xref: /qemu/linux-user/elfload.c (revision 7cef6d686309e2792186504ae17cf4f3eb57ef68)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "user/page-protection.h"
12 #include "exec/page-protection.h"
13 #include "exec/mmap-lock.h"
14 #include "exec/translation-block.h"
15 #include "exec/tswap.h"
16 #include "user/guest-base.h"
17 #include "user-internals.h"
18 #include "signal-common.h"
19 #include "loader.h"
20 #include "user-mmap.h"
21 #include "disas/disas.h"
22 #include "qemu/bitops.h"
23 #include "qemu/path.h"
24 #include "qemu/queue.h"
25 #include "qemu/guest-random.h"
26 #include "qemu/units.h"
27 #include "qemu/selfmap.h"
28 #include "qemu/lockable.h"
29 #include "qapi/error.h"
30 #include "qemu/error-report.h"
31 #include "target_signal.h"
32 #include "tcg/debuginfo.h"
33 
34 #ifdef TARGET_ARM
35 #include "target/arm/cpu-features.h"
36 #endif
37 
38 #ifdef _ARCH_PPC64
39 #undef ARCH_DLINFO
40 #undef ELF_PLATFORM
41 #undef ELF_HWCAP
42 #undef ELF_HWCAP2
43 #undef ELF_CLASS
44 #undef ELF_DATA
45 #undef ELF_ARCH
46 #endif
47 
48 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
49 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
50 #endif
51 
52 typedef struct {
53     const uint8_t *image;
54     const uint32_t *relocs;
55     unsigned image_size;
56     unsigned reloc_count;
57     unsigned sigreturn_ofs;
58     unsigned rt_sigreturn_ofs;
59 } VdsoImageInfo;
60 
61 #define ELF_OSABI   ELFOSABI_SYSV
62 
63 /* from personality.h */
64 
65 /*
66  * Flags for bug emulation.
67  *
68  * These occupy the top three bytes.
69  */
70 enum {
71     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
72     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
73                                            descriptors (signal handling) */
74     MMAP_PAGE_ZERO =    0x0100000,
75     ADDR_COMPAT_LAYOUT = 0x0200000,
76     READ_IMPLIES_EXEC = 0x0400000,
77     ADDR_LIMIT_32BIT =  0x0800000,
78     SHORT_INODE =       0x1000000,
79     WHOLE_SECONDS =     0x2000000,
80     STICKY_TIMEOUTS =   0x4000000,
81     ADDR_LIMIT_3GB =    0x8000000,
82 };
83 
84 /*
85  * Personality types.
86  *
87  * These go in the low byte.  Avoid using the top bit, it will
88  * conflict with error returns.
89  */
90 enum {
91     PER_LINUX =         0x0000,
92     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
93     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
94     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
95     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
96     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
97     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
98     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
99     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
100     PER_BSD =           0x0006,
101     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
102     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
103     PER_LINUX32 =       0x0008,
104     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
105     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
106     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
107     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
108     PER_RISCOS =        0x000c,
109     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
110     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
111     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
112     PER_HPUX =          0x0010,
113     PER_MASK =          0x00ff,
114 };
115 
116 /*
117  * Return the base personality without flags.
118  */
119 #define personality(pers)       (pers & PER_MASK)
120 
info_is_fdpic(struct image_info * info)121 int info_is_fdpic(struct image_info *info)
122 {
123     return info->personality == PER_LINUX_FDPIC;
124 }
125 
126 /* this flag is uneffective under linux too, should be deleted */
127 #ifndef MAP_DENYWRITE
128 #define MAP_DENYWRITE 0
129 #endif
130 
131 /* should probably go in elf.h */
132 #ifndef ELIBBAD
133 #define ELIBBAD 80
134 #endif
135 
136 #if TARGET_BIG_ENDIAN
137 #define ELF_DATA        ELFDATA2MSB
138 #else
139 #define ELF_DATA        ELFDATA2LSB
140 #endif
141 
142 #ifdef TARGET_ABI_MIPSN32
143 typedef abi_ullong      target_elf_greg_t;
144 #define tswapreg(ptr)   tswap64(ptr)
145 #else
146 typedef abi_ulong       target_elf_greg_t;
147 #define tswapreg(ptr)   tswapal(ptr)
148 #endif
149 
150 #ifdef USE_UID16
151 typedef abi_ushort      target_uid_t;
152 typedef abi_ushort      target_gid_t;
153 #else
154 typedef abi_uint        target_uid_t;
155 typedef abi_uint        target_gid_t;
156 #endif
157 typedef abi_int         target_pid_t;
158 
159 #ifdef TARGET_I386
160 
161 #define ELF_HWCAP get_elf_hwcap()
162 
get_elf_hwcap(void)163 static uint32_t get_elf_hwcap(void)
164 {
165     X86CPU *cpu = X86_CPU(thread_cpu);
166 
167     return cpu->env.features[FEAT_1_EDX];
168 }
169 
170 #ifdef TARGET_X86_64
171 #define ELF_CLASS      ELFCLASS64
172 #define ELF_ARCH       EM_X86_64
173 
174 #define ELF_PLATFORM   "x86_64"
175 
init_thread(struct target_pt_regs * regs,struct image_info * infop)176 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
177 {
178     regs->rax = 0;
179     regs->rsp = infop->start_stack;
180     regs->rip = infop->entry;
181 }
182 
183 #define ELF_NREG    27
184 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
185 
186 /*
187  * Note that ELF_NREG should be 29 as there should be place for
188  * TRAPNO and ERR "registers" as well but linux doesn't dump
189  * those.
190  *
191  * See linux kernel: arch/x86/include/asm/elf.h
192  */
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUX86State * env)193 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
194 {
195     (*regs)[0] = tswapreg(env->regs[15]);
196     (*regs)[1] = tswapreg(env->regs[14]);
197     (*regs)[2] = tswapreg(env->regs[13]);
198     (*regs)[3] = tswapreg(env->regs[12]);
199     (*regs)[4] = tswapreg(env->regs[R_EBP]);
200     (*regs)[5] = tswapreg(env->regs[R_EBX]);
201     (*regs)[6] = tswapreg(env->regs[11]);
202     (*regs)[7] = tswapreg(env->regs[10]);
203     (*regs)[8] = tswapreg(env->regs[9]);
204     (*regs)[9] = tswapreg(env->regs[8]);
205     (*regs)[10] = tswapreg(env->regs[R_EAX]);
206     (*regs)[11] = tswapreg(env->regs[R_ECX]);
207     (*regs)[12] = tswapreg(env->regs[R_EDX]);
208     (*regs)[13] = tswapreg(env->regs[R_ESI]);
209     (*regs)[14] = tswapreg(env->regs[R_EDI]);
210     (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
211     (*regs)[16] = tswapreg(env->eip);
212     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
213     (*regs)[18] = tswapreg(env->eflags);
214     (*regs)[19] = tswapreg(env->regs[R_ESP]);
215     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
216     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
217     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
218     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
219     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
220     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
221     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
222 }
223 
224 #if ULONG_MAX > UINT32_MAX
225 #define INIT_GUEST_COMMPAGE
init_guest_commpage(void)226 static bool init_guest_commpage(void)
227 {
228     /*
229      * The vsyscall page is at a high negative address aka kernel space,
230      * which means that we cannot actually allocate it with target_mmap.
231      * We still should be able to use page_set_flags, unless the user
232      * has specified -R reserved_va, which would trigger an assert().
233      */
234     if (reserved_va != 0 &&
235         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
236         error_report("Cannot allocate vsyscall page");
237         exit(EXIT_FAILURE);
238     }
239     page_set_flags(TARGET_VSYSCALL_PAGE,
240                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
241                    PAGE_EXEC | PAGE_VALID);
242     return true;
243 }
244 #endif
245 #else
246 
247 /*
248  * This is used to ensure we don't load something for the wrong architecture.
249  */
250 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
251 
252 /*
253  * These are used to set parameters in the core dumps.
254  */
255 #define ELF_CLASS       ELFCLASS32
256 #define ELF_ARCH        EM_386
257 
258 #define ELF_PLATFORM get_elf_platform()
259 #define EXSTACK_DEFAULT true
260 
get_elf_platform(void)261 static const char *get_elf_platform(void)
262 {
263     static char elf_platform[] = "i386";
264     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
265     if (family > 6) {
266         family = 6;
267     }
268     if (family >= 3) {
269         elf_platform[1] = '0' + family;
270     }
271     return elf_platform;
272 }
273 
init_thread(struct target_pt_regs * regs,struct image_info * infop)274 static inline void init_thread(struct target_pt_regs *regs,
275                                struct image_info *infop)
276 {
277     regs->esp = infop->start_stack;
278     regs->eip = infop->entry;
279 
280     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
281        starts %edx contains a pointer to a function which might be
282        registered using `atexit'.  This provides a mean for the
283        dynamic linker to call DT_FINI functions for shared libraries
284        that have been loaded before the code runs.
285 
286        A value of 0 tells we have no such handler.  */
287     regs->edx = 0;
288 }
289 
290 #define ELF_NREG    17
291 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
292 
293 /*
294  * Note that ELF_NREG should be 19 as there should be place for
295  * TRAPNO and ERR "registers" as well but linux doesn't dump
296  * those.
297  *
298  * See linux kernel: arch/x86/include/asm/elf.h
299  */
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUX86State * env)300 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
301 {
302     (*regs)[0] = tswapreg(env->regs[R_EBX]);
303     (*regs)[1] = tswapreg(env->regs[R_ECX]);
304     (*regs)[2] = tswapreg(env->regs[R_EDX]);
305     (*regs)[3] = tswapreg(env->regs[R_ESI]);
306     (*regs)[4] = tswapreg(env->regs[R_EDI]);
307     (*regs)[5] = tswapreg(env->regs[R_EBP]);
308     (*regs)[6] = tswapreg(env->regs[R_EAX]);
309     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
310     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
311     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
312     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
313     (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
314     (*regs)[12] = tswapreg(env->eip);
315     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
316     (*regs)[14] = tswapreg(env->eflags);
317     (*regs)[15] = tswapreg(env->regs[R_ESP]);
318     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
319 }
320 
321 /*
322  * i386 is the only target which supplies AT_SYSINFO for the vdso.
323  * All others only supply AT_SYSINFO_EHDR.
324  */
325 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
326 #define ARCH_DLINFO                                     \
327     do {                                                \
328         if (vdso_info) {                                \
329             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
330         }                                               \
331     } while (0)
332 
333 #endif /* TARGET_X86_64 */
334 
335 #define VDSO_HEADER "vdso.c.inc"
336 
337 #define USE_ELF_CORE_DUMP
338 #define ELF_EXEC_PAGESIZE       4096
339 
340 #endif /* TARGET_I386 */
341 
342 #ifdef TARGET_ARM
343 
344 #ifndef TARGET_AARCH64
345 /* 32 bit ARM definitions */
346 
347 #define ELF_ARCH        EM_ARM
348 #define ELF_CLASS       ELFCLASS32
349 #define EXSTACK_DEFAULT true
350 
init_thread(struct target_pt_regs * regs,struct image_info * infop)351 static inline void init_thread(struct target_pt_regs *regs,
352                                struct image_info *infop)
353 {
354     abi_long stack = infop->start_stack;
355     memset(regs, 0, sizeof(*regs));
356 
357     regs->uregs[16] = ARM_CPU_MODE_USR;
358     if (infop->entry & 1) {
359         regs->uregs[16] |= CPSR_T;
360     }
361     regs->uregs[15] = infop->entry & 0xfffffffe;
362     regs->uregs[13] = infop->start_stack;
363     /* FIXME - what to for failure of get_user()? */
364     get_user_ual(regs->uregs[2], stack + 8); /* envp */
365     get_user_ual(regs->uregs[1], stack + 4); /* envp */
366     /* XXX: it seems that r0 is zeroed after ! */
367     regs->uregs[0] = 0;
368     /* For uClinux PIC binaries.  */
369     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
370     regs->uregs[10] = infop->start_data;
371 
372     /* Support ARM FDPIC.  */
373     if (info_is_fdpic(infop)) {
374         /* As described in the ABI document, r7 points to the loadmap info
375          * prepared by the kernel. If an interpreter is needed, r8 points
376          * to the interpreter loadmap and r9 points to the interpreter
377          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
378          * r9 points to the main program PT_DYNAMIC info.
379          */
380         regs->uregs[7] = infop->loadmap_addr;
381         if (infop->interpreter_loadmap_addr) {
382             /* Executable is dynamically loaded.  */
383             regs->uregs[8] = infop->interpreter_loadmap_addr;
384             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
385         } else {
386             regs->uregs[8] = 0;
387             regs->uregs[9] = infop->pt_dynamic_addr;
388         }
389     }
390 }
391 
392 #define ELF_NREG    18
393 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
394 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUARMState * env)395 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
396 {
397     (*regs)[0] = tswapreg(env->regs[0]);
398     (*regs)[1] = tswapreg(env->regs[1]);
399     (*regs)[2] = tswapreg(env->regs[2]);
400     (*regs)[3] = tswapreg(env->regs[3]);
401     (*regs)[4] = tswapreg(env->regs[4]);
402     (*regs)[5] = tswapreg(env->regs[5]);
403     (*regs)[6] = tswapreg(env->regs[6]);
404     (*regs)[7] = tswapreg(env->regs[7]);
405     (*regs)[8] = tswapreg(env->regs[8]);
406     (*regs)[9] = tswapreg(env->regs[9]);
407     (*regs)[10] = tswapreg(env->regs[10]);
408     (*regs)[11] = tswapreg(env->regs[11]);
409     (*regs)[12] = tswapreg(env->regs[12]);
410     (*regs)[13] = tswapreg(env->regs[13]);
411     (*regs)[14] = tswapreg(env->regs[14]);
412     (*regs)[15] = tswapreg(env->regs[15]);
413 
414     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
415     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
416 }
417 
418 #define USE_ELF_CORE_DUMP
419 #define ELF_EXEC_PAGESIZE       4096
420 
421 enum
422 {
423     ARM_HWCAP_ARM_SWP       = 1 << 0,
424     ARM_HWCAP_ARM_HALF      = 1 << 1,
425     ARM_HWCAP_ARM_THUMB     = 1 << 2,
426     ARM_HWCAP_ARM_26BIT     = 1 << 3,
427     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
428     ARM_HWCAP_ARM_FPA       = 1 << 5,
429     ARM_HWCAP_ARM_VFP       = 1 << 6,
430     ARM_HWCAP_ARM_EDSP      = 1 << 7,
431     ARM_HWCAP_ARM_JAVA      = 1 << 8,
432     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
433     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
434     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
435     ARM_HWCAP_ARM_NEON      = 1 << 12,
436     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
437     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
438     ARM_HWCAP_ARM_TLS       = 1 << 15,
439     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
440     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
441     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
442     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
443     ARM_HWCAP_ARM_LPAE      = 1 << 20,
444     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
445     ARM_HWCAP_ARM_FPHP      = 1 << 22,
446     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
447     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
448     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
449     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
450     ARM_HWCAP_ARM_I8MM      = 1 << 27,
451 };
452 
453 enum {
454     ARM_HWCAP2_ARM_AES      = 1 << 0,
455     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
456     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
457     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
458     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
459     ARM_HWCAP2_ARM_SB       = 1 << 5,
460     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
461 };
462 
463 /* The commpage only exists for 32 bit kernels */
464 
465 #define HI_COMMPAGE (intptr_t)0xffff0f00u
466 
init_guest_commpage(void)467 static bool init_guest_commpage(void)
468 {
469     ARMCPU *cpu = ARM_CPU(thread_cpu);
470     int host_page_size = qemu_real_host_page_size();
471     abi_ptr commpage;
472     void *want;
473     void *addr;
474 
475     /*
476      * M-profile allocates maximum of 2GB address space, so can never
477      * allocate the commpage.  Skip it.
478      */
479     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
480         return true;
481     }
482 
483     commpage = HI_COMMPAGE & -host_page_size;
484     want = g2h_untagged(commpage);
485     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
486                 MAP_ANONYMOUS | MAP_PRIVATE |
487                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
488                 -1, 0);
489 
490     if (addr == MAP_FAILED) {
491         perror("Allocating guest commpage");
492         exit(EXIT_FAILURE);
493     }
494     if (addr != want) {
495         return false;
496     }
497 
498     /* Set kernel helper versions; rest of page is 0.  */
499     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
500 
501     if (mprotect(addr, host_page_size, PROT_READ)) {
502         perror("Protecting guest commpage");
503         exit(EXIT_FAILURE);
504     }
505 
506     page_set_flags(commpage, commpage | (host_page_size - 1),
507                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
508     return true;
509 }
510 
511 #define ELF_HWCAP get_elf_hwcap()
512 #define ELF_HWCAP2 get_elf_hwcap2()
513 
get_elf_hwcap(void)514 uint32_t get_elf_hwcap(void)
515 {
516     ARMCPU *cpu = ARM_CPU(thread_cpu);
517     uint32_t hwcaps = 0;
518 
519     hwcaps |= ARM_HWCAP_ARM_SWP;
520     hwcaps |= ARM_HWCAP_ARM_HALF;
521     hwcaps |= ARM_HWCAP_ARM_THUMB;
522     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
523 
524     /* probe for the extra features */
525 #define GET_FEATURE(feat, hwcap) \
526     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
527 
528 #define GET_FEATURE_ID(feat, hwcap) \
529     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
530 
531     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
532     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
533     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
534     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
535     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
536     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
537     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
538     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
539     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
540     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
541 
542     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
543         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
544         hwcaps |= ARM_HWCAP_ARM_VFPv3;
545         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
546             hwcaps |= ARM_HWCAP_ARM_VFPD32;
547         } else {
548             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
549         }
550     }
551     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
552     /*
553      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
554      * isar_feature function for both. The kernel reports them as two hwcaps.
