541 
542     if (arm_feature(env, ARM_FEATURE_V8)) {
543         return "v8" END;
544     } else if (arm_feature(env, ARM_FEATURE_V7)) {
545         if (arm_feature(env, ARM_FEATURE_M)) {
546             return "v7m" END;
547         } else {
548             return "v7" END;
549         }
550     } else if (arm_feature(env, ARM_FEATURE_V6)) {
551         return "v6" END;
552     } else if (arm_feature(env, ARM_FEATURE_V5)) {
553         return "v5" END;
554     } else {
555         return "v4" END;
556     }
557 
558 #undef END
559 }
560 
561 #else
562 /* 64 bit ARM definitions */
563 #define ELF_START_MMAP 0x80000000
564 
565 #define ELF_ARCH        EM_AARCH64
566 #define ELF_CLASS       ELFCLASS64
567 #if TARGET_BIG_ENDIAN
568 # define ELF_PLATFORM    "aarch64_be"
569 #else
570 # define ELF_PLATFORM    "aarch64"
571 #endif
572 
573 static inline void init_thread(struct target_pt_regs *regs,
574                                struct image_info *infop)
575 {
576     abi_long stack = infop->start_stack;
577     memset(regs, 0, sizeof(*regs));
578 
579     regs->pc = infop->entry & ~0x3ULL;
580     regs->sp = stack;
581 }
582 
583 #define ELF_NREG    34
584 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
585 
586 static void elf_core_copy_regs(target_elf_gregset_t *regs,
587                                const CPUARMState *env)
588 {
589     int i;
590 
591     for (i = 0; i < 32; i++) {
592         (*regs)[i] = tswapreg(env->xregs[i]);
593     }
594     (*regs)[32] = tswapreg(env->pc);
595     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
596 }
597 
598 #define USE_ELF_CORE_DUMP
599 #define ELF_EXEC_PAGESIZE       4096
600 
601 enum {
602     ARM_HWCAP_A64_FP            = 1 << 0,
603     ARM_HWCAP_A64_ASIMD         = 1 << 1,
604     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
605     ARM_HWCAP_A64_AES           = 1 << 3,
606     ARM_HWCAP_A64_PMULL         = 1 << 4,
607     ARM_HWCAP_A64_SHA1          = 1 << 5,
608     ARM_HWCAP_A64_SHA2          = 1 << 6,
609     ARM_HWCAP_A64_CRC32         = 1 << 7,
610     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
611     ARM_HWCAP_A64_FPHP          = 1 << 9,
612     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
613     ARM_HWCAP_A64_CPUID         = 1 << 11,
614     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
615     ARM_HWCAP_A64_JSCVT         = 1 << 13,
616     ARM_HWCAP_A64_FCMA          = 1 << 14,
617     ARM_HWCAP_A64_LRCPC         = 1 << 15,
618     ARM_HWCAP_A64_DCPOP         = 1 << 16,
619     ARM_HWCAP_A64_SHA3          = 1 << 17,
620     ARM_HWCAP_A64_SM3           = 1 << 18,
621     ARM_HWCAP_A64_SM4           = 1 << 19,
622     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
623     ARM_HWCAP_A64_SHA512        = 1 << 21,
624     ARM_HWCAP_A64_SVE           = 1 << 22,
625     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
626     ARM_HWCAP_A64_DIT           = 1 << 24,
627     ARM_HWCAP_A64_USCAT         = 1 << 25,
628     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
629     ARM_HWCAP_A64_FLAGM         = 1 << 27,
630     ARM_HWCAP_A64_SSBS          = 1 << 28,
631     ARM_HWCAP_A64_SB            = 1 << 29,
632     ARM_HWCAP_A64_PACA          = 1 << 30,
633     ARM_HWCAP_A64_PACG          = 1UL << 31,
634 
635     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
636     ARM_HWCAP2_A64_SVE2         = 1 << 1,
637     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
638     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
639     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
640     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
641     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
642     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
643     ARM_HWCAP2_A64_FRINT        = 1 << 8,
644     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
645     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
646     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
647     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
648     ARM_HWCAP2_A64_I8MM         = 1 << 13,
649     ARM_HWCAP2_A64_BF16         = 1 << 14,
650     ARM_HWCAP2_A64_DGH          = 1 << 15,
651     ARM_HWCAP2_A64_RNG          = 1 << 16,
652     ARM_HWCAP2_A64_BTI          = 1 << 17,
653     ARM_HWCAP2_A64_MTE          = 1 << 18,
654     ARM_HWCAP2_A64_ECV          = 1 << 19,
655     ARM_HWCAP2_A64_AFP          = 1 << 20,
656     ARM_HWCAP2_A64_RPRES        = 1 << 21,
657     ARM_HWCAP2_A64_MTE3         = 1 << 22,
658     ARM_HWCAP2_A64_SME          = 1 << 23,
659     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
660     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
661     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
662     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
663     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
664     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
665     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
666 };
667 
668 #define ELF_HWCAP   get_elf_hwcap()
669 #define ELF_HWCAP2  get_elf_hwcap2()
670 
671 #define GET_FEATURE_ID(feat, hwcap) \
672     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
673 
674 static uint32_t get_elf_hwcap(void)
675 {
676     ARMCPU *cpu = ARM_CPU(thread_cpu);
677     uint32_t hwcaps = 0;
678 
679     hwcaps |= ARM_HWCAP_A64_FP;
680     hwcaps |= ARM_HWCAP_A64_ASIMD;
681     hwcaps |= ARM_HWCAP_A64_CPUID;
682 
683     /* probe for the extra features */
684 
685     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
686     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
687     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
688     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
689     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
690     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
691     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
692     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
693     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
694     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
695     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
696     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
697     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
698     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
699     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
700     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
701     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
702     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
703     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
704     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
705     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
706     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
707     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
708 
709     return hwcaps;
710 }
711 
712 static uint32_t get_elf_hwcap2(void)
713 {
714     ARMCPU *cpu = ARM_CPU(thread_cpu);
715     uint32_t hwcaps = 0;
716 
717     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
718     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
719     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
720     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
721     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
722     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
723     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
724     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
725     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
726     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
727     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
728     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
729     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
730     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
731     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
732     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
733     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
734     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
735     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
736                               ARM_HWCAP2_A64_SME_F32F32 |
737                               ARM_HWCAP2_A64_SME_B16F32 |
738                               ARM_HWCAP2_A64_SME_F16F32 |
739                               ARM_HWCAP2_A64_SME_I8I32));
740     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
741     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
742     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
743 
744     return hwcaps;
745 }
746 
747 #undef GET_FEATURE_ID
748 
749 #endif /* not TARGET_AARCH64 */
750 #endif /* TARGET_ARM */
751 
752 #ifdef TARGET_SPARC
753 #ifdef TARGET_SPARC64
754 
755 #define ELF_START_MMAP 0x80000000
756 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
757                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
758 #ifndef TARGET_ABI32
759 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
760 #else
761 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
762 #endif
763 
764 #define ELF_CLASS   ELFCLASS64
765 #define ELF_ARCH    EM_SPARCV9
766 #else
767 #define ELF_START_MMAP 0x80000000
768 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
769                     | HWCAP_SPARC_MULDIV)
770 #define ELF_CLASS   ELFCLASS32
771 #define ELF_ARCH    EM_SPARC
772 #endif /* TARGET_SPARC64 */
773 
774 static inline void init_thread(struct target_pt_regs *regs,
775                                struct image_info *infop)
776 {
777     /* Note that target_cpu_copy_regs does not read psr/tstate. */
778     regs->pc = infop->entry;
779     regs->npc = regs->pc + 4;
780     regs->y = 0;
781     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
782                         - TARGET_STACK_BIAS);
783 }
784 #endif /* TARGET_SPARC */
785 
786 #ifdef TARGET_PPC
787 
788 #define ELF_MACHINE    PPC_ELF_MACHINE
789 #define ELF_START_MMAP 0x80000000
790 
791 #if defined(TARGET_PPC64)
792 
793 #define elf_check_arch(x) ( (x) == EM_PPC64 )
794 
795 #define ELF_CLASS       ELFCLASS64
796 
797 #else
798 
799 #define ELF_CLASS       ELFCLASS32
800 #define EXSTACK_DEFAULT true
801 
802 #endif
803 
804 #define ELF_ARCH        EM_PPC
805 
806 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
807    See arch/powerpc/include/asm/cputable.h.  */
808 enum {
809     QEMU_PPC_FEATURE_32 = 0x80000000,
810     QEMU_PPC_FEATURE_64 = 0x40000000,
811     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
812     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
813     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
814     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
815     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
816     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
817     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
818     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
819     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
820     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
821     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
822     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
823     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
824     QEMU_PPC_FEATURE_CELL = 0x00010000,
825     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
826     QEMU_PPC_FEATURE_SMT = 0x00004000,
827     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
828     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
829     QEMU_PPC_FEATURE_PA6T = 0x00000800,
830     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
831     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
832     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
833     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
834     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
835 
836     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
837     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
838 
839     /* Feature definitions in AT_HWCAP2.  */
840     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
841     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
842     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
843     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
844     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
845     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
846     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
847     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
848     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
849     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
850     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
851     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
852     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
853     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
854     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
855 };
856 
857 #define ELF_HWCAP get_elf_hwcap()
858 
859 static uint32_t get_elf_hwcap(void)
860 {
861     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
862     uint32_t features = 0;
863 
864     /* We don't have to be terribly complete here; the high points are
865        Altivec/FP/SPE support.  Anything else is just a bonus.  */
866 #define GET_FEATURE(flag, feature)                                      \
867     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
868 #define GET_FEATURE2(flags, feature) \
869     do { \
870         if ((cpu->env.insns_flags2 & flags) == flags) { \
871             features |= feature; \
872         } \
873     } while (0)
874     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
875     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
876     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
877     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
878     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
879     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
880     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
881     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
882     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
883     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
884     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
885                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
886                   QEMU_PPC_FEATURE_ARCH_2_06);
887 #undef GET_FEATURE
888 #undef GET_FEATURE2
889 
890     return features;
891 }
892 
893 #define ELF_HWCAP2 get_elf_hwcap2()
894 
895 static uint32_t get_elf_hwcap2(void)
896 {
897     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
898     uint32_t features = 0;
899 
900 #define GET_FEATURE(flag, feature)                                      \
901     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
902 #define GET_FEATURE2(flag, feature)                                      \
903     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
904 
905     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
906     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
907     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
908                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
909                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
910     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
911                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
912     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
913                  QEMU_PPC_FEATURE2_MMA);
914 
915 #undef GET_FEATURE
916 #undef GET_FEATURE2
917 
918     return features;
919 }
920 
921 /*
922  * The requirements here are:
923  * - keep the final alignment of sp (sp & 0xf)
924  * - make sure the 32-bit value at the first 16 byte aligned position of
925  *   AUXV is greater than 16 for glibc compatibility.
926  *   AT_IGNOREPPC is used for that.
