1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef SYSTEM_MEMORY_H 15 #define SYSTEM_MEMORY_H 16 17 #include "exec/cpu-common.h" 18 #include "exec/hwaddr.h" 19 #include "exec/memattrs.h" 20 #include "exec/memop.h" 21 #include "exec/ramlist.h" 22 #include "exec/tswap.h" 23 #include "qemu/bswap.h" 24 #include "qemu/queue.h" 25 #include "qemu/int128.h" 26 #include "qemu/range.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 Range range; 83 unsigned type; 84 }; 85 86 /** 87 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 88 * 89 * @mr: the region, or %NULL if empty 90 * @fv: the flat view of the address space the region is mapped in 91 * @offset_within_region: the beginning of the section, relative to @mr's start 92 * @size: the size of the section; will not exceed @mr's boundaries 93 * @offset_within_address_space: the address of the first byte of the section 94 * relative to the region's address space 95 * @readonly: writes to this section are ignored 96 * @nonvolatile: this section is non-volatile 97 * @unmergeable: this section should not get merged with adjacent sections 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 bool unmergeable; 108 }; 109 110 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 111 112 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 113 typedef enum { 114 IOMMU_NONE = 0, 115 IOMMU_RO = 1, 116 IOMMU_WO = 2, 117 IOMMU_RW = 3, 118 } IOMMUAccessFlags; 119 120 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 121 122 struct IOMMUTLBEntry { 123 AddressSpace *target_as; 124 hwaddr iova; 125 hwaddr translated_addr; 126 hwaddr addr_mask; /* 0xfff = 4k translation */ 127 IOMMUAccessFlags perm; 128 }; 129 130 /* 131 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 132 * register with one or multiple IOMMU Notifier capability bit(s). 133 * 134 * Normally there're two use cases for the notifiers: 135 * 136 * (1) When the device needs accurate synchronizations of the vIOMMU page 137 * tables, it needs to register with both MAP|UNMAP notifies (which 138 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 139 * 140 * Regarding to accurate synchronization, it's when the notified 141 * device maintains a shadow page table and must be notified on each 142 * guest MAP (page table entry creation) and UNMAP (invalidation) 143 * events (e.g. VFIO). Both notifications must be accurate so that 144 * the shadow page table is fully in sync with the guest view. 145 * 146 * (2) When the device doesn't need accurate synchronizations of the 147 * vIOMMU page tables, it needs to register only with UNMAP or 148 * DEVIOTLB_UNMAP notifies. 149 * 150 * It's when the device maintains a cache of IOMMU translations 151 * (IOTLB) and is able to fill that cache by requesting translations 152 * from the vIOMMU through a protocol similar to ATS (Address 153 * Translation Service). 154 * 155 * Note that in this mode the vIOMMU will not maintain a shadowed 156 * page table for the address space, and the UNMAP messages can cover 157 * more than the pages that used to get mapped. The IOMMU notifiee 158 * should be able to take care of over-sized invalidations. 159 */ 160 typedef enum { 161 IOMMU_NOTIFIER_NONE = 0, 162 /* Notify cache invalidations */ 163 IOMMU_NOTIFIER_UNMAP = 0x1, 164 /* Notify entry changes (newly created entries) */ 165 IOMMU_NOTIFIER_MAP = 0x2, 166 /* Notify changes on device IOTLB entries */ 167 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 168 } IOMMUNotifierFlag; 169 170 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 171 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 172 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 173 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 174 175 struct IOMMUNotifier; 176 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 177 IOMMUTLBEntry *data); 178 179 struct IOMMUNotifier { 180 IOMMUNotify notify; 181 IOMMUNotifierFlag notifier_flags; 182 /* Notify for address space range start <= addr <= end */ 183 hwaddr start; 184 hwaddr end; 185 int iommu_idx; 186 QLIST_ENTRY(IOMMUNotifier) node; 187 }; 188 typedef struct IOMMUNotifier IOMMUNotifier; 189 190 typedef struct IOMMUTLBEvent { 191 IOMMUNotifierFlag type; 192 IOMMUTLBEntry entry; 193 } IOMMUTLBEvent; 194 195 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 196 #define RAM_PREALLOC (1 << 0) 197 198 /* RAM is mmap-ed with MAP_SHARED */ 199 #define RAM_SHARED (1 << 1) 200 201 /* Only a portion of RAM (used_length) is actually used, and migrated. 202 * Resizing RAM while migrating can result in the migration being canceled. 203 */ 204 #define RAM_RESIZEABLE (1 << 2) 205 206 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 207 * zero the page and wake waiting processes. 208 * (Set during postcopy) 209 */ 210 #define RAM_UF_ZEROPAGE (1 << 3) 211 212 /* RAM can be migrated */ 213 #define RAM_MIGRATABLE (1 << 4) 214 215 /* RAM is a persistent kind memory */ 216 #define RAM_PMEM (1 << 5) 217 218 219 /* 220 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 221 * support 'write-tracking' migration type. 222 * Implies ram_state->ram_wt_enabled. 223 */ 224 #define RAM_UF_WRITEPROTECT (1 << 6) 225 226 /* 227 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 228 * pages if applicable) is skipped: will bail out if not supported. When not 229 * set, the OS will do the reservation, if supported for the memory type. 230 */ 231 #define RAM_NORESERVE (1 << 7) 232 233 /* RAM that isn't accessible through normal means. */ 234 #define RAM_PROTECTED (1 << 8) 235 236 /* RAM is an mmap-ed named file */ 237 #define RAM_NAMED_FILE (1 << 9) 238 239 /* RAM is mmap-ed read-only */ 240 #define RAM_READONLY (1 << 10) 241 242 /* RAM FD is opened read-only */ 243 #define RAM_READONLY_FD (1 << 11) 244 245 /* RAM can be private that has kvm guest memfd backend */ 246 #define RAM_GUEST_MEMFD (1 << 12) 247 248 /* 249 * In RAMBlock creation functions, if MAP_SHARED is 0 in the flags parameter, 250 * the implementation may still create a shared mapping if other conditions 251 * require it. Callers who specifically want a private mapping, eg objects 252 * specified by the user, must pass RAM_PRIVATE. 253 * After RAMBlock creation, MAP_SHARED in the block's flags indicates whether 254 * the block is shared or private, and MAP_PRIVATE is omitted. 255 */ 256 #define RAM_PRIVATE (1 << 13) 257 258 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 259 IOMMUNotifierFlag flags, 260 hwaddr start, hwaddr end, 261 int iommu_idx) 262 { 263 n->notify = fn; 264 n->notifier_flags = flags; 265 n->start = start; 266 n->end = end; 267 n->iommu_idx = iommu_idx; 268 } 269 270 /* 271 * Memory region callbacks 272 */ 273 struct MemoryRegionOps { 274 /* Read from the memory region. @addr is relative to @mr; @size is 275 * in bytes. */ 276 uint64_t (*read)(void *opaque, 277 hwaddr addr, 278 unsigned size); 279 /* Write to the memory region. @addr is relative to @mr; @size is 280 * in bytes. */ 281 void (*write)(void *opaque, 282 hwaddr addr, 283 uint64_t data, 284 unsigned size); 285 286 MemTxResult (*read_with_attrs)(void *opaque, 287 hwaddr addr, 288 uint64_t *data, 289 unsigned size, 290 MemTxAttrs attrs); 291 MemTxResult (*write_with_attrs)(void *opaque, 292 hwaddr addr, 293 uint64_t data, 294 unsigned size, 295 MemTxAttrs attrs); 296 297 enum device_endian endianness; 298 /* Guest-visible constraints: */ 299 struct { 300 /* If nonzero, specify bounds on access sizes beyond which a machine 301 * check is thrown. 302 */ 303 unsigned min_access_size; 304 unsigned max_access_size; 305 /* If true, unaligned accesses are supported. Otherwise unaligned 306 * accesses throw machine checks. 307 */ 308 bool unaligned; 309 /* 310 * If present, and returns #false, the transaction is not accepted 311 * by the device (and results in machine dependent behaviour such 312 * as a machine check exception). 313 */ 314 bool (*accepts)(void *opaque, hwaddr addr, 315 unsigned size, bool is_write, 316 MemTxAttrs attrs); 317 } valid; 318 /* Internal implementation constraints: */ 319 struct { 320 /* If nonzero, specifies the minimum size implemented. Smaller sizes 321 * will be rounded upwards and a partial result will be returned. 322 */ 323 unsigned min_access_size; 324 /* If nonzero, specifies the maximum size implemented. Larger sizes 325 * will be done as a series of accesses with smaller sizes. 326 */ 327 unsigned max_access_size; 328 /* If true, unaligned accesses are supported. Otherwise all accesses 329 * are converted to (possibly multiple) naturally aligned accesses. 