555      */
556     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
557     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
558     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
559     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
560     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
561     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
562 
563     return hwcaps;
564 }
565 
get_elf_hwcap2(void)566 uint64_t get_elf_hwcap2(void)
567 {
568     ARMCPU *cpu = ARM_CPU(thread_cpu);
569     uint64_t hwcaps = 0;
570 
571     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
572     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
573     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
574     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
575     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
576     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
577     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
578     return hwcaps;
579 }
580 
elf_hwcap_str(uint32_t bit)581 const char *elf_hwcap_str(uint32_t bit)
582 {
583     static const char *hwcap_str[] = {
584     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
585     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
586     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
587     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
588     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
589     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
590     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
591     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
592     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
593     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
594     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
595     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
596     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
597     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
598     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
599     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
600     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
601     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
602     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
603     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
604     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
605     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
606     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
607     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
608     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
609     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
610     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
611     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
612     };
613 
614     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
615 }
616 
elf_hwcap2_str(uint32_t bit)617 const char *elf_hwcap2_str(uint32_t bit)
618 {
619     static const char *hwcap_str[] = {
620     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
621     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
622     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
623     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
624     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
625     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
626     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
627     };
628 
629     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
630 }
631 
632 #undef GET_FEATURE
633 #undef GET_FEATURE_ID
634 
635 #define ELF_PLATFORM get_elf_platform()
636 
get_elf_platform(void)637 static const char *get_elf_platform(void)
638 {
639     CPUARMState *env = cpu_env(thread_cpu);
640 
641 #if TARGET_BIG_ENDIAN
642 # define END  "b"
643 #else
644 # define END  "l"
645 #endif
646 
647     if (arm_feature(env, ARM_FEATURE_V8)) {
648         return "v8" END;
649     } else if (arm_feature(env, ARM_FEATURE_V7)) {
650         if (arm_feature(env, ARM_FEATURE_M)) {
651             return "v7m" END;
652         } else {
653             return "v7" END;
654         }
655     } else if (arm_feature(env, ARM_FEATURE_V6)) {
656         return "v6" END;
657     } else if (arm_feature(env, ARM_FEATURE_V5)) {
658         return "v5" END;
659     } else {
660         return "v4" END;
661     }
662 
663 #undef END
664 }
665 
666 #if TARGET_BIG_ENDIAN
667 #include "elf.h"
668 #include "vdso-be8.c.inc"
669 #include "vdso-be32.c.inc"
670 
vdso_image_info(uint32_t elf_flags)671 static const VdsoImageInfo *vdso_image_info(uint32_t elf_flags)
672 {
673     return (EF_ARM_EABI_VERSION(elf_flags) >= EF_ARM_EABI_VER4
674             && (elf_flags & EF_ARM_BE8)
675             ? &vdso_be8_image_info
676             : &vdso_be32_image_info);
677 }
678 #define vdso_image_info vdso_image_info
679 #else
680 # define VDSO_HEADER  "vdso-le.c.inc"
681 #endif
682 
683 #else
684 /* 64 bit ARM definitions */
685 
686 #define ELF_ARCH        EM_AARCH64
687 #define ELF_CLASS       ELFCLASS64
688 #if TARGET_BIG_ENDIAN
689 # define ELF_PLATFORM    "aarch64_be"
690 #else
691 # define ELF_PLATFORM    "aarch64"
692 #endif
693 
init_thread(struct target_pt_regs * regs,struct image_info * infop)694 static inline void init_thread(struct target_pt_regs *regs,
695                                struct image_info *infop)
696 {
697     abi_long stack = infop->start_stack;
698     memset(regs, 0, sizeof(*regs));
699 
700     regs->pc = infop->entry & ~0x3ULL;
701     regs->sp = stack;
702 }
703 
704 #define ELF_NREG    34
705 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
706 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUARMState * env)707 static void elf_core_copy_regs(target_elf_gregset_t *regs,
708                                const CPUARMState *env)
709 {
710     int i;
711 
712     for (i = 0; i < 32; i++) {
713         (*regs)[i] = tswapreg(env->xregs[i]);
714     }
715     (*regs)[32] = tswapreg(env->pc);
716     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
717 }
718 
719 #define USE_ELF_CORE_DUMP
720 #define ELF_EXEC_PAGESIZE       4096
721 
722 enum {
723     ARM_HWCAP_A64_FP            = 1 << 0,
724     ARM_HWCAP_A64_ASIMD         = 1 << 1,
725     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
726     ARM_HWCAP_A64_AES           = 1 << 3,
727     ARM_HWCAP_A64_PMULL         = 1 << 4,
728     ARM_HWCAP_A64_SHA1          = 1 << 5,
729     ARM_HWCAP_A64_SHA2          = 1 << 6,
730     ARM_HWCAP_A64_CRC32         = 1 << 7,
731     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
732     ARM_HWCAP_A64_FPHP          = 1 << 9,
733     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
734     ARM_HWCAP_A64_CPUID         = 1 << 11,
735     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
736     ARM_HWCAP_A64_JSCVT         = 1 << 13,
737     ARM_HWCAP_A64_FCMA          = 1 << 14,
738     ARM_HWCAP_A64_LRCPC         = 1 << 15,
739     ARM_HWCAP_A64_DCPOP         = 1 << 16,
740     ARM_HWCAP_A64_SHA3          = 1 << 17,
741     ARM_HWCAP_A64_SM3           = 1 << 18,
742     ARM_HWCAP_A64_SM4           = 1 << 19,
743     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
744     ARM_HWCAP_A64_SHA512        = 1 << 21,
745     ARM_HWCAP_A64_SVE           = 1 << 22,
746     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
747     ARM_HWCAP_A64_DIT           = 1 << 24,
748     ARM_HWCAP_A64_USCAT         = 1 << 25,
749     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
750     ARM_HWCAP_A64_FLAGM         = 1 << 27,
751     ARM_HWCAP_A64_SSBS          = 1 << 28,
752     ARM_HWCAP_A64_SB            = 1 << 29,
753     ARM_HWCAP_A64_PACA          = 1 << 30,
754     ARM_HWCAP_A64_PACG          = 1UL << 31,
755 
756     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
757     ARM_HWCAP2_A64_SVE2         = 1 << 1,
758     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
759     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
760     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
761     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
762     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
763     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
764     ARM_HWCAP2_A64_FRINT        = 1 << 8,
765     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
766     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
767     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
768     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
769     ARM_HWCAP2_A64_I8MM         = 1 << 13,
770     ARM_HWCAP2_A64_BF16         = 1 << 14,
771     ARM_HWCAP2_A64_DGH          = 1 << 15,
772     ARM_HWCAP2_A64_RNG          = 1 << 16,
773     ARM_HWCAP2_A64_BTI          = 1 << 17,
774     ARM_HWCAP2_A64_MTE          = 1 << 18,
775     ARM_HWCAP2_A64_ECV          = 1 << 19,
776     ARM_HWCAP2_A64_AFP          = 1 << 20,
777     ARM_HWCAP2_A64_RPRES        = 1 << 21,
778     ARM_HWCAP2_A64_MTE3         = 1 << 22,
779     ARM_HWCAP2_A64_SME          = 1 << 23,
780     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
781     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
782     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
783     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
784     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
785     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
786     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
787     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
788     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
789     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
790     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
791     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
792     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
793     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
794     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
795     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
796     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
797     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
798     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
799     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
800     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
801 };
802 
803 #define ELF_HWCAP   get_elf_hwcap()
804 #define ELF_HWCAP2  get_elf_hwcap2()
805 
806 #define GET_FEATURE_ID(feat, hwcap) \
807     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
808 
get_elf_hwcap(void)809 uint32_t get_elf_hwcap(void)
810 {
811     ARMCPU *cpu = ARM_CPU(thread_cpu);
812     uint32_t hwcaps = 0;
813 
814     hwcaps |= ARM_HWCAP_A64_FP;
815     hwcaps |= ARM_HWCAP_A64_ASIMD;
816     hwcaps |= ARM_HWCAP_A64_CPUID;
817 
818     /* probe for the extra features */
819 
820     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
821     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
822     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
823     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
824     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
825     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
826     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
827     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
828     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
829     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
830     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
831     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
832     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
833     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
834     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
835     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
836     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
837     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
838     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
839     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
840     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
841     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
842     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
843     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
844     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
845 
846     return hwcaps;
847 }
848 
get_elf_hwcap2(void)849 uint64_t get_elf_hwcap2(void)
850 {
851     ARMCPU *cpu = ARM_CPU(thread_cpu);
852     uint64_t hwcaps = 0;
853 
854     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
855     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
856     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
857     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
858     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
859     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
860     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
861     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
862     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
863     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
864     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
865     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
866     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
867     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
868     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
869     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
870     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
871     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
872     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
873     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
874                               ARM_HWCAP2_A64_SME_F32F32 |
875                               ARM_HWCAP2_A64_SME_B16F32 |
876                               ARM_HWCAP2_A64_SME_F16F32 |
877                               ARM_HWCAP2_A64_SME_I8I32));
878     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
879     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
880     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
881     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
882     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
883 
884     return hwcaps;
885 }
886 
elf_hwcap_str(uint32_t bit)887 const char *elf_hwcap_str(uint32_t bit)
888 {
889     static const char *hwcap_str[] = {
890     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
891     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
892     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
893     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
894     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
895     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
896     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
897     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
898     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
899     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
900     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
901     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
902     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
903     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
904     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
905     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
906     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
907     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
908     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
909     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
910     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
911     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
912     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
913     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
914     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
915     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
916     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
917     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
918     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
919     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
920     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
921     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
922     };
923 
924     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
925 }
926 
elf_hwcap2_str(uint32_t bit)927 const char *elf_hwcap2_str(uint32_t bit)
928 {
929     static const char *hwcap_str[] = {
930     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
931     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
932     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
933     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
934     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
935     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
936     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
937     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
938     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
939     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
940     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
941     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
942     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
943     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
944     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
945     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
946     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
947     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
948     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
949     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
950     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
951     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
952     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
953     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
954     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
955     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
956     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
957     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
958     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
959     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
960     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
961     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
962     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
963     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
964     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
965     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
966     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
967     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
968     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
969     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
970     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
971     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
972     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
973     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
974     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
975     };
976 
977     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
978 }
979 
980 #undef GET_FEATURE_ID
981 
982 #if TARGET_BIG_ENDIAN
983 # define VDSO_HEADER  "vdso-be.c.inc"
984 #else
985 # define VDSO_HEADER  "vdso-le.c.inc"
986 #endif
987 
988 #endif /* not TARGET_AARCH64 */
989 
990 #endif /* TARGET_ARM */
991 
992 #ifdef TARGET_SPARC
993 
994 #ifndef TARGET_SPARC64
995 # define ELF_CLASS  ELFCLASS32
996 # define ELF_ARCH   EM_SPARC
997 #elif defined(TARGET_ABI32)
998 # define ELF_CLASS  ELFCLASS32
999 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
1000 #else
1001 # define ELF_CLASS  ELFCLASS64
1002 # define ELF_ARCH   EM_SPARCV9
1003 #endif
1004 
1005 #include "elf.h"
1006 
1007 #define ELF_HWCAP get_elf_hwcap()
1008 
get_elf_hwcap(void)1009 static uint32_t get_elf_hwcap(void)
1010 {
1011     /* There are not many sparc32 hwcap bits -- we have all of them. */
1012     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
1013                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
1014 
1015 #ifdef TARGET_SPARC64
1016     CPUSPARCState *env = cpu_env(thread_cpu);
1017     uint32_t features = env->def.features;
1018 
1019     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
1020     /* 32x32 multiply and divide are efficient. */
1021     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1022     /* We don't have an internal feature bit for this. */
1023     r |= HWCAP_SPARC_POPC;
1024     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1025     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1026     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1027     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
1028     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
1029     r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
1030 #endif
1031 
1032     return r;
1033 }
1034 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1035 static inline void init_thread(struct target_pt_regs *regs,
1036                                struct image_info *infop)
1037 {
1038     /* Note that target_cpu_copy_regs does not read psr/tstate. */
1039     regs->pc = infop->entry;
1040     regs->npc = regs->pc + 4;
1041     regs->y = 0;
1042     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1043                         - TARGET_STACK_BIAS);
1044 }
1045 #endif /* TARGET_SPARC */
1046 
1047 #ifdef TARGET_PPC
1048 
1049 #define ELF_MACHINE    PPC_ELF_MACHINE
1050 
1051 #if defined(TARGET_PPC64)
1052 
1053 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1054 
1055 #define ELF_CLASS       ELFCLASS64
1056 
1057 #else
1058 
1059 #define ELF_CLASS       ELFCLASS32
1060 #define EXSTACK_DEFAULT true
1061 
1062 #endif
1063 
1064 #define ELF_ARCH        EM_PPC
1065 
1066 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1067    See arch/powerpc/include/asm/cputable.h.  */
1068 enum {
1069     QEMU_PPC_FEATURE_32 = 0x80000000,
1070     QEMU_PPC_FEATURE_64 = 0x40000000,
1071     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1072     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1073     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1074     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1075     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1076     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1077     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1078     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1079     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1080     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1081     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1082     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1083     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1084     QEMU_PPC_FEATURE_CELL = 0x00010000,
1085     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1086     QEMU_PPC_FEATURE_SMT = 0x00004000,
1087     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1088     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1089     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1090     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1091     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1092     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1093     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1094     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1095 
1096     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1097     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1098 
1099     /* Feature definitions in AT_HWCAP2.  */
1100     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1101     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1102     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1103     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1104     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1105     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1106     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1107     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1108     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1109     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1110     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1111     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1112     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1113     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1114     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1115 };
1116 
1117 #define ELF_HWCAP get_elf_hwcap()
1118 
get_elf_hwcap(void)1119 static uint32_t get_elf_hwcap(void)
1120 {
1121     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1122     uint32_t features = 0;
1123 
1124     /* We don't have to be terribly complete here; the high points are
1125        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1126 #define GET_FEATURE(flag, feature)                                      \
1127     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1128 #define GET_FEATURE2(flags, feature) \
1129     do { \
1130         if ((cpu->env.insns_flags2 & flags) == flags) { \
1131             features |= feature; \
1132         } \
1133     } while (0)
1134     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1135     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1136     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1137     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1138     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1139     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1140     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1141     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1142     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1143     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1144     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1145                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1146                   QEMU_PPC_FEATURE_ARCH_2_06);
1147 #undef GET_FEATURE
1148 #undef GET_FEATURE2
1149 
1150     return features;
1151 }
1152 
1153 #define ELF_HWCAP2 get_elf_hwcap2()
1154 
get_elf_hwcap2(void)1155 static uint32_t get_elf_hwcap2(void)
1156 {
1157     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1158     uint32_t features = 0;
1159 
1160 #define GET_FEATURE(flag, feature)                                      \
1161     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1162 #define GET_FEATURE2(flag, feature)                                      \
1163     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1164 
1165     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1166     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1167     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1168                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1169                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1170     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1171                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1172     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1173                  QEMU_PPC_FEATURE2_MMA);
1174 
1175 #undef GET_FEATURE
1176 #undef GET_FEATURE2
1177 
1178     return features;
1179 }
1180 
1181 /*
1182  * The requirements here are:
1183  * - keep the final alignment of sp (sp & 0xf)
1184  * - make sure the 32-bit value at the first 16 byte aligned position of
1185  *   AUXV is greater than 16 for glibc compatibility.
1186  *   AT_IGNOREPPC is used for that.