927  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
928  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
929  */
930 #define DLINFO_ARCH_ITEMS       5
931 #define ARCH_DLINFO                                     \
932     do {                                                \
933         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
934         /*                                              \
935          * Handle glibc compatibility: these magic entries must \
936          * be at the lowest addresses in the final auxv.        \
937          */                                             \
938         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
939         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
940         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
941         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
942         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
943     } while (0)
944 
945 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
946 {
947     _regs->gpr[1] = infop->start_stack;
948 #if defined(TARGET_PPC64)
949     if (get_ppc64_abi(infop) < 2) {
950         uint64_t val;
951         get_user_u64(val, infop->entry + 8);
952         _regs->gpr[2] = val + infop->load_bias;
953         get_user_u64(val, infop->entry);
954         infop->entry = val + infop->load_bias;
955     } else {
956         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
957     }
958 #endif
959     _regs->nip = infop->entry;
960 }
961 
962 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
963 #define ELF_NREG 48
964 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
965 
966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
967 {
968     int i;
969     target_ulong ccr = 0;
970 
971     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
972         (*regs)[i] = tswapreg(env->gpr[i]);
973     }
974 
975     (*regs)[32] = tswapreg(env->nip);
976     (*regs)[33] = tswapreg(env->msr);
977     (*regs)[35] = tswapreg(env->ctr);
978     (*regs)[36] = tswapreg(env->lr);
979     (*regs)[37] = tswapreg(cpu_read_xer(env));
980 
981     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
982         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
983     }
984     (*regs)[38] = tswapreg(ccr);
985 }
986 
987 #define USE_ELF_CORE_DUMP
988 #define ELF_EXEC_PAGESIZE       4096
989 
990 #endif
991 
992 #ifdef TARGET_LOONGARCH64
993 
994 #define ELF_START_MMAP 0x80000000
995 
996 #define ELF_CLASS   ELFCLASS64
997 #define ELF_ARCH    EM_LOONGARCH
998 #define EXSTACK_DEFAULT true
999 
1000 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1001 
1002 static inline void init_thread(struct target_pt_regs *regs,
1003                                struct image_info *infop)
1004 {
1005     /*Set crmd PG,DA = 1,0 */
1006     regs->csr.crmd = 2 << 3;
1007     regs->csr.era = infop->entry;
1008     regs->regs[3] = infop->start_stack;
1009 }
1010 
1011 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1012 #define ELF_NREG 45
1013 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1014 
1015 enum {
1016     TARGET_EF_R0 = 0,
1017     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1018     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1019 };
1020 
1021 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1022                                const CPULoongArchState *env)
1023 {
1024     int i;
1025 
1026     (*regs)[TARGET_EF_R0] = 0;
1027 
1028     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1029         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1030     }
1031 
1032     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1033     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1034 }
1035 
1036 #define USE_ELF_CORE_DUMP
1037 #define ELF_EXEC_PAGESIZE        4096
1038 
1039 #define ELF_HWCAP get_elf_hwcap()
1040 
1041 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1042 enum {
1043     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1044     HWCAP_LOONGARCH_LAM      = (1 << 1),
1045     HWCAP_LOONGARCH_UAL      = (1 << 2),
1046     HWCAP_LOONGARCH_FPU      = (1 << 3),
1047     HWCAP_LOONGARCH_LSX      = (1 << 4),
1048     HWCAP_LOONGARCH_LASX     = (1 << 5),
1049     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1050     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1051     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1052     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1053     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1054     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1055     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1056 };
1057 
1058 static uint32_t get_elf_hwcap(void)
1059 {
1060     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1061     uint32_t hwcaps = 0;
1062 
1063     hwcaps |= HWCAP_LOONGARCH_CRC32;
1064 
1065     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1066         hwcaps |= HWCAP_LOONGARCH_UAL;
1067     }
1068 
1069     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1070         hwcaps |= HWCAP_LOONGARCH_FPU;
1071     }
1072 
1073     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1074         hwcaps |= HWCAP_LOONGARCH_LAM;
1075     }
1076 
1077     return hwcaps;
1078 }
1079 
1080 #define ELF_PLATFORM "loongarch"
1081 
1082 #endif /* TARGET_LOONGARCH64 */
1083 
1084 #ifdef TARGET_MIPS
1085 
1086 #define ELF_START_MMAP 0x80000000
1087 
1088 #ifdef TARGET_MIPS64
1089 #define ELF_CLASS   ELFCLASS64
1090 #else
1091 #define ELF_CLASS   ELFCLASS32
1092 #endif
1093 #define ELF_ARCH    EM_MIPS
1094 #define EXSTACK_DEFAULT true
1095 
1096 #ifdef TARGET_ABI_MIPSN32
1097 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1098 #else
1099 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1100 #endif
1101 
1102 #define ELF_BASE_PLATFORM get_elf_base_platform()
1103 
1104 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1105     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1106     { return _base_platform; } } while (0)
1107 
1108 static const char *get_elf_base_platform(void)
1109 {
1110     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1111 
1112     /* 64 bit ISAs goes first */
1113     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1114     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1115     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1116     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1117     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1118     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1119     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1120 
1121     /* 32 bit ISAs */
1122     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1123     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1124     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1125     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1126     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1127 
1128     /* Fallback */
1129     return "mips";
1130 }
1131 #undef MATCH_PLATFORM_INSN
1132 
1133 static inline void init_thread(struct target_pt_regs *regs,
1134                                struct image_info *infop)
1135 {
1136     regs->cp0_status = 2 << CP0St_KSU;
1137     regs->cp0_epc = infop->entry;
1138     regs->regs[29] = infop->start_stack;
1139 }
1140 
1141 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1142 #define ELF_NREG 45
1143 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1144 
1145 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1146 enum {
1147 #ifdef TARGET_MIPS64
1148     TARGET_EF_R0 = 0,
1149 #else
1150     TARGET_EF_R0 = 6,
1151 #endif
1152     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1153     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1154     TARGET_EF_LO = TARGET_EF_R0 + 32,
1155     TARGET_EF_HI = TARGET_EF_R0 + 33,
1156     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1157     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1158     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1159     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1160 };
1161 
1162 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1163 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1164 {
1165     int i;
1166 
1167     for (i = 0; i < TARGET_EF_R0; i++) {
1168         (*regs)[i] = 0;
1169     }
1170     (*regs)[TARGET_EF_R0] = 0;
1171 
1172     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1173         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1174     }
1175 
1176     (*regs)[TARGET_EF_R26] = 0;
1177     (*regs)[TARGET_EF_R27] = 0;
1178     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1179     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1180     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1181     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1182     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1183     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1184 }
1185 
1186 #define USE_ELF_CORE_DUMP
1187 #define ELF_EXEC_PAGESIZE        4096
1188 
1189 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1190 enum {
1191     HWCAP_MIPS_R6           = (1 << 0),
1192     HWCAP_MIPS_MSA          = (1 << 1),
1193     HWCAP_MIPS_CRC32        = (1 << 2),
1194     HWCAP_MIPS_MIPS16       = (1 << 3),
1195     HWCAP_MIPS_MDMX         = (1 << 4),
1196     HWCAP_MIPS_MIPS3D       = (1 << 5),
1197     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1198     HWCAP_MIPS_DSP          = (1 << 7),
1199     HWCAP_MIPS_DSP2         = (1 << 8),
1200     HWCAP_MIPS_DSP3         = (1 << 9),
1201     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1202     HWCAP_LOONGSON_MMI      = (1 << 11),
1203     HWCAP_LOONGSON_EXT      = (1 << 12),
1204     HWCAP_LOONGSON_EXT2     = (1 << 13),
1205     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1206 };
1207 
1208 #define ELF_HWCAP get_elf_hwcap()
1209 
1210 #define GET_FEATURE_INSN(_flag, _hwcap) \
1211     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1212 
1213 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1214     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1215 
1216 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1217     do { \
1218         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1219             hwcaps |= _hwcap; \
1220         } \
1221     } while (0)
1222 
1223 static uint32_t get_elf_hwcap(void)
1224 {
1225     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1226     uint32_t hwcaps = 0;
1227 
1228     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1229                         2, HWCAP_MIPS_R6);
1230     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1231     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1232     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1233 
1234     return hwcaps;
1235 }
1236 
1237 #undef GET_FEATURE_REG_EQU
1238 #undef GET_FEATURE_REG_SET
1239 #undef GET_FEATURE_INSN
1240 
1241 #endif /* TARGET_MIPS */
1242 
1243 #ifdef TARGET_MICROBLAZE
1244 
1245 #define ELF_START_MMAP 0x80000000
1246 
1247 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1248 
1249 #define ELF_CLASS   ELFCLASS32
1250 #define ELF_ARCH    EM_MICROBLAZE
1251 
1252 static inline void init_thread(struct target_pt_regs *regs,
1253                                struct image_info *infop)
1254 {
1255     regs->pc = infop->entry;
1256     regs->r1 = infop->start_stack;
1257 
1258 }
1259 
1260 #define ELF_EXEC_PAGESIZE        4096
1261 
1262 #define USE_ELF_CORE_DUMP
1263 #define ELF_NREG 38
1264 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1265 
1266 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1267 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1268 {
1269     int i, pos = 0;
1270 
1271     for (i = 0; i < 32; i++) {
1272         (*regs)[pos++] = tswapreg(env->regs[i]);
1273     }
1274 
1275     (*regs)[pos++] = tswapreg(env->pc);
1276     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1277     (*regs)[pos++] = 0;
1278     (*regs)[pos++] = tswapreg(env->ear);
1279     (*regs)[pos++] = 0;
1280     (*regs)[pos++] = tswapreg(env->esr);
1281 }
1282 
1283 #endif /* TARGET_MICROBLAZE */
1284 
1285 #ifdef TARGET_NIOS2
1286 
1287 #define ELF_START_MMAP 0x80000000
1288 
1289 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1290 
1291 #define ELF_CLASS   ELFCLASS32
1292 #define ELF_ARCH    EM_ALTERA_NIOS2
1293 
1294 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1295 {
1296     regs->ea = infop->entry;
1297     regs->sp = infop->start_stack;
1298 }
1299 
1300 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1301 
1302 static bool init_guest_commpage(void)
1303 {
1304     static const uint8_t kuser_page[4 + 2 * 64] = {
1305         /* __kuser_helper_version */
1306         [0x00] = 0x02, 0x00, 0x00, 0x00,
1307 
1308         /* __kuser_cmpxchg */
1309         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1310                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1311 
1312         /* __kuser_sigtramp */
1313         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1314                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1315     };
1316 
1317     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1318     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1319                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1320 
1321     if (addr == MAP_FAILED) {
1322         perror("Allocating guest commpage");
1323         exit(EXIT_FAILURE);
1324     }
1325     if (addr != want) {
1326         return false;
1327     }
1328 
1329     memcpy(addr, kuser_page, sizeof(kuser_page));
1330 
1331     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1332         perror("Protecting guest commpage");
1333         exit(EXIT_FAILURE);
1334     }
1335 
1336     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1337                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1338     return true;
1339 }
1340 
1341 #define ELF_EXEC_PAGESIZE        4096
1342 
1343 #define USE_ELF_CORE_DUMP
1344 #define ELF_NREG 49
1345 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1346 
1347 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1348 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1349                                const CPUNios2State *env)
1350 {
1351     int i;
1352 
1353     (*regs)[0] = -1;
1354     for (i = 1; i < 8; i++)    /* r0-r7 */
1355         (*regs)[i] = tswapreg(env->regs[i + 7]);
1356 
1357     for (i = 8; i < 16; i++)   /* r8-r15 */
1358         (*regs)[i] = tswapreg(env->regs[i - 8]);
1359 
1360     for (i = 16; i < 24; i++)  /* r16-r23 */
1361         (*regs)[i] = tswapreg(env->regs[i + 7]);
1362     (*regs)[24] = -1;    /* R_ET */
1363     (*regs)[25] = -1;    /* R_BT */
1364     (*regs)[26] = tswapreg(env->regs[R_GP]);
1365     (*regs)[27] = tswapreg(env->regs[R_SP]);
1366     (*regs)[28] = tswapreg(env->regs[R_FP]);
1367     (*regs)[29] = tswapreg(env->regs[R_EA]);
1368     (*regs)[30] = -1;    /* R_SSTATUS */
1369     (*regs)[31] = tswapreg(env->regs[R_RA]);
1370 
1371     (*regs)[32] = tswapreg(env->pc);
1372 
1373     (*regs)[33] = -1; /* R_STATUS */
1374     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1375 
1376     for (i = 35; i < 49; i++)    /* ... */
1377         (*regs)[i] = -1;
1378 }
1379 
1380 #endif /* TARGET_NIOS2 */
1381 
1382 #ifdef TARGET_OPENRISC
1383 
1384 #define ELF_START_MMAP 0x08000000
1385 
1386 #define ELF_ARCH EM_OPENRISC
1387 #define ELF_CLASS ELFCLASS32
1388 #define ELF_DATA  ELFDATA2MSB
1389 
1390 static inline void init_thread(struct target_pt_regs *regs,
1391                                struct image_info *infop)
1392 {
1393     regs->pc = infop->entry;
1394     regs->gpr[1] = infop->start_stack;
1395 }
1396 
1397 #define USE_ELF_CORE_DUMP
1398 #define ELF_EXEC_PAGESIZE 8192
1399 
1400 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1401 #define ELF_NREG 34 /* gprs and pc, sr */
1402 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1403 
1404 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1405                                const CPUOpenRISCState *env)
1406 {
1407     int i;
1408 
1409     for (i = 0; i < 32; i++) {
1410         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1411     }
1412     (*regs)[32] = tswapreg(env->pc);
1413     (*regs)[33] = tswapreg(cpu_get_sr(env));
1414 }
1415 #define ELF_HWCAP 0
1416 #define ELF_PLATFORM NULL
1417 
1418 #endif /* TARGET_OPENRISC */
1419 
1420 #ifdef TARGET_SH4
1421 
1422 #define ELF_START_MMAP 0x80000000
1423 
1424 #define ELF_CLASS ELFCLASS32
1425 #define ELF_ARCH  EM_SH
1426 
1427 static inline void init_thread(struct target_pt_regs *regs,
1428                                struct image_info *infop)
1429 {
1430     /* Check other registers XXXXX */
1431     regs->pc = infop->entry;
1432     regs->regs[15] = infop->start_stack;
1433 }
1434 
1435 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1436 #define ELF_NREG 23
1437 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1438 
1439 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1440 enum {
1441     TARGET_REG_PC = 16,
1442     TARGET_REG_PR = 17,
1443     TARGET_REG_SR = 18,
1444     TARGET_REG_GBR = 19,
1445     TARGET_REG_MACH = 20,
1446     TARGET_REG_MACL = 21,
1447     TARGET_REG_SYSCALL = 22
1448 };
1449 
1450 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1451                                       const CPUSH4State *env)
1452 {
1453     int i;
1454 
1455     for (i = 0; i < 16; i++) {
1456         (*regs)[i] = tswapreg(env->gregs[i]);
1457     }
1458 
1459     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1460     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1461     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1462     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1463     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1464     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1465     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1466 }
1467 
1468 #define USE_ELF_CORE_DUMP
1469 #define ELF_EXEC_PAGESIZE        4096
1470 
1471 enum {
1472     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1473     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1474     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1475     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1476     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1477     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1478     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1479     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1480     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1481     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1482 };
1483 
1484 #define ELF_HWCAP get_elf_hwcap()
1485 
1486 static uint32_t get_elf_hwcap(void)
1487 {
1488     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1489     uint32_t hwcap = 0;
1490 
1491     hwcap |= SH_CPU_HAS_FPU;
1492 
1493     if (cpu->env.features & SH_FEATURE_SH4A) {
1494         hwcap |= SH_CPU_HAS_LLSC;
1495     }
1496 
1497     return hwcap;
1498 }
1499 
1500 #endif
1501 
1502 #ifdef TARGET_CRIS
1503 
1504 #define ELF_START_MMAP 0x80000000
1505 
1506 #define ELF_CLASS ELFCLASS32
1507 #define ELF_ARCH  EM_CRIS
1508 
1509 static inline void init_thread(struct target_pt_regs *regs,
1510                                struct image_info *infop)
1511 {
1512     regs->erp = infop->entry;
1513 }
1514 
1515 #define ELF_EXEC_PAGESIZE        8192
1516 
1517 #endif
1518 
1519 #ifdef TARGET_M68K
1520 
1521 #define ELF_START_MMAP 0x80000000
1522 
1523 #define ELF_CLASS       ELFCLASS32
1524 #define ELF_ARCH        EM_68K
1525 
1526 /* ??? Does this need to do anything?
1527    #define ELF_PLAT_INIT(_r) */
1528 
1529 static inline void init_thread(struct target_pt_regs *regs,
1530                                struct image_info *infop)
1531 {
1532     regs->usp = infop->start_stack;
1533     regs->sr = 0;
1534     regs->pc = infop->entry;
1535 }
1536 
1537 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1538 #define ELF_NREG 20
1539 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1540 
1541 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1542 {
1543     (*regs)[0] = tswapreg(env->dregs[1]);
1544     (*regs)[1] = tswapreg(env->dregs[2]);
1545     (*regs)[2] = tswapreg(env->dregs[3]);
1546     (*regs)[3] = tswapreg(env->dregs[4]);
1547     (*regs)[4] = tswapreg(env->dregs[5]);
1548     (*regs)[5] = tswapreg(env->dregs[6]);
1549     (*regs)[6] = tswapreg(env->dregs[7]);
1550     (*regs)[7] = tswapreg(env->aregs[0]);
1551     (*regs)[8] = tswapreg(env->aregs[1]);
1552     (*regs)[9] = tswapreg(env->aregs[2]);
1553     (*regs)[10] = tswapreg(env->aregs[3]);
1554     (*regs)[11] = tswapreg(env->aregs[4]);
1555     (*regs)[12] = tswapreg(env->aregs[5]);
1556     (*regs)[13] = tswapreg(env->aregs[6]);
1557     (*regs)[14] = tswapreg(env->dregs[0]);
1558     (*regs)[15] = tswapreg(env->aregs[7]);
1559     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1560     (*regs)[17] = tswapreg(env->sr);
1561     (*regs)[18] = tswapreg(env->pc);
1562     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1563 }
1564 
1565 #define USE_ELF_CORE_DUMP
1566 #define ELF_EXEC_PAGESIZE       8192
1567 
1568 #endif
1569 
1570 #ifdef TARGET_ALPHA
1571 
1572 #define ELF_START_MMAP (0x30000000000ULL)
1573 
1574 #define ELF_CLASS      ELFCLASS64
1575 #define ELF_ARCH       EM_ALPHA
1576 
1577 static inline void init_thread(struct target_pt_regs *regs,
1578                                struct image_info *infop)
1579 {
1580     regs->pc = infop->entry;
1581     regs->ps = 8;
1582     regs->usp = infop->start_stack;
1583 }
1584 
1585 #define ELF_EXEC_PAGESIZE        8192
1586 
1587 #endif /* TARGET_ALPHA */
1588 
1589 #ifdef TARGET_S390X
1590 
1591 #define ELF_START_MMAP (0x20000000000ULL)
1592 
1593 #define ELF_CLASS	ELFCLASS64
1594 #define ELF_DATA	ELFDATA2MSB
1595 #define ELF_ARCH	EM_S390
1596 
1597 #include "elf.h"
1598 
1599 #define ELF_HWCAP get_elf_hwcap()
1600 
1601 #define GET_FEATURE(_feat, _hwcap) \
1602     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1603 
1604 static uint32_t get_elf_hwcap(void)
1605 {
1606     /*
1607      * Let's assume we always have esan3 and zarch.