330 */ 331 bool unaligned; 332 } impl; 333 }; 334 335 typedef struct MemoryRegionClass { 336 /* private */ 337 ObjectClass parent_class; 338 } MemoryRegionClass; 339 340 341 enum IOMMUMemoryRegionAttr { 342 IOMMU_ATTR_SPAPR_TCE_FD 343 }; 344 345 /* 346 * IOMMUMemoryRegionClass: 347 * 348 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 349 * and provide an implementation of at least the @translate method here 350 * to handle requests to the memory region. Other methods are optional. 351 * 352 * The IOMMU implementation must use the IOMMU notifier infrastructure 353 * to report whenever mappings are changed, by calling 354 * memory_region_notify_iommu() (or, if necessary, by calling 355 * memory_region_notify_iommu_one() for each registered notifier). 356 * 357 * Conceptually an IOMMU provides a mapping from input address 358 * to an output TLB entry. If the IOMMU is aware of memory transaction 359 * attributes and the output TLB entry depends on the transaction 360 * attributes, we represent this using IOMMU indexes. Each index 361 * selects a particular translation table that the IOMMU has: 362 * 363 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 364 * 365 * @translate takes an input address and an IOMMU index 366 * 367 * and the mapping returned can only depend on the input address and the 368 * IOMMU index. 369 * 370 * Most IOMMUs don't care about the transaction attributes and support 371 * only a single IOMMU index. A more complex IOMMU might have one index 372 * for secure transactions and one for non-secure transactions. 373 */ 374 struct IOMMUMemoryRegionClass { 375 /* private: */ 376 MemoryRegionClass parent_class; 377 378 /* public: */ 379 /** 380 * @translate: 381 * 382 * Return a TLB entry that contains a given address. 383 * 384 * The IOMMUAccessFlags indicated via @flag are optional and may 385 * be specified as IOMMU_NONE to indicate that the caller needs 386 * the full translation information for both reads and writes. If 387 * the access flags are specified then the IOMMU implementation 388 * may use this as an optimization, to stop doing a page table 389 * walk as soon as it knows that the requested permissions are not 390 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 391 * full page table walk and report the permissions in the returned 392 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 393 * return different mappings for reads and writes.) 394 * 395 * The returned information remains valid while the caller is 396 * holding the big QEMU lock or is inside an RCU critical section; 397 * if the caller wishes to cache the mapping beyond that it must 398 * register an IOMMU notifier so it can invalidate its cached 399 * information when the IOMMU mapping changes. 400 * 401 * @iommu: the IOMMUMemoryRegion 402 * 403 * @hwaddr: address to be translated within the memory region 404 * 405 * @flag: requested access permission 406 * 407 * @iommu_idx: IOMMU index for the translation 408 */ 409 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 410 IOMMUAccessFlags flag, int iommu_idx); 411 /** 412 * @get_min_page_size: 413 * 414 * Returns minimum supported page size in bytes. 415 * 416 * If this method is not provided then the minimum is assumed to 417 * be TARGET_PAGE_SIZE. 418 * 419 * @iommu: the IOMMUMemoryRegion 420 */ 421 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 422 /** 423 * @notify_flag_changed: 424 * 425 * Called when IOMMU Notifier flag changes (ie when the set of 426 * events which IOMMU users are requesting notification for changes). 427 * Optional method -- need not be provided if the IOMMU does not 428 * need to know exactly which events must be notified. 429 * 430 * @iommu: the IOMMUMemoryRegion 431 * 432 * @old_flags: events which previously needed to be notified 433 * 434 * @new_flags: events which now need to be notified 435 * 436 * Returns 0 on success, or a negative errno; in particular 437 * returns -EINVAL if the new flag bitmap is not supported by the 438 * IOMMU memory region. In case of failure, the error object 439 * must be created 440 */ 441 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 442 IOMMUNotifierFlag old_flags, 443 IOMMUNotifierFlag new_flags, 444 Error **errp); 445 /** 446 * @replay: 447 * 448 * Called to handle memory_region_iommu_replay(). 449 * 450 * The default implementation of memory_region_iommu_replay() is to 451 * call the IOMMU translate method for every page in the address space 452 * with flag == IOMMU_NONE and then call the notifier if translate 453 * returns a valid mapping. If this method is implemented then it 454 * overrides the default behaviour, and must provide the full semantics 455 * of memory_region_iommu_replay(), by calling @notifier for every 456 * translation present in the IOMMU. 457 * 458 * Optional method -- an IOMMU only needs to provide this method 459 * if the default is inefficient or produces undesirable side effects. 460 * 461 * Note: this is not related to record-and-replay functionality. 462 */ 463 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 464 465 /** 466 * @get_attr: 467 * 468 * Get IOMMU misc attributes. This is an optional method that 469 * can be used to allow users of the IOMMU to get implementation-specific 470 * information. The IOMMU implements this method to handle calls 471 * by IOMMU users to memory_region_iommu_get_attr() by filling in 472 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 473 * the IOMMU supports. If the method is unimplemented then 474 * memory_region_iommu_get_attr() will always return -EINVAL. 475 * 476 * @iommu: the IOMMUMemoryRegion 477 * 478 * @attr: attribute being queried 479 * 480 * @data: memory to fill in with the attribute data 481 * 482 * Returns 0 on success, or a negative errno; in particular 483 * returns -EINVAL for unrecognized or unimplemented attribute types. 484 */ 485 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 486 void *data); 487 488 /** 489 * @attrs_to_index: 490 * 491 * Return the IOMMU index to use for a given set of transaction attributes. 492 * 493 * Optional method: if an IOMMU only supports a single IOMMU index then 494 * the default implementation of memory_region_iommu_attrs_to_index() 495 * will return 0. 496 * 497 * The indexes supported by an IOMMU must be contiguous, starting at 0. 498 * 499 * @iommu: the IOMMUMemoryRegion 500 * @attrs: memory transaction attributes 501 */ 502 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 503 504 /** 505 * @num_indexes: 506 * 507 * Return the number of IOMMU indexes this IOMMU supports. 508 * 509 * Optional method: if this method is not provided, then 510 * memory_region_iommu_num_indexes() will return 1, indicating that 511 * only a single IOMMU index is supported. 512 * 513 * @iommu: the IOMMUMemoryRegion 514 */ 515 int (*num_indexes)(IOMMUMemoryRegion *iommu); 516 }; 517 518 typedef struct RamDiscardListener RamDiscardListener; 519 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 520 MemoryRegionSection *section); 521 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 522 MemoryRegionSection *section); 523 524 struct RamDiscardListener { 525 /* 526 * @notify_populate: 527 * 528 * Notification that previously discarded memory is about to get populated. 529 * Listeners are able to object. If any listener objects, already 530 * successfully notified listeners are notified about a discard again. 531 * 532 * @rdl: the #RamDiscardListener getting notified 533 * @section: the #MemoryRegionSection to get populated. The section 534 * is aligned within the memory region to the minimum granularity 535 * unless it would exceed the registered section. 536 * 537 * Returns 0 on success. If the notification is rejected by the listener, 538 * an error is returned. 539 */ 540 NotifyRamPopulate notify_populate; 541 542 /* 543 * @notify_discard: 544 * 545 * Notification that previously populated memory was discarded successfully 546 * and listeners should drop all references to such memory and prevent 547 * new population (e.g., unmap). 548 * 549 * @rdl: the #RamDiscardListener getting notified 550 * @section: the #MemoryRegionSection to get populated. The section 551 * is aligned within the memory region to the minimum granularity 552 * unless it would exceed the registered section. 553 */ 554 NotifyRamDiscard notify_discard; 555 556 /* 557 * @double_discard_supported: 558 * 559 * The listener suppors getting @notify_discard notifications that span 560 * already discarded parts. 