1187  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1188  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1189  */
1190 #define DLINFO_ARCH_ITEMS       5
1191 #define ARCH_DLINFO                                     \
1192     do {                                                \
1193         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1194         /*                                              \
1195          * Handle glibc compatibility: these magic entries must \
1196          * be at the lowest addresses in the final auxv.        \
1197          */                                             \
1198         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1199         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1200         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1201         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1202         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1203     } while (0)
1204 
init_thread(struct target_pt_regs * _regs,struct image_info * infop)1205 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1206 {
1207     _regs->gpr[1] = infop->start_stack;
1208 #if defined(TARGET_PPC64)
1209     if (get_ppc64_abi(infop) < 2) {
1210         uint64_t val;
1211         get_user_u64(val, infop->entry + 8);
1212         _regs->gpr[2] = val + infop->load_bias;
1213         get_user_u64(val, infop->entry);
1214         infop->entry = val + infop->load_bias;
1215     } else {
1216         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1217     }
1218 #endif
1219     _regs->nip = infop->entry;
1220 }
1221 
1222 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1223 #define ELF_NREG 48
1224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1225 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUPPCState * env)1226 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1227 {
1228     int i;
1229     target_ulong ccr = 0;
1230 
1231     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1232         (*regs)[i] = tswapreg(env->gpr[i]);
1233     }
1234 
1235     (*regs)[32] = tswapreg(env->nip);
1236     (*regs)[33] = tswapreg(env->msr);
1237     (*regs)[35] = tswapreg(env->ctr);
1238     (*regs)[36] = tswapreg(env->lr);
1239     (*regs)[37] = tswapreg(cpu_read_xer(env));
1240 
1241     ccr = ppc_get_cr(env);
1242     (*regs)[38] = tswapreg(ccr);
1243 }
1244 
1245 #define USE_ELF_CORE_DUMP
1246 #define ELF_EXEC_PAGESIZE       4096
1247 
1248 #ifndef TARGET_PPC64
1249 # define VDSO_HEADER  "vdso-32.c.inc"
1250 #elif TARGET_BIG_ENDIAN
1251 # define VDSO_HEADER  "vdso-64.c.inc"
1252 #else
1253 # define VDSO_HEADER  "vdso-64le.c.inc"
1254 #endif
1255 
1256 #endif
1257 
1258 #ifdef TARGET_LOONGARCH64
1259 
1260 #define ELF_CLASS   ELFCLASS64
1261 #define ELF_ARCH    EM_LOONGARCH
1262 #define EXSTACK_DEFAULT true
1263 
1264 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1265 
1266 #define VDSO_HEADER "vdso.c.inc"
1267 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1268 static inline void init_thread(struct target_pt_regs *regs,
1269                                struct image_info *infop)
1270 {
1271     /*Set crmd PG,DA = 1,0 */
1272     regs->csr.crmd = 2 << 3;
1273     regs->csr.era = infop->entry;
1274     regs->regs[3] = infop->start_stack;
1275 }
1276 
1277 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1278 #define ELF_NREG 45
1279 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1280 
1281 enum {
1282     TARGET_EF_R0 = 0,
1283     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1284     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1285 };
1286 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPULoongArchState * env)1287 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1288                                const CPULoongArchState *env)
1289 {
1290     int i;
1291 
1292     (*regs)[TARGET_EF_R0] = 0;
1293 
1294     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1295         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1296     }
1297 
1298     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1299     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1300 }
1301 
1302 #define USE_ELF_CORE_DUMP
1303 #define ELF_EXEC_PAGESIZE        4096
1304 
1305 #define ELF_HWCAP get_elf_hwcap()
1306 
1307 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1308 enum {
1309     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1310     HWCAP_LOONGARCH_LAM      = (1 << 1),
1311     HWCAP_LOONGARCH_UAL      = (1 << 2),
1312     HWCAP_LOONGARCH_FPU      = (1 << 3),
1313     HWCAP_LOONGARCH_LSX      = (1 << 4),
1314     HWCAP_LOONGARCH_LASX     = (1 << 5),
1315     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1316     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1317     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1318     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1319     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1320     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1321     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1322 };
1323 
get_elf_hwcap(void)1324 static uint32_t get_elf_hwcap(void)
1325 {
1326     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1327     uint32_t hwcaps = 0;
1328 
1329     hwcaps |= HWCAP_LOONGARCH_CRC32;
1330 
1331     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1332         hwcaps |= HWCAP_LOONGARCH_UAL;
1333     }
1334 
1335     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1336         hwcaps |= HWCAP_LOONGARCH_FPU;
1337     }
1338 
1339     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1340         hwcaps |= HWCAP_LOONGARCH_LAM;
1341     }
1342 
1343     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1344         hwcaps |= HWCAP_LOONGARCH_LSX;
1345     }
1346 
1347     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1348         hwcaps |= HWCAP_LOONGARCH_LASX;
1349     }
1350 
1351     return hwcaps;
1352 }
1353 
1354 #define ELF_PLATFORM "loongarch"
1355 
1356 #endif /* TARGET_LOONGARCH64 */
1357 
1358 #ifdef TARGET_MIPS
1359 
1360 #ifdef TARGET_MIPS64
1361 #define ELF_CLASS   ELFCLASS64
1362 #else
1363 #define ELF_CLASS   ELFCLASS32
1364 #endif
1365 #define ELF_ARCH    EM_MIPS
1366 #define EXSTACK_DEFAULT true
1367 
1368 #ifdef TARGET_ABI_MIPSN32
1369 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1370 #else
1371 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1372 #endif
1373 
1374 #define ELF_BASE_PLATFORM get_elf_base_platform()
1375 
1376 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1377     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1378     { return _base_platform; } } while (0)
1379 
get_elf_base_platform(void)1380 static const char *get_elf_base_platform(void)
1381 {
1382     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1383 
1384     /* 64 bit ISAs goes first */
1385     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1386     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1387     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1388     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1389     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1390     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1391     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1392 
1393     /* 32 bit ISAs */
1394     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1395     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1396     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1397     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1398     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1399 
1400     /* Fallback */
1401     return "mips";
1402 }
1403 #undef MATCH_PLATFORM_INSN
1404 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1405 static inline void init_thread(struct target_pt_regs *regs,
1406                                struct image_info *infop)
1407 {
1408     regs->cp0_status = 2 << CP0St_KSU;
1409     regs->cp0_epc = infop->entry;
1410     regs->regs[29] = infop->start_stack;
1411 }
1412 
1413 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1414 #define ELF_NREG 45
1415 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1416 
1417 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1418 enum {
1419 #ifdef TARGET_MIPS64
1420     TARGET_EF_R0 = 0,
1421 #else
1422     TARGET_EF_R0 = 6,
1423 #endif
1424     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1425     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1426     TARGET_EF_LO = TARGET_EF_R0 + 32,
1427     TARGET_EF_HI = TARGET_EF_R0 + 33,
1428     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1429     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1430     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1431     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1432 };
1433 
1434 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUMIPSState * env)1435 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1436 {
1437     int i;
1438 
1439     for (i = 0; i < TARGET_EF_R0; i++) {
1440         (*regs)[i] = 0;
1441     }
1442     (*regs)[TARGET_EF_R0] = 0;
1443 
1444     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1445         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1446     }
1447 
1448     (*regs)[TARGET_EF_R26] = 0;
1449     (*regs)[TARGET_EF_R27] = 0;
1450     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1451     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1452     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1453     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1454     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1455     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1456 }
1457 
1458 #define USE_ELF_CORE_DUMP
1459 #define ELF_EXEC_PAGESIZE        4096
1460 
1461 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1462 enum {
1463     HWCAP_MIPS_R6           = (1 << 0),
1464     HWCAP_MIPS_MSA          = (1 << 1),
1465     HWCAP_MIPS_CRC32        = (1 << 2),
1466     HWCAP_MIPS_MIPS16       = (1 << 3),
1467     HWCAP_MIPS_MDMX         = (1 << 4),
1468     HWCAP_MIPS_MIPS3D       = (1 << 5),
1469     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1470     HWCAP_MIPS_DSP          = (1 << 7),
1471     HWCAP_MIPS_DSP2         = (1 << 8),
1472     HWCAP_MIPS_DSP3         = (1 << 9),
1473     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1474     HWCAP_LOONGSON_MMI      = (1 << 11),
1475     HWCAP_LOONGSON_EXT      = (1 << 12),
1476     HWCAP_LOONGSON_EXT2     = (1 << 13),
1477     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1478 };
1479 
1480 #define ELF_HWCAP get_elf_hwcap()
1481 
1482 #define GET_FEATURE_INSN(_flag, _hwcap) \
1483     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1484 
1485 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1486     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1487 
1488 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1489     do { \
1490         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1491             hwcaps |= _hwcap; \
1492         } \
1493     } while (0)
1494 
get_elf_hwcap(void)1495 static uint32_t get_elf_hwcap(void)
1496 {
1497     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1498     uint32_t hwcaps = 0;
1499 
1500     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1501                         2, HWCAP_MIPS_R6);
1502     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1503     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1504     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1505 
1506     return hwcaps;
1507 }
1508 
1509 #undef GET_FEATURE_REG_EQU
1510 #undef GET_FEATURE_REG_SET
1511 #undef GET_FEATURE_INSN
1512 
1513 #endif /* TARGET_MIPS */
1514 
1515 #ifdef TARGET_MICROBLAZE
1516 
1517 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1518 
1519 #define ELF_CLASS   ELFCLASS32
1520 #define ELF_ARCH    EM_MICROBLAZE
1521 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1522 static inline void init_thread(struct target_pt_regs *regs,
1523                                struct image_info *infop)
1524 {
1525     regs->pc = infop->entry;
1526     regs->r1 = infop->start_stack;
1527 
1528 }
1529 
1530 #define ELF_EXEC_PAGESIZE        4096
1531 
1532 #define USE_ELF_CORE_DUMP
1533 #define ELF_NREG 38
1534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535 
1536 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUMBState * env)1537 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1538 {
1539     int i, pos = 0;
1540 
1541     for (i = 0; i < 32; i++) {
1542         (*regs)[pos++] = tswapreg(env->regs[i]);
1543     }
1544 
1545     (*regs)[pos++] = tswapreg(env->pc);
1546     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1547     (*regs)[pos++] = 0;
1548     (*regs)[pos++] = tswapreg(env->ear);
1549     (*regs)[pos++] = 0;
1550     (*regs)[pos++] = tswapreg(env->esr);
1551 }
1552 
1553 #endif /* TARGET_MICROBLAZE */
1554 
1555 #ifdef TARGET_OPENRISC
1556 
1557 #define ELF_ARCH EM_OPENRISC
1558 #define ELF_CLASS ELFCLASS32
1559 #define ELF_DATA  ELFDATA2MSB
1560 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1561 static inline void init_thread(struct target_pt_regs *regs,
1562                                struct image_info *infop)
1563 {
1564     regs->pc = infop->entry;
1565     regs->gpr[1] = infop->start_stack;
1566 }
1567 
1568 #define USE_ELF_CORE_DUMP
1569 #define ELF_EXEC_PAGESIZE 8192
1570 
1571 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1572 #define ELF_NREG 34 /* gprs and pc, sr */
1573 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1574 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUOpenRISCState * env)1575 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1576                                const CPUOpenRISCState *env)
1577 {
1578     int i;
1579 
1580     for (i = 0; i < 32; i++) {
1581         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1582     }
1583     (*regs)[32] = tswapreg(env->pc);
1584     (*regs)[33] = tswapreg(cpu_get_sr(env));
1585 }
1586 #define ELF_HWCAP 0
1587 #define ELF_PLATFORM NULL
1588 
1589 #endif /* TARGET_OPENRISC */
1590 
1591 #ifdef TARGET_SH4
1592 
1593 #define ELF_CLASS ELFCLASS32
1594 #define ELF_ARCH  EM_SH
1595 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1596 static inline void init_thread(struct target_pt_regs *regs,
1597                                struct image_info *infop)
1598 {
1599     /* Check other registers XXXXX */
1600     regs->pc = infop->entry;
1601     regs->regs[15] = infop->start_stack;
1602 }
1603 
1604 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1605 #define ELF_NREG 23
1606 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1607 
1608 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1609 enum {
1610     TARGET_REG_PC = 16,
1611     TARGET_REG_PR = 17,
1612     TARGET_REG_SR = 18,
1613     TARGET_REG_GBR = 19,
1614     TARGET_REG_MACH = 20,
1615     TARGET_REG_MACL = 21,
1616     TARGET_REG_SYSCALL = 22
1617 };
1618 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUSH4State * env)1619 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1620                                       const CPUSH4State *env)
1621 {
1622     int i;
1623 
1624     for (i = 0; i < 16; i++) {
1625         (*regs)[i] = tswapreg(env->gregs[i]);
1626     }
1627 
1628     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1629     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1630     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1631     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1632     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1633     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1634     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1635 }
1636 
1637 #define USE_ELF_CORE_DUMP
1638 #define ELF_EXEC_PAGESIZE        4096
1639 
1640 enum {
1641     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1642     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1643     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1644     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1645     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1646     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1647     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1648     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1649     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1650     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1651 };
1652 
1653 #define ELF_HWCAP get_elf_hwcap()
1654 
get_elf_hwcap(void)1655 static uint32_t get_elf_hwcap(void)
1656 {
1657     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1658     uint32_t hwcap = 0;
1659 
1660     hwcap |= SH_CPU_HAS_FPU;
1661 
1662     if (cpu->env.features & SH_FEATURE_SH4A) {
1663         hwcap |= SH_CPU_HAS_LLSC;
1664     }
1665 
1666     return hwcap;
1667 }
1668 
1669 #endif
1670 
1671 #ifdef TARGET_M68K
1672 
1673 #define ELF_CLASS       ELFCLASS32
1674 #define ELF_ARCH        EM_68K
1675 
1676 /* ??? Does this need to do anything?
1677    #define ELF_PLAT_INIT(_r) */
1678 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1679 static inline void init_thread(struct target_pt_regs *regs,
1680                                struct image_info *infop)
1681 {
1682     regs->usp = infop->start_stack;
1683     regs->sr = 0;
1684     regs->pc = infop->entry;
1685 }
1686 
1687 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1688 #define ELF_NREG 20
1689 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1690 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUM68KState * env)1691 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1692 {
1693     (*regs)[0] = tswapreg(env->dregs[1]);
1694     (*regs)[1] = tswapreg(env->dregs[2]);
1695     (*regs)[2] = tswapreg(env->dregs[3]);
1696     (*regs)[3] = tswapreg(env->dregs[4]);
1697     (*regs)[4] = tswapreg(env->dregs[5]);
1698     (*regs)[5] = tswapreg(env->dregs[6]);
1699     (*regs)[6] = tswapreg(env->dregs[7]);
1700     (*regs)[7] = tswapreg(env->aregs[0]);
1701     (*regs)[8] = tswapreg(env->aregs[1]);
1702     (*regs)[9] = tswapreg(env->aregs[2]);
1703     (*regs)[10] = tswapreg(env->aregs[3]);
1704     (*regs)[11] = tswapreg(env->aregs[4]);
1705     (*regs)[12] = tswapreg(env->aregs[5]);
1706     (*regs)[13] = tswapreg(env->aregs[6]);
1707     (*regs)[14] = tswapreg(env->dregs[0]);
1708     (*regs)[15] = tswapreg(env->aregs[7]);
1709     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1710     (*regs)[17] = tswapreg(env->sr);
1711     (*regs)[18] = tswapreg(env->pc);
1712     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1713 }
1714 
1715 #define USE_ELF_CORE_DUMP
1716 #define ELF_EXEC_PAGESIZE       8192
1717 
1718 #endif
1719 
1720 #ifdef TARGET_ALPHA
1721 
1722 #define ELF_CLASS      ELFCLASS64
1723 #define ELF_ARCH       EM_ALPHA
1724 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1725 static inline void init_thread(struct target_pt_regs *regs,
1726                                struct image_info *infop)
1727 {
1728     regs->pc = infop->entry;
1729     regs->ps = 8;
1730     regs->usp = infop->start_stack;
1731 }
1732 
1733 #define ELF_EXEC_PAGESIZE        8192
1734 
1735 #endif /* TARGET_ALPHA */
1736 
1737 #ifdef TARGET_S390X
1738 
1739 #define ELF_CLASS	ELFCLASS64
1740 #define ELF_DATA	ELFDATA2MSB
1741 #define ELF_ARCH	EM_S390
1742 
1743 #include "elf.h"
1744 
1745 #define ELF_HWCAP get_elf_hwcap()
1746 
1747 #define GET_FEATURE(_feat, _hwcap) \
1748     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1749 
get_elf_hwcap(void)1750 uint32_t get_elf_hwcap(void)
1751 {
1752     /*
1753      * Let's assume we always have esan3 and zarch.
1754      * 31-bit processes can use 64-bit registers (high gprs).