1608      * 31-bit processes can use 64-bit registers (high gprs).
1609      */
1610     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1611 
1612     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1613     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1614     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1615     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1616     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1617         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1618         hwcap |= HWCAP_S390_ETF3EH;
1619     }
1620     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1621     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1622 
1623     return hwcap;
1624 }
1625 
1626 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1627 {
1628     regs->psw.addr = infop->entry;
1629     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1630     regs->gprs[15] = infop->start_stack;
1631 }
1632 
1633 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1634 #define ELF_NREG 27
1635 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1636 
1637 enum {
1638     TARGET_REG_PSWM = 0,
1639     TARGET_REG_PSWA = 1,
1640     TARGET_REG_GPRS = 2,
1641     TARGET_REG_ARS = 18,
1642     TARGET_REG_ORIG_R2 = 26,
1643 };
1644 
1645 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1646                                const CPUS390XState *env)
1647 {
1648     int i;
1649     uint32_t *aregs;
1650 
1651     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1652     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1653     for (i = 0; i < 16; i++) {
1654         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1655     }
1656     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1657     for (i = 0; i < 16; i++) {
1658         aregs[i] = tswap32(env->aregs[i]);
1659     }
1660     (*regs)[TARGET_REG_ORIG_R2] = 0;
1661 }
1662 
1663 #define USE_ELF_CORE_DUMP
1664 #define ELF_EXEC_PAGESIZE 4096
1665 
1666 #endif /* TARGET_S390X */
1667 
1668 #ifdef TARGET_RISCV
1669 
1670 #define ELF_START_MMAP 0x80000000
1671 #define ELF_ARCH  EM_RISCV
1672 
1673 #ifdef TARGET_RISCV32
1674 #define ELF_CLASS ELFCLASS32
1675 #else
1676 #define ELF_CLASS ELFCLASS64
1677 #endif
1678 
1679 #define ELF_HWCAP get_elf_hwcap()
1680 
1681 static uint32_t get_elf_hwcap(void)
1682 {
1683 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1684     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1685     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1686                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1687 
1688     return cpu->env.misa_ext & mask;
1689 #undef MISA_BIT
1690 }
1691 
1692 static inline void init_thread(struct target_pt_regs *regs,
1693                                struct image_info *infop)
1694 {
1695     regs->sepc = infop->entry;
1696     regs->sp = infop->start_stack;
1697 }
1698 
1699 #define ELF_EXEC_PAGESIZE 4096
1700 
1701 #endif /* TARGET_RISCV */
1702 
1703 #ifdef TARGET_HPPA
1704 
1705 #define ELF_START_MMAP  0x80000000
1706 #define ELF_CLASS       ELFCLASS32
1707 #define ELF_ARCH        EM_PARISC
1708 #define ELF_PLATFORM    "PARISC"
1709 #define STACK_GROWS_DOWN 0
1710 #define STACK_ALIGNMENT  64
1711 
1712 static inline void init_thread(struct target_pt_regs *regs,
1713                                struct image_info *infop)
1714 {
1715     regs->iaoq[0] = infop->entry;
1716     regs->iaoq[1] = infop->entry + 4;
1717     regs->gr[23] = 0;
1718     regs->gr[24] = infop->argv;
1719     regs->gr[25] = infop->argc;
1720     /* The top-of-stack contains a linkage buffer.  */
1721     regs->gr[30] = infop->start_stack + 64;
1722     regs->gr[31] = infop->entry;
1723 }
1724 
1725 #define LO_COMMPAGE  0
1726 
1727 static bool init_guest_commpage(void)
1728 {
1729     void *want = g2h_untagged(LO_COMMPAGE);
1730     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1731                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1732 
1733     if (addr == MAP_FAILED) {
1734         perror("Allocating guest commpage");
1735         exit(EXIT_FAILURE);
1736     }
1737     if (addr != want) {
1738         return false;
1739     }
1740 
1741     /*
1742      * On Linux, page zero is normally marked execute only + gateway.
1743      * Normal read or write is supposed to fail (thus PROT_NONE above),
1744      * but specific offsets have kernel code mapped to raise permissions
1745      * and implement syscalls.  Here, simply mark the page executable.
1746      * Special case the entry points during translation (see do_page_zero).
1747      */
1748     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1749                    PAGE_EXEC | PAGE_VALID);
1750     return true;
1751 }
1752 
1753 #endif /* TARGET_HPPA */
1754 
1755 #ifdef TARGET_XTENSA
1756 
1757 #define ELF_START_MMAP 0x20000000
1758 
1759 #define ELF_CLASS       ELFCLASS32
1760 #define ELF_ARCH        EM_XTENSA
1761 
1762 static inline void init_thread(struct target_pt_regs *regs,
1763                                struct image_info *infop)
1764 {
1765     regs->windowbase = 0;
1766     regs->windowstart = 1;
1767     regs->areg[1] = infop->start_stack;
1768     regs->pc = infop->entry;
1769     if (info_is_fdpic(infop)) {
1770         regs->areg[4] = infop->loadmap_addr;
1771         regs->areg[5] = infop->interpreter_loadmap_addr;
1772         if (infop->interpreter_loadmap_addr) {
1773             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1774         } else {
1775             regs->areg[6] = infop->pt_dynamic_addr;
1776         }
1777     }
1778 }
1779 
1780 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1781 #define ELF_NREG 128
1782 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1783 
1784 enum {
1785     TARGET_REG_PC,
1786     TARGET_REG_PS,
1787     TARGET_REG_LBEG,
1788     TARGET_REG_LEND,
1789     TARGET_REG_LCOUNT,
1790     TARGET_REG_SAR,
1791     TARGET_REG_WINDOWSTART,
1792     TARGET_REG_WINDOWBASE,
1793     TARGET_REG_THREADPTR,
1794     TARGET_REG_AR0 = 64,
1795 };
1796 
1797 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1798                                const CPUXtensaState *env)
1799 {
1800     unsigned i;
1801 
1802     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1803     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1804     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1805     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1806     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1807     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1808     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1809     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1810     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1811     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1812     for (i = 0; i < env->config->nareg; ++i) {
1813         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1814     }
1815 }
1816 
1817 #define USE_ELF_CORE_DUMP
1818 #define ELF_EXEC_PAGESIZE       4096
1819 
1820 #endif /* TARGET_XTENSA */
1821 
1822 #ifdef TARGET_HEXAGON
1823 
1824 #define ELF_START_MMAP 0x20000000
1825 
1826 #define ELF_CLASS       ELFCLASS32
1827 #define ELF_ARCH        EM_HEXAGON
1828 
1829 static inline void init_thread(struct target_pt_regs *regs,
1830                                struct image_info *infop)
1831 {
1832     regs->sepc = infop->entry;
1833     regs->sp = infop->start_stack;
1834 }
1835 
1836 #endif /* TARGET_HEXAGON */
1837 
1838 #ifndef ELF_BASE_PLATFORM
1839 #define ELF_BASE_PLATFORM (NULL)
1840 #endif
1841 
1842 #ifndef ELF_PLATFORM
1843 #define ELF_PLATFORM (NULL)
1844 #endif
1845 
1846 #ifndef ELF_MACHINE
1847 #define ELF_MACHINE ELF_ARCH
1848 #endif
1849 
1850 #ifndef elf_check_arch
1851 #define elf_check_arch(x) ((x) == ELF_ARCH)
1852 #endif
1853 
1854 #ifndef elf_check_abi
1855 #define elf_check_abi(x) (1)
1856 #endif
1857 
1858 #ifndef ELF_HWCAP
1859 #define ELF_HWCAP 0
1860 #endif
1861 
1862 #ifndef STACK_GROWS_DOWN
1863 #define STACK_GROWS_DOWN 1
1864 #endif
1865 
1866 #ifndef STACK_ALIGNMENT
1867 #define STACK_ALIGNMENT 16
1868 #endif
1869 
1870 #ifdef TARGET_ABI32
1871 #undef ELF_CLASS
1872 #define ELF_CLASS ELFCLASS32
1873 #undef bswaptls
1874 #define bswaptls(ptr) bswap32s(ptr)
1875 #endif
1876 
1877 #ifndef EXSTACK_DEFAULT
1878 #define EXSTACK_DEFAULT false
1879 #endif
1880 
1881 #include "elf.h"
1882 
1883 /* We must delay the following stanzas until after "elf.h". */
1884 #if defined(TARGET_AARCH64)
1885 
1886 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1887                                     const uint32_t *data,
1888                                     struct image_info *info,
1889                                     Error **errp)
1890 {
1891     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1892         if (pr_datasz != sizeof(uint32_t)) {
1893             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1894             return false;
1895         }
1896         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1897         info->note_flags = *data;
1898     }
1899     return true;
1900 }
1901 #define ARCH_USE_GNU_PROPERTY 1
1902 
1903 #else
1904 
1905 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1906                                     const uint32_t *data,
1907                                     struct image_info *info,
1908                                     Error **errp)
1909 {
1910     g_assert_not_reached();
1911 }
1912 #define ARCH_USE_GNU_PROPERTY 0
1913 
1914 #endif
1915 
1916 struct exec
1917 {
1918     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1919     unsigned int a_text;   /* length of text, in bytes */
1920     unsigned int a_data;   /* length of data, in bytes */
1921     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1922     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1923     unsigned int a_entry;  /* start address */
1924     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1925     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1926 };
1927 
1928 
1929 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1930 #define OMAGIC 0407
1931 #define NMAGIC 0410
1932 #define ZMAGIC 0413
1933 #define QMAGIC 0314
1934 
1935 /* Necessary parameters */
1936 #define TARGET_ELF_EXEC_PAGESIZE \
1937         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1938          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1939 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1940 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1941                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1942 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1943 
1944 #define DLINFO_ITEMS 16
1945 
1946 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1947 {
1948     memcpy(to, from, n);
1949 }
1950 
1951 #ifdef BSWAP_NEEDED
1952 static void bswap_ehdr(struct elfhdr *ehdr)
1953 {
1954     bswap16s(&ehdr->e_type);            /* Object file type */
1955     bswap16s(&ehdr->e_machine);         /* Architecture */
1956     bswap32s(&ehdr->e_version);         /* Object file version */
1957     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1958     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1959     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1960     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1961     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1962     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1963     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1964     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1965     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1966     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1967 }
1968 
1969 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1970 {
1971     int i;
1972     for (i = 0; i < phnum; ++i, ++phdr) {
1973         bswap32s(&phdr->p_type);        /* Segment type */
1974         bswap32s(&phdr->p_flags);       /* Segment flags */
1975         bswaptls(&phdr->p_offset);      /* Segment file offset */
1976         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1977         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1978         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1979         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1980         bswaptls(&phdr->p_align);       /* Segment alignment */
1981     }
1982 }
1983 
1984 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1985 {
1986     int i;
1987     for (i = 0; i < shnum; ++i, ++shdr) {
1988         bswap32s(&shdr->sh_name);
1989         bswap32s(&shdr->sh_type);
1990         bswaptls(&shdr->sh_flags);
1991         bswaptls(&shdr->sh_addr);
1992         bswaptls(&shdr->sh_offset);
1993         bswaptls(&shdr->sh_size);
1994         bswap32s(&shdr->sh_link);
1995         bswap32s(&shdr->sh_info);
1996         bswaptls(&shdr->sh_addralign);
1997         bswaptls(&shdr->sh_entsize);
1998     }
1999 }
2000 
2001 static void bswap_sym(struct elf_sym *sym)
2002 {
2003     bswap32s(&sym->st_name);
2004     bswaptls(&sym->st_value);
2005     bswaptls(&sym->st_size);
2006     bswap16s(&sym->st_shndx);
2007 }
2008 
2009 #ifdef TARGET_MIPS
2010 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2011 {
2012     bswap16s(&abiflags->version);
2013     bswap32s(&abiflags->ases);
2014     bswap32s(&abiflags->isa_ext);
2015     bswap32s(&abiflags->flags1);
2016     bswap32s(&abiflags->flags2);
2017 }
2018 #endif
2019 #else
2020 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2021 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2022 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2023 static inline void bswap_sym(struct elf_sym *sym) { }
2024 #ifdef TARGET_MIPS
2025 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2026 #endif
2027 #endif
2028 
2029 #ifdef USE_ELF_CORE_DUMP
2030 static int elf_core_dump(int, const CPUArchState *);
2031 #endif /* USE_ELF_CORE_DUMP */
2032 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2033 
2034 /* Verify the portions of EHDR within E_IDENT for the target.
2035    This can be performed before bswapping the entire header.  */
2036 static bool elf_check_ident(struct elfhdr *ehdr)
2037 {
2038     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2039             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2040             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2041             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2042             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2043             && ehdr->e_ident[EI_DATA] == ELF_DATA
2044             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2045 }
2046 
2047 /* Verify the portions of EHDR outside of E_IDENT for the target.
2048    This has to wait until after bswapping the header.  */
2049 static bool elf_check_ehdr(struct elfhdr *ehdr)
2050 {
2051     return (elf_check_arch(ehdr->e_machine)
2052             && elf_check_abi(ehdr->e_flags)
2053             && ehdr->e_ehsize == sizeof(struct elfhdr)
2054             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2055             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2056 }
2057 
2058 /*
2059  * 'copy_elf_strings()' copies argument/envelope strings from user
2060  * memory to free pages in kernel mem. These are in a format ready
2061  * to be put directly into the top of new user memory.