561 */ 562 bool double_discard_supported; 563 564 MemoryRegionSection *section; 565 QLIST_ENTRY(RamDiscardListener) next; 566 }; 567 568 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 569 NotifyRamPopulate populate_fn, 570 NotifyRamDiscard discard_fn, 571 bool double_discard_supported) 572 { 573 rdl->notify_populate = populate_fn; 574 rdl->notify_discard = discard_fn; 575 rdl->double_discard_supported = double_discard_supported; 576 } 577 578 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 579 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 580 581 /* 582 * RamDiscardManagerClass: 583 * 584 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 585 * regions are currently populated to be used/accessed by the VM, notifying 586 * after parts were discarded (freeing up memory) and before parts will be 587 * populated (consuming memory), to be used/accessed by the VM. 588 * 589 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 590 * #MemoryRegion isn't mapped into an address space yet (either directly 591 * or via an alias); it cannot change while the #MemoryRegion is 592 * mapped into an address space. 593 * 594 * The #RamDiscardManager is intended to be used by technologies that are 595 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 596 * memory inside a #MemoryRegion), and require proper coordination to only 597 * map the currently populated parts, to hinder parts that are expected to 598 * remain discarded from silently getting populated and consuming memory. 599 * Technologies that support discarding of RAM don't have to bother and can 600 * simply map the whole #MemoryRegion. 601 * 602 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 603 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 604 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 605 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 606 * properly coordinate with listeners before memory is plugged (populated), 607 * and after memory is unplugged (discarded). 608 * 609 * Listeners are called in multiples of the minimum granularity (unless it 610 * would exceed the registered range) and changes are aligned to the minimum 611 * granularity within the #MemoryRegion. Listeners have to prepare for memory 612 * becoming discarded in a different granularity than it was populated and the 613 * other way around. 614 */ 615 struct RamDiscardManagerClass { 616 /* private */ 617 InterfaceClass parent_class; 618 619 /* public */ 620 621 /** 622 * @get_min_granularity: 623 * 624 * Get the minimum granularity in which listeners will get notified 625 * about changes within the #MemoryRegion via the #RamDiscardManager. 626 * 627 * @rdm: the #RamDiscardManager 628 * @mr: the #MemoryRegion 629 * 630 * Returns the minimum granularity. 631 */ 632 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 633 const MemoryRegion *mr); 634 635 /** 636 * @is_populated: 637 * 638 * Check whether the given #MemoryRegionSection is completely populated 639 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 640 * There are no alignment requirements. 641 * 642 * @rdm: the #RamDiscardManager 643 * @section: the #MemoryRegionSection 644 * 645 * Returns whether the given range is completely populated. 646 */ 647 bool (*is_populated)(const RamDiscardManager *rdm, 648 const MemoryRegionSection *section); 649 650 /** 651 * @replay_populated: 652 * 653 * Call the #ReplayRamPopulate callback for all populated parts within the 654 * #MemoryRegionSection via the #RamDiscardManager. 655 * 656 * In case any call fails, no further calls are made. 657 * 658 * @rdm: the #RamDiscardManager 659 * @section: the #MemoryRegionSection 660 * @replay_fn: the #ReplayRamPopulate callback 661 * @opaque: pointer to forward to the callback 662 * 663 * Returns 0 on success, or a negative error if any notification failed. 664 */ 665 int (*replay_populated)(const RamDiscardManager *rdm, 666 MemoryRegionSection *section, 667 ReplayRamPopulate replay_fn, void *opaque); 668 669 /** 670 * @replay_discarded: 671 * 672 * Call the #ReplayRamDiscard callback for all discarded parts within the 673 * #MemoryRegionSection via the #RamDiscardManager. 674 * 675 * @rdm: the #RamDiscardManager 676 * @section: the #MemoryRegionSection 677 * @replay_fn: the #ReplayRamDiscard callback 678 * @opaque: pointer to forward to the callback 679 */ 680 void (*replay_discarded)(const RamDiscardManager *rdm, 681 MemoryRegionSection *section, 682 ReplayRamDiscard replay_fn, void *opaque); 683 684 /** 685 * @register_listener: 686 * 687 * Register a #RamDiscardListener for the given #MemoryRegionSection and 688 * immediately notify the #RamDiscardListener about all populated parts 689 * within the #MemoryRegionSection via the #RamDiscardManager. 690 * 691 * In case any notification fails, no further notifications are triggered 692 * and an error is logged. 693 * 694 * @rdm: the #RamDiscardManager 695 * @rdl: the #RamDiscardListener 696 * @section: the #MemoryRegionSection 697 */ 698 void (*register_listener)(RamDiscardManager *rdm, 699 RamDiscardListener *rdl, 700 MemoryRegionSection *section); 701 702 /** 703 * @unregister_listener: 704 * 705 * Unregister a previously registered #RamDiscardListener via the 706 * #RamDiscardManager after notifying the #RamDiscardListener about all 707 * populated parts becoming unpopulated within the registered 708 * #MemoryRegionSection. 709 * 710 * @rdm: the #RamDiscardManager 711 * @rdl: the #RamDiscardListener 712 */ 713 void (*unregister_listener)(RamDiscardManager *rdm, 714 RamDiscardListener *rdl); 715 }; 716 717 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 718 const MemoryRegion *mr); 719 720 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 721 const MemoryRegionSection *section); 722 723 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 724 MemoryRegionSection *section, 725 ReplayRamPopulate replay_fn, 726 void *opaque); 727 728 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 729 MemoryRegionSection *section, 730 ReplayRamDiscard replay_fn, 731 void *opaque); 732 733 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 734 RamDiscardListener *rdl, 735 MemoryRegionSection *section); 736 737 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 738 RamDiscardListener *rdl); 739 740 /** 741 * memory_get_xlat_addr: Extract addresses from a TLB entry 742 * 743 * @iotlb: pointer to an #IOMMUTLBEntry 744 * @vaddr: virtual address 745 * @ram_addr: RAM address 746 * @read_only: indicates if writes are allowed 747 * @mr_has_discard_manager: indicates memory is controlled by a 748 * RamDiscardManager 749 * @errp: pointer to Error*, to store an error if it happens. 750 * 751 * Return: true on success, else false setting @errp with error. 752 */ 753 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 754 ram_addr_t *ram_addr, bool *read_only, 755 bool *mr_has_discard_manager, Error **errp); 756 757 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 758 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 759 760 /** MemoryRegion: 761 * 762 * A struct representing a memory region. 763 */ 764 struct MemoryRegion { 765 Object parent_obj; 766 767 /* private: */ 768 769 /* The following fields should fit in a cache line */ 770 bool romd_mode; 771 bool ram; 772 bool subpage; 773 bool readonly; /* For RAM regions */ 774 bool nonvolatile; 775 bool rom_device; 776 bool flush_coalesced_mmio; 777 bool unmergeable; 778 uint8_t dirty_log_mask; 779 bool is_iommu; 780 RAMBlock *ram_block; 781 Object *owner; 782 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 783 DeviceState *dev; 784 785 const MemoryRegionOps *ops; 786 void *opaque; 787 MemoryRegion *container; 788 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 789 Int128 size; 790 hwaddr addr; 791 void (*destructor)(MemoryRegion *mr); 792 uint64_t align; 793 bool terminates; 794 bool ram_device; 795 bool enabled; 796 uint8_t vga_logging_count; 797 MemoryRegion *alias; 798 hwaddr alias_offset; 799 int32_t priority; 800 QTAILQ_HEAD(, MemoryRegion) subregions; 801 QTAILQ_ENTRY(MemoryRegion) subregions_link; 802 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 803 const char *name; 804 unsigned ioeventfd_nb; 805 MemoryRegionIoeventfd *ioeventfds; 806 RamDiscardManager *rdm; /* Only for RAM */ 807 808 /* For devices designed to perform re-entrant IO into their own IO MRs */ 809 bool disable_reentrancy_guard; 810 }; 811 812 struct IOMMUMemoryRegion { 813 MemoryRegion parent_obj; 814 815 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 816 IOMMUNotifierFlag iommu_notify_flags; 817 }; 818 819 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 820 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 821 822 #define MEMORY_LISTENER_PRIORITY_MIN 0 823 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 824 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 825 826 /** 827 * struct MemoryListener: callbacks structure for updates to the physical memory map 828 * 829 * Allows a component to adjust to changes in the guest-visible memory map. 830 * Use with memory_listener_register() and memory_listener_unregister(). 