1755      */
1756     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1757 
1758     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1759     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1760     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1761     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1762     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1763         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1764         hwcap |= HWCAP_S390_ETF3EH;
1765     }
1766     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1767     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1768     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1769 
1770     return hwcap;
1771 }
1772 
elf_hwcap_str(uint32_t bit)1773 const char *elf_hwcap_str(uint32_t bit)
1774 {
1775     static const char *hwcap_str[] = {
1776         [HWCAP_S390_NR_ESAN3]     = "esan3",
1777         [HWCAP_S390_NR_ZARCH]     = "zarch",
1778         [HWCAP_S390_NR_STFLE]     = "stfle",
1779         [HWCAP_S390_NR_MSA]       = "msa",
1780         [HWCAP_S390_NR_LDISP]     = "ldisp",
1781         [HWCAP_S390_NR_EIMM]      = "eimm",
1782         [HWCAP_S390_NR_DFP]       = "dfp",
1783         [HWCAP_S390_NR_HPAGE]     = "edat",
1784         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1785         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1786         [HWCAP_S390_NR_TE]        = "te",
1787         [HWCAP_S390_NR_VXRS]      = "vx",
1788         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1789         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1790         [HWCAP_S390_NR_GS]        = "gs",
1791         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1792         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1793         [HWCAP_S390_NR_SORT]      = "sort",
1794         [HWCAP_S390_NR_DFLT]      = "dflt",
1795         [HWCAP_S390_NR_NNPA]      = "nnpa",
1796         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1797         [HWCAP_S390_NR_SIE]       = "sie",
1798     };
1799 
1800     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1801 }
1802 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1803 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1804 {
1805     regs->psw.addr = infop->entry;
1806     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1807                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1808                      PSW_MASK_32;
1809     regs->gprs[15] = infop->start_stack;
1810 }
1811 
1812 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1813 #define ELF_NREG 27
1814 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1815 
1816 enum {
1817     TARGET_REG_PSWM = 0,
1818     TARGET_REG_PSWA = 1,
1819     TARGET_REG_GPRS = 2,
1820     TARGET_REG_ARS = 18,
1821     TARGET_REG_ORIG_R2 = 26,
1822 };
1823 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUS390XState * env)1824 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1825                                const CPUS390XState *env)
1826 {
1827     int i;
1828     uint32_t *aregs;
1829 
1830     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1831     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1832     for (i = 0; i < 16; i++) {
1833         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1834     }
1835     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1836     for (i = 0; i < 16; i++) {
1837         aregs[i] = tswap32(env->aregs[i]);
1838     }
1839     (*regs)[TARGET_REG_ORIG_R2] = 0;
1840 }
1841 
1842 #define USE_ELF_CORE_DUMP
1843 #define ELF_EXEC_PAGESIZE 4096
1844 
1845 #define VDSO_HEADER "vdso.c.inc"
1846 
1847 #endif /* TARGET_S390X */
1848 
1849 #ifdef TARGET_RISCV
1850 
1851 #define ELF_ARCH  EM_RISCV
1852 
1853 #ifdef TARGET_RISCV32
1854 #define ELF_CLASS ELFCLASS32
1855 #define VDSO_HEADER "vdso-32.c.inc"
1856 #else
1857 #define ELF_CLASS ELFCLASS64
1858 #define VDSO_HEADER "vdso-64.c.inc"
1859 #endif
1860 
1861 #define ELF_HWCAP get_elf_hwcap()
1862 
get_elf_hwcap(void)1863 static uint32_t get_elf_hwcap(void)
1864 {
1865 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1866     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1867     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1868                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1869                     | MISA_BIT('V');
1870 
1871     return cpu->env.misa_ext & mask;
1872 #undef MISA_BIT
1873 }
1874 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1875 static inline void init_thread(struct target_pt_regs *regs,
1876                                struct image_info *infop)
1877 {
1878     regs->sepc = infop->entry;
1879     regs->sp = infop->start_stack;
1880 }
1881 
1882 #define ELF_EXEC_PAGESIZE 4096
1883 
1884 #endif /* TARGET_RISCV */
1885 
1886 #ifdef TARGET_HPPA
1887 
1888 #define ELF_CLASS       ELFCLASS32
1889 #define ELF_ARCH        EM_PARISC
1890 #define ELF_PLATFORM    "PARISC"
1891 #define STACK_GROWS_DOWN 0
1892 #define STACK_ALIGNMENT  64
1893 
1894 #define VDSO_HEADER "vdso.c.inc"
1895 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1896 static inline void init_thread(struct target_pt_regs *regs,
1897                                struct image_info *infop)
1898 {
1899     regs->iaoq[0] = infop->entry | PRIV_USER;
1900     regs->iaoq[1] = regs->iaoq[0] + 4;
1901     regs->gr[23] = 0;
1902     regs->gr[24] = infop->argv;
1903     regs->gr[25] = infop->argc;
1904     /* The top-of-stack contains a linkage buffer.  */
1905     regs->gr[30] = infop->start_stack + 64;
1906     regs->gr[31] = infop->entry;
1907 }
1908 
1909 #define LO_COMMPAGE  0
1910 
init_guest_commpage(void)1911 static bool init_guest_commpage(void)
1912 {
1913     /* If reserved_va, then we have already mapped 0 page on the host. */
1914     if (!reserved_va) {
1915         void *want, *addr;
1916 
1917         want = g2h_untagged(LO_COMMPAGE);
1918         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1919                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1920         if (addr == MAP_FAILED) {
1921             perror("Allocating guest commpage");
1922             exit(EXIT_FAILURE);
1923         }
1924         if (addr != want) {
1925             return false;
1926         }
1927     }
1928 
1929     /*
1930      * On Linux, page zero is normally marked execute only + gateway.
1931      * Normal read or write is supposed to fail (thus PROT_NONE above),
1932      * but specific offsets have kernel code mapped to raise permissions
1933      * and implement syscalls.  Here, simply mark the page executable.
1934      * Special case the entry points during translation (see do_page_zero).
1935      */
1936     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1937                    PAGE_EXEC | PAGE_VALID);
1938     return true;
1939 }
1940 
1941 #endif /* TARGET_HPPA */
1942 
1943 #ifdef TARGET_XTENSA
1944 
1945 #define ELF_CLASS       ELFCLASS32
1946 #define ELF_ARCH        EM_XTENSA
1947 
init_thread(struct target_pt_regs * regs,struct image_info * infop)1948 static inline void init_thread(struct target_pt_regs *regs,
1949                                struct image_info *infop)
1950 {
1951     regs->windowbase = 0;
1952     regs->windowstart = 1;
1953     regs->areg[1] = infop->start_stack;
1954     regs->pc = infop->entry;
1955     if (info_is_fdpic(infop)) {
1956         regs->areg[4] = infop->loadmap_addr;
1957         regs->areg[5] = infop->interpreter_loadmap_addr;
1958         if (infop->interpreter_loadmap_addr) {
1959             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1960         } else {
1961             regs->areg[6] = infop->pt_dynamic_addr;
1962         }
1963     }
1964 }
1965 
1966 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1967 #define ELF_NREG 128
1968 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1969 
1970 enum {
1971     TARGET_REG_PC,
1972     TARGET_REG_PS,
1973     TARGET_REG_LBEG,
1974     TARGET_REG_LEND,
1975     TARGET_REG_LCOUNT,
1976     TARGET_REG_SAR,
1977     TARGET_REG_WINDOWSTART,
1978     TARGET_REG_WINDOWBASE,
1979     TARGET_REG_THREADPTR,
1980     TARGET_REG_AR0 = 64,
1981 };
1982 
elf_core_copy_regs(target_elf_gregset_t * regs,const CPUXtensaState * env)1983 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1984                                const CPUXtensaState *env)
1985 {
1986     unsigned i;
1987 
1988     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1989     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1990     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1991     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1992     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1993     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1994     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1995     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1996     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1997     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1998     for (i = 0; i < env->config->nareg; ++i) {
1999         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
2000     }
2001 }
2002 
2003 #define USE_ELF_CORE_DUMP
2004 #define ELF_EXEC_PAGESIZE       4096
2005 
2006 #endif /* TARGET_XTENSA */
2007 
2008 #ifdef TARGET_HEXAGON
2009 
2010 #define ELF_CLASS       ELFCLASS32
2011 #define ELF_ARCH        EM_HEXAGON
2012 
init_thread(struct target_pt_regs * regs,struct image_info * infop)2013 static inline void init_thread(struct target_pt_regs *regs,
2014                                struct image_info *infop)
2015 {
2016     regs->sepc = infop->entry;
2017     regs->sp = infop->start_stack;
2018 }
2019 
2020 #endif /* TARGET_HEXAGON */
2021 
2022 #ifndef ELF_BASE_PLATFORM
2023 #define ELF_BASE_PLATFORM (NULL)
2024 #endif
2025 
2026 #ifndef ELF_PLATFORM
2027 #define ELF_PLATFORM (NULL)
2028 #endif
2029 
2030 #ifndef ELF_MACHINE
2031 #define ELF_MACHINE ELF_ARCH
2032 #endif
2033 
2034 #ifndef elf_check_arch
2035 #define elf_check_arch(x) ((x) == ELF_ARCH)
2036 #endif
2037 
2038 #ifndef elf_check_abi
2039 #define elf_check_abi(x) (1)
2040 #endif
2041 
2042 #ifndef ELF_HWCAP
2043 #define ELF_HWCAP 0
2044 #endif
2045 
2046 #ifndef STACK_GROWS_DOWN
2047 #define STACK_GROWS_DOWN 1
2048 #endif
2049 
2050 #ifndef STACK_ALIGNMENT
2051 #define STACK_ALIGNMENT 16
2052 #endif
2053 
2054 #ifdef TARGET_ABI32
2055 #undef ELF_CLASS
2056 #define ELF_CLASS ELFCLASS32
2057 #undef bswaptls
2058 #define bswaptls(ptr) bswap32s(ptr)
2059 #endif
2060 
2061 #ifndef EXSTACK_DEFAULT
2062 #define EXSTACK_DEFAULT false
2063 #endif
2064 
2065 #include "elf.h"
2066 
2067 /* We must delay the following stanzas until after "elf.h". */
2068 #if defined(TARGET_AARCH64)
2069 
arch_parse_elf_property(uint32_t pr_type,uint32_t pr_datasz,const uint32_t * data,struct image_info * info,Error ** errp)2070 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2071                                     const uint32_t *data,
2072                                     struct image_info *info,
2073                                     Error **errp)
2074 {
2075     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2076         if (pr_datasz != sizeof(uint32_t)) {
2077             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2078             return false;
2079         }
2080         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2081         info->note_flags = *data;
2082     }
2083     return true;
2084 }
2085 #define ARCH_USE_GNU_PROPERTY 1
2086 
2087 #else
2088 
arch_parse_elf_property(uint32_t pr_type,uint32_t pr_datasz,const uint32_t * data,struct image_info * info,Error ** errp)2089 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2090                                     const uint32_t *data,
2091                                     struct image_info *info,
2092                                     Error **errp)
2093 {
2094     g_assert_not_reached();
2095 }
2096 #define ARCH_USE_GNU_PROPERTY 0
2097 
2098 #endif
2099 
2100 struct exec
2101 {
2102     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2103     unsigned int a_text;   /* length of text, in bytes */
2104     unsigned int a_data;   /* length of data, in bytes */
2105     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2106     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2107     unsigned int a_entry;  /* start address */
2108     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2109     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2110 };
2111 
2112 
2113 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2114 #define OMAGIC 0407
2115 #define NMAGIC 0410
2116 #define ZMAGIC 0413
2117 #define QMAGIC 0314
2118 
2119 #define DLINFO_ITEMS 16
2120 
memcpy_fromfs(void * to,const void * from,unsigned long n)2121 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2122 {
2123     memcpy(to, from, n);
2124 }
2125 
bswap_ehdr(struct elfhdr * ehdr)2126 static void bswap_ehdr(struct elfhdr *ehdr)
2127 {
2128     if (!target_needs_bswap()) {
2129         return;
2130     }
2131 
2132     bswap16s(&ehdr->e_type);            /* Object file type */
2133     bswap16s(&ehdr->e_machine);         /* Architecture */
2134     bswap32s(&ehdr->e_version);         /* Object file version */
2135     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2136     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2137     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2138     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2139     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2140     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2141     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2142     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2143     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2144     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2145 }
2146 
bswap_phdr(struct elf_phdr * phdr,int phnum)2147 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2148 {
2149     if (!target_needs_bswap()) {
2150         return;
2151     }
2152 
2153     for (int i = 0; i < phnum; ++i, ++phdr) {
2154         bswap32s(&phdr->p_type);        /* Segment type */
2155         bswap32s(&phdr->p_flags);       /* Segment flags */
2156         bswaptls(&phdr->p_offset);      /* Segment file offset */
2157         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2158         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2159         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2160         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2161         bswaptls(&phdr->p_align);       /* Segment alignment */
2162     }
2163 }
2164 
bswap_shdr(struct elf_shdr * shdr,int shnum)2165 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2166 {
2167     if (!target_needs_bswap()) {
2168         return;
2169     }
2170 
2171     for (int i = 0; i < shnum; ++i, ++shdr) {
2172         bswap32s(&shdr->sh_name);
2173         bswap32s(&shdr->sh_type);
2174         bswaptls(&shdr->sh_flags);
2175         bswaptls(&shdr->sh_addr);
2176         bswaptls(&shdr->sh_offset);
2177         bswaptls(&shdr->sh_size);
2178         bswap32s(&shdr->sh_link);
2179         bswap32s(&shdr->sh_info);
2180         bswaptls(&shdr->sh_addralign);
2181         bswaptls(&shdr->sh_entsize);
2182     }
2183 }
2184 
bswap_sym(struct elf_sym * sym)2185 static void bswap_sym(struct elf_sym *sym)
2186 {
2187     if (!target_needs_bswap()) {
2188         return;
2189     }
2190 
2191     bswap32s(&sym->st_name);
2192     bswaptls(&sym->st_value);
2193     bswaptls(&sym->st_size);
2194     bswap16s(&sym->st_shndx);
2195 }
2196 
2197 #ifdef TARGET_MIPS
bswap_mips_abiflags(Mips_elf_abiflags_v0 * abiflags)2198 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2199 {
2200     if (!target_needs_bswap()) {
2201         return;
2202     }
2203 
2204     bswap16s(&abiflags->version);
2205     bswap32s(&abiflags->ases);
2206     bswap32s(&abiflags->isa_ext);
2207     bswap32s(&abiflags->flags1);
2208     bswap32s(&abiflags->flags2);
2209 }
2210 #endif
2211 
2212 #ifdef USE_ELF_CORE_DUMP
2213 static int elf_core_dump(int, const CPUArchState *);
2214 #endif /* USE_ELF_CORE_DUMP */
2215 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2216                          abi_ulong load_bias);
2217 
2218 /* Verify the portions of EHDR within E_IDENT for the target.
2219    This can be performed before bswapping the entire header.  */
elf_check_ident(struct elfhdr * ehdr)2220 static bool elf_check_ident(struct elfhdr *ehdr)
2221 {
2222     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2223             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2224             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2225             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2226             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2227             && ehdr->e_ident[EI_DATA] == ELF_DATA
2228             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2229 }
2230 
2231 /* Verify the portions of EHDR outside of E_IDENT for the target.
2232    This has to wait until after bswapping the header.  */
elf_check_ehdr(struct elfhdr * ehdr)2233 static bool elf_check_ehdr(struct elfhdr *ehdr)
2234 {
2235     return (elf_check_arch(ehdr->e_machine)
2236             && elf_check_abi(ehdr->e_flags)
2237             && ehdr->e_ehsize == sizeof(struct elfhdr)
2238             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2239             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2240 }
2241 
2242 /*
2243  * 'copy_elf_strings()' copies argument/envelope strings from user
2244  * memory to free pages in kernel mem. These are in a format ready
2245  * to be put directly into the top of new user memory.
2246  *
2247  */
copy_elf_strings(int argc,char ** argv,char * scratch,abi_ulong p,abi_ulong stack_limit)2248 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2249                                   abi_ulong p, abi_ulong stack_limit)
2250 {
2251     char *tmp;
2252     int len, i;
2253     abi_ulong top = p;
2254 
2255     if (!p) {
2256         return 0;       /* bullet-proofing */
2257     }
2258 
2259     if (STACK_GROWS_DOWN) {
2260         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2261         for (i = argc - 1; i >= 0; --i) {
2262             tmp = argv[i];
2263             if (!tmp) {
2264                 fprintf(stderr, "VFS: argc is wrong");
2265                 exit(-1);
2266             }
2267             len = strlen(tmp) + 1;
2268             tmp += len;
2269 
2270             if (len > (p - stack_limit)) {
2271                 return 0;
2272             }
2273             while (len) {
2274                 int bytes_to_copy = (len > offset) ? offset : len;
2275                 tmp -= bytes_to_copy;
2276                 p -= bytes_to_copy;
2277                 offset -= bytes_to_copy;
2278                 len -= bytes_to_copy;
2279 
2280                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2281 
2282                 if (offset == 0) {
2283                     memcpy_to_target(p, scratch, top - p);
2284                     top = p;
2285                     offset = TARGET_PAGE_SIZE;
2286                 }
2287             }
2288         }
2289         if (p != top) {
2290             memcpy_to_target(p, scratch + offset, top - p);
2291         }
2292     } else {
2293         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2294         for (i = 0; i < argc; ++i) {
2295             tmp = argv[i];
2296             if (!tmp) {
2297                 fprintf(stderr, "VFS: argc is wrong");
2298                 exit(-1);
2299             }
2300             len = strlen(tmp) + 1;
2301             if (len > (stack_limit - p)) {
2302                 return 0;
2303             }
2304             while (len) {
2305                 int bytes_to_copy = (len > remaining) ? remaining : len;
2306 
2307                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2308 
2309                 tmp += bytes_to_copy;
2310                 remaining -= bytes_to_copy;
2311                 p += bytes_to_copy;
2312                 len -= bytes_to_copy;
2313 
2314                 if (remaining == 0) {
2315                     memcpy_to_target(top, scratch, p - top);
2316                     top = p;
2317                     remaining = TARGET_PAGE_SIZE;
2318                 }
2319             }
2320         }
2321         if (p != top) {
2322             memcpy_to_target(top, scratch, p - top);
2323         }
2324     }
2325 
2326     return p;
2327 }
2328 
2329 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2330  * argument/environment space. Newer kernels (>2.6.33) allow more,
2331  * dependent on stack size, but guarantee at least 32 pages for
2332  * backwards compatibility.