2062  *
2063  */
2064 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2065                                   abi_ulong p, abi_ulong stack_limit)
2066 {
2067     char *tmp;
2068     int len, i;
2069     abi_ulong top = p;
2070 
2071     if (!p) {
2072         return 0;       /* bullet-proofing */
2073     }
2074 
2075     if (STACK_GROWS_DOWN) {
2076         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2077         for (i = argc - 1; i >= 0; --i) {
2078             tmp = argv[i];
2079             if (!tmp) {
2080                 fprintf(stderr, "VFS: argc is wrong");
2081                 exit(-1);
2082             }
2083             len = strlen(tmp) + 1;
2084             tmp += len;
2085 
2086             if (len > (p - stack_limit)) {
2087                 return 0;
2088             }
2089             while (len) {
2090                 int bytes_to_copy = (len > offset) ? offset : len;
2091                 tmp -= bytes_to_copy;
2092                 p -= bytes_to_copy;
2093                 offset -= bytes_to_copy;
2094                 len -= bytes_to_copy;
2095 
2096                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2097 
2098                 if (offset == 0) {
2099                     memcpy_to_target(p, scratch, top - p);
2100                     top = p;
2101                     offset = TARGET_PAGE_SIZE;
2102                 }
2103             }
2104         }
2105         if (p != top) {
2106             memcpy_to_target(p, scratch + offset, top - p);
2107         }
2108     } else {
2109         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2110         for (i = 0; i < argc; ++i) {
2111             tmp = argv[i];
2112             if (!tmp) {
2113                 fprintf(stderr, "VFS: argc is wrong");
2114                 exit(-1);
2115             }
2116             len = strlen(tmp) + 1;
2117             if (len > (stack_limit - p)) {
2118                 return 0;
2119             }
2120             while (len) {
2121                 int bytes_to_copy = (len > remaining) ? remaining : len;
2122 
2123                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2124 
2125                 tmp += bytes_to_copy;
2126                 remaining -= bytes_to_copy;
2127                 p += bytes_to_copy;
2128                 len -= bytes_to_copy;
2129 
2130                 if (remaining == 0) {
2131                     memcpy_to_target(top, scratch, p - top);
2132                     top = p;
2133                     remaining = TARGET_PAGE_SIZE;
2134                 }
2135             }
2136         }
2137         if (p != top) {
2138             memcpy_to_target(top, scratch, p - top);
2139         }
2140     }
2141 
2142     return p;
2143 }
2144 
2145 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2146  * argument/environment space. Newer kernels (>2.6.33) allow more,
2147  * dependent on stack size, but guarantee at least 32 pages for
2148  * backwards compatibility.
2149  */
2150 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2151 
2152 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2153                                  struct image_info *info)
2154 {
2155     abi_ulong size, error, guard;
2156     int prot;
2157 
2158     size = guest_stack_size;
2159     if (size < STACK_LOWER_LIMIT) {
2160         size = STACK_LOWER_LIMIT;
2161     }
2162 
2163     if (STACK_GROWS_DOWN) {
2164         guard = TARGET_PAGE_SIZE;
2165         if (guard < qemu_real_host_page_size()) {
2166             guard = qemu_real_host_page_size();
2167         }
2168     } else {
2169         /* no guard page for hppa target where stack grows upwards. */
2170         guard = 0;
2171     }
2172 
2173     prot = PROT_READ | PROT_WRITE;
2174     if (info->exec_stack) {
2175         prot |= PROT_EXEC;
2176     }
2177     error = target_mmap(0, size + guard, prot,
2178                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2179     if (error == -1) {
2180         perror("mmap stack");
2181         exit(-1);
2182     }
2183 
2184     /* We reserve one extra page at the top of the stack as guard.  */
2185     if (STACK_GROWS_DOWN) {
2186         target_mprotect(error, guard, PROT_NONE);
2187         info->stack_limit = error + guard;
2188         return info->stack_limit + size - sizeof(void *);
2189     } else {
2190         info->stack_limit = error + size;
2191         return error;
2192     }
2193 }
2194 
2195 /* Map and zero the bss.  We need to explicitly zero any fractional pages
2196    after the data section (i.e. bss).  */
2197 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2198 {
2199     uintptr_t host_start, host_map_start, host_end;
2200 
2201     last_bss = TARGET_PAGE_ALIGN(last_bss);
2202 
2203     /* ??? There is confusion between qemu_real_host_page_size and
2204        qemu_host_page_size here and elsewhere in target_mmap, which
2205        may lead to the end of the data section mapping from the file
2206        not being mapped.  At least there was an explicit test and
2207        comment for that here, suggesting that "the file size must
2208        be known".  The comment probably pre-dates the introduction
2209        of the fstat system call in target_mmap which does in fact
2210        find out the size.  What isn't clear is if the workaround
2211        here is still actually needed.  For now, continue with it,
2212        but merge it with the "normal" mmap that would allocate the bss.  */
2213 
2214     host_start = (uintptr_t) g2h_untagged(elf_bss);
2215     host_end = (uintptr_t) g2h_untagged(last_bss);
2216     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2217 
2218     if (host_map_start < host_end) {
2219         void *p = mmap((void *)host_map_start, host_end - host_map_start,
2220                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2221         if (p == MAP_FAILED) {
2222             perror("cannot mmap brk");
2223             exit(-1);
2224         }
2225     }
2226 
2227     /* Ensure that the bss page(s) are valid */
2228     if ((page_get_flags(last_bss-1) & prot) != prot) {
2229         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2230                        prot | PAGE_VALID);
2231     }
2232 
2233     if (host_start < host_map_start) {
2234         memset((void *)host_start, 0, host_map_start - host_start);
2235     }
2236 }
2237 
2238 #if defined(TARGET_ARM)
2239 static int elf_is_fdpic(struct elfhdr *exec)
2240 {
2241     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2242 }
2243 #elif defined(TARGET_XTENSA)
2244 static int elf_is_fdpic(struct elfhdr *exec)
2245 {
2246     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2247 }
2248 #else
2249 /* Default implementation, always false.  */
2250 static int elf_is_fdpic(struct elfhdr *exec)
2251 {
2252     return 0;
2253 }
2254 #endif
2255 
2256 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2257 {
2258     uint16_t n;
2259     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2260 
2261     /* elf32_fdpic_loadseg */
2262     n = info->nsegs;
2263     while (n--) {
2264         sp -= 12;
2265         put_user_u32(loadsegs[n].addr, sp+0);
2266         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2267         put_user_u32(loadsegs[n].p_memsz, sp+8);
2268     }
2269 
2270     /* elf32_fdpic_loadmap */
2271     sp -= 4;
2272     put_user_u16(0, sp+0); /* version */
2273     put_user_u16(info->nsegs, sp+2); /* nsegs */
2274 
2275     info->personality = PER_LINUX_FDPIC;
2276     info->loadmap_addr = sp;
2277 
2278     return sp;
2279 }
2280 
2281 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2282                                    struct elfhdr *exec,
2283                                    struct image_info *info,
2284                                    struct image_info *interp_info)
2285 {
2286     abi_ulong sp;
2287     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2288     int size;
2289     int i;
2290     abi_ulong u_rand_bytes;
2291     uint8_t k_rand_bytes[16];
2292     abi_ulong u_platform, u_base_platform;
2293     const char *k_platform, *k_base_platform;
2294     const int n = sizeof(elf_addr_t);
2295 
2296     sp = p;
2297 
2298     /* Needs to be before we load the env/argc/... */
2299     if (elf_is_fdpic(exec)) {
2300         /* Need 4 byte alignment for these structs */
2301         sp &= ~3;
2302         sp = loader_build_fdpic_loadmap(info, sp);
2303         info->other_info = interp_info;
2304         if (interp_info) {
2305             interp_info->other_info = info;
2306             sp = loader_build_fdpic_loadmap(interp_info, sp);
2307             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2308             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2309         } else {
2310             info->interpreter_loadmap_addr = 0;
2311             info->interpreter_pt_dynamic_addr = 0;
2312         }
2313     }
2314 
2315     u_base_platform = 0;
2316     k_base_platform = ELF_BASE_PLATFORM;
2317     if (k_base_platform) {
2318         size_t len = strlen(k_base_platform) + 1;
2319         if (STACK_GROWS_DOWN) {
2320             sp -= (len + n - 1) & ~(n - 1);
2321             u_base_platform = sp;
2322             /* FIXME - check return value of memcpy_to_target() for failure */
2323             memcpy_to_target(sp, k_base_platform, len);
2324         } else {
2325             memcpy_to_target(sp, k_base_platform, len);
2326             u_base_platform = sp;
2327             sp += len + 1;
2328         }
2329     }
2330 
2331     u_platform = 0;
2332     k_platform = ELF_PLATFORM;
2333     if (k_platform) {
2334         size_t len = strlen(k_platform) + 1;
2335         if (STACK_GROWS_DOWN) {
2336             sp -= (len + n - 1) & ~(n - 1);
2337             u_platform = sp;
2338             /* FIXME - check return value of memcpy_to_target() for failure */
2339             memcpy_to_target(sp, k_platform, len);
2340         } else {
2341             memcpy_to_target(sp, k_platform, len);
2342             u_platform = sp;
2343             sp += len + 1;
2344         }
2345     }
2346 
2347     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2348      * the argv and envp pointers.
2349      */
2350     if (STACK_GROWS_DOWN) {
2351         sp = QEMU_ALIGN_DOWN(sp, 16);
2352     } else {
2353         sp = QEMU_ALIGN_UP(sp, 16);
2354     }
2355 
2356     /*
2357      * Generate 16 random bytes for userspace PRNG seeding.
2358      */
2359     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2360     if (STACK_GROWS_DOWN) {
2361         sp -= 16;
2362         u_rand_bytes = sp;
2363         /* FIXME - check return value of memcpy_to_target() for failure */
2364         memcpy_to_target(sp, k_rand_bytes, 16);
2365     } else {
2366         memcpy_to_target(sp, k_rand_bytes, 16);
2367         u_rand_bytes = sp;
2368         sp += 16;
2369     }
2370 
2371     size = (DLINFO_ITEMS + 1) * 2;
2372     if (k_base_platform)
2373         size += 2;
2374     if (k_platform)
2375         size += 2;
2376 #ifdef DLINFO_ARCH_ITEMS
2377     size += DLINFO_ARCH_ITEMS * 2;
2378 #endif
2379 #ifdef ELF_HWCAP2
2380     size += 2;
2381 #endif
2382     info->auxv_len = size * n;
2383 
2384     size += envc + argc + 2;
2385     size += 1;  /* argc itself */
2386     size *= n;
2387 
2388     /* Allocate space and finalize stack alignment for entry now.  */
2389     if (STACK_GROWS_DOWN) {
2390         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2391         sp = u_argc;
2392     } else {
2393         u_argc = sp;
2394         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2395     }
2396 
2397     u_argv = u_argc + n;
2398     u_envp = u_argv + (argc + 1) * n;
2399     u_auxv = u_envp + (envc + 1) * n;
2400     info->saved_auxv = u_auxv;
2401     info->argc = argc;
2402     info->envc = envc;
2403     info->argv = u_argv;
2404     info->envp = u_envp;
2405 
2406     /* This is correct because Linux defines
2407      * elf_addr_t as Elf32_Off / Elf64_Off
2408      */
2409 #define NEW_AUX_ENT(id, val) do {               \
2410         put_user_ual(id, u_auxv);  u_auxv += n; \
2411         put_user_ual(val, u_auxv); u_auxv += n; \
2412     } while(0)
2413 
2414 #ifdef ARCH_DLINFO
2415     /*
2416      * ARCH_DLINFO must come first so platform specific code can enforce
2417      * special alignment requirements on the AUXV if necessary (eg. PPC).
2418      */
2419     ARCH_DLINFO;
2420 #endif
2421     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2422      * on info->auxv_len will trigger.
2423      */
2424     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2425     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2426     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2427     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2428         /* Target doesn't support host page size alignment */
2429         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2430     } else {
2431         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2432                                                qemu_host_page_size)));
2433     }
2434     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2435     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2436     NEW_AUX_ENT(AT_ENTRY, info->entry);
2437     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2438     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2439     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2440     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2441     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2442     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2443     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2444     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2445     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2446 
2447 #ifdef ELF_HWCAP2
2448     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2449 #endif
2450 
2451     if (u_base_platform) {
2452         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2453     }
2454     if (u_platform) {
2455         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2456     }
2457     NEW_AUX_ENT (AT_NULL, 0);
2458 #undef NEW_AUX_ENT
2459 
2460     /* Check that our initial calculation of the auxv length matches how much
2461      * we actually put into it.
2462      */
2463     assert(info->auxv_len == u_auxv - info->saved_auxv);
2464 
2465     put_user_ual(argc, u_argc);
2466 
2467     p = info->arg_strings;
2468     for (i = 0; i < argc; ++i) {
2469         put_user_ual(p, u_argv);
2470         u_argv += n;
2471         p += target_strlen(p) + 1;
2472     }
2473     put_user_ual(0, u_argv);
2474 
2475     p = info->env_strings;
2476     for (i = 0; i < envc; ++i) {
2477         put_user_ual(p, u_envp);
2478         u_envp += n;
2479         p += target_strlen(p) + 1;
2480     }
2481     put_user_ual(0, u_envp);
2482 
2483     return sp;
2484 }
2485 
2486 #if defined(HI_COMMPAGE)
2487 #define LO_COMMPAGE -1
2488 #elif defined(LO_COMMPAGE)
2489 #define HI_COMMPAGE 0
2490 #else
2491 #define HI_COMMPAGE 0
2492 #define LO_COMMPAGE -1
2493 #ifndef INIT_GUEST_COMMPAGE
2494 #define init_guest_commpage() true
2495 #endif
2496 #endif
2497 
2498 static void pgb_fail_in_use(const char *image_name)
2499 {
2500     error_report("%s: requires virtual address space that is in use "
2501                  "(omit the -B option or choose a different value)",
2502                  image_name);
2503     exit(EXIT_FAILURE);
2504 }
2505 
2506 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2507                                 abi_ulong guest_hiaddr, long align)
2508 {
2509     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2510     void *addr, *test;
2511 
2512     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2513         fprintf(stderr, "Requested guest base %p does not satisfy "
2514                 "host minimum alignment (0x%lx)\n",
2515                 (void *)guest_base, align);
2516         exit(EXIT_FAILURE);
2517     }
2518 
2519     /* Sanity check the guest binary. */
2520     if (reserved_va) {
2521         if (guest_hiaddr > reserved_va) {
2522             error_report("%s: requires more than reserved virtual "
2523                          "address space (0x%" PRIx64 " > 0x%lx)",
2524                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2525             exit(EXIT_FAILURE);
2526         }
2527     } else {
2528 #if HOST_LONG_BITS < TARGET_ABI_BITS
2529         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2530             error_report("%s: requires more virtual address space "
2531                          "than the host can provide (0x%" PRIx64 ")",
2532                          image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2533             exit(EXIT_FAILURE);
2534         }
2535 #endif
2536     }
2537 
2538     /*
2539      * Expand the allocation to the entire reserved_va.
2540      * Exclude the mmap_min_addr hole.