831 */ 832 struct MemoryListener { 833 /** 834 * @begin: 835 * 836 * Called at the beginning of an address space update transaction. 837 * Followed by calls to #MemoryListener.region_add(), 838 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 839 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 840 * increasing address order. 841 * 842 * @listener: The #MemoryListener. 843 */ 844 void (*begin)(MemoryListener *listener); 845 846 /** 847 * @commit: 848 * 849 * Called at the end of an address space update transaction, 850 * after the last call to #MemoryListener.region_add(), 851 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 852 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 853 * 854 * @listener: The #MemoryListener. 855 */ 856 void (*commit)(MemoryListener *listener); 857 858 /** 859 * @region_add: 860 * 861 * Called during an address space update transaction, 862 * for a section of the address space that is new in this address space 863 * space since the last transaction. 864 * 865 * @listener: The #MemoryListener. 866 * @section: The new #MemoryRegionSection. 867 */ 868 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 869 870 /** 871 * @region_del: 872 * 873 * Called during an address space update transaction, 874 * for a section of the address space that has disappeared in the address 875 * space since the last transaction. 876 * 877 * @listener: The #MemoryListener. 878 * @section: The old #MemoryRegionSection. 879 */ 880 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 881 882 /** 883 * @region_nop: 884 * 885 * Called during an address space update transaction, 886 * for a section of the address space that is in the same place in the address 887 * space as in the last transaction. 888 * 889 * @listener: The #MemoryListener. 890 * @section: The #MemoryRegionSection. 891 */ 892 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 893 894 /** 895 * @log_start: 896 * 897 * Called during an address space update transaction, after 898 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 899 * #MemoryListener.region_nop(), if dirty memory logging clients have 900 * become active since the last transaction. 901 * 902 * @listener: The #MemoryListener. 903 * @section: The #MemoryRegionSection. 904 * @old: A bitmap of dirty memory logging clients that were active in 905 * the previous transaction. 906 * @new: A bitmap of dirty memory logging clients that are active in 907 * the current transaction. 908 */ 909 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 910 int old_val, int new_val); 911 912 /** 913 * @log_stop: 914 * 915 * Called during an address space update transaction, after 916 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 917 * #MemoryListener.region_nop() and possibly after 918 * #MemoryListener.log_start(), if dirty memory logging clients have 919 * become inactive since the last transaction. 920 * 921 * @listener: The #MemoryListener. 922 * @section: The #MemoryRegionSection. 923 * @old: A bitmap of dirty memory logging clients that were active in 924 * the previous transaction. 925 * @new: A bitmap of dirty memory logging clients that are active in 926 * the current transaction. 927 */ 928 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 929 int old_val, int new_val); 930 931 /** 932 * @log_sync: 933 * 934 * Called by memory_region_snapshot_and_clear_dirty() and 935 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 936 * copy of the dirty memory bitmap for a #MemoryRegionSection. 937 * 938 * @listener: The #MemoryListener. 939 * @section: The #MemoryRegionSection. 940 */ 941 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 942 943 /** 944 * @log_sync_global: 945 * 946 * This is the global version of @log_sync when the listener does 947 * not have a way to synchronize the log with finer granularity. 948 * When the listener registers with @log_sync_global defined, then 949 * its @log_sync must be NULL. Vice versa. 950 * 951 * @listener: The #MemoryListener. 952 * @last_stage: The last stage to synchronize the log during migration. 953 * The caller should guarantee that the synchronization with true for 954 * @last_stage is triggered for once after all VCPUs have been stopped. 955 */ 956 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 957 958 /** 959 * @log_clear: 960 * 961 * Called before reading the dirty memory bitmap for a 962 * #MemoryRegionSection. 963 * 964 * @listener: The #MemoryListener. 965 * @section: The #MemoryRegionSection. 966 */ 967 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 968 969 /** 970 * @log_global_start: 971 * 972 * Called by memory_global_dirty_log_start(), which 973 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 974 * the address space. #MemoryListener.log_global_start() is also 975 * called when a #MemoryListener is added, if global dirty logging is 976 * active at that time. 977 * 978 * @listener: The #MemoryListener. 979 * @errp: pointer to Error*, to store an error if it happens. 980 * 981 * Return: true on success, else false setting @errp with error. 982 */ 983 bool (*log_global_start)(MemoryListener *listener, Error **errp); 984 985 /** 986 * @log_global_stop: 987 * 988 * Called by memory_global_dirty_log_stop(), which 989 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 990 * the address space. 991 * 992 * @listener: The #MemoryListener. 993 */ 994 void (*log_global_stop)(MemoryListener *listener); 995 996 /** 997 * @log_global_after_sync: 998 * 999 * Called after reading the dirty memory bitmap 1000 * for any #MemoryRegionSection. 1001 * 1002 * @listener: The #MemoryListener. 1003 */ 1004 void (*log_global_after_sync)(MemoryListener *listener); 1005 1006 /** 1007 * @eventfd_add: 1008 * 1009 * Called during an address space update transaction, 1010 * for a section of the address space that has had a new ioeventfd 1011 * registration since the last transaction. 1012 * 1013 * @listener: The #MemoryListener. 1014 * @section: The new #MemoryRegionSection. 1015 * @match_data: The @match_data parameter for the new ioeventfd. 1016 * @data: The @data parameter for the new ioeventfd. 1017 * @e: The #EventNotifier parameter for the new ioeventfd. 1018 */ 1019 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1020 bool match_data, uint64_t data, EventNotifier *e); 1021 1022 /** 1023 * @eventfd_del: 1024 * 1025 * Called during an address space update transaction, 1026 * for a section of the address space that has dropped an ioeventfd 1027 * registration since the last transaction. 1028 * 1029 * @listener: The #MemoryListener. 1030 * @section: The new #MemoryRegionSection. 1031 * @match_data: The @match_data parameter for the dropped ioeventfd. 1032 * @data: The @data parameter for the dropped ioeventfd. 1033 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1034 */ 1035 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1036 bool match_data, uint64_t data, EventNotifier *e); 1037 1038 /** 1039 * @coalesced_io_add: 1040 * 1041 * Called during an address space update transaction, 1042 * for a section of the address space that has had a new coalesced 1043 * MMIO range registration since the last transaction. 1044 * 1045 * @listener: The #MemoryListener. 1046 * @section: The new #MemoryRegionSection. 1047 * @addr: The starting address for the coalesced MMIO range. 1048 * @len: The length of the coalesced MMIO range. 1049 */ 1050 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1051 hwaddr addr, hwaddr len); 1052 1053 /** 1054 * @coalesced_io_del: 1055 * 1056 * Called during an address space update transaction, 1057 * for a section of the address space that has dropped a coalesced 1058 * MMIO range since the last transaction. 1059 * 1060 * @listener: The #MemoryListener. 1061 * @section: The new #MemoryRegionSection. 1062 * @addr: The starting address for the coalesced MMIO range. 1063 * @len: The length of the coalesced MMIO range. 1064 */ 1065 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1066 hwaddr addr, hwaddr len); 1067 /** 1068 * @priority: 1069 * 1070 * Govern the order in which memory listeners are invoked. Lower priorities 1071 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1072 * or "stop" callbacks. 