2333  */
2334 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2335 
setup_arg_pages(struct linux_binprm * bprm,struct image_info * info)2336 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2337                                  struct image_info *info)
2338 {
2339     abi_ulong size, error, guard;
2340     int prot;
2341 
2342     size = guest_stack_size;
2343     if (size < STACK_LOWER_LIMIT) {
2344         size = STACK_LOWER_LIMIT;
2345     }
2346 
2347     if (STACK_GROWS_DOWN) {
2348         guard = TARGET_PAGE_SIZE;
2349         if (guard < qemu_real_host_page_size()) {
2350             guard = qemu_real_host_page_size();
2351         }
2352     } else {
2353         /* no guard page for hppa target where stack grows upwards. */
2354         guard = 0;
2355     }
2356 
2357     prot = PROT_READ | PROT_WRITE;
2358     if (info->exec_stack) {
2359         prot |= PROT_EXEC;
2360     }
2361     error = target_mmap(0, size + guard, prot,
2362                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2363     if (error == -1) {
2364         perror("mmap stack");
2365         exit(-1);
2366     }
2367 
2368     /* We reserve one extra page at the top of the stack as guard.  */
2369     if (STACK_GROWS_DOWN) {
2370         target_mprotect(error, guard, PROT_NONE);
2371         info->stack_limit = error + guard;
2372         return info->stack_limit + size - sizeof(void *);
2373     } else {
2374         info->stack_limit = error + size;
2375         return error;
2376     }
2377 }
2378 
2379 /**
2380  * zero_bss:
2381  *
2382  * Map and zero the bss.  We need to explicitly zero any fractional pages
2383  * after the data section (i.e. bss).  Return false on mapping failure.
2384  */
zero_bss(abi_ulong start_bss,abi_ulong end_bss,int prot,Error ** errp)2385 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2386                      int prot, Error **errp)
2387 {
2388     abi_ulong align_bss;
2389 
2390     /* We only expect writable bss; the code segment shouldn't need this. */
2391     if (!(prot & PROT_WRITE)) {
2392         error_setg(errp, "PT_LOAD with non-writable bss");
2393         return false;
2394     }
2395 
2396     align_bss = TARGET_PAGE_ALIGN(start_bss);
2397     end_bss = TARGET_PAGE_ALIGN(end_bss);
2398 
2399     if (start_bss < align_bss) {
2400         int flags = page_get_flags(start_bss);
2401 
2402         if (!(flags & PAGE_RWX)) {
2403             /*
2404              * The whole address space of the executable was reserved
2405              * at the start, therefore all pages will be VALID.
2406              * But assuming there are no PROT_NONE PT_LOAD segments,
2407              * a PROT_NONE page means no data all bss, and we can
2408              * simply extend the new anon mapping back to the start
2409              * of the page of bss.
2410              */
2411             align_bss -= TARGET_PAGE_SIZE;
2412         } else {
2413             /*
2414              * The start of the bss shares a page with something.
2415              * The only thing that we expect is the data section,
2416              * which would already be marked writable.
2417              * Overlapping the RX code segment seems malformed.
2418              */
2419             if (!(flags & PAGE_WRITE)) {
2420                 error_setg(errp, "PT_LOAD with bss overlapping "
2421                            "non-writable page");
2422                 return false;
2423             }
2424 
2425             /* The page is already mapped and writable. */
2426             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2427         }
2428     }
2429 
2430     if (align_bss < end_bss &&
2431         target_mmap(align_bss, end_bss - align_bss, prot,
2432                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2433         error_setg_errno(errp, errno, "Error mapping bss");
2434         return false;
2435     }
2436     return true;
2437 }
2438 
2439 #if defined(TARGET_ARM)
elf_is_fdpic(struct elfhdr * exec)2440 static int elf_is_fdpic(struct elfhdr *exec)
2441 {
2442     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2443 }
2444 #elif defined(TARGET_XTENSA)
elf_is_fdpic(struct elfhdr * exec)2445 static int elf_is_fdpic(struct elfhdr *exec)
2446 {
2447     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2448 }
2449 #else
2450 /* Default implementation, always false.  */
elf_is_fdpic(struct elfhdr * exec)2451 static int elf_is_fdpic(struct elfhdr *exec)
2452 {
2453     return 0;
2454 }
2455 #endif
2456 
loader_build_fdpic_loadmap(struct image_info * info,abi_ulong sp)2457 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2458 {
2459     uint16_t n;
2460     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2461 
2462     /* elf32_fdpic_loadseg */
2463     n = info->nsegs;
2464     while (n--) {
2465         sp -= 12;
2466         put_user_u32(loadsegs[n].addr, sp+0);
2467         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2468         put_user_u32(loadsegs[n].p_memsz, sp+8);
2469     }
2470 
2471     /* elf32_fdpic_loadmap */
2472     sp -= 4;
2473     put_user_u16(0, sp+0); /* version */
2474     put_user_u16(info->nsegs, sp+2); /* nsegs */
2475 
2476     info->personality = PER_LINUX_FDPIC;
2477     info->loadmap_addr = sp;
2478 
2479     return sp;
2480 }
2481 
create_elf_tables(abi_ulong p,int argc,int envc,struct elfhdr * exec,struct image_info * info,struct image_info * interp_info,struct image_info * vdso_info)2482 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2483                                    struct elfhdr *exec,
2484                                    struct image_info *info,
2485                                    struct image_info *interp_info,
2486                                    struct image_info *vdso_info)
2487 {
2488     abi_ulong sp;
2489     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2490     int size;
2491     int i;
2492     abi_ulong u_rand_bytes;
2493     uint8_t k_rand_bytes[16];
2494     abi_ulong u_platform, u_base_platform;
2495     const char *k_platform, *k_base_platform;
2496     const int n = sizeof(elf_addr_t);
2497 
2498     sp = p;
2499 
2500     /* Needs to be before we load the env/argc/... */
2501     if (elf_is_fdpic(exec)) {
2502         /* Need 4 byte alignment for these structs */
2503         sp &= ~3;
2504         sp = loader_build_fdpic_loadmap(info, sp);
2505         info->other_info = interp_info;
2506         if (interp_info) {
2507             interp_info->other_info = info;
2508             sp = loader_build_fdpic_loadmap(interp_info, sp);
2509             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2510             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2511         } else {
2512             info->interpreter_loadmap_addr = 0;
2513             info->interpreter_pt_dynamic_addr = 0;
2514         }
2515     }
2516 
2517     u_base_platform = 0;
2518     k_base_platform = ELF_BASE_PLATFORM;
2519     if (k_base_platform) {
2520         size_t len = strlen(k_base_platform) + 1;
2521         if (STACK_GROWS_DOWN) {
2522             sp -= (len + n - 1) & ~(n - 1);
2523             u_base_platform = sp;
2524             /* FIXME - check return value of memcpy_to_target() for failure */
2525             memcpy_to_target(sp, k_base_platform, len);
2526         } else {
2527             memcpy_to_target(sp, k_base_platform, len);
2528             u_base_platform = sp;
2529             sp += len + 1;
2530         }
2531     }
2532 
2533     u_platform = 0;
2534     k_platform = ELF_PLATFORM;
2535     if (k_platform) {
2536         size_t len = strlen(k_platform) + 1;
2537         if (STACK_GROWS_DOWN) {
2538             sp -= (len + n - 1) & ~(n - 1);
2539             u_platform = sp;
2540             /* FIXME - check return value of memcpy_to_target() for failure */
2541             memcpy_to_target(sp, k_platform, len);
2542         } else {
2543             memcpy_to_target(sp, k_platform, len);
2544             u_platform = sp;
2545             sp += len + 1;
2546         }
2547     }
2548 
2549     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2550      * the argv and envp pointers.
2551      */
2552     if (STACK_GROWS_DOWN) {
2553         sp = QEMU_ALIGN_DOWN(sp, 16);
2554     } else {
2555         sp = QEMU_ALIGN_UP(sp, 16);
2556     }
2557 
2558     /*
2559      * Generate 16 random bytes for userspace PRNG seeding.
2560      */
2561     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2562     if (STACK_GROWS_DOWN) {
2563         sp -= 16;
2564         u_rand_bytes = sp;
2565         /* FIXME - check return value of memcpy_to_target() for failure */
2566         memcpy_to_target(sp, k_rand_bytes, 16);
2567     } else {
2568         memcpy_to_target(sp, k_rand_bytes, 16);
2569         u_rand_bytes = sp;
2570         sp += 16;
2571     }
2572 
2573     size = (DLINFO_ITEMS + 1) * 2;
2574     if (k_base_platform) {
2575         size += 2;
2576     }
2577     if (k_platform) {
2578         size += 2;
2579     }
2580     if (vdso_info) {
2581         size += 2;
2582     }
2583 #ifdef DLINFO_ARCH_ITEMS
2584     size += DLINFO_ARCH_ITEMS * 2;
2585 #endif
2586 #ifdef ELF_HWCAP2
2587     size += 2;
2588 #endif
2589     info->auxv_len = size * n;
2590 
2591     size += envc + argc + 2;
2592     size += 1;  /* argc itself */
2593     size *= n;
2594 
2595     /* Allocate space and finalize stack alignment for entry now.  */
2596     if (STACK_GROWS_DOWN) {
2597         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2598         sp = u_argc;
2599     } else {
2600         u_argc = sp;
2601         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2602     }
2603 
2604     u_argv = u_argc + n;
2605     u_envp = u_argv + (argc + 1) * n;
2606     u_auxv = u_envp + (envc + 1) * n;
2607     info->saved_auxv = u_auxv;
2608     info->argc = argc;
2609     info->envc = envc;
2610     info->argv = u_argv;
2611     info->envp = u_envp;
2612 
2613     /* This is correct because Linux defines
2614      * elf_addr_t as Elf32_Off / Elf64_Off
2615      */
2616 #define NEW_AUX_ENT(id, val) do {               \
2617         put_user_ual(id, u_auxv);  u_auxv += n; \
2618         put_user_ual(val, u_auxv); u_auxv += n; \
2619     } while(0)
2620 
2621 #ifdef ARCH_DLINFO
2622     /*
2623      * ARCH_DLINFO must come first so platform specific code can enforce
2624      * special alignment requirements on the AUXV if necessary (eg. PPC).
2625      */
2626     ARCH_DLINFO;
2627 #endif
2628     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2629      * on info->auxv_len will trigger.
2630      */
2631     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2632     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2633     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2634     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2635     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2636     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2637     NEW_AUX_ENT(AT_ENTRY, info->entry);
2638     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2639     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2640     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2641     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2642     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2643     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2644     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2645     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2646     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2647 
2648 #ifdef ELF_HWCAP2
2649     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2650 #endif
2651 
2652     if (u_base_platform) {
2653         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2654     }
2655     if (u_platform) {
2656         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2657     }
2658     if (vdso_info) {
2659         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2660     }
2661     NEW_AUX_ENT (AT_NULL, 0);
2662 #undef NEW_AUX_ENT
2663 
2664     /* Check that our initial calculation of the auxv length matches how much
2665      * we actually put into it.
2666      */
2667     assert(info->auxv_len == u_auxv - info->saved_auxv);
2668 
2669     put_user_ual(argc, u_argc);
2670 
2671     p = info->arg_strings;
2672     for (i = 0; i < argc; ++i) {
2673         put_user_ual(p, u_argv);
2674         u_argv += n;
2675         p += target_strlen(p) + 1;
2676     }
2677     put_user_ual(0, u_argv);
2678 
2679     p = info->env_strings;
2680     for (i = 0; i < envc; ++i) {
2681         put_user_ual(p, u_envp);
2682         u_envp += n;
2683         p += target_strlen(p) + 1;
2684     }
2685     put_user_ual(0, u_envp);
2686 
2687     return sp;
2688 }
2689 
2690 #if defined(HI_COMMPAGE)
2691 #define LO_COMMPAGE -1
2692 #elif defined(LO_COMMPAGE)
2693 #define HI_COMMPAGE 0
2694 #else
2695 #define HI_COMMPAGE 0
2696 #define LO_COMMPAGE -1
2697 #ifndef INIT_GUEST_COMMPAGE
2698 #define init_guest_commpage() true
2699 #endif
2700 #endif
2701 
2702 /**
2703  * pgb_try_mmap:
2704  * @addr: host start address
2705  * @addr_last: host last address
2706  * @keep: do not unmap the probe region
2707  *
2708  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2709  * return 0 if it is not available to map, and -1 on mmap error.
2710  * If @keep, the region is left mapped on success, otherwise unmapped.
2711  */
pgb_try_mmap(uintptr_t addr,uintptr_t addr_last,bool keep)2712 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2713 {
2714     size_t size = addr_last - addr + 1;
2715     void *p = mmap((void *)addr, size, PROT_NONE,
2716                    MAP_ANONYMOUS | MAP_PRIVATE |
2717                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2718     int ret;
2719 
2720     if (p == MAP_FAILED) {
2721         return errno == EEXIST ? 0 : -1;
2722     }
2723     ret = p == (void *)addr;
2724     if (!keep || !ret) {
2725         munmap(p, size);
2726     }
2727     return ret;
2728 }
2729 
2730 /**
2731  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2732  * @addr: host address
2733  * @addr_last: host last address
2734  * @brk: host brk
2735  *
2736  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2737  */
pgb_try_mmap_skip_brk(uintptr_t addr,uintptr_t addr_last,uintptr_t brk,bool keep)2738 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2739                                  uintptr_t brk, bool keep)
2740 {
2741     uintptr_t brk_last = brk + 16 * MiB - 1;
2742 
2743     /* Do not map anything close to the host brk. */
2744     if (addr <= brk_last && brk <= addr_last) {
2745         return 0;
2746     }
2747     return pgb_try_mmap(addr, addr_last, keep);
2748 }
2749 
2750 /**
2751  * pgb_try_mmap_set:
2752  * @ga: set of guest addrs
2753  * @base: guest_base
2754  * @brk: host brk
2755  *
2756  * Return true if all @ga can be mapped by the host at @base.
2757  * On success, retain the mapping at index 0 for reserved_va.
2758  */
2759 
2760 typedef struct PGBAddrs {
2761     uintptr_t bounds[3][2]; /* start/last pairs */
2762     int nbounds;
2763 } PGBAddrs;
2764 
pgb_try_mmap_set(const PGBAddrs * ga,uintptr_t base,uintptr_t brk)2765 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2766 {
2767     for (int i = ga->nbounds - 1; i >= 0; --i) {
2768         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2769                                   ga->bounds[i][1] + base,
2770                                   brk, i == 0 && reserved_va) <= 0) {
2771             return false;
2772         }
2773     }
2774     return true;
2775 }
2776 
2777 /**
2778  * pgb_addr_set:
2779  * @ga: output set of guest addrs
2780  * @guest_loaddr: guest image low address
2781  * @guest_loaddr: guest image high address
2782  * @identity: create for identity mapping
2783  *
2784  * Fill in @ga with the image, COMMPAGE and NULL page.
2785  */
pgb_addr_set(PGBAddrs * ga,abi_ulong guest_loaddr,abi_ulong guest_hiaddr,bool try_identity)2786 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2787                          abi_ulong guest_hiaddr, bool try_identity)
2788 {
2789     int n;
2790 
2791     /*
2792      * With a low commpage, or a guest mapped very low,
2793      * we may not be able to use the identity map.
2794      */
2795     if (try_identity) {
2796         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2797             return false;
2798         }
2799         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2800             return false;
2801         }
2802     }
2803 
2804     memset(ga, 0, sizeof(*ga));
2805     n = 0;
2806 
2807     if (reserved_va) {
2808         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2809         ga->bounds[n][1] = reserved_va;
2810         n++;
2811         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2812     } else {
2813         /* Add any LO_COMMPAGE or NULL page. */
2814         if (LO_COMMPAGE != -1) {
2815             ga->bounds[n][0] = 0;
2816             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2817             n++;
2818         } else if (!try_identity) {
2819             ga->bounds[n][0] = 0;
2820             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2821             n++;
2822         }
2823 
2824         /* Add the guest image for ET_EXEC. */
2825         if (guest_loaddr) {
2826             ga->bounds[n][0] = guest_loaddr;
2827             ga->bounds[n][1] = guest_hiaddr;
2828             n++;
2829         }
2830     }
2831 
2832     /*
2833      * Temporarily disable
2834      *   "comparison is always false due to limited range of data type"
2835      * due to comparison between unsigned and (possible) 0.
2836      */
2837 #pragma GCC diagnostic push
2838 #pragma GCC diagnostic ignored "-Wtype-limits"
2839 
2840     /* Add any HI_COMMPAGE not covered by reserved_va. */
2841     if (reserved_va < HI_COMMPAGE) {
2842         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2843         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2844         n++;
2845     }
2846 
2847 #pragma GCC diagnostic pop
2848 
2849     ga->nbounds = n;
2850     return true;
2851 }
2852 
pgb_fail_in_use(const char * image_name)2853 static void pgb_fail_in_use(const char *image_name)
2854 {
2855     error_report("%s: requires virtual address space that is in use "
2856                  "(omit the -B option or choose a different value)",
2857                  image_name);
2858     exit(EXIT_FAILURE);
2859 }
2860 
pgb_fixed(const char * image_name,uintptr_t guest_loaddr,uintptr_t guest_hiaddr,uintptr_t align)2861 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2862                       uintptr_t guest_hiaddr, uintptr_t align)
2863 {
2864     PGBAddrs ga;
2865     uintptr_t brk = (uintptr_t)sbrk(0);
2866 
2867     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2868         fprintf(stderr, "Requested guest base %p does not satisfy "
2869                 "host minimum alignment (0x%" PRIxPTR ")\n",
2870                 (void *)guest_base, align);
2871         exit(EXIT_FAILURE);
2872     }
2873 
2874     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2875         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2876         pgb_fail_in_use(image_name);
2877     }
2878 }
2879 
2880 /**
2881  * pgb_find_fallback:
2882  *
2883  * This is a fallback method for finding holes in the host address space
2884  * if we don't have the benefit of being able to access /proc/self/map.