2541      */
2542     if (reserved_va) {
2543         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2544                         : mmap_min_addr - guest_base);
2545         guest_hiaddr = reserved_va;
2546     }
2547 
2548     /* Reserve the address space for the binary, or reserved_va. */
2549     test = g2h_untagged(guest_loaddr);
2550     addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2551     if (test != addr) {
2552         pgb_fail_in_use(image_name);
2553     }
2554     qemu_log_mask(CPU_LOG_PAGE,
2555                   "%s: base @ %p for %" PRIu64 " bytes\n",
2556                   __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2557 }
2558 
2559 /**
2560  * pgd_find_hole_fallback: potential mmap address
2561  * @guest_size: size of available space
2562  * @brk: location of break
2563  * @align: memory alignment
2564  *
2565  * This is a fallback method for finding a hole in the host address
2566  * space if we don't have the benefit of being able to access
2567  * /proc/self/map. It can potentially take a very long time as we can
2568  * only dumbly iterate up the host address space seeing if the
2569  * allocation would work.
2570  */
2571 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2572                                         long align, uintptr_t offset)
2573 {
2574     uintptr_t base;
2575 
2576     /* Start (aligned) at the bottom and work our way up */
2577     base = ROUND_UP(mmap_min_addr, align);
2578 
2579     while (true) {
2580         uintptr_t align_start, end;
2581         align_start = ROUND_UP(base, align);
2582         end = align_start + guest_size + offset;
2583 
2584         /* if brk is anywhere in the range give ourselves some room to grow. */
2585         if (align_start <= brk && brk < end) {
2586             base = brk + (16 * MiB);
2587             continue;
2588         } else if (align_start + guest_size < align_start) {
2589             /* we have run out of space */
2590             return -1;
2591         } else {
2592             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2593                 MAP_FIXED_NOREPLACE;
2594             void * mmap_start = mmap((void *) align_start, guest_size,
2595                                      PROT_NONE, flags, -1, 0);
2596             if (mmap_start != MAP_FAILED) {
2597                 munmap(mmap_start, guest_size);
2598                 if (mmap_start == (void *) align_start) {
2599                     qemu_log_mask(CPU_LOG_PAGE,
2600                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2601                                   __func__, mmap_start + offset, guest_size);
2602                     return (uintptr_t) mmap_start + offset;
2603                 }
2604             }
2605             base += qemu_host_page_size;
2606         }
2607     }
2608 }
2609 
2610 /* Return value for guest_base, or -1 if no hole found. */
2611 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2612                                long align, uintptr_t offset)
2613 {
2614     GSList *maps, *iter;
2615     uintptr_t this_start, this_end, next_start, brk;
2616     intptr_t ret = -1;
2617 
2618     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2619 
2620     maps = read_self_maps();
2621 
2622     /* Read brk after we've read the maps, which will malloc. */
2623     brk = (uintptr_t)sbrk(0);
2624 
2625     if (!maps) {
2626         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2627     }
2628 
2629     /* The first hole is before the first map entry. */
2630     this_start = mmap_min_addr;
2631 
2632     for (iter = maps; iter;
2633          this_start = next_start, iter = g_slist_next(iter)) {
2634         uintptr_t align_start, hole_size;
2635 
2636         this_end = ((MapInfo *)iter->data)->start;
2637         next_start = ((MapInfo *)iter->data)->end;
2638         align_start = ROUND_UP(this_start + offset, align);
2639 
2640         /* Skip holes that are too small. */
2641         if (align_start >= this_end) {
2642             continue;
2643         }
2644         hole_size = this_end - align_start;
2645         if (hole_size < guest_size) {
2646             continue;
2647         }
2648 
2649         /* If this hole contains brk, give ourselves some room to grow. */
2650         if (this_start <= brk && brk < this_end) {
2651             hole_size -= guest_size;
2652             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2653                 align_start += 1 * GiB;
2654             } else if (hole_size >= 16 * MiB) {
2655                 align_start += 16 * MiB;
2656             } else {
2657                 align_start = (this_end - guest_size) & -align;
2658                 if (align_start < this_start) {
2659                     continue;
2660                 }
2661             }
2662         }
2663 
2664         /* Record the lowest successful match. */
2665         if (ret < 0) {
2666             ret = align_start;
2667         }
2668         /* If this hole contains the identity map, select it. */
2669         if (align_start <= guest_loaddr &&
2670             guest_loaddr + guest_size <= this_end) {
2671             ret = 0;
2672         }
2673         /* If this hole ends above the identity map, stop looking. */
2674         if (this_end >= guest_loaddr) {
2675             break;
2676         }
2677     }
2678     free_self_maps(maps);
2679 
2680     if (ret != -1) {
2681         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2682                       " for %" PRIuPTR " bytes\n",
2683                       __func__, ret, guest_size);
2684     }
2685 
2686     return ret;
2687 }
2688 
2689 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2690                        abi_ulong orig_hiaddr, long align)
2691 {
2692     uintptr_t loaddr = orig_loaddr;
2693     uintptr_t hiaddr = orig_hiaddr;
2694     uintptr_t offset = 0;
2695     uintptr_t addr;
2696 
2697     if (hiaddr != orig_hiaddr) {
2698         error_report("%s: requires virtual address space that the "
2699                      "host cannot provide (0x%" PRIx64 ")",
2700                      image_name, (uint64_t)orig_hiaddr + 1);
2701         exit(EXIT_FAILURE);
2702     }
2703 
2704     loaddr &= -align;
2705     if (HI_COMMPAGE) {
2706         /*
2707          * Extend the allocation to include the commpage.
2708          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2709          * need to ensure there is space bellow the guest_base so we
2710          * can map the commpage in the place needed when the address
2711          * arithmetic wraps around.
2712          */
2713         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2714             hiaddr = UINT32_MAX;
2715         } else {
2716             offset = -(HI_COMMPAGE & -align);
2717         }
2718     } else if (LO_COMMPAGE != -1) {
2719         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2720     }
2721 
2722     addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2723     if (addr == -1) {
2724         /*
2725          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2726          * that can satisfy both.  But as the normal arm32 link base address
2727          * is ~32k, and we extend down to include the commpage, making the
2728          * overhead only ~96k, this is unlikely.
2729          */
2730         error_report("%s: Unable to allocate %#zx bytes of "
2731                      "virtual address space", image_name,
2732                      (size_t)(hiaddr - loaddr));
2733         exit(EXIT_FAILURE);
2734     }
2735 
2736     guest_base = addr;
2737 
2738     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2739                   __func__, addr, hiaddr - loaddr);
2740 }
2741 
2742 static void pgb_dynamic(const char *image_name, long align)
2743 {
2744     /*
2745      * The executable is dynamic and does not require a fixed address.
2746      * All we need is a commpage that satisfies align.
2747      * If we do not need a commpage, leave guest_base == 0.
2748      */
2749     if (HI_COMMPAGE) {
2750         uintptr_t addr, commpage;
2751 
2752         /* 64-bit hosts should have used reserved_va. */
2753         assert(sizeof(uintptr_t) == 4);
2754 
2755         /*
2756          * By putting the commpage at the first hole, that puts guest_base
2757          * just above that, and maximises the positive guest addresses.
2758          */
2759         commpage = HI_COMMPAGE & -align;
2760         addr = pgb_find_hole(commpage, -commpage, align, 0);
2761         assert(addr != -1);
2762         guest_base = addr;
2763     }
2764 }
2765 
2766 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2767                             abi_ulong guest_hiaddr, long align)
2768 {
2769     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2770     void *addr, *test;
2771 
2772     if (guest_hiaddr > reserved_va) {
2773         error_report("%s: requires more than reserved virtual "
2774                      "address space (0x%" PRIx64 " > 0x%lx)",
2775                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2776         exit(EXIT_FAILURE);
2777     }
2778 
2779     /* Widen the "image" to the entire reserved address space. */
2780     pgb_static(image_name, 0, reserved_va, align);
2781 
2782     /* osdep.h defines this as 0 if it's missing */
2783     flags |= MAP_FIXED_NOREPLACE;
2784 
2785     /* Reserve the memory on the host. */
2786     assert(guest_base != 0);
2787     test = g2h_untagged(0);
2788     addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2789     if (addr == MAP_FAILED || addr != test) {
2790         error_report("Unable to reserve 0x%lx bytes of virtual address "
2791                      "space at %p (%s) for use as guest address space (check your "
2792                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2793                      "using -R option)", reserved_va + 1, test, strerror(errno));
2794         exit(EXIT_FAILURE);
2795     }
2796 
2797     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2798                   __func__, addr, reserved_va + 1);
2799 }
2800 
2801 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2802                       abi_ulong guest_hiaddr)
2803 {
2804     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2805     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2806 
2807     if (have_guest_base) {
2808         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2809     } else if (reserved_va) {
2810         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2811     } else if (guest_loaddr) {
2812         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2813     } else {
2814         pgb_dynamic(image_name, align);
2815     }
2816 
2817     /* Reserve and initialize the commpage. */
2818     if (!init_guest_commpage()) {
2819         /*
2820          * With have_guest_base, the user has selected the address and
2821          * we are trying to work with that.  Otherwise, we have selected
2822          * free space and init_guest_commpage must succeeded.
2823          */
2824         assert(have_guest_base);
2825         pgb_fail_in_use(image_name);
2826     }
2827 
2828     assert(QEMU_IS_ALIGNED(guest_base, align));
2829     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2830                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2831 }
2832 
2833 enum {
2834     /* The string "GNU\0" as a magic number. */
2835     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2836     NOTE_DATA_SZ = 1 * KiB,
2837     NOTE_NAME_SZ = 4,
2838     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2839 };
2840 
2841 /*
2842  * Process a single gnu_property entry.
2843  * Return false for error.
2844  */
2845 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2846                                struct image_info *info, bool have_prev_type,
2847                                uint32_t *prev_type, Error **errp)
2848 {
2849     uint32_t pr_type, pr_datasz, step;
2850 
2851     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2852         goto error_data;
2853     }
2854     datasz -= *off;
2855     data += *off / sizeof(uint32_t);
2856 
2857     if (datasz < 2 * sizeof(uint32_t)) {
2858         goto error_data;
2859     }
2860     pr_type = data[0];
2861     pr_datasz = data[1];
2862     data += 2;
2863     datasz -= 2 * sizeof(uint32_t);
2864     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2865     if (step > datasz) {
2866         goto error_data;
2867     }
2868 
2869     /* Properties are supposed to be unique and sorted on pr_type. */
2870     if (have_prev_type && pr_type <= *prev_type) {
2871         if (pr_type == *prev_type) {
2872             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2873         } else {
2874             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2875         }
2876         return false;
2877     }
2878     *prev_type = pr_type;
2879 
2880     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2881         return false;
2882     }
2883 
2884     *off += 2 * sizeof(uint32_t) + step;
2885     return true;
2886 
2887  error_data:
2888     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2889     return false;
2890 }
2891 
2892 /* Process NT_GNU_PROPERTY_TYPE_0. */
2893 static bool parse_elf_properties(int image_fd,
2894                                  struct image_info *info,
2895                                  const struct elf_phdr *phdr,
2896                                  char bprm_buf[BPRM_BUF_SIZE],
2897                                  Error **errp)
2898 {
2899     union {
2900         struct elf_note nhdr;
2901         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2902     } note;
2903 
2904     int n, off, datasz;
2905     bool have_prev_type;
2906     uint32_t prev_type;
2907 
2908     /* Unless the arch requires properties, ignore them. */
2909     if (!ARCH_USE_GNU_PROPERTY) {
2910         return true;
2911     }
2912 
2913     /* If the properties are crazy large, that's too bad. */
2914     n = phdr->p_filesz;
2915     if (n > sizeof(note)) {
2916         error_setg(errp, "PT_GNU_PROPERTY too large");
2917         return false;
2918     }
2919     if (n < sizeof(note.nhdr)) {
2920         error_setg(errp, "PT_GNU_PROPERTY too small");
2921         return false;
2922     }
2923 
2924     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2925         memcpy(&note, bprm_buf + phdr->p_offset, n);
2926     } else {
2927         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2928         if (len != n) {
2929             error_setg_errno(errp, errno, "Error reading file header");
2930             return false;
2931         }
2932     }
2933 
2934     /*
2935      * The contents of a valid PT_GNU_PROPERTY is a sequence
2936      * of uint32_t -- swap them all now.
2937      */
2938 #ifdef BSWAP_NEEDED
2939     for (int i = 0; i < n / 4; i++) {
2940         bswap32s(note.data + i);
2941     }
2942 #endif
2943 
2944     /*
2945      * Note that nhdr is 3 words, and that the "name" described by namesz
2946      * immediately follows nhdr and is thus at the 4th word.  Further, all
2947      * of the inputs to the kernel's round_up are multiples of 4.
2948      */
2949     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2950         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2951         note.data[3] != GNU0_MAGIC) {
2952         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2953         return false;
2954     }
2955     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2956 
2957     datasz = note.nhdr.n_descsz + off;
2958     if (datasz > n) {
2959         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2960         return false;
2961     }
2962 
2963     have_prev_type = false;
2964     prev_type = 0;
2965     while (1) {
2966         if (off == datasz) {
2967             return true;  /* end, exit ok */
2968         }
2969         if (!parse_elf_property(note.data, &off, datasz, info,
2970                                 have_prev_type, &prev_type, errp)) {
2971             return false;
2972         }
2973         have_prev_type = true;
2974     }
2975 }
2976 
2977 /* Load an ELF image into the address space.
2978 
2979    IMAGE_NAME is the filename of the image, to use in error messages.
2980    IMAGE_FD is the open file descriptor for the image.
2981 
2982    BPRM_BUF is a copy of the beginning of the file; this of course
2983    contains the elf file header at offset 0.  It is assumed that this
2984    buffer is sufficiently aligned to present no problems to the host
2985    in accessing data at aligned offsets within the buffer.
2986 
2987    On return: INFO values will be filled in, as necessary or available.  */
2988 
2989 static void load_elf_image(const char *image_name, int image_fd,
2990                            struct image_info *info, char **pinterp_name,
2991                            char bprm_buf[BPRM_BUF_SIZE])
2992 {
2993     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2994     struct elf_phdr *phdr;
2995     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2996     int i, retval, prot_exec;
2997     Error *err = NULL;
2998 
2999     /* First of all, some simple consistency checks */
3000     if (!elf_check_ident(ehdr)) {
3001         error_setg(&err, "Invalid ELF image for this architecture");
3002         goto exit_errmsg;
3003     }
3004     bswap_ehdr(ehdr);
3005     if (!elf_check_ehdr(ehdr)) {
3006         error_setg(&err, "Invalid ELF image for this architecture");
3007         goto exit_errmsg;
3008     }
3009 
3010     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3011     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3012         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3013     } else {
3014         phdr = (struct elf_phdr *) alloca(i);
3015         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3016         if (retval != i) {
3017             goto exit_read;
3018         }
3019     }
3020     bswap_phdr(phdr, ehdr->e_phnum);
3021 
3022     info->nsegs = 0;
3023     info->pt_dynamic_addr = 0;
3024 
3025     mmap_lock();
3026 
3027     /*
3028      * Find the maximum size of the image and allocate an appropriate
3029      * amount of memory to handle that.  Locate the interpreter, if any.