1073 */ 1074 unsigned priority; 1075 1076 /** 1077 * @name: 1078 * 1079 * Name of the listener. It can be used in contexts where we'd like to 1080 * identify one memory listener with the rest. 1081 */ 1082 const char *name; 1083 1084 /* private: */ 1085 AddressSpace *address_space; 1086 QTAILQ_ENTRY(MemoryListener) link; 1087 QTAILQ_ENTRY(MemoryListener) link_as; 1088 }; 1089 1090 typedef struct AddressSpaceMapClient { 1091 QEMUBH *bh; 1092 QLIST_ENTRY(AddressSpaceMapClient) link; 1093 } AddressSpaceMapClient; 1094 1095 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096) 1096 1097 /** 1098 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1099 */ 1100 struct AddressSpace { 1101 /* private: */ 1102 struct rcu_head rcu; 1103 char *name; 1104 MemoryRegion *root; 1105 1106 /* Accessed via RCU. */ 1107 struct FlatView *current_map; 1108 1109 int ioeventfd_nb; 1110 int ioeventfd_notifiers; 1111 struct MemoryRegionIoeventfd *ioeventfds; 1112 QTAILQ_HEAD(, MemoryListener) listeners; 1113 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1114 1115 /* 1116 * Maximum DMA bounce buffer size used for indirect memory map requests. 1117 * This limits the total size of bounce buffer allocations made for 1118 * DMA requests to indirect memory regions within this AddressSpace. DMA 1119 * requests that exceed the limit (e.g. due to overly large requested size 1120 * or concurrent DMA requests having claimed too much buffer space) will be 1121 * rejected and left to the caller to handle. 1122 */ 1123 size_t max_bounce_buffer_size; 1124 /* Total size of bounce buffers currently allocated, atomically accessed */ 1125 size_t bounce_buffer_size; 1126 /* List of callbacks to invoke when buffers free up */ 1127 QemuMutex map_client_list_lock; 1128 QLIST_HEAD(, AddressSpaceMapClient) map_client_list; 1129 }; 1130 1131 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1132 typedef struct FlatRange FlatRange; 1133 1134 /* Flattened global view of current active memory hierarchy. Kept in sorted 1135 * order. 1136 */ 1137 struct FlatView { 1138 struct rcu_head rcu; 1139 unsigned ref; 1140 FlatRange *ranges; 1141 unsigned nr; 1142 unsigned nr_allocated; 1143 struct AddressSpaceDispatch *dispatch; 1144 MemoryRegion *root; 1145 }; 1146 1147 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1148 { 1149 return qatomic_rcu_read(&as->current_map); 1150 } 1151 1152 /** 1153 * typedef flatview_cb: callback for flatview_for_each_range() 1154 * 1155 * @start: start address of the range within the FlatView 1156 * @len: length of the range in bytes 1157 * @mr: MemoryRegion covering this range 1158 * @offset_in_region: offset of the first byte of the range within @mr 1159 * @opaque: data pointer passed to flatview_for_each_range() 1160 * 1161 * Returns: true to stop the iteration, false to keep going. 1162 */ 1163 typedef bool (*flatview_cb)(Int128 start, 1164 Int128 len, 1165 const MemoryRegion *mr, 1166 hwaddr offset_in_region, 1167 void *opaque); 1168 1169 /** 1170 * flatview_for_each_range: Iterate through a FlatView 1171 * @fv: the FlatView to iterate through 1172 * @cb: function to call for each range 1173 * @opaque: opaque data pointer to pass to @cb 1174 * 1175 * A FlatView is made up of a list of non-overlapping ranges, each of 1176 * which is a slice of a MemoryRegion. This function iterates through 1177 * each range in @fv, calling @cb. The callback function can terminate 1178 * iteration early by returning 'true'. 1179 */ 1180 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1181 1182 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1183 MemoryRegionSection *b) 1184 { 1185 return a->mr == b->mr && 1186 a->fv == b->fv && 1187 a->offset_within_region == b->offset_within_region && 1188 a->offset_within_address_space == b->offset_within_address_space && 1189 int128_eq(a->size, b->size) && 1190 a->readonly == b->readonly && 1191 a->nonvolatile == b->nonvolatile; 1192 } 1193 1194 /** 1195 * memory_region_section_new_copy: Copy a memory region section 1196 * 1197 * Allocate memory for a new copy, copy the memory region section, and 1198 * properly take a reference on all relevant members. 1199 * 1200 * @s: the #MemoryRegionSection to copy 1201 */ 1202 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1203 1204 /** 1205 * memory_region_section_free_copy: Free a copied memory region section 1206 * 1207 * Free a copy of a memory section created via memory_region_section_new_copy(). 1208 * properly dropping references on all relevant members. 1209 * 1210 * @s: the #MemoryRegionSection to copy 1211 */ 1212 void memory_region_section_free_copy(MemoryRegionSection *s); 1213 1214 /** 1215 * memory_region_init: Initialize a memory region 1216 * 1217 * The region typically acts as a container for other memory regions. Use 1218 * memory_region_add_subregion() to add subregions. 1219 * 1220 * @mr: the #MemoryRegion to be initialized 1221 * @owner: the object that tracks the region's reference count 1222 * @name: used for debugging; not visible to the user or ABI 1223 * @size: size of the region; any subregions beyond this size will be clipped 1224 */ 1225 void memory_region_init(MemoryRegion *mr, 1226 Object *owner, 1227 const char *name, 1228 uint64_t size); 1229 1230 /** 1231 * memory_region_ref: Add 1 to a memory region's reference count 1232 * 1233 * Whenever memory regions are accessed outside the BQL, they need to be 1234 * preserved against hot-unplug. MemoryRegions actually do not have their 1235 * own reference count; they piggyback on a QOM object, their "owner". 1236 * This function adds a reference to the owner. 1237 * 1238 * All MemoryRegions must have an owner if they can disappear, even if the 1239 * device they belong to operates exclusively under the BQL. This is because 1240 * the region could be returned at any time by memory_region_find, and this 1241 * is usually under guest control. 1242 * 1243 * @mr: the #MemoryRegion 1244 */ 1245 void memory_region_ref(MemoryRegion *mr); 1246 1247 /** 1248 * memory_region_unref: Remove 1 to a memory region's reference count 1249 * 1250 * Whenever memory regions are accessed outside the BQL, they need to be 1251 * preserved against hot-unplug. MemoryRegions actually do not have their 1252 * own reference count; they piggyback on a QOM object, their "owner". 1253 * This function removes a reference to the owner and possibly destroys it. 1254 * 1255 * @mr: the #MemoryRegion 1256 */ 1257 void memory_region_unref(MemoryRegion *mr); 1258 1259 /** 1260 * memory_region_init_io: Initialize an I/O memory region. 1261 * 1262 * Accesses into the region will cause the callbacks in @ops to be called. 1263 * if @size is nonzero, subregions will be clipped to @size. 1264 * 1265 * @mr: the #MemoryRegion to be initialized. 1266 * @owner: the object that tracks the region's reference count 1267 * @ops: a structure containing read and write callbacks to be used when 1268 * I/O is performed on the region. 1269 * @opaque: passed to the read and write callbacks of the @ops structure. 1270 * @name: used for debugging; not visible to the user or ABI 1271 * @size: size of the region. 1272 */ 1273 void memory_region_init_io(MemoryRegion *mr, 1274 Object *owner, 1275 const MemoryRegionOps *ops, 1276 void *opaque, 1277 const char *name, 1278 uint64_t size); 1279 1280 /** 1281 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1282 * into the region will modify memory 1283 * directly. 1284 * 1285 * @mr: the #MemoryRegion to be initialized. 1286 * @owner: the object that tracks the region's reference count 1287 * @name: Region name, becomes part of RAMBlock name used in migration stream 1288 * must be unique within any device 1289 * @size: size of the region. 1290 * @errp: pointer to Error*, to store an error if it happens. 1291 * 1292 * Note that this function does not do anything to cause the data in the 1293 * RAM memory region to be migrated; that is the responsibility of the caller. 1294 * 1295 * Return: true on success, else false setting @errp with error. 1296 */ 1297 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1298 Object *owner, 1299 const char *name, 1300 uint64_t size, 1301 Error **errp); 1302 1303 /** 1304 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1305 * Accesses into the region will 1306 * modify memory directly. 1307 * 1308 * @mr: the #MemoryRegion to be initialized. 1309 * @owner: the object that tracks the region's reference count 1310 * @name: Region name, becomes part of RAMBlock name used in migration stream 1311 * must be unique within any device 1312 * @size: size of the region. 