2885  * It can potentially take a very long time as we can only dumbly iterate
2886  * up the host address space seeing if the allocation would work.
2887  */
pgb_find_fallback(const PGBAddrs * ga,uintptr_t align,uintptr_t brk)2888 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2889                                    uintptr_t brk)
2890 {
2891     /* TODO: come up with a better estimate of how much to skip. */
2892     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2893 
2894     for (uintptr_t base = skip; ; base += skip) {
2895         base = ROUND_UP(base, align);
2896         if (pgb_try_mmap_set(ga, base, brk)) {
2897             return base;
2898         }
2899         if (base >= -skip) {
2900             return -1;
2901         }
2902     }
2903 }
2904 
pgb_try_itree(const PGBAddrs * ga,uintptr_t base,IntervalTreeRoot * root)2905 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2906                                IntervalTreeRoot *root)
2907 {
2908     for (int i = ga->nbounds - 1; i >= 0; --i) {
2909         uintptr_t s = base + ga->bounds[i][0];
2910         uintptr_t l = base + ga->bounds[i][1];
2911         IntervalTreeNode *n;
2912 
2913         if (l < s) {
2914             /* Wraparound. Skip to advance S to mmap_min_addr. */
2915             return mmap_min_addr - s;
2916         }
2917 
2918         n = interval_tree_iter_first(root, s, l);
2919         if (n != NULL) {
2920             /* Conflict.  Skip to advance S to LAST + 1. */
2921             return n->last - s + 1;
2922         }
2923     }
2924     return 0;  /* success */
2925 }
2926 
pgb_find_itree(const PGBAddrs * ga,IntervalTreeRoot * root,uintptr_t align,uintptr_t brk)2927 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2928                                 uintptr_t align, uintptr_t brk)
2929 {
2930     uintptr_t last = sizeof(uintptr_t) == 4 ? MiB : GiB;
2931     uintptr_t base, skip;
2932 
2933     while (true) {
2934         base = ROUND_UP(last, align);
2935         if (base < last) {
2936             return -1;
2937         }
2938 
2939         skip = pgb_try_itree(ga, base, root);
2940         if (skip == 0) {
2941             break;
2942         }
2943 
2944         last = base + skip;
2945         if (last < base) {
2946             return -1;
2947         }
2948     }
2949 
2950     /*
2951      * We've chosen 'base' based on holes in the interval tree,
2952      * but we don't yet know if it is a valid host address.
2953      * Because it is the first matching hole, if the host addresses
2954      * are invalid we know there are no further matches.
2955      */
2956     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2957 }
2958 
pgb_dynamic(const char * image_name,uintptr_t guest_loaddr,uintptr_t guest_hiaddr,uintptr_t align)2959 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2960                         uintptr_t guest_hiaddr, uintptr_t align)
2961 {
2962     IntervalTreeRoot *root;
2963     uintptr_t brk, ret;
2964     PGBAddrs ga;
2965 
2966     /* Try the identity map first. */
2967     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2968         brk = (uintptr_t)sbrk(0);
2969         if (pgb_try_mmap_set(&ga, 0, brk)) {
2970             guest_base = 0;
2971             return;
2972         }
2973     }
2974 
2975     /*
2976      * Rebuild the address set for non-identity map.
2977      * This differs in the mapping of the guest NULL page.
2978      */
2979     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2980 
2981     root = read_self_maps();
2982 
2983     /* Read brk after we've read the maps, which will malloc. */
2984     brk = (uintptr_t)sbrk(0);
2985 
2986     if (!root) {
2987         ret = pgb_find_fallback(&ga, align, brk);
2988     } else {
2989         /*
2990          * Reserve the area close to the host brk.
2991          * This will be freed with the rest of the tree.
2992          */
2993         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2994         b->start = brk;
2995         b->last = brk + 16 * MiB - 1;
2996         interval_tree_insert(b, root);
2997 
2998         ret = pgb_find_itree(&ga, root, align, brk);
2999         free_self_maps(root);
3000     }
3001 
3002     if (ret == -1) {
3003         int w = TARGET_LONG_BITS / 4;
3004 
3005         error_report("%s: Unable to find a guest_base to satisfy all "
3006                      "guest address mapping requirements", image_name);
3007 
3008         for (int i = 0; i < ga.nbounds; ++i) {
3009             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
3010                          w, (uint64_t)ga.bounds[i][0],
3011                          w, (uint64_t)ga.bounds[i][1]);
3012         }
3013         exit(EXIT_FAILURE);
3014     }
3015     guest_base = ret;
3016 }
3017 
probe_guest_base(const char * image_name,abi_ulong guest_loaddr,abi_ulong guest_hiaddr)3018 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3019                       abi_ulong guest_hiaddr)
3020 {
3021     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3022     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3023 
3024     /* Sanity check the guest binary. */
3025     if (reserved_va) {
3026         if (guest_hiaddr > reserved_va) {
3027             error_report("%s: requires more than reserved virtual "
3028                          "address space (0x%" PRIx64 " > 0x%lx)",
3029                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3030             exit(EXIT_FAILURE);
3031         }
3032     } else {
3033         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3034             error_report("%s: requires more virtual address space "
3035                          "than the host can provide (0x%" PRIx64 ")",
3036                          image_name, (uint64_t)guest_hiaddr + 1);
3037             exit(EXIT_FAILURE);
3038         }
3039     }
3040 
3041     if (have_guest_base) {
3042         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3043     } else {
3044         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3045     }
3046 
3047     /* Reserve and initialize the commpage. */
3048     if (!init_guest_commpage()) {
3049         /* We have already probed for the commpage being free. */
3050         g_assert_not_reached();
3051     }
3052 
3053     assert(QEMU_IS_ALIGNED(guest_base, align));
3054     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3055                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3056 }
3057 
3058 enum {
3059     /* The string "GNU\0" as a magic number. */
3060     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3061     NOTE_DATA_SZ = 1 * KiB,
3062     NOTE_NAME_SZ = 4,
3063     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3064 };
3065 
3066 /*
3067  * Process a single gnu_property entry.
3068  * Return false for error.
3069  */
parse_elf_property(const uint32_t * data,int * off,int datasz,struct image_info * info,bool have_prev_type,uint32_t * prev_type,Error ** errp)3070 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3071                                struct image_info *info, bool have_prev_type,
3072                                uint32_t *prev_type, Error **errp)
3073 {
3074     uint32_t pr_type, pr_datasz, step;
3075 
3076     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3077         goto error_data;
3078     }
3079     datasz -= *off;
3080     data += *off / sizeof(uint32_t);
3081 
3082     if (datasz < 2 * sizeof(uint32_t)) {
3083         goto error_data;
3084     }
3085     pr_type = data[0];
3086     pr_datasz = data[1];
3087     data += 2;
3088     datasz -= 2 * sizeof(uint32_t);
3089     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3090     if (step > datasz) {
3091         goto error_data;
3092     }
3093 
3094     /* Properties are supposed to be unique and sorted on pr_type. */
3095     if (have_prev_type && pr_type <= *prev_type) {
3096         if (pr_type == *prev_type) {
3097             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3098         } else {
3099             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3100         }
3101         return false;
3102     }
3103     *prev_type = pr_type;
3104 
3105     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3106         return false;
3107     }
3108 
3109     *off += 2 * sizeof(uint32_t) + step;
3110     return true;
3111 
3112  error_data:
3113     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3114     return false;
3115 }
3116 
3117 /* Process NT_GNU_PROPERTY_TYPE_0. */
parse_elf_properties(const ImageSource * src,struct image_info * info,const struct elf_phdr * phdr,Error ** errp)3118 static bool parse_elf_properties(const ImageSource *src,
3119                                  struct image_info *info,
3120                                  const struct elf_phdr *phdr,
3121                                  Error **errp)
3122 {
3123     union {
3124         struct elf_note nhdr;
3125         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3126     } note;
3127 
3128     int n, off, datasz;
3129     bool have_prev_type;
3130     uint32_t prev_type;
3131 
3132     /* Unless the arch requires properties, ignore them. */
3133     if (!ARCH_USE_GNU_PROPERTY) {
3134         return true;
3135     }
3136 
3137     /* If the properties are crazy large, that's too bad. */
3138     n = phdr->p_filesz;
3139     if (n > sizeof(note)) {
3140         error_setg(errp, "PT_GNU_PROPERTY too large");
3141         return false;
3142     }
3143     if (n < sizeof(note.nhdr)) {
3144         error_setg(errp, "PT_GNU_PROPERTY too small");
3145         return false;
3146     }
3147 
3148     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3149         return false;
3150     }
3151 
3152     /*
3153      * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t.
3154      * Swap most of them now, beyond the header and namesz.
3155      */
3156     if (target_needs_bswap()) {
3157         for (int i = 4; i < n / 4; i++) {
3158             bswap32s(note.data + i);
3159         }
3160     }
3161 
3162     /*
3163      * Note that nhdr is 3 words, and that the "name" described by namesz
3164      * immediately follows nhdr and is thus at the 4th word.  Further, all
3165      * of the inputs to the kernel's round_up are multiples of 4.
3166      */
3167     if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 ||
3168         tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ ||
3169         note.data[3] != GNU0_MAGIC) {
3170         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3171         return false;
3172     }
3173     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3174 
3175     datasz = tswap32(note.nhdr.n_descsz) + off;
3176     if (datasz > n) {
3177         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3178         return false;
3179     }
3180 
3181     have_prev_type = false;
3182     prev_type = 0;
3183     while (1) {
3184         if (off == datasz) {
3185             return true;  /* end, exit ok */
3186         }
3187         if (!parse_elf_property(note.data, &off, datasz, info,
3188                                 have_prev_type, &prev_type, errp)) {
3189             return false;
3190         }
3191         have_prev_type = true;
3192     }
3193 }
3194 
3195 /**
3196  * load_elf_image: Load an ELF image into the address space.
3197  * @image_name: the filename of the image, to use in error messages.
3198  * @src: the ImageSource from which to read.
3199  * @info: info collected from the loaded image.
3200  * @ehdr: the ELF header, not yet bswapped.
3201  * @pinterp_name: record any PT_INTERP string found.
3202  *
3203  * On return: @info values will be filled in, as necessary or available.
3204  */
3205 
load_elf_image(const char * image_name,const ImageSource * src,struct image_info * info,struct elfhdr * ehdr,char ** pinterp_name)3206 static void load_elf_image(const char *image_name, const ImageSource *src,
3207                            struct image_info *info, struct elfhdr *ehdr,
3208                            char **pinterp_name)
3209 {
3210     g_autofree struct elf_phdr *phdr = NULL;
3211     abi_ulong load_addr, load_bias, loaddr, hiaddr, error, align;
3212     size_t reserve_size, align_size;
3213     int i, prot_exec;
3214     Error *err = NULL;
3215 
3216     /*
3217      * First of all, some simple consistency checks.
3218      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3219      * for later use by load_elf_binary and create_elf_tables.
3220      */
3221     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3222         goto exit_errmsg;
3223     }
3224     if (!elf_check_ident(ehdr)) {
3225         error_setg(&err, "Invalid ELF image for this architecture");
3226         goto exit_errmsg;
3227     }
3228     bswap_ehdr(ehdr);
3229     if (!elf_check_ehdr(ehdr)) {
3230         error_setg(&err, "Invalid ELF image for this architecture");
3231         goto exit_errmsg;
3232     }
3233 
3234     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3235                              ehdr->e_phnum * sizeof(struct elf_phdr),
3236                              src, &err);
3237     if (phdr == NULL) {
3238         goto exit_errmsg;
3239     }
3240     bswap_phdr(phdr, ehdr->e_phnum);
3241 
3242     info->nsegs = 0;
3243     info->pt_dynamic_addr = 0;
3244 
3245     mmap_lock();
3246 
3247     /*
3248      * Find the maximum size of the image and allocate an appropriate
3249      * amount of memory to handle that.  Locate the interpreter, if any.
3250      */
3251     loaddr = -1, hiaddr = 0;
3252     align = 0;
3253     info->exec_stack = EXSTACK_DEFAULT;
3254     for (i = 0; i < ehdr->e_phnum; ++i) {
3255         struct elf_phdr *eppnt = phdr + i;
3256         if (eppnt->p_type == PT_LOAD) {
3257             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3258             if (a < loaddr) {
3259                 loaddr = a;
3260             }
3261             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3262             if (a > hiaddr) {
3263                 hiaddr = a;
3264             }
3265             ++info->nsegs;
3266             align |= eppnt->p_align;
3267         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3268             g_autofree char *interp_name = NULL;
3269 
3270             if (*pinterp_name) {
3271                 error_setg(&err, "Multiple PT_INTERP entries");
3272                 goto exit_errmsg;
3273             }
3274 
3275             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3276                                             src, &err);
3277             if (interp_name == NULL) {
3278                 goto exit_errmsg;
3279             }
3280             if (interp_name[eppnt->p_filesz - 1] != 0) {
3281                 error_setg(&err, "Invalid PT_INTERP entry");
3282                 goto exit_errmsg;
3283             }
3284             *pinterp_name = g_steal_pointer(&interp_name);
3285         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3286             if (!parse_elf_properties(src, info, eppnt, &err)) {
3287                 goto exit_errmsg;
3288             }
3289         } else if (eppnt->p_type == PT_GNU_STACK) {
3290             info->exec_stack = eppnt->p_flags & PF_X;
3291         }
3292     }
3293 
3294     load_addr = loaddr;
3295 
3296     align = pow2ceil(align);
3297 
3298     if (pinterp_name != NULL) {
3299         if (ehdr->e_type == ET_EXEC) {
3300             /*
3301              * Make sure that the low address does not conflict with
3302              * MMAP_MIN_ADDR or the QEMU application itself.
3303              */
3304             probe_guest_base(image_name, loaddr, hiaddr);
3305         } else {
3306             /*
3307              * The binary is dynamic, but we still need to
3308              * select guest_base.  In this case we pass a size.
3309              */
3310             probe_guest_base(image_name, 0, hiaddr - loaddr);
3311 
3312             /*
3313              * Avoid collision with the loader by providing a different
3314              * default load address.
3315              */
3316             load_addr += elf_et_dyn_base;
3317 
3318             /*
3319              * TODO: Better support for mmap alignment is desirable.
3320              * Since we do not have complete control over the guest
3321              * address space, we prefer the kernel to choose some address
3322              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3323              */
3324             if (align) {
3325                 load_addr &= -align;
3326             }
3327         }
3328     }
3329 
3330     /*
3331      * Reserve address space for all of this.
3332      *
3333      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3334      * exactly the address range that is required.  Without reserved_va,
3335      * the guest address space is not isolated.  We have attempted to avoid
3336      * conflict with the host program itself via probe_guest_base, but using
3337      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3338      *
3339      * Otherwise this is ET_DYN, and we are searching for a location
3340      * that can hold the memory space required.  If the image is
3341      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3342      * honor that address if it happens to be free.
3343      *
3344      * In both cases, we will overwrite pages in this range with mappings
3345      * from the executable.
3346      */
3347     reserve_size = (size_t)hiaddr - loaddr + 1;
3348     align_size = reserve_size;
3349 
3350     if (ehdr->e_type != ET_EXEC && align > qemu_real_host_page_size()) {
3351         align_size += align - 1;
3352     }
3353 
3354     load_addr = target_mmap(load_addr, align_size, PROT_NONE,
3355                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3356                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3357                             -1, 0);
3358     if (load_addr == -1) {
3359         goto exit_mmap;
3360     }
3361 
3362     if (align_size != reserve_size) {
3363         abi_ulong align_addr = ROUND_UP(load_addr, align);
3364         abi_ulong align_end = TARGET_PAGE_ALIGN(align_addr + reserve_size);
3365         abi_ulong load_end = TARGET_PAGE_ALIGN(load_addr + align_size);
3366 
3367         if (align_addr != load_addr) {
3368             target_munmap(load_addr, align_addr - load_addr);
3369         }
3370         if (align_end != load_end) {
3371             target_munmap(align_end, load_end - align_end);
3372         }
3373         load_addr = align_addr;
3374     }
3375 
3376     load_bias = load_addr - loaddr;
3377 
3378     if (elf_is_fdpic(ehdr)) {
3379         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3380             g_malloc(sizeof(*loadsegs) * info->nsegs);
3381 
3382         for (i = 0; i < ehdr->e_phnum; ++i) {
3383             switch (phdr[i].p_type) {
3384             case PT_DYNAMIC:
3385                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3386                 break;
3387             case PT_LOAD:
3388                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3389                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3390                 loadsegs->p_memsz = phdr[i].p_memsz;
3391                 ++loadsegs;
3392                 break;
3393             }
3394         }
3395     }
3396 
3397     info->load_bias = load_bias;
3398     info->code_offset = load_bias;
3399     info->data_offset = load_bias;
3400     info->load_addr = load_addr;
3401     info->entry = ehdr->e_entry + load_bias;
3402     info->start_code = -1;
3403     info->end_code = 0;
3404     info->start_data = -1;
3405     info->end_data = 0;
3406     /* Usual start for brk is after all sections of the main executable. */
3407     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3408     info->elf_flags = ehdr->e_flags;
3409 
3410     prot_exec = PROT_EXEC;
3411 #ifdef TARGET_AARCH64
3412     /*
3413      * If the BTI feature is present, this indicates that the executable
3414      * pages of the startup binary should be mapped with PROT_BTI, so that
3415      * branch targets are enforced.