3030      */
3031     loaddr = -1, hiaddr = 0;
3032     info->alignment = 0;
3033     info->exec_stack = EXSTACK_DEFAULT;
3034     for (i = 0; i < ehdr->e_phnum; ++i) {
3035         struct elf_phdr *eppnt = phdr + i;
3036         if (eppnt->p_type == PT_LOAD) {
3037             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3038             if (a < loaddr) {
3039                 loaddr = a;
3040             }
3041             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3042             if (a > hiaddr) {
3043                 hiaddr = a;
3044             }
3045             ++info->nsegs;
3046             info->alignment |= eppnt->p_align;
3047         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3048             g_autofree char *interp_name = NULL;
3049 
3050             if (*pinterp_name) {
3051                 error_setg(&err, "Multiple PT_INTERP entries");
3052                 goto exit_errmsg;
3053             }
3054 
3055             interp_name = g_malloc(eppnt->p_filesz);
3056 
3057             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3058                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3059                        eppnt->p_filesz);
3060             } else {
3061                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3062                                eppnt->p_offset);
3063                 if (retval != eppnt->p_filesz) {
3064                     goto exit_read;
3065                 }
3066             }
3067             if (interp_name[eppnt->p_filesz - 1] != 0) {
3068                 error_setg(&err, "Invalid PT_INTERP entry");
3069                 goto exit_errmsg;
3070             }
3071             *pinterp_name = g_steal_pointer(&interp_name);
3072         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3073             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3074                 goto exit_errmsg;
3075             }
3076         } else if (eppnt->p_type == PT_GNU_STACK) {
3077             info->exec_stack = eppnt->p_flags & PF_X;
3078         }
3079     }
3080 
3081     if (pinterp_name != NULL) {
3082         /*
3083          * This is the main executable.
3084          *
3085          * Reserve extra space for brk.
3086          * We hold on to this space while placing the interpreter
3087          * and the stack, lest they be placed immediately after
3088          * the data segment and block allocation from the brk.
3089          *
3090          * 16MB is chosen as "large enough" without being so large as
3091          * to allow the result to not fit with a 32-bit guest on a
3092          * 32-bit host. However some 64 bit guests (e.g. s390x)
3093          * attempt to place their heap further ahead and currently
3094          * nothing stops them smashing into QEMUs address space.
3095          */
3096 #if TARGET_LONG_BITS == 64
3097         info->reserve_brk = 32 * MiB;
3098 #else
3099         info->reserve_brk = 16 * MiB;
3100 #endif
3101         hiaddr += info->reserve_brk;
3102 
3103         if (ehdr->e_type == ET_EXEC) {
3104             /*
3105              * Make sure that the low address does not conflict with
3106              * MMAP_MIN_ADDR or the QEMU application itself.
3107              */
3108             probe_guest_base(image_name, loaddr, hiaddr);
3109         } else {
3110             /*
3111              * The binary is dynamic, but we still need to
3112              * select guest_base.  In this case we pass a size.
3113              */
3114             probe_guest_base(image_name, 0, hiaddr - loaddr);
3115         }
3116     }
3117 
3118     /*
3119      * Reserve address space for all of this.
3120      *
3121      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3122      * exactly the address range that is required.
3123      *
3124      * Otherwise this is ET_DYN, and we are searching for a location
3125      * that can hold the memory space required.  If the image is
3126      * pre-linked, LOADDR will be non-zero, and the kernel should
3127      * honor that address if it happens to be free.
3128      *
3129      * In both cases, we will overwrite pages in this range with mappings
3130      * from the executable.
3131      */
3132     load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3133                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3134                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3135                             -1, 0);
3136     if (load_addr == -1) {
3137         goto exit_mmap;
3138     }
3139     load_bias = load_addr - loaddr;
3140 
3141     if (elf_is_fdpic(ehdr)) {
3142         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3143             g_malloc(sizeof(*loadsegs) * info->nsegs);
3144 
3145         for (i = 0; i < ehdr->e_phnum; ++i) {
3146             switch (phdr[i].p_type) {
3147             case PT_DYNAMIC:
3148                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3149                 break;
3150             case PT_LOAD:
3151                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3152                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3153                 loadsegs->p_memsz = phdr[i].p_memsz;
3154                 ++loadsegs;
3155                 break;
3156             }
3157         }
3158     }
3159 
3160     info->load_bias = load_bias;
3161     info->code_offset = load_bias;
3162     info->data_offset = load_bias;
3163     info->load_addr = load_addr;
3164     info->entry = ehdr->e_entry + load_bias;
3165     info->start_code = -1;
3166     info->end_code = 0;
3167     info->start_data = -1;
3168     info->end_data = 0;
3169     info->brk = 0;
3170     info->elf_flags = ehdr->e_flags;
3171 
3172     prot_exec = PROT_EXEC;
3173 #ifdef TARGET_AARCH64
3174     /*
3175      * If the BTI feature is present, this indicates that the executable
3176      * pages of the startup binary should be mapped with PROT_BTI, so that
3177      * branch targets are enforced.
3178      *
3179      * The startup binary is either the interpreter or the static executable.
3180      * The interpreter is responsible for all pages of a dynamic executable.
3181      *
3182      * Elf notes are backward compatible to older cpus.
3183      * Do not enable BTI unless it is supported.
3184      */
3185     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3186         && (pinterp_name == NULL || *pinterp_name == 0)
3187         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3188         prot_exec |= TARGET_PROT_BTI;
3189     }
3190 #endif
3191 
3192     for (i = 0; i < ehdr->e_phnum; i++) {
3193         struct elf_phdr *eppnt = phdr + i;
3194         if (eppnt->p_type == PT_LOAD) {
3195             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3196             int elf_prot = 0;
3197 
3198             if (eppnt->p_flags & PF_R) {
3199                 elf_prot |= PROT_READ;
3200             }
3201             if (eppnt->p_flags & PF_W) {
3202                 elf_prot |= PROT_WRITE;
3203             }
3204             if (eppnt->p_flags & PF_X) {
3205                 elf_prot |= prot_exec;
3206             }
3207 
3208             vaddr = load_bias + eppnt->p_vaddr;
3209             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3210             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3211 
3212             vaddr_ef = vaddr + eppnt->p_filesz;
3213             vaddr_em = vaddr + eppnt->p_memsz;
3214 
3215             /*
3216              * Some segments may be completely empty, with a non-zero p_memsz
3217              * but no backing file segment.
3218              */
3219             if (eppnt->p_filesz != 0) {
3220                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3221                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3222                                     MAP_PRIVATE | MAP_FIXED,
3223                                     image_fd, eppnt->p_offset - vaddr_po);
3224 
3225                 if (error == -1) {
3226                     goto exit_mmap;
3227                 }
3228 
3229                 /*
3230                  * If the load segment requests extra zeros (e.g. bss), map it.
3231                  */
3232                 if (eppnt->p_filesz < eppnt->p_memsz) {
3233                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
3234                 }
3235             } else if (eppnt->p_memsz != 0) {
3236                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3237                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3238                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3239                                     -1, 0);
3240 
3241                 if (error == -1) {
3242                     goto exit_mmap;
3243                 }
3244             }
3245 
3246             /* Find the full program boundaries.  */
3247             if (elf_prot & PROT_EXEC) {
3248                 if (vaddr < info->start_code) {
3249                     info->start_code = vaddr;
3250                 }
3251                 if (vaddr_ef > info->end_code) {
3252                     info->end_code = vaddr_ef;
3253                 }
3254             }
3255             if (elf_prot & PROT_WRITE) {
3256                 if (vaddr < info->start_data) {
3257                     info->start_data = vaddr;
3258                 }
3259                 if (vaddr_ef > info->end_data) {
3260                     info->end_data = vaddr_ef;
3261                 }
3262             }
3263             if (vaddr_em > info->brk) {
3264                 info->brk = vaddr_em;
3265             }
3266 #ifdef TARGET_MIPS
3267         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3268             Mips_elf_abiflags_v0 abiflags;
3269             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3270                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3271                 goto exit_errmsg;
3272             }
3273             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3274                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3275                        sizeof(Mips_elf_abiflags_v0));
3276             } else {
3277                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3278                                eppnt->p_offset);
3279                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3280                     goto exit_read;
3281                 }
3282             }
3283             bswap_mips_abiflags(&abiflags);
3284             info->fp_abi = abiflags.fp_abi;
3285 #endif
3286         }
3287     }
3288 
3289     if (info->end_data == 0) {
3290         info->start_data = info->end_code;
3291         info->end_data = info->end_code;
3292     }
3293 
3294     if (qemu_log_enabled()) {
3295         load_symbols(ehdr, image_fd, load_bias);
3296     }
3297 
3298     debuginfo_report_elf(image_name, image_fd, load_bias);
3299 
3300     mmap_unlock();
3301 
3302     close(image_fd);
3303     return;
3304 
3305  exit_read:
3306     if (retval >= 0) {
3307         error_setg(&err, "Incomplete read of file header");
3308     } else {
3309         error_setg_errno(&err, errno, "Error reading file header");
3310     }
3311     goto exit_errmsg;
3312  exit_mmap:
3313     error_setg_errno(&err, errno, "Error mapping file");
3314     goto exit_errmsg;
3315  exit_errmsg:
3316     error_reportf_err(err, "%s: ", image_name);
3317     exit(-1);
3318 }
3319 
3320 static void load_elf_interp(const char *filename, struct image_info *info,
3321                             char bprm_buf[BPRM_BUF_SIZE])
3322 {
3323     int fd, retval;
3324     Error *err = NULL;
3325 
3326     fd = open(path(filename), O_RDONLY);
3327     if (fd < 0) {
3328         error_setg_file_open(&err, errno, filename);
3329         error_report_err(err);
3330         exit(-1);
3331     }
3332 
3333     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3334     if (retval < 0) {
3335         error_setg_errno(&err, errno, "Error reading file header");
3336         error_reportf_err(err, "%s: ", filename);
3337         exit(-1);
3338     }
3339 
3340     if (retval < BPRM_BUF_SIZE) {
3341         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3342     }
3343 
3344     load_elf_image(filename, fd, info, NULL, bprm_buf);
3345 }
3346 
3347 static int symfind(const void *s0, const void *s1)
3348 {
3349     target_ulong addr = *(target_ulong *)s0;
3350     struct elf_sym *sym = (struct elf_sym *)s1;
3351     int result = 0;
3352     if (addr < sym->st_value) {
3353         result = -1;
3354     } else if (addr >= sym->st_value + sym->st_size) {
3355         result = 1;
3356     }
3357     return result;
3358 }
3359 
3360 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3361 {
3362 #if ELF_CLASS == ELFCLASS32
3363     struct elf_sym *syms = s->disas_symtab.elf32;
3364 #else
3365     struct elf_sym *syms = s->disas_symtab.elf64;
3366 #endif
3367 
3368     // binary search
3369     struct elf_sym *sym;
3370 
3371     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3372     if (sym != NULL) {
3373         return s->disas_strtab + sym->st_name;
3374     }
3375 
3376     return "";
3377 }
3378 
3379 /* FIXME: This should use elf_ops.h  */
3380 static int symcmp(const void *s0, const void *s1)
3381 {
3382     struct elf_sym *sym0 = (struct elf_sym *)s0;
3383     struct elf_sym *sym1 = (struct elf_sym *)s1;
3384     return (sym0->st_value < sym1->st_value)
3385         ? -1
3386         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3387 }
3388 
3389 /* Best attempt to load symbols from this ELF object. */
3390 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3391 {
3392     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3393     uint64_t segsz;
3394     struct elf_shdr *shdr;
3395     char *strings = NULL;
3396     struct syminfo *s = NULL;
3397     struct elf_sym *new_syms, *syms = NULL;
3398 
3399     shnum = hdr->e_shnum;
3400     i = shnum * sizeof(struct elf_shdr);
3401     shdr = (struct elf_shdr *)alloca(i);
3402     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3403         return;
3404     }
3405 
3406     bswap_shdr(shdr, shnum);
3407     for (i = 0; i < shnum; ++i) {
3408         if (shdr[i].sh_type == SHT_SYMTAB) {
3409             sym_idx = i;
3410             str_idx = shdr[i].sh_link;
3411             goto found;
3412         }
3413     }
3414 
3415     /* There will be no symbol table if the file was stripped.  */
3416     return;
3417 
3418  found:
3419     /* Now know where the strtab and symtab are.  Snarf them.  */
3420     s = g_try_new(struct syminfo, 1);
3421     if (!s) {
3422         goto give_up;
3423     }
3424 
3425     segsz = shdr[str_idx].sh_size;
3426     s->disas_strtab = strings = g_try_malloc(segsz);
3427     if (!strings ||
3428         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3429         goto give_up;
3430     }
3431 
3432     segsz = shdr[sym_idx].sh_size;
3433     syms = g_try_malloc(segsz);
3434     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3435         goto give_up;
3436     }
3437 
3438     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3439         /* Implausibly large symbol table: give up rather than ploughing
3440          * on with the number of symbols calculation overflowing
3441          */
3442         goto give_up;
3443     }
3444     nsyms = segsz / sizeof(struct elf_sym);
3445     for (i = 0; i < nsyms; ) {
3446         bswap_sym(syms + i);
3447         /* Throw away entries which we do not need.  */
3448         if (syms[i].st_shndx == SHN_UNDEF
3449             || syms[i].st_shndx >= SHN_LORESERVE
3450             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3451             if (i < --nsyms) {
3452                 syms[i] = syms[nsyms];
3453             }
3454         } else {
3455 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3456             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3457             syms[i].st_value &= ~(target_ulong)1;
3458 #endif
3459             syms[i].st_value += load_bias;
3460             i++;
3461         }
3462     }
3463 
3464     /* No "useful" symbol.  */
3465     if (nsyms == 0) {
3466         goto give_up;
3467     }
3468 
3469     /* Attempt to free the storage associated with the local symbols
3470        that we threw away.  Whether or not this has any effect on the
3471        memory allocation depends on the malloc implementation and how
3472        many symbols we managed to discard.  */
3473     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3474     if (new_syms == NULL) {
3475         goto give_up;
3476     }
3477     syms = new_syms;
3478 
3479     qsort(syms, nsyms, sizeof(*syms), symcmp);
3480 
3481     s->disas_num_syms = nsyms;
3482 #if ELF_CLASS == ELFCLASS32
3483     s->disas_symtab.elf32 = syms;
3484 #else
3485     s->disas_symtab.elf64 = syms;
3486 #endif
3487     s->lookup_symbol = lookup_symbolxx;
3488     s->next = syminfos;
3489     syminfos = s;
3490 
3491     return;
3492 
3493 give_up:
3494     g_free(s);
3495     g_free(strings);
3496     g_free(syms);
3497 }
3498 
3499 uint32_t get_elf_eflags(int fd)
3500 {
3501     struct elfhdr ehdr;
3502     off_t offset;
3503     int ret;
3504 
3505     /* Read ELF header */
3506     offset = lseek(fd, 0, SEEK_SET);
3507     if (offset == (off_t) -1) {
3508         return 0;
3509     }
3510     ret = read(fd, &ehdr, sizeof(ehdr));
3511     if (ret < sizeof(ehdr)) {
3512         return 0;
3513     }
3514     offset = lseek(fd, offset, SEEK_SET);
3515     if (offset == (off_t) -1) {
3516         return 0;
3517     }
3518 
3519     /* Check ELF signature */
3520     if (!elf_check_ident(&ehdr)) {
3521         return 0;
3522     }
3523 
3524     /* check header */
3525     bswap_ehdr(&ehdr);
3526     if (!elf_check_ehdr(&ehdr)) {
3527         return 0;
3528     }
3529 
3530     /* return architecture id */
3531     return ehdr.e_flags;
3532 }
3533 
3534 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3535 {
3536     struct image_info interp_info;
3537     struct elfhdr elf_ex;
3538     char *elf_interpreter = NULL;
3539     char *scratch;
3540 
3541     memset(&interp_info, 0, sizeof(interp_info));
3542 #ifdef TARGET_MIPS
3543     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3544 #endif
3545 
3546     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3547 
3548     load_elf_image(bprm->filename, bprm->fd, info,
3549                    &elf_interpreter, bprm->buf);
3550 
3551     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3552        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3553        when we load the interpreter.  */
3554     elf_ex = *(struct elfhdr *)bprm->buf;
3555 
3556     /* Do this so that we can load the interpreter, if need be.  We will
3557        change some of these later */
3558     bprm->p = setup_arg_pages(bprm, info);
3559 
3560     scratch = g_new0(char, TARGET_PAGE_SIZE);
3561     if (STACK_GROWS_DOWN) {
3562         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3563                                    bprm->p, info->stack_limit);
3564         info->file_string = bprm->p;
3565         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3566                                    bprm->p, info->stack_limit);
3567         info->env_strings = bprm->p;
3568         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3569                                    bprm->p, info->stack_limit);
3570         info->arg_strings = bprm->p;
3571     } else {
3572         info->arg_strings = bprm->p;
3573         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3574                                    bprm->p, info->stack_limit);
3575         info->env_strings = bprm->p;
3576         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3577                                    bprm->p, info->stack_limit);
3578         info->file_string = bprm->p;
3579         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3580                                    bprm->p, info->stack_limit);
3581     }
3582 
3583     g_free(scratch);
3584 
3585     if (!bprm->p) {
3586         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3587         exit(-1);
3588     }
3589 
3590     if (elf_interpreter) {
3591         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3592 
3593         /* If the program interpreter is one of these two, then assume
3594            an iBCS2 image.  Otherwise assume a native linux image.  */
3595 
3596         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3597             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3598             info->personality = PER_SVR4;
3599 
3600             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3601                and some applications "depend" upon this behavior.  Since
3602                we do not have the power to recompile these, we emulate
3603                the SVr4 behavior.  Sigh.  */
3604             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3605                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3606         }
3607 #ifdef TARGET_MIPS
3608         info->interp_fp_abi = interp_info.fp_abi;
3609 #endif
3610     }
3611 
3612     /*
3613      * TODO: load a vdso, which would also contain the signal trampolines.