1313 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE, 1314 * RAM_GUEST_MEMFD. 1315 * @errp: pointer to Error*, to store an error if it happens. 1316 * 1317 * Note that this function does not do anything to cause the data in the 1318 * RAM memory region to be migrated; that is the responsibility of the caller. 1319 * 1320 * Return: true on success, else false setting @errp with error. 1321 */ 1322 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1323 Object *owner, 1324 const char *name, 1325 uint64_t size, 1326 uint32_t ram_flags, 1327 Error **errp); 1328 1329 /** 1330 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1331 * RAM. Accesses into the region will 1332 * modify memory directly. Only an initial 1333 * portion of this RAM is actually used. 1334 * Changing the size while migrating 1335 * can result in the migration being 1336 * canceled. 1337 * 1338 * @mr: the #MemoryRegion to be initialized. 1339 * @owner: the object that tracks the region's reference count 1340 * @name: Region name, becomes part of RAMBlock name used in migration stream 1341 * must be unique within any device 1342 * @size: used size of the region. 1343 * @max_size: max size of the region. 1344 * @resized: callback to notify owner about used size change. 1345 * @errp: pointer to Error*, to store an error if it happens. 1346 * 1347 * Note that this function does not do anything to cause the data in the 1348 * RAM memory region to be migrated; that is the responsibility of the caller. 1349 * 1350 * Return: true on success, else false setting @errp with error. 1351 */ 1352 bool memory_region_init_resizeable_ram(MemoryRegion *mr, 1353 Object *owner, 1354 const char *name, 1355 uint64_t size, 1356 uint64_t max_size, 1357 void (*resized)(const char*, 1358 uint64_t length, 1359 void *host), 1360 Error **errp); 1361 #ifdef CONFIG_POSIX 1362 1363 /** 1364 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1365 * mmap-ed backend. 1366 * 1367 * @mr: the #MemoryRegion to be initialized. 1368 * @owner: the object that tracks the region's reference count 1369 * @name: Region name, becomes part of RAMBlock name used in migration stream 1370 * must be unique within any device 1371 * @size: size of the region. 1372 * @align: alignment of the region base address; if 0, the default alignment 1373 * (getpagesize()) will be used. 1374 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1375 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1376 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1377 * @path: the path in which to allocate the RAM. 1378 * @offset: offset within the file referenced by path 1379 * @errp: pointer to Error*, to store an error if it happens. 1380 * 1381 * Note that this function does not do anything to cause the data in the 1382 * RAM memory region to be migrated; that is the responsibility of the caller. 1383 * 1384 * Return: true on success, else false setting @errp with error. 1385 */ 1386 bool memory_region_init_ram_from_file(MemoryRegion *mr, 1387 Object *owner, 1388 const char *name, 1389 uint64_t size, 1390 uint64_t align, 1391 uint32_t ram_flags, 1392 const char *path, 1393 ram_addr_t offset, 1394 Error **errp); 1395 1396 /** 1397 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1398 * mmap-ed backend. 1399 * 1400 * @mr: the #MemoryRegion to be initialized. 1401 * @owner: the object that tracks the region's reference count 1402 * @name: the name of the region. 1403 * @size: size of the region. 1404 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1405 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1406 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1407 * @fd: the fd to mmap. 1408 * @offset: offset within the file referenced by fd 1409 * @errp: pointer to Error*, to store an error if it happens. 1410 * 1411 * Note that this function does not do anything to cause the data in the 1412 * RAM memory region to be migrated; that is the responsibility of the caller. 1413 * 1414 * Return: true on success, else false setting @errp with error. 1415 */ 1416 bool memory_region_init_ram_from_fd(MemoryRegion *mr, 1417 Object *owner, 1418 const char *name, 1419 uint64_t size, 1420 uint32_t ram_flags, 1421 int fd, 1422 ram_addr_t offset, 1423 Error **errp); 1424 #endif 1425 1426 /** 1427 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1428 * user-provided pointer. Accesses into the 1429 * region will modify memory directly. 1430 * 1431 * @mr: the #MemoryRegion to be initialized. 1432 * @owner: the object that tracks the region's reference count 1433 * @name: Region name, becomes part of RAMBlock name used in migration stream 1434 * must be unique within any device 1435 * @size: size of the region. 1436 * @ptr: memory to be mapped; must contain at least @size bytes. 1437 * 1438 * Note that this function does not do anything to cause the data in the 1439 * RAM memory region to be migrated; that is the responsibility of the caller. 1440 */ 1441 void memory_region_init_ram_ptr(MemoryRegion *mr, 1442 Object *owner, 1443 const char *name, 1444 uint64_t size, 1445 void *ptr); 1446 1447 /** 1448 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1449 * a user-provided pointer. 1450 * 1451 * A RAM device represents a mapping to a physical device, such as to a PCI 1452 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1453 * into the VM address space and access to the region will modify memory 1454 * directly. However, the memory region should not be included in a memory 1455 * dump (device may not be enabled/mapped at the time of the dump), and 1456 * operations incompatible with manipulating MMIO should be avoided. Replaces 1457 * skip_dump flag. 1458 * 1459 * @mr: the #MemoryRegion to be initialized. 1460 * @owner: the object that tracks the region's reference count 1461 * @name: the name of the region. 1462 * @size: size of the region. 1463 * @ptr: memory to be mapped; must contain at least @size bytes. 1464 * 1465 * Note that this function does not do anything to cause the data in the 1466 * RAM memory region to be migrated; that is the responsibility of the caller. 1467 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1468 */ 1469 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1470 Object *owner, 1471 const char *name, 1472 uint64_t size, 1473 void *ptr); 1474 1475 /** 1476 * memory_region_init_alias: Initialize a memory region that aliases all or a 1477 * part of another memory region. 1478 * 1479 * @mr: the #MemoryRegion to be initialized. 1480 * @owner: the object that tracks the region's reference count 1481 * @name: used for debugging; not visible to the user or ABI 1482 * @orig: the region to be referenced; @mr will be equivalent to 1483 * @orig between @offset and @offset + @size - 1. 1484 * @offset: start of the section in @orig to be referenced. 1485 * @size: size of the region. 1486 */ 1487 void memory_region_init_alias(MemoryRegion *mr, 1488 Object *owner, 1489 const char *name, 1490 MemoryRegion *orig, 1491 hwaddr offset, 1492 uint64_t size); 1493 1494 /** 1495 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1496 * 1497 * This has the same effect as calling memory_region_init_ram_nomigrate() 1498 * and then marking the resulting region read-only with 1499 * memory_region_set_readonly(). 1500 * 1501 * Note that this function does not do anything to cause the data in the 1502 * RAM side of the memory region to be migrated; that is the responsibility 1503 * of the caller. 1504 * 1505 * @mr: the #MemoryRegion to be initialized. 1506 * @owner: the object that tracks the region's reference count 1507 * @name: Region name, becomes part of RAMBlock name used in migration stream 1508 * must be unique within any device 1509 * @size: size of the region. 1510 * @errp: pointer to Error*, to store an error if it happens. 1511 * 1512 * Return: true on success, else false setting @errp with error. 1513 */ 1514 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1515 Object *owner, 1516 const char *name, 1517 uint64_t size, 1518 Error **errp); 1519 1520 /** 1521 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1522 * Writes are handled via callbacks. 1523 * 1524 * Note that this function does not do anything to cause the data in the 1525 * RAM side of the memory region to be migrated; that is the responsibility 1526 * of the caller. 1527 * 1528 * @mr: the #MemoryRegion to be initialized. 1529 * @owner: the object that tracks the region's reference count 1530 * @ops: callbacks for write access handling (must not be NULL). 