3416      *
3417      * The startup binary is either the interpreter or the static executable.
3418      * The interpreter is responsible for all pages of a dynamic executable.
3419      *
3420      * Elf notes are backward compatible to older cpus.
3421      * Do not enable BTI unless it is supported.
3422      */
3423     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3424         && (pinterp_name == NULL || *pinterp_name == 0)
3425         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3426         prot_exec |= TARGET_PROT_BTI;
3427     }
3428 #endif
3429 
3430     for (i = 0; i < ehdr->e_phnum; i++) {
3431         struct elf_phdr *eppnt = phdr + i;
3432         if (eppnt->p_type == PT_LOAD) {
3433             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3434             int elf_prot = 0;
3435 
3436             if (eppnt->p_flags & PF_R) {
3437                 elf_prot |= PROT_READ;
3438             }
3439             if (eppnt->p_flags & PF_W) {
3440                 elf_prot |= PROT_WRITE;
3441             }
3442             if (eppnt->p_flags & PF_X) {
3443                 elf_prot |= prot_exec;
3444             }
3445 
3446             vaddr = load_bias + eppnt->p_vaddr;
3447             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3448             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3449 
3450             vaddr_ef = vaddr + eppnt->p_filesz;
3451             vaddr_em = vaddr + eppnt->p_memsz;
3452 
3453             /*
3454              * Some segments may be completely empty, with a non-zero p_memsz
3455              * but no backing file segment.
3456              */
3457             if (eppnt->p_filesz != 0) {
3458                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3459                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3460                                     src, eppnt->p_offset - vaddr_po);
3461                 if (error == -1) {
3462                     goto exit_mmap;
3463                 }
3464             }
3465 
3466             /* If the load segment requests extra zeros (e.g. bss), map it. */
3467             if (vaddr_ef < vaddr_em &&
3468                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3469                 goto exit_errmsg;
3470             }
3471 
3472             /* Find the full program boundaries.  */
3473             if (elf_prot & PROT_EXEC) {
3474                 if (vaddr < info->start_code) {
3475                     info->start_code = vaddr;
3476                 }
3477                 if (vaddr_ef > info->end_code) {
3478                     info->end_code = vaddr_ef;
3479                 }
3480             }
3481             if (elf_prot & PROT_WRITE) {
3482                 if (vaddr < info->start_data) {
3483                     info->start_data = vaddr;
3484                 }
3485                 if (vaddr_ef > info->end_data) {
3486                     info->end_data = vaddr_ef;
3487                 }
3488             }
3489 #ifdef TARGET_MIPS
3490         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3491             Mips_elf_abiflags_v0 abiflags;
3492 
3493             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3494                              src, &err)) {
3495                 goto exit_errmsg;
3496             }
3497             bswap_mips_abiflags(&abiflags);
3498             info->fp_abi = abiflags.fp_abi;
3499 #endif
3500         }
3501     }
3502 
3503     if (info->end_data == 0) {
3504         info->start_data = info->end_code;
3505         info->end_data = info->end_code;
3506     }
3507 
3508     if (qemu_log_enabled()) {
3509         load_symbols(ehdr, src, load_bias);
3510     }
3511 
3512     debuginfo_report_elf(image_name, src->fd, load_bias);
3513 
3514     mmap_unlock();
3515 
3516     close(src->fd);
3517     return;
3518 
3519  exit_mmap:
3520     error_setg_errno(&err, errno, "Error mapping file");
3521     goto exit_errmsg;
3522  exit_errmsg:
3523     error_reportf_err(err, "%s: ", image_name);
3524     exit(-1);
3525 }
3526 
load_elf_interp(const char * filename,struct image_info * info,char bprm_buf[BPRM_BUF_SIZE])3527 static void load_elf_interp(const char *filename, struct image_info *info,
3528                             char bprm_buf[BPRM_BUF_SIZE])
3529 {
3530     struct elfhdr ehdr;
3531     ImageSource src;
3532     int fd, retval;
3533     Error *err = NULL;
3534 
3535     fd = open(path(filename), O_RDONLY);
3536     if (fd < 0) {
3537         error_setg_file_open(&err, errno, filename);
3538         error_report_err(err);
3539         exit(-1);
3540     }
3541 
3542     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3543     if (retval < 0) {
3544         error_setg_errno(&err, errno, "Error reading file header");
3545         error_reportf_err(err, "%s: ", filename);
3546         exit(-1);
3547     }
3548 
3549     src.fd = fd;
3550     src.cache = bprm_buf;
3551     src.cache_size = retval;
3552 
3553     load_elf_image(filename, &src, info, &ehdr, NULL);
3554 }
3555 
3556 #ifndef vdso_image_info
3557 #ifdef VDSO_HEADER
3558 #include VDSO_HEADER
3559 #define  vdso_image_info(flags)  &vdso_image_info
3560 #else
3561 #define  vdso_image_info(flags)  NULL
3562 #endif /* VDSO_HEADER */
3563 #endif /* vdso_image_info */
3564 
load_elf_vdso(struct image_info * info,const VdsoImageInfo * vdso)3565 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3566 {
3567     ImageSource src;
3568     struct elfhdr ehdr;
3569     abi_ulong load_bias, load_addr;
3570 
3571     src.fd = -1;
3572     src.cache = vdso->image;
3573     src.cache_size = vdso->image_size;
3574 
3575     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3576     load_addr = info->load_addr;
3577     load_bias = info->load_bias;
3578 
3579     /*
3580      * We need to relocate the VDSO image.  The one built into the kernel
3581      * is built for a fixed address.  The one built for QEMU is not, since
3582      * that requires close control of the guest address space.
3583      * We pre-processed the image to locate all of the addresses that need
3584      * to be updated.
3585      */
3586     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3587         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3588         *addr = tswapal(tswapal(*addr) + load_bias);
3589     }
3590 
3591     /* Install signal trampolines, if present. */
3592     if (vdso->sigreturn_ofs) {
3593         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3594     }
3595     if (vdso->rt_sigreturn_ofs) {
3596         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3597     }
3598 
3599     /* Remove write from VDSO segment. */
3600     target_mprotect(info->start_data, info->end_data - info->start_data,
3601                     PROT_READ | PROT_EXEC);
3602 }
3603 
symfind(const void * s0,const void * s1)3604 static int symfind(const void *s0, const void *s1)
3605 {
3606     struct elf_sym *sym = (struct elf_sym *)s1;
3607     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3608     int result = 0;
3609 
3610     if (addr < sym->st_value) {
3611         result = -1;
3612     } else if (addr >= sym->st_value + sym->st_size) {
3613         result = 1;
3614     }
3615     return result;
3616 }
3617 
lookup_symbolxx(struct syminfo * s,uint64_t orig_addr)3618 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3619 {
3620 #if ELF_CLASS == ELFCLASS32
3621     struct elf_sym *syms = s->disas_symtab.elf32;
3622 #else
3623     struct elf_sym *syms = s->disas_symtab.elf64;
3624 #endif
3625 
3626     // binary search
3627     struct elf_sym *sym;
3628 
3629     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3630     if (sym != NULL) {
3631         return s->disas_strtab + sym->st_name;
3632     }
3633 
3634     return "";
3635 }
3636 
3637 /* FIXME: This should use elf_ops.h.inc  */
symcmp(const void * s0,const void * s1)3638 static int symcmp(const void *s0, const void *s1)
3639 {
3640     struct elf_sym *sym0 = (struct elf_sym *)s0;
3641     struct elf_sym *sym1 = (struct elf_sym *)s1;
3642     return (sym0->st_value < sym1->st_value)
3643         ? -1
3644         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3645 }
3646 
3647 /* Best attempt to load symbols from this ELF object. */
load_symbols(struct elfhdr * hdr,const ImageSource * src,abi_ulong load_bias)3648 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3649                          abi_ulong load_bias)
3650 {
3651     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3652     g_autofree struct elf_shdr *shdr = NULL;
3653     char *strings = NULL;
3654     struct elf_sym *syms = NULL;
3655     struct elf_sym *new_syms;
3656     uint64_t segsz;
3657 
3658     shnum = hdr->e_shnum;
3659     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3660                              src, NULL);
3661     if (shdr == NULL) {
3662         return;
3663     }
3664 
3665     bswap_shdr(shdr, shnum);
3666     for (i = 0; i < shnum; ++i) {
3667         if (shdr[i].sh_type == SHT_SYMTAB) {
3668             sym_idx = i;
3669             str_idx = shdr[i].sh_link;
3670             goto found;
3671         }
3672     }
3673 
3674     /* There will be no symbol table if the file was stripped.  */
3675     return;
3676 
3677  found:
3678     /* Now know where the strtab and symtab are.  Snarf them.  */
3679 
3680     segsz = shdr[str_idx].sh_size;
3681     strings = g_try_malloc(segsz);
3682     if (!strings) {
3683         goto give_up;
3684     }
3685     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3686         goto give_up;
3687     }
3688 
3689     segsz = shdr[sym_idx].sh_size;
3690     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3691         /*
3692          * Implausibly large symbol table: give up rather than ploughing
3693          * on with the number of symbols calculation overflowing.
3694          */
3695         goto give_up;
3696     }
3697     nsyms = segsz / sizeof(struct elf_sym);
3698     syms = g_try_malloc(segsz);
3699     if (!syms) {
3700         goto give_up;
3701     }
3702     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3703         goto give_up;
3704     }
3705 
3706     for (i = 0; i < nsyms; ) {
3707         bswap_sym(syms + i);
3708         /* Throw away entries which we do not need.  */
3709         if (syms[i].st_shndx == SHN_UNDEF
3710             || syms[i].st_shndx >= SHN_LORESERVE
3711             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3712             if (i < --nsyms) {
3713                 syms[i] = syms[nsyms];
3714             }
3715         } else {
3716 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3717             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3718             syms[i].st_value &= ~(target_ulong)1;
3719 #endif
3720             syms[i].st_value += load_bias;
3721             i++;
3722         }
3723     }
3724 
3725     /* No "useful" symbol.  */
3726     if (nsyms == 0) {
3727         goto give_up;
3728     }
3729 
3730     /*
3731      * Attempt to free the storage associated with the local symbols
3732      * that we threw away.  Whether or not this has any effect on the
3733      * memory allocation depends on the malloc implementation and how
3734      * many symbols we managed to discard.
3735      */
3736     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3737     if (new_syms == NULL) {
3738         goto give_up;
3739     }
3740     syms = new_syms;
3741 
3742     qsort(syms, nsyms, sizeof(*syms), symcmp);
3743 
3744     {
3745         struct syminfo *s = g_new(struct syminfo, 1);
3746 
3747         s->disas_strtab = strings;
3748         s->disas_num_syms = nsyms;
3749 #if ELF_CLASS == ELFCLASS32
3750         s->disas_symtab.elf32 = syms;
3751 #else
3752         s->disas_symtab.elf64 = syms;
3753 #endif
3754         s->lookup_symbol = lookup_symbolxx;
3755         s->next = syminfos;
3756         syminfos = s;
3757     }
3758     return;
3759 
3760  give_up:
3761     g_free(strings);
3762     g_free(syms);
3763 }
3764 
get_elf_eflags(int fd)3765 uint32_t get_elf_eflags(int fd)
3766 {
3767     struct elfhdr ehdr;
3768     off_t offset;
3769     int ret;
3770 
3771     /* Read ELF header */
3772     offset = lseek(fd, 0, SEEK_SET);
3773     if (offset == (off_t) -1) {
3774         return 0;
3775     }
3776     ret = read(fd, &ehdr, sizeof(ehdr));
3777     if (ret < sizeof(ehdr)) {
3778         return 0;
3779     }
3780     offset = lseek(fd, offset, SEEK_SET);
3781     if (offset == (off_t) -1) {
3782         return 0;
3783     }
3784 
3785     /* Check ELF signature */
3786     if (!elf_check_ident(&ehdr)) {
3787         return 0;
3788     }
3789 
3790     /* check header */
3791     bswap_ehdr(&ehdr);
3792     if (!elf_check_ehdr(&ehdr)) {
3793         return 0;
3794     }
3795 
3796     /* return architecture id */
3797     return ehdr.e_flags;
3798 }
3799 
load_elf_binary(struct linux_binprm * bprm,struct image_info * info)3800 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3801 {
3802     /*
3803      * We need a copy of the elf header for passing to create_elf_tables.
3804      * We will have overwritten the original when we re-use bprm->buf
3805      * while loading the interpreter.  Allocate the storage for this now
3806      * and let elf_load_image do any swapping that may be required.
3807      */
3808     struct elfhdr ehdr;
3809     struct image_info interp_info, vdso_info;
3810     char *elf_interpreter = NULL;
3811     char *scratch;
3812 
3813     memset(&interp_info, 0, sizeof(interp_info));
3814 #ifdef TARGET_MIPS
3815     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3816 #endif
3817 
3818     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3819 
3820     /* Do this so that we can load the interpreter, if need be.  We will
3821        change some of these later */
3822     bprm->p = setup_arg_pages(bprm, info);
3823 
3824     scratch = g_new0(char, TARGET_PAGE_SIZE);
3825     if (STACK_GROWS_DOWN) {
3826         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3827                                    bprm->p, info->stack_limit);
3828         info->file_string = bprm->p;
3829         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3830                                    bprm->p, info->stack_limit);
3831         info->env_strings = bprm->p;
3832         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3833                                    bprm->p, info->stack_limit);
3834         info->arg_strings = bprm->p;
3835     } else {
3836         info->arg_strings = bprm->p;
3837         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3838                                    bprm->p, info->stack_limit);
3839         info->env_strings = bprm->p;
3840         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3841                                    bprm->p, info->stack_limit);
3842         info->file_string = bprm->p;
3843         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3844                                    bprm->p, info->stack_limit);
3845     }
3846 
3847     g_free(scratch);
3848 
3849     if (!bprm->p) {
3850         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3851         exit(-1);
3852     }
3853 
3854     if (elf_interpreter) {
3855         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3856 
3857         /*
3858          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3859          * with the mappings the interpreter can be loaded above but
3860          * near the main executable, which can leave very little room
3861          * for the heap.
3862          * If the current brk has less than 16MB, use the end of the
3863          * interpreter.
3864          */
3865         if (interp_info.brk > info->brk &&
3866             interp_info.load_bias - info->brk < 16 * MiB)  {
3867             info->brk = interp_info.brk;
3868         }
3869 
3870         /* If the program interpreter is one of these two, then assume
3871            an iBCS2 image.  Otherwise assume a native linux image.  */
3872 
3873         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3874             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3875             info->personality = PER_SVR4;
3876 
3877             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3878                and some applications "depend" upon this behavior.  Since
3879                we do not have the power to recompile these, we emulate
3880                the SVr4 behavior.  Sigh.  */
3881             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3882                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3883                         -1, 0);
3884         }
3885 #ifdef TARGET_MIPS
3886         info->interp_fp_abi = interp_info.fp_abi;
3887 #endif
3888     }
3889 
3890     /*
3891      * Load a vdso if available, which will amongst other things contain the
3892      * signal trampolines.  Otherwise, allocate a separate page for them.
3893      */
3894     const VdsoImageInfo *vdso = vdso_image_info(info->elf_flags);
3895     if (vdso) {
3896         load_elf_vdso(&vdso_info, vdso);
3897         info->vdso = vdso_info.load_bias;
3898     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3899         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3900                                           PROT_READ | PROT_WRITE,
3901                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3902         if (tramp_page == -1) {
3903             return -errno;
3904         }
3905 
3906         setup_sigtramp(tramp_page);
3907         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3908     }
3909 
3910     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3911                                 elf_interpreter ? &interp_info : NULL,
3912                                 vdso ? &vdso_info : NULL);
3913     info->start_stack = bprm->p;
3914 
3915     /* If we have an interpreter, set that as the program's entry point.
3916        Copy the load_bias as well, to help PPC64 interpret the entry
3917        point as a function descriptor.  Do this after creating elf tables
3918        so that we copy the original program entry point into the AUXV.  */
3919     if (elf_interpreter) {
3920         info->load_bias = interp_info.load_bias;
3921         info->entry = interp_info.entry;
3922         g_free(elf_interpreter);
3923     }
3924 
3925 #ifdef USE_ELF_CORE_DUMP
3926     bprm->core_dump = &elf_core_dump;
3927 #endif
3928 
3929     return 0;
3930 }
3931 
3932 #ifdef USE_ELF_CORE_DUMP
3933 
3934 /*
3935  * Definitions to generate Intel SVR4-like core files.
3936  * These mostly have the same names as the SVR4 types with "target_elf_"
3937  * tacked on the front to prevent clashes with linux definitions,
3938  * and the typedef forms have been avoided.  This is mostly like
3939  * the SVR4 structure, but more Linuxy, with things that Linux does
3940  * not support and which gdb doesn't really use excluded.
3941  *
3942  * Fields we don't dump (their contents is zero) in linux-user qemu
3943  * are marked with XXX.