3614      * Otherwise, allocate a private page to hold them.
3615      */
3616     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3617         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3618                                           PROT_READ | PROT_WRITE,
3619                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3620         if (tramp_page == -1) {
3621             return -errno;
3622         }
3623 
3624         setup_sigtramp(tramp_page);
3625         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3626     }
3627 
3628     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3629                                 info, (elf_interpreter ? &interp_info : NULL));
3630     info->start_stack = bprm->p;
3631 
3632     /* If we have an interpreter, set that as the program's entry point.
3633        Copy the load_bias as well, to help PPC64 interpret the entry
3634        point as a function descriptor.  Do this after creating elf tables
3635        so that we copy the original program entry point into the AUXV.  */
3636     if (elf_interpreter) {
3637         info->load_bias = interp_info.load_bias;
3638         info->entry = interp_info.entry;
3639         g_free(elf_interpreter);
3640     }
3641 
3642 #ifdef USE_ELF_CORE_DUMP
3643     bprm->core_dump = &elf_core_dump;
3644 #endif
3645 
3646     /*
3647      * If we reserved extra space for brk, release it now.
3648      * The implementation of do_brk in syscalls.c expects to be able
3649      * to mmap pages in this space.
3650      */
3651     if (info->reserve_brk) {
3652         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3653         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3654         target_munmap(start_brk, end_brk - start_brk);
3655     }
3656 
3657     return 0;
3658 }
3659 
3660 #ifdef USE_ELF_CORE_DUMP
3661 /*
3662  * Definitions to generate Intel SVR4-like core files.
3663  * These mostly have the same names as the SVR4 types with "target_elf_"
3664  * tacked on the front to prevent clashes with linux definitions,
3665  * and the typedef forms have been avoided.  This is mostly like
3666  * the SVR4 structure, but more Linuxy, with things that Linux does
3667  * not support and which gdb doesn't really use excluded.
3668  *
3669  * Fields we don't dump (their contents is zero) in linux-user qemu
3670  * are marked with XXX.
3671  *
3672  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3673  *
3674  * Porting ELF coredump for target is (quite) simple process.  First you
3675  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3676  * the target resides):
3677  *
3678  * #define USE_ELF_CORE_DUMP
3679  *
3680  * Next you define type of register set used for dumping.  ELF specification
3681  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3682  *
3683  * typedef <target_regtype> target_elf_greg_t;
3684  * #define ELF_NREG <number of registers>
3685  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3686  *
3687  * Last step is to implement target specific function that copies registers
3688  * from given cpu into just specified register set.  Prototype is:
3689  *
3690  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3691  *                                const CPUArchState *env);
3692  *
3693  * Parameters:
3694  *     regs - copy register values into here (allocated and zeroed by caller)
3695  *     env - copy registers from here
3696  *
3697  * Example for ARM target is provided in this file.
3698  */
3699 
3700 /* An ELF note in memory */
3701 struct memelfnote {
3702     const char *name;
3703     size_t     namesz;
3704     size_t     namesz_rounded;
3705     int        type;
3706     size_t     datasz;
3707     size_t     datasz_rounded;
3708     void       *data;
3709     size_t     notesz;
3710 };
3711 
3712 struct target_elf_siginfo {
3713     abi_int    si_signo; /* signal number */
3714     abi_int    si_code;  /* extra code */
3715     abi_int    si_errno; /* errno */
3716 };
3717 
3718 struct target_elf_prstatus {
3719     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3720     abi_short          pr_cursig;    /* Current signal */
3721     abi_ulong          pr_sigpend;   /* XXX */
3722     abi_ulong          pr_sighold;   /* XXX */
3723     target_pid_t       pr_pid;
3724     target_pid_t       pr_ppid;
3725     target_pid_t       pr_pgrp;
3726     target_pid_t       pr_sid;
3727     struct target_timeval pr_utime;  /* XXX User time */
3728     struct target_timeval pr_stime;  /* XXX System time */
3729     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3730     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3731     target_elf_gregset_t      pr_reg;       /* GP registers */
3732     abi_int            pr_fpvalid;   /* XXX */
3733 };
3734 
3735 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3736 
3737 struct target_elf_prpsinfo {
3738     char         pr_state;       /* numeric process state */
3739     char         pr_sname;       /* char for pr_state */
3740     char         pr_zomb;        /* zombie */
3741     char         pr_nice;        /* nice val */
3742     abi_ulong    pr_flag;        /* flags */
3743     target_uid_t pr_uid;
3744     target_gid_t pr_gid;
3745     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3746     /* Lots missing */
3747     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3748     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3749 };
3750 
3751 /* Here is the structure in which status of each thread is captured. */
3752 struct elf_thread_status {
3753     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3754     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3755 #if 0
3756     elf_fpregset_t fpu;             /* NT_PRFPREG */
3757     struct task_struct *thread;
3758     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3759 #endif
3760     struct memelfnote notes[1];
3761     int num_notes;
3762 };
3763 
3764 struct elf_note_info {
3765     struct memelfnote   *notes;
3766     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3767     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3768 
3769     QTAILQ_HEAD(, elf_thread_status) thread_list;
3770 #if 0
3771     /*
3772      * Current version of ELF coredump doesn't support
3773      * dumping fp regs etc.
3774      */
3775     elf_fpregset_t *fpu;
3776     elf_fpxregset_t *xfpu;
3777     int thread_status_size;
3778 #endif
3779     int notes_size;
3780     int numnote;
3781 };
3782 
3783 struct vm_area_struct {
3784     target_ulong   vma_start;  /* start vaddr of memory region */
3785     target_ulong   vma_end;    /* end vaddr of memory region */
3786     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3787     QTAILQ_ENTRY(vm_area_struct) vma_link;
3788 };
3789 
3790 struct mm_struct {
3791     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3792     int mm_count;           /* number of mappings */
3793 };
3794 
3795 static struct mm_struct *vma_init(void);
3796 static void vma_delete(struct mm_struct *);
3797 static int vma_add_mapping(struct mm_struct *, target_ulong,
3798                            target_ulong, abi_ulong);
3799 static int vma_get_mapping_count(const struct mm_struct *);
3800 static struct vm_area_struct *vma_first(const struct mm_struct *);
3801 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3802 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3803 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3804                       unsigned long flags);
3805 
3806 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3807 static void fill_note(struct memelfnote *, const char *, int,
3808                       unsigned int, void *);
3809 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3810 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3811 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3812 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3813 static size_t note_size(const struct memelfnote *);
3814 static void free_note_info(struct elf_note_info *);
3815 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3816 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3817 
3818 static int dump_write(int, const void *, size_t);
3819 static int write_note(struct memelfnote *, int);
3820 static int write_note_info(struct elf_note_info *, int);
3821 
3822 #ifdef BSWAP_NEEDED
3823 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3824 {
3825     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3826     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3827     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3828     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3829     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3830     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3831     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3832     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3833     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3834     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3835     /* cpu times are not filled, so we skip them */
3836     /* regs should be in correct format already */
3837     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3838 }
3839 
3840 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3841 {
3842     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3843     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3844     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3845     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3846     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3847     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3848     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3849 }
3850 
3851 static void bswap_note(struct elf_note *en)
3852 {
3853     bswap32s(&en->n_namesz);
3854     bswap32s(&en->n_descsz);
3855     bswap32s(&en->n_type);
3856 }
3857 #else
3858 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3859 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3860 static inline void bswap_note(struct elf_note *en) { }
3861 #endif /* BSWAP_NEEDED */
3862 
3863 /*
3864  * Minimal support for linux memory regions.  These are needed
3865  * when we are finding out what memory exactly belongs to
3866  * emulated process.  No locks needed here, as long as
3867  * thread that received the signal is stopped.
3868  */
3869 
3870 static struct mm_struct *vma_init(void)
3871 {
3872     struct mm_struct *mm;
3873 
3874     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3875         return (NULL);
3876 
3877     mm->mm_count = 0;
3878     QTAILQ_INIT(&mm->mm_mmap);
3879 
3880     return (mm);
3881 }
3882 
3883 static void vma_delete(struct mm_struct *mm)
3884 {
3885     struct vm_area_struct *vma;
3886 
3887     while ((vma = vma_first(mm)) != NULL) {
3888         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3889         g_free(vma);
3890     }
3891     g_free(mm);
3892 }
3893 
3894 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3895                            target_ulong end, abi_ulong flags)
3896 {
3897     struct vm_area_struct *vma;
3898 
3899     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3900         return (-1);
3901 
3902     vma->vma_start = start;
3903     vma->vma_end = end;
3904     vma->vma_flags = flags;
3905 
3906     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3907     mm->mm_count++;
3908 
3909     return (0);
3910 }
3911 
3912 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3913 {
3914     return (QTAILQ_FIRST(&mm->mm_mmap));
3915 }
3916 
3917 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3918 {
3919     return (QTAILQ_NEXT(vma, vma_link));
3920 }
3921 
3922 static int vma_get_mapping_count(const struct mm_struct *mm)
3923 {
3924     return (mm->mm_count);
3925 }
3926 
3927 /*
3928  * Calculate file (dump) size of given memory region.
3929  */
3930 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3931 {
3932     /* if we cannot even read the first page, skip it */
3933     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3934         return (0);
3935 
3936     /*
3937      * Usually we don't dump executable pages as they contain
3938      * non-writable code that debugger can read directly from
3939      * target library etc.  However, thread stacks are marked
3940      * also executable so we read in first page of given region
3941      * and check whether it contains elf header.  If there is
3942      * no elf header, we dump it.
3943      */
3944     if (vma->vma_flags & PROT_EXEC) {
3945         char page[TARGET_PAGE_SIZE];
3946 
3947         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3948             return 0;
3949         }
3950         if ((page[EI_MAG0] == ELFMAG0) &&
3951             (page[EI_MAG1] == ELFMAG1) &&
3952             (page[EI_MAG2] == ELFMAG2) &&
3953             (page[EI_MAG3] == ELFMAG3)) {
3954             /*
3955              * Mappings are possibly from ELF binary.  Don't dump
3956              * them.
3957              */
3958             return (0);
3959         }
3960     }
3961 
3962     return (vma->vma_end - vma->vma_start);
3963 }
3964 
3965 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3966                       unsigned long flags)
3967 {
3968     struct mm_struct *mm = (struct mm_struct *)priv;
3969 
3970     vma_add_mapping(mm, start, end, flags);
3971     return (0);
3972 }
3973 
3974 static void fill_note(struct memelfnote *note, const char *name, int type,
3975                       unsigned int sz, void *data)
3976 {
3977     unsigned int namesz;
3978 
3979     namesz = strlen(name) + 1;
3980     note->name = name;
3981     note->namesz = namesz;
3982     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3983     note->type = type;
3984     note->datasz = sz;
3985     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3986 
3987     note->data = data;
3988 
3989     /*
3990      * We calculate rounded up note size here as specified by
3991      * ELF document.