1531 * @opaque: passed to the read and write callbacks of the @ops structure. 1532 * @name: Region name, becomes part of RAMBlock name used in migration stream 1533 * must be unique within any device 1534 * @size: size of the region. 1535 * @errp: pointer to Error*, to store an error if it happens. 1536 * 1537 * Return: true on success, else false setting @errp with error. 1538 */ 1539 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1540 Object *owner, 1541 const MemoryRegionOps *ops, 1542 void *opaque, 1543 const char *name, 1544 uint64_t size, 1545 Error **errp); 1546 1547 /** 1548 * memory_region_init_iommu: Initialize a memory region of a custom type 1549 * that translates addresses 1550 * 1551 * An IOMMU region translates addresses and forwards accesses to a target 1552 * memory region. 1553 * 1554 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1555 * @_iommu_mr should be a pointer to enough memory for an instance of 1556 * that subclass, @instance_size is the size of that subclass, and 1557 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1558 * instance of the subclass, and its methods will then be called to handle 1559 * accesses to the memory region. See the documentation of 1560 * #IOMMUMemoryRegionClass for further details. 1561 * 1562 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1563 * @instance_size: the IOMMUMemoryRegion subclass instance size 1564 * @mrtypename: the type name of the #IOMMUMemoryRegion 1565 * @owner: the object that tracks the region's reference count 1566 * @name: used for debugging; not visible to the user or ABI 1567 * @size: size of the region. 1568 */ 1569 void memory_region_init_iommu(void *_iommu_mr, 1570 size_t instance_size, 1571 const char *mrtypename, 1572 Object *owner, 1573 const char *name, 1574 uint64_t size); 1575 1576 /** 1577 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1578 * region will modify memory directly. 1579 * 1580 * @mr: the #MemoryRegion to be initialized 1581 * @owner: the object that tracks the region's reference count (must be 1582 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1583 * @name: name of the memory region 1584 * @size: size of the region in bytes 1585 * @errp: pointer to Error*, to store an error if it happens. 1586 * 1587 * This function allocates RAM for a board model or device, and 1588 * arranges for it to be migrated (by calling vmstate_register_ram() 1589 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1590 * @owner is NULL). 1591 * 1592 * TODO: Currently we restrict @owner to being either NULL (for 1593 * global RAM regions with no owner) or devices, so that we can 1594 * give the RAM block a unique name for migration purposes. 1595 * We should lift this restriction and allow arbitrary Objects. 1596 * If you pass a non-NULL non-device @owner then we will assert. 1597 * 1598 * Return: true on success, else false setting @errp with error. 1599 */ 1600 bool memory_region_init_ram(MemoryRegion *mr, 1601 Object *owner, 1602 const char *name, 1603 uint64_t size, 1604 Error **errp); 1605 1606 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr, 1607 Object *owner, 1608 const char *name, 1609 uint64_t size, 1610 Error **errp); 1611 1612 /** 1613 * memory_region_init_rom: Initialize a ROM memory region. 1614 * 1615 * This has the same effect as calling memory_region_init_ram() 1616 * and then marking the resulting region read-only with 1617 * memory_region_set_readonly(). This includes arranging for the 1618 * contents to be migrated. 1619 * 1620 * TODO: Currently we restrict @owner to being either NULL (for 1621 * global RAM regions with no owner) or devices, so that we can 1622 * give the RAM block a unique name for migration purposes. 1623 * We should lift this restriction and allow arbitrary Objects. 1624 * If you pass a non-NULL non-device @owner then we will assert. 1625 * 1626 * @mr: the #MemoryRegion to be initialized. 1627 * @owner: the object that tracks the region's reference count 1628 * @name: Region name, becomes part of RAMBlock name used in migration stream 1629 * must be unique within any device 1630 * @size: size of the region. 1631 * @errp: pointer to Error*, to store an error if it happens. 1632 * 1633 * Return: true on success, else false setting @errp with error. 1634 */ 1635 bool memory_region_init_rom(MemoryRegion *mr, 1636 Object *owner, 1637 const char *name, 1638 uint64_t size, 1639 Error **errp); 1640 1641 /** 1642 * memory_region_init_rom_device: Initialize a ROM memory region. 1643 * Writes are handled via callbacks. 1644 * 1645 * This function initializes a memory region backed by RAM for reads 1646 * and callbacks for writes, and arranges for the RAM backing to 1647 * be migrated (by calling vmstate_register_ram() 1648 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1649 * @owner is NULL). 1650 * 1651 * TODO: Currently we restrict @owner to being either NULL (for 1652 * global RAM regions with no owner) or devices, so that we can 1653 * give the RAM block a unique name for migration purposes. 1654 * We should lift this restriction and allow arbitrary Objects. 1655 * If you pass a non-NULL non-device @owner then we will assert. 1656 * 1657 * @mr: the #MemoryRegion to be initialized. 1658 * @owner: the object that tracks the region's reference count 1659 * @ops: callbacks for write access handling (must not be NULL). 1660 * @opaque: passed to the read and write callbacks of the @ops structure. 1661 * @name: Region name, becomes part of RAMBlock name used in migration stream 1662 * must be unique within any device 1663 * @size: size of the region. 1664 * @errp: pointer to Error*, to store an error if it happens. 1665 * 1666 * Return: true on success, else false setting @errp with error. 1667 */ 1668 bool memory_region_init_rom_device(MemoryRegion *mr, 1669 Object *owner, 1670 const MemoryRegionOps *ops, 1671 void *opaque, 1672 const char *name, 1673 uint64_t size, 1674 Error **errp); 1675 1676 1677 /** 1678 * memory_region_owner: get a memory region's owner. 1679 * 1680 * @mr: the memory region being queried. 1681 */ 1682 Object *memory_region_owner(MemoryRegion *mr); 1683 1684 /** 1685 * memory_region_size: get a memory region's size. 1686 * 1687 * @mr: the memory region being queried. 1688 */ 1689 uint64_t memory_region_size(MemoryRegion *mr); 1690 1691 /** 1692 * memory_region_is_ram: check whether a memory region is random access 1693 * 1694 * Returns %true if a memory region is random access. 1695 * 1696 * @mr: the memory region being queried 1697 */ 1698 static inline bool memory_region_is_ram(MemoryRegion *mr) 1699 { 1700 return mr->ram; 1701 } 1702 1703 /** 1704 * memory_region_is_ram_device: check whether a memory region is a ram device 1705 * 1706 * Returns %true if a memory region is a device backed ram region 1707 * 1708 * @mr: the memory region being queried 1709 */ 1710 bool memory_region_is_ram_device(MemoryRegion *mr); 1711 1712 /** 1713 * memory_region_is_romd: check whether a memory region is in ROMD mode 1714 * 1715 * Returns %true if a memory region is a ROM device and currently set to allow 1716 * direct reads. 1717 * 1718 * @mr: the memory region being queried 1719 */ 1720 static inline bool memory_region_is_romd(MemoryRegion *mr) 1721 { 1722 return mr->rom_device && mr->romd_mode; 1723 } 1724 1725 /** 1726 * memory_region_is_protected: check whether a memory region is protected 1727 * 1728 * Returns %true if a memory region is protected RAM and cannot be accessed 1729 * via standard mechanisms, e.g. DMA. 1730 * 1731 * @mr: the memory region being queried 1732 */ 1733 bool memory_region_is_protected(MemoryRegion *mr); 1734 1735 /** 1736 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd 1737 * associated 1738 * 1739 * Returns %true if a memory region's ram_block has valid guest_memfd assigned. 1740 * 1741 * @mr: the memory region being queried 1742 */ 1743 bool memory_region_has_guest_memfd(MemoryRegion *mr); 1744 1745 /** 1746 * memory_region_get_iommu: check whether a memory region is an iommu 1747 * 1748 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1749 * otherwise NULL. 1750 * 1751 * @mr: the memory region being queried 1752 */ 1753 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1754 { 1755 if (mr->alias) { 1756 return memory_region_get_iommu(mr->alias); 1757 } 1758 if (mr->is_iommu) { 1759 return (IOMMUMemoryRegion *) mr; 1760 } 1761 return NULL; 1762 } 1763 1764 /** 1765 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1766 * if an iommu or NULL if not 1767 * 1768 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1769 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1770 * 1771 * @iommu_mr: the memory region being queried 1772 */ 1773 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1774 IOMMUMemoryRegion *iommu_mr) 1775 { 1776 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1777 } 1778 1779 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1780 1781 /** 1782 * memory_region_iommu_get_min_page_size: get minimum supported page size 1783 * for an iommu 1784 * 1785 * Returns minimum supported page size for an iommu. 