3944  *
3945  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3946  *
3947  * Porting ELF coredump for target is (quite) simple process.  First you
3948  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3949  * the target resides):
3950  *
3951  * #define USE_ELF_CORE_DUMP
3952  *
3953  * Next you define type of register set used for dumping.  ELF specification
3954  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3955  *
3956  * typedef <target_regtype> target_elf_greg_t;
3957  * #define ELF_NREG <number of registers>
3958  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3959  *
3960  * Last step is to implement target specific function that copies registers
3961  * from given cpu into just specified register set.  Prototype is:
3962  *
3963  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3964  *                                const CPUArchState *env);
3965  *
3966  * Parameters:
3967  *     regs - copy register values into here (allocated and zeroed by caller)
3968  *     env - copy registers from here
3969  *
3970  * Example for ARM target is provided in this file.
3971  */
3972 
3973 struct target_elf_siginfo {
3974     abi_int    si_signo; /* signal number */
3975     abi_int    si_code;  /* extra code */
3976     abi_int    si_errno; /* errno */
3977 };
3978 
3979 struct target_elf_prstatus {
3980     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3981     abi_short          pr_cursig;    /* Current signal */
3982     abi_ulong          pr_sigpend;   /* XXX */
3983     abi_ulong          pr_sighold;   /* XXX */
3984     target_pid_t       pr_pid;
3985     target_pid_t       pr_ppid;
3986     target_pid_t       pr_pgrp;
3987     target_pid_t       pr_sid;
3988     struct target_timeval pr_utime;  /* XXX User time */
3989     struct target_timeval pr_stime;  /* XXX System time */
3990     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3991     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3992     target_elf_gregset_t      pr_reg;       /* GP registers */
3993     abi_int            pr_fpvalid;   /* XXX */
3994 };
3995 
3996 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3997 
3998 struct target_elf_prpsinfo {
3999     char         pr_state;       /* numeric process state */
4000     char         pr_sname;       /* char for pr_state */
4001     char         pr_zomb;        /* zombie */
4002     char         pr_nice;        /* nice val */
4003     abi_ulong    pr_flag;        /* flags */
4004     target_uid_t pr_uid;
4005     target_gid_t pr_gid;
4006     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
4007     /* Lots missing */
4008     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
4009     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
4010 };
4011 
bswap_prstatus(struct target_elf_prstatus * prstatus)4012 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4013 {
4014     if (!target_needs_bswap()) {
4015         return;
4016     }
4017 
4018     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4019     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4020     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4021     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4022     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4023     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4024     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4025     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4026     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4027     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4028     /* cpu times are not filled, so we skip them */
4029     /* regs should be in correct format already */
4030     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4031 }
4032 
bswap_psinfo(struct target_elf_prpsinfo * psinfo)4033 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4034 {
4035     if (!target_needs_bswap()) {
4036         return;
4037     }
4038 
4039     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4040     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4041     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4042     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4043     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4044     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4045     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4046 }
4047 
bswap_note(struct elf_note * en)4048 static void bswap_note(struct elf_note *en)
4049 {
4050     if (!target_needs_bswap()) {
4051         return;
4052     }
4053 
4054     bswap32s(&en->n_namesz);
4055     bswap32s(&en->n_descsz);
4056     bswap32s(&en->n_type);
4057 }
4058 
4059 /*
4060  * Calculate file (dump) size of given memory region.
4061  */
vma_dump_size(vaddr start,vaddr end,int flags)4062 static size_t vma_dump_size(vaddr start, vaddr end, int flags)
4063 {
4064     /* The area must be readable. */
4065     if (!(flags & PAGE_READ)) {
4066         return 0;
4067     }
4068 
4069     /*
4070      * Usually we don't dump executable pages as they contain
4071      * non-writable code that debugger can read directly from
4072      * target library etc. If there is no elf header, we dump it.
4073      */
4074     if (!(flags & PAGE_WRITE_ORG) &&
4075         (flags & PAGE_EXEC) &&
4076         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4077         return 0;
4078     }
4079 
4080     return end - start;
4081 }
4082 
size_note(const char * name,size_t datasz)4083 static size_t size_note(const char *name, size_t datasz)
4084 {
4085     size_t namesz = strlen(name) + 1;
4086 
4087     namesz = ROUND_UP(namesz, 4);
4088     datasz = ROUND_UP(datasz, 4);
4089 
4090     return sizeof(struct elf_note) + namesz + datasz;
4091 }
4092 
fill_note(void ** pptr,int type,const char * name,size_t datasz)4093 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4094 {
4095     void *ptr = *pptr;
4096     struct elf_note *n = ptr;
4097     size_t namesz = strlen(name) + 1;
4098 
4099     n->n_namesz = namesz;
4100     n->n_descsz = datasz;
4101     n->n_type = type;
4102     bswap_note(n);
4103 
4104     ptr += sizeof(*n);
4105     memcpy(ptr, name, namesz);
4106 
4107     namesz = ROUND_UP(namesz, 4);
4108     datasz = ROUND_UP(datasz, 4);
4109 
4110     *pptr = ptr + namesz + datasz;
4111     return ptr + namesz;
4112 }
4113 
fill_elf_header(struct elfhdr * elf,int segs,uint16_t machine,uint32_t flags)4114 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4115                             uint32_t flags)
4116 {
4117     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4118 
4119     elf->e_ident[EI_CLASS] = ELF_CLASS;
4120     elf->e_ident[EI_DATA] = ELF_DATA;
4121     elf->e_ident[EI_VERSION] = EV_CURRENT;
4122     elf->e_ident[EI_OSABI] = ELF_OSABI;
4123 
4124     elf->e_type = ET_CORE;
4125     elf->e_machine = machine;
4126     elf->e_version = EV_CURRENT;
4127     elf->e_phoff = sizeof(struct elfhdr);
4128     elf->e_flags = flags;
4129     elf->e_ehsize = sizeof(struct elfhdr);
4130     elf->e_phentsize = sizeof(struct elf_phdr);
4131     elf->e_phnum = segs;
4132 
4133     bswap_ehdr(elf);
4134 }
4135 
fill_elf_note_phdr(struct elf_phdr * phdr,size_t sz,off_t offset)4136 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4137 {
4138     phdr->p_type = PT_NOTE;
4139     phdr->p_offset = offset;
4140     phdr->p_filesz = sz;
4141 
4142     bswap_phdr(phdr, 1);
4143 }
4144 
fill_prstatus_note(void * data,CPUState * cpu,int signr)4145 static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
4146 {
4147     /*
4148      * Because note memory is only aligned to 4, and target_elf_prstatus
4149      * may well have higher alignment requirements, fill locally and
4150      * memcpy to the destination afterward.
4151      */
4152     struct target_elf_prstatus prstatus = {
4153         .pr_info.si_signo = signr,
4154         .pr_cursig = signr,
4155         .pr_pid = get_task_state(cpu)->ts_tid,
4156         .pr_ppid = getppid(),
4157         .pr_pgrp = getpgrp(),
4158         .pr_sid = getsid(0),
4159     };
4160 
4161     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4162     bswap_prstatus(&prstatus);
4163     memcpy(data, &prstatus, sizeof(prstatus));
4164 }
4165 
fill_prpsinfo_note(void * data,const TaskState * ts)4166 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4167 {
4168     /*
4169      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4170      * may well have higher alignment requirements, fill locally and
4171      * memcpy to the destination afterward.
4172      */
4173     struct target_elf_prpsinfo psinfo = {
4174         .pr_pid = getpid(),
4175         .pr_ppid = getppid(),
4176         .pr_pgrp = getpgrp(),
4177         .pr_sid = getsid(0),
4178         .pr_uid = getuid(),
4179         .pr_gid = getgid(),
4180     };
4181     char *base_filename;
4182     size_t len;
4183 
4184     len = ts->info->env_strings - ts->info->arg_strings;
4185     len = MIN(len, ELF_PRARGSZ);
4186     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4187     for (size_t i = 0; i < len; i++) {
4188         if (psinfo.pr_psargs[i] == 0) {
4189             psinfo.pr_psargs[i] = ' ';
4190         }
4191     }
4192 
4193     base_filename = g_path_get_basename(ts->bprm->filename);
4194     /*
4195      * Using strncpy here is fine: at max-length,
4196      * this field is not NUL-terminated.
4197      */
4198     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4199     g_free(base_filename);
4200 
4201     bswap_psinfo(&psinfo);
4202     memcpy(data, &psinfo, sizeof(psinfo));
4203 }
4204 
fill_auxv_note(void * data,const TaskState * ts)4205 static void fill_auxv_note(void *data, const TaskState *ts)
4206 {
4207     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4208 }
4209 
4210 /*
4211  * Constructs name of coredump file.  We have following convention
4212  * for the name:
4213  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4214  *
4215  * Returns the filename
4216  */
core_dump_filename(const TaskState * ts)4217 static char *core_dump_filename(const TaskState *ts)
4218 {
4219     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4220     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4221     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4222 
4223     return g_strdup_printf("qemu_%s_%s_%d.core",
4224                            base_filename, nowstr, (int)getpid());
4225 }
4226 
dump_write(int fd,const void * ptr,size_t size)4227 static int dump_write(int fd, const void *ptr, size_t size)
4228 {
4229     const char *bufp = (const char *)ptr;
4230     ssize_t bytes_written, bytes_left;
4231 
4232     bytes_written = 0;
4233     bytes_left = size;
4234 
4235     /*
4236      * In normal conditions, single write(2) should do but
4237      * in case of socket etc. this mechanism is more portable.
4238      */
4239     do {
4240         bytes_written = write(fd, bufp, bytes_left);
4241         if (bytes_written < 0) {
4242             if (errno == EINTR)
4243                 continue;
4244             return (-1);
4245         } else if (bytes_written == 0) { /* eof */
4246             return (-1);
4247         }
4248         bufp += bytes_written;
4249         bytes_left -= bytes_written;
4250     } while (bytes_left > 0);
4251 
4252     return (0);
4253 }
4254 
wmr_page_unprotect_regions(void * opaque,vaddr start,vaddr end,int flags)4255 static int wmr_page_unprotect_regions(void *opaque, vaddr start,
4256                                       vaddr end, int flags)
4257 {
4258     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4259         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4260 
4261         while (1) {
4262             page_unprotect(NULL, start, 0);
4263             if (end - start <= step) {
4264                 break;
4265             }
4266             start += step;
4267         }
4268     }
4269     return 0;
4270 }
4271 
4272 typedef struct {
4273     unsigned count;
4274     size_t size;
4275 } CountAndSizeRegions;
4276 
wmr_count_and_size_regions(void * opaque,vaddr start,vaddr end,int flags)4277 static int wmr_count_and_size_regions(void *opaque, vaddr start,
4278                                       vaddr end, int flags)
4279 {
4280     CountAndSizeRegions *css = opaque;
4281 
4282     css->count++;
4283     css->size += vma_dump_size(start, end, flags);
4284     return 0;
4285 }
4286 
4287 typedef struct {
4288     struct elf_phdr *phdr;
4289     off_t offset;
4290 } FillRegionPhdr;
4291 
wmr_fill_region_phdr(void * opaque,vaddr start,vaddr end,int flags)4292 static int wmr_fill_region_phdr(void *opaque, vaddr start,
4293                                 vaddr end, int flags)
4294 {
4295     FillRegionPhdr *d = opaque;
4296     struct elf_phdr *phdr = d->phdr;
4297 
4298     phdr->p_type = PT_LOAD;
4299     phdr->p_vaddr = start;
4300     phdr->p_paddr = 0;
4301     phdr->p_filesz = vma_dump_size(start, end, flags);
4302     phdr->p_offset = d->offset;
4303     d->offset += phdr->p_filesz;
4304     phdr->p_memsz = end - start;
4305     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4306                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4307                   | (flags & PAGE_EXEC ? PF_X : 0);
4308     phdr->p_align = ELF_EXEC_PAGESIZE;
4309 
4310     bswap_phdr(phdr, 1);
4311     d->phdr = phdr + 1;
4312     return 0;
4313 }
4314 
wmr_write_region(void * opaque,vaddr start,vaddr end,int flags)4315 static int wmr_write_region(void *opaque, vaddr start,
4316                             vaddr end, int flags)
4317 {
4318     int fd = *(int *)opaque;
4319     size_t size = vma_dump_size(start, end, flags);
4320 
4321     if (!size) {
4322         return 0;
4323     }
4324     return dump_write(fd, g2h_untagged(start), size);
4325 }
4326 
4327 /*
4328  * Write out ELF coredump.
4329  *
4330  * See documentation of ELF object file format in:
4331  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4332  *
4333  * Coredump format in linux is following:
4334  *
4335  * 0   +----------------------+         \
4336  *     | ELF header           | ET_CORE  |
4337  *     +----------------------+          |
4338  *     | ELF program headers  |          |--- headers
4339  *     | - NOTE section       |          |
4340  *     | - PT_LOAD sections   |          |
4341  *     +----------------------+         /
4342  *     | NOTEs:               |
4343  *     | - NT_PRSTATUS        |
4344  *     | - NT_PRSINFO         |
4345  *     | - NT_AUXV            |
4346  *     +----------------------+ <-- aligned to target page
4347  *     | Process memory dump  |
4348  *     :                      :
4349  *     .                      .
4350  *     :                      :
4351  *     |                      |
4352  *     +----------------------+
4353  *
4354  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4355  * NT_PRSINFO  -> struct elf_prpsinfo
4356  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4357  *
4358  * Format follows System V format as close as possible.  Current
4359  * version limitations are as follows:
4360  *     - no floating point registers are dumped
4361  *
4362  * Function returns 0 in case of success, negative errno otherwise.
4363  *
4364  * TODO: make this work also during runtime: it should be
4365  * possible to force coredump from running process and then
4366  * continue processing.  For example qemu could set up SIGUSR2
4367  * handler (provided that target process haven't registered
4368  * handler for that) that does the dump when signal is received.
4369  */
elf_core_dump(int signr,const CPUArchState * env)4370 static int elf_core_dump(int signr, const CPUArchState *env)
4371 {
4372     const CPUState *cpu = env_cpu_const(env);
4373     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4374     struct rlimit dumpsize;
4375     CountAndSizeRegions css;
4376     off_t offset, note_offset, data_offset;
4377     size_t note_size;
4378     int cpus, ret;
4379     int fd = -1;
4380     CPUState *cpu_iter;
4381 
4382     if (prctl(PR_GET_DUMPABLE) == 0) {
4383         return 0;
4384     }
4385 
4386     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4387         return 0;
4388     }
4389 
4390     cpu_list_lock();
4391     mmap_lock();
4392 
4393     /* By unprotecting, we merge vmas that might be split. */
4394     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4395 
4396     /*
4397      * Walk through target process memory mappings and
4398      * set up structure containing this information.
4399      */
4400     memset(&css, 0, sizeof(css));
4401     walk_memory_regions(&css, wmr_count_and_size_regions);
4402 
4403     cpus = 0;
4404     CPU_FOREACH(cpu_iter) {
4405         cpus++;
4406     }
4407 
4408     offset = sizeof(struct elfhdr);
4409     offset += (css.count + 1) * sizeof(struct elf_phdr);
4410     note_offset = offset;
4411 
4412     offset += size_note("CORE", ts->info->auxv_len);
4413     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4414     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4415     note_size = offset - note_offset;
4416     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4417 
4418     /* Do not dump if the corefile size exceeds the limit. */
4419     if (dumpsize.rlim_cur != RLIM_INFINITY
4420         && dumpsize.rlim_cur < data_offset + css.size) {
4421         errno = 0;
4422         goto out;
4423     }
4424 
4425     {
4426         g_autofree char *corefile = core_dump_filename(ts);
4427         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4428                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4429     }
4430     if (fd < 0) {
4431         goto out;
4432     }
4433 
4434     /*
4435      * There is a fair amount of alignment padding within the notes
4436      * as well as preceeding the process memory.  Allocate a zeroed
4437      * block to hold it all.  Write all of the headers directly into
4438      * this buffer and then write it out as a block.
4439      */
4440     {
4441         g_autofree void *header = g_malloc0(data_offset);
4442         FillRegionPhdr frp;
4443         void *hptr, *dptr;
4444 
4445         /* Create elf file header. */
4446         hptr = header;
4447         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4448         hptr += sizeof(struct elfhdr);
4449 
4450         /* Create elf program headers. */
4451         fill_elf_note_phdr(hptr, note_size, note_offset);
4452         hptr += sizeof(struct elf_phdr);
4453 
4454         frp.phdr = hptr;
4455         frp.offset = data_offset;
4456         walk_memory_regions(&frp, wmr_fill_region_phdr);
4457         hptr = frp.phdr;
4458 
4459         /* Create the notes. */
4460         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4461         fill_auxv_note(dptr, ts);
4462 
4463         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4464                          sizeof(struct target_elf_prpsinfo));
4465         fill_prpsinfo_note(dptr, ts);
4466 
4467         CPU_FOREACH(cpu_iter) {
4468             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4469                              sizeof(struct target_elf_prstatus));
4470             fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
4471         }
4472 
4473         if (dump_write(fd, header, data_offset) < 0) {
4474             goto out;
4475         }
4476     }
4477 
4478     /*
4479      * Finally write process memory into the corefile as well.
4480      */
4481     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4482         goto out;
4483     }
4484     errno = 0;
4485 
4486  out:
4487     ret = -errno;
4488     mmap_unlock();
4489     cpu_list_unlock();
4490     if (fd >= 0) {
4491         close(fd);
4492     }
4493     return ret;
4494 }
4495 #endif /* USE_ELF_CORE_DUMP */
4496 
do_init_thread(struct target_pt_regs * regs,struct image_info * infop)4497 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4498 {
4499     init_thread(regs, infop);
4500 }
4501