3992      */
3993     note->notesz = sizeof (struct elf_note) +
3994         note->namesz_rounded + note->datasz_rounded;
3995 }
3996 
3997 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3998                             uint32_t flags)
3999 {
4000     (void) memset(elf, 0, sizeof(*elf));
4001 
4002     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4003     elf->e_ident[EI_CLASS] = ELF_CLASS;
4004     elf->e_ident[EI_DATA] = ELF_DATA;
4005     elf->e_ident[EI_VERSION] = EV_CURRENT;
4006     elf->e_ident[EI_OSABI] = ELF_OSABI;
4007 
4008     elf->e_type = ET_CORE;
4009     elf->e_machine = machine;
4010     elf->e_version = EV_CURRENT;
4011     elf->e_phoff = sizeof(struct elfhdr);
4012     elf->e_flags = flags;
4013     elf->e_ehsize = sizeof(struct elfhdr);
4014     elf->e_phentsize = sizeof(struct elf_phdr);
4015     elf->e_phnum = segs;
4016 
4017     bswap_ehdr(elf);
4018 }
4019 
4020 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4021 {
4022     phdr->p_type = PT_NOTE;
4023     phdr->p_offset = offset;
4024     phdr->p_vaddr = 0;
4025     phdr->p_paddr = 0;
4026     phdr->p_filesz = sz;
4027     phdr->p_memsz = 0;
4028     phdr->p_flags = 0;
4029     phdr->p_align = 0;
4030 
4031     bswap_phdr(phdr, 1);
4032 }
4033 
4034 static size_t note_size(const struct memelfnote *note)
4035 {
4036     return (note->notesz);
4037 }
4038 
4039 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4040                           const TaskState *ts, int signr)
4041 {
4042     (void) memset(prstatus, 0, sizeof (*prstatus));
4043     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4044     prstatus->pr_pid = ts->ts_tid;
4045     prstatus->pr_ppid = getppid();
4046     prstatus->pr_pgrp = getpgrp();
4047     prstatus->pr_sid = getsid(0);
4048 
4049     bswap_prstatus(prstatus);
4050 }
4051 
4052 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4053 {
4054     char *base_filename;
4055     unsigned int i, len;
4056 
4057     (void) memset(psinfo, 0, sizeof (*psinfo));
4058 
4059     len = ts->info->env_strings - ts->info->arg_strings;
4060     if (len >= ELF_PRARGSZ)
4061         len = ELF_PRARGSZ - 1;
4062     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4063         return -EFAULT;
4064     }
4065     for (i = 0; i < len; i++)
4066         if (psinfo->pr_psargs[i] == 0)
4067             psinfo->pr_psargs[i] = ' ';
4068     psinfo->pr_psargs[len] = 0;
4069 
4070     psinfo->pr_pid = getpid();
4071     psinfo->pr_ppid = getppid();
4072     psinfo->pr_pgrp = getpgrp();
4073     psinfo->pr_sid = getsid(0);
4074     psinfo->pr_uid = getuid();
4075     psinfo->pr_gid = getgid();
4076 
4077     base_filename = g_path_get_basename(ts->bprm->filename);
4078     /*
4079      * Using strncpy here is fine: at max-length,
4080      * this field is not NUL-terminated.
4081      */
4082     (void) strncpy(psinfo->pr_fname, base_filename,
4083                    sizeof(psinfo->pr_fname));
4084 
4085     g_free(base_filename);
4086     bswap_psinfo(psinfo);
4087     return (0);
4088 }
4089 
4090 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4091 {
4092     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4093     elf_addr_t orig_auxv = auxv;
4094     void *ptr;
4095     int len = ts->info->auxv_len;
4096 
4097     /*
4098      * Auxiliary vector is stored in target process stack.  It contains
4099      * {type, value} pairs that we need to dump into note.  This is not
4100      * strictly necessary but we do it here for sake of completeness.
4101      */
4102 
4103     /* read in whole auxv vector and copy it to memelfnote */
4104     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4105     if (ptr != NULL) {
4106         fill_note(note, "CORE", NT_AUXV, len, ptr);
4107         unlock_user(ptr, auxv, len);
4108     }
4109 }
4110 
4111 /*
4112  * Constructs name of coredump file.  We have following convention
4113  * for the name:
4114  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4115  *
4116  * Returns the filename
4117  */
4118 static char *core_dump_filename(const TaskState *ts)
4119 {
4120     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4121     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4122     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4123 
4124     return g_strdup_printf("qemu_%s_%s_%d.core",
4125                            base_filename, nowstr, (int)getpid());
4126 }
4127 
4128 static int dump_write(int fd, const void *ptr, size_t size)
4129 {
4130     const char *bufp = (const char *)ptr;
4131     ssize_t bytes_written, bytes_left;
4132     struct rlimit dumpsize;
4133     off_t pos;
4134 
4135     bytes_written = 0;
4136     getrlimit(RLIMIT_CORE, &dumpsize);
4137     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4138         if (errno == ESPIPE) { /* not a seekable stream */
4139             bytes_left = size;
4140         } else {
4141             return pos;
4142         }
4143     } else {
4144         if (dumpsize.rlim_cur <= pos) {
4145             return -1;
4146         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4147             bytes_left = size;
4148         } else {
4149             size_t limit_left=dumpsize.rlim_cur - pos;
4150             bytes_left = limit_left >= size ? size : limit_left ;
4151         }
4152     }
4153 
4154     /*
4155      * In normal conditions, single write(2) should do but
4156      * in case of socket etc. this mechanism is more portable.
4157      */
4158     do {
4159         bytes_written = write(fd, bufp, bytes_left);
4160         if (bytes_written < 0) {
4161             if (errno == EINTR)
4162                 continue;
4163             return (-1);
4164         } else if (bytes_written == 0) { /* eof */
4165             return (-1);
4166         }
4167         bufp += bytes_written;
4168         bytes_left -= bytes_written;
4169     } while (bytes_left > 0);
4170 
4171     return (0);
4172 }
4173 
4174 static int write_note(struct memelfnote *men, int fd)
4175 {
4176     struct elf_note en;
4177 
4178     en.n_namesz = men->namesz;
4179     en.n_type = men->type;
4180     en.n_descsz = men->datasz;
4181 
4182     bswap_note(&en);
4183 
4184     if (dump_write(fd, &en, sizeof(en)) != 0)
4185         return (-1);
4186     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4187         return (-1);
4188     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4189         return (-1);
4190 
4191     return (0);
4192 }
4193 
4194 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4195 {
4196     CPUState *cpu = env_cpu((CPUArchState *)env);
4197     TaskState *ts = (TaskState *)cpu->opaque;
4198     struct elf_thread_status *ets;
4199 
4200     ets = g_malloc0(sizeof (*ets));
4201     ets->num_notes = 1; /* only prstatus is dumped */
4202     fill_prstatus(&ets->prstatus, ts, 0);
4203     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4204     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4205               &ets->prstatus);
4206 
4207     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4208 
4209     info->notes_size += note_size(&ets->notes[0]);
4210 }
4211 
4212 static void init_note_info(struct elf_note_info *info)
4213 {
4214     /* Initialize the elf_note_info structure so that it is at
4215      * least safe to call free_note_info() on it. Must be
4216      * called before calling fill_note_info().
4217      */
4218     memset(info, 0, sizeof (*info));
4219     QTAILQ_INIT(&info->thread_list);
4220 }
4221 
4222 static int fill_note_info(struct elf_note_info *info,
4223                           long signr, const CPUArchState *env)
4224 {
4225 #define NUMNOTES 3
4226     CPUState *cpu = env_cpu((CPUArchState *)env);
4227     TaskState *ts = (TaskState *)cpu->opaque;
4228     int i;
4229 
4230     info->notes = g_new0(struct memelfnote, NUMNOTES);
4231     if (info->notes == NULL)
4232         return (-ENOMEM);
4233     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4234     if (info->prstatus == NULL)
4235         return (-ENOMEM);
4236     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4237     if (info->prstatus == NULL)
4238         return (-ENOMEM);
4239 
4240     /*
4241      * First fill in status (and registers) of current thread
4242      * including process info & aux vector.
4243      */
4244     fill_prstatus(info->prstatus, ts, signr);
4245     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4246     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4247               sizeof (*info->prstatus), info->prstatus);
4248     fill_psinfo(info->psinfo, ts);
4249     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4250               sizeof (*info->psinfo), info->psinfo);
4251     fill_auxv_note(&info->notes[2], ts);
4252     info->numnote = 3;
4253 
4254     info->notes_size = 0;
4255     for (i = 0; i < info->numnote; i++)
4256         info->notes_size += note_size(&info->notes[i]);
4257 
4258     /* read and fill status of all threads */
4259     cpu_list_lock();
4260     CPU_FOREACH(cpu) {
4261         if (cpu == thread_cpu) {
4262             continue;
4263         }
4264         fill_thread_info(info, cpu->env_ptr);
4265     }
4266     cpu_list_unlock();
4267 
4268     return (0);
4269 }
4270 
4271 static void free_note_info(struct elf_note_info *info)
4272 {
4273     struct elf_thread_status *ets;
4274 
4275     while (!QTAILQ_EMPTY(&info->thread_list)) {
4276         ets = QTAILQ_FIRST(&info->thread_list);
4277         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4278         g_free(ets);
4279     }
4280 
4281     g_free(info->prstatus);
4282     g_free(info->psinfo);
4283     g_free(info->notes);
4284 }
4285 
4286 static int write_note_info(struct elf_note_info *info, int fd)
4287 {
4288     struct elf_thread_status *ets;
4289     int i, error = 0;
4290 
4291     /* write prstatus, psinfo and auxv for current thread */
4292     for (i = 0; i < info->numnote; i++)
4293         if ((error = write_note(&info->notes[i], fd)) != 0)
4294             return (error);
4295 
4296     /* write prstatus for each thread */
4297     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4298         if ((error = write_note(&ets->notes[0], fd)) != 0)
4299             return (error);
4300     }
4301 
4302     return (0);
4303 }
4304 
4305 /*
4306  * Write out ELF coredump.
4307  *
4308  * See documentation of ELF object file format in:
4309  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4310  *
4311  * Coredump format in linux is following:
4312  *
4313  * 0   +----------------------+         \
4314  *     | ELF header           | ET_CORE  |
4315  *     +----------------------+          |
4316  *     | ELF program headers  |          |--- headers
4317  *     | - NOTE section       |          |
4318  *     | - PT_LOAD sections   |          |
4319  *     +----------------------+         /
4320  *     | NOTEs:               |
4321  *     | - NT_PRSTATUS        |
4322  *     | - NT_PRSINFO         |
4323  *     | - NT_AUXV            |
4324  *     +----------------------+ <-- aligned to target page
4325  *     | Process memory dump  |
4326  *     :                      :
4327  *     .                      .
4328  *     :                      :
4329  *     |                      |
4330  *     +----------------------+
4331  *
4332  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4333  * NT_PRSINFO  -> struct elf_prpsinfo
4334  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4335  *
4336  * Format follows System V format as close as possible.  Current
4337  * version limitations are as follows:
4338  *     - no floating point registers are dumped
4339  *
4340  * Function returns 0 in case of success, negative errno otherwise.
4341  *
4342  * TODO: make this work also during runtime: it should be
4343  * possible to force coredump from running process and then
4344  * continue processing.  For example qemu could set up SIGUSR2
4345  * handler (provided that target process haven't registered
4346  * handler for that) that does the dump when signal is received.
4347  */
4348 static int elf_core_dump(int signr, const CPUArchState *env)
4349 {
4350     const CPUState *cpu = env_cpu((CPUArchState *)env);
4351     const TaskState *ts = (const TaskState *)cpu->opaque;
4352     struct vm_area_struct *vma = NULL;
4353     g_autofree char *corefile = NULL;
4354     struct elf_note_info info;
4355     struct elfhdr elf;
4356     struct elf_phdr phdr;
4357     struct rlimit dumpsize;
4358     struct mm_struct *mm = NULL;
4359     off_t offset = 0, data_offset = 0;
4360     int segs = 0;
4361     int fd = -1;
4362 
4363     init_note_info(&info);
4364 
4365     errno = 0;
4366     getrlimit(RLIMIT_CORE, &dumpsize);
4367     if (dumpsize.rlim_cur == 0)
4368         return 0;
4369 
4370     corefile = core_dump_filename(ts);
4371 
4372     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4373                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4374         return (-errno);
4375 
4376     /*
4377      * Walk through target process memory mappings and
4378      * set up structure containing this information.  After
4379      * this point vma_xxx functions can be used.
4380      */
4381     if ((mm = vma_init()) == NULL)
4382         goto out;
4383 
4384     walk_memory_regions(mm, vma_walker);
4385     segs = vma_get_mapping_count(mm);
4386 
4387     /*
4388      * Construct valid coredump ELF header.  We also
4389      * add one more segment for notes.
4390      */
4391     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4392     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4393         goto out;
4394 
4395     /* fill in the in-memory version of notes */
4396     if (fill_note_info(&info, signr, env) < 0)
4397         goto out;
4398 
4399     offset += sizeof (elf);                             /* elf header */
4400     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4401 
4402     /* write out notes program header */
4403     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4404 
4405     offset += info.notes_size;
4406     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4407         goto out;
4408 
4409     /*
4410      * ELF specification wants data to start at page boundary so
4411      * we align it here.
4412      */
4413     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4414 
4415     /*
4416      * Write program headers for memory regions mapped in
4417      * the target process.
4418      */
4419     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4420         (void) memset(&phdr, 0, sizeof (phdr));
4421 
4422         phdr.p_type = PT_LOAD;
4423         phdr.p_offset = offset;
4424         phdr.p_vaddr = vma->vma_start;
4425         phdr.p_paddr = 0;
4426         phdr.p_filesz = vma_dump_size(vma);
4427         offset += phdr.p_filesz;
4428         phdr.p_memsz = vma->vma_end - vma->vma_start;
4429         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4430         if (vma->vma_flags & PROT_WRITE)
4431             phdr.p_flags |= PF_W;
4432         if (vma->vma_flags & PROT_EXEC)
4433             phdr.p_flags |= PF_X;
4434         phdr.p_align = ELF_EXEC_PAGESIZE;
4435 
4436         bswap_phdr(&phdr, 1);
4437         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4438             goto out;
4439         }
4440     }
4441 
4442     /*
4443      * Next we write notes just after program headers.  No
4444      * alignment needed here.
4445      */
4446     if (write_note_info(&info, fd) < 0)
4447         goto out;
4448 
4449     /* align data to page boundary */
4450     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4451         goto out;
4452 
4453     /*
4454      * Finally we can dump process memory into corefile as well.
4455      */
4456     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4457         abi_ulong addr;
4458         abi_ulong end;
4459 
4460         end = vma->vma_start + vma_dump_size(vma);
4461 
4462         for (addr = vma->vma_start; addr < end;
4463              addr += TARGET_PAGE_SIZE) {
4464             char page[TARGET_PAGE_SIZE];
4465             int error;
4466 
4467             /*
4468              *  Read in page from target process memory and
4469              *  write it to coredump file.
4470              */
4471             error = copy_from_user(page, addr, sizeof (page));
4472             if (error != 0) {
4473                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4474                                addr);
4475                 errno = -error;
4476                 goto out;
4477             }
4478             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4479                 goto out;
4480         }
4481     }
4482 
4483  out:
4484     free_note_info(&info);
4485     if (mm != NULL)
4486         vma_delete(mm);
4487     (void) close(fd);
4488 
4489     if (errno != 0)
4490         return (-errno);
4491     return (0);
4492 }
4493 #endif /* USE_ELF_CORE_DUMP */
4494 
4495 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4496 {
4497     init_thread(regs, infop);
4498 }
4499