1786 * 1787 * @iommu_mr: the memory region being queried 1788 */ 1789 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1790 1791 /** 1792 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1793 * 1794 * Note: for any IOMMU implementation, an in-place mapping change 1795 * should be notified with an UNMAP followed by a MAP. 1796 * 1797 * @iommu_mr: the memory region that was changed 1798 * @iommu_idx: the IOMMU index for the translation table which has changed 1799 * @event: TLB event with the new entry in the IOMMU translation table. 1800 * The entry replaces all old entries for the same virtual I/O address 1801 * range. 1802 */ 1803 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1804 int iommu_idx, 1805 const IOMMUTLBEvent event); 1806 1807 /** 1808 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1809 * entry to a single notifier 1810 * 1811 * This works just like memory_region_notify_iommu(), but it only 1812 * notifies a specific notifier, not all of them. 1813 * 1814 * @notifier: the notifier to be notified 1815 * @event: TLB event with the new entry in the IOMMU translation table. 1816 * The entry replaces all old entries for the same virtual I/O address 1817 * range. 1818 */ 1819 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1820 const IOMMUTLBEvent *event); 1821 1822 /** 1823 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1824 * translation that covers the 1825 * range of a notifier 1826 * 1827 * @notifier: the notifier to be notified 1828 */ 1829 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1830 1831 1832 /** 1833 * memory_region_register_iommu_notifier: register a notifier for changes to 1834 * IOMMU translation entries. 1835 * 1836 * Returns 0 on success, or a negative errno otherwise. In particular, 1837 * -EINVAL indicates that at least one of the attributes of the notifier 1838 * is not supported (flag/range) by the IOMMU memory region. In case of error 1839 * the error object must be created. 1840 * 1841 * @mr: the memory region to observe 1842 * @n: the IOMMUNotifier to be added; the notify callback receives a 1843 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1844 * ceases to be valid on exit from the notifier. 1845 * @errp: pointer to Error*, to store an error if it happens. 1846 */ 1847 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1848 IOMMUNotifier *n, Error **errp); 1849 1850 /** 1851 * memory_region_iommu_replay: replay existing IOMMU translations to 1852 * a notifier with the minimum page granularity returned by 1853 * mr->iommu_ops->get_page_size(). 1854 * 1855 * Note: this is not related to record-and-replay functionality. 1856 * 1857 * @iommu_mr: the memory region to observe 1858 * @n: the notifier to which to replay iommu mappings 1859 */ 1860 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1861 1862 /** 1863 * memory_region_unregister_iommu_notifier: unregister a notifier for 1864 * changes to IOMMU translation entries. 1865 * 1866 * @mr: the memory region which was observed and for which notify_stopped() 1867 * needs to be called 1868 * @n: the notifier to be removed. 1869 */ 1870 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1871 IOMMUNotifier *n); 1872 1873 /** 1874 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1875 * defined on the IOMMU. 1876 * 1877 * Returns 0 on success, or a negative errno otherwise. In particular, 1878 * -EINVAL indicates that the IOMMU does not support the requested 1879 * attribute. 1880 * 1881 * @iommu_mr: the memory region 1882 * @attr: the requested attribute 1883 * @data: a pointer to the requested attribute data 1884 */ 1885 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1886 enum IOMMUMemoryRegionAttr attr, 1887 void *data); 1888 1889 /** 1890 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1891 * use for translations with the given memory transaction attributes. 1892 * 1893 * @iommu_mr: the memory region 1894 * @attrs: the memory transaction attributes 1895 */ 1896 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1897 MemTxAttrs attrs); 1898 1899 /** 1900 * memory_region_iommu_num_indexes: return the total number of IOMMU 1901 * indexes that this IOMMU supports. 1902 * 1903 * @iommu_mr: the memory region 1904 */ 1905 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1906 1907 /** 1908 * memory_region_name: get a memory region's name 1909 * 1910 * Returns the string that was used to initialize the memory region. 1911 * 1912 * @mr: the memory region being queried 1913 */ 1914 const char *memory_region_name(const MemoryRegion *mr); 1915 1916 /** 1917 * memory_region_is_logging: return whether a memory region is logging writes 1918 * 1919 * Returns %true if the memory region is logging writes for the given client 1920 * 1921 * @mr: the memory region being queried 1922 * @client: the client being queried 1923 */ 1924 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1925 1926 /** 1927 * memory_region_get_dirty_log_mask: return the clients for which a 1928 * memory region is logging writes. 1929 * 1930 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1931 * are the bit indices. 1932 * 1933 * @mr: the memory region being queried 1934 */ 1935 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1936 1937 /** 1938 * memory_region_is_rom: check whether a memory region is ROM 1939 * 1940 * Returns %true if a memory region is read-only memory. 1941 * 1942 * @mr: the memory region being queried 1943 */ 1944 static inline bool memory_region_is_rom(MemoryRegion *mr) 1945 { 1946 return mr->ram && mr->readonly; 1947 } 1948 1949 /** 1950 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1951 * 1952 * Returns %true is a memory region is non-volatile memory. 1953 * 1954 * @mr: the memory region being queried 1955 */ 1956 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1957 { 1958 return mr->nonvolatile; 1959 } 1960 1961 /** 1962 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1963 * 1964 * Returns a file descriptor backing a file-based RAM memory region, 1965 * or -1 if the region is not a file-based RAM memory region. 1966 * 1967 * @mr: the RAM or alias memory region being queried. 1968 */ 1969 int memory_region_get_fd(MemoryRegion *mr); 1970 1971 /** 1972 * memory_region_from_host: Convert a pointer into a RAM memory region 1973 * and an offset within it. 1974 * 1975 * Given a host pointer inside a RAM memory region (created with 1976 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1977 * the MemoryRegion and the offset within it. 1978 * 1979 * Use with care; by the time this function returns, the returned pointer is 1980 * not protected by RCU anymore. If the caller is not within an RCU critical 1981 * section and does not hold the BQL, it must have other means of 1982 * protecting the pointer, such as a reference to the region that includes 1983 * the incoming ram_addr_t. 1984 * 1985 * @ptr: the host pointer to be converted 1986 * @offset: the offset within memory region 1987 */ 1988 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1989 1990 /** 1991 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1992 * 1993 * Returns a host pointer to a RAM memory region (created with 1994 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1995 * 1996 * Use with care; by the time this function returns, the returned pointer is 1997 * not protected by RCU anymore. If the caller is not within an RCU critical 1998 * section and does not hold the BQL, it must have other means of 1999 * protecting the pointer, such as a reference to the region that includes 2000 * the incoming ram_addr_t. 2001 * 2002 * @mr: the memory region being queried. 2003 */ 2004 void *memory_region_get_ram_ptr(MemoryRegion *mr); 2005 2006 /* memory_region_ram_resize: Resize a RAM region. 2007 * 2008 * Resizing RAM while migrating can result in the migration being canceled. 2009 * Care has to be taken if the guest might have already detected the memory. 2010 * 2011 * @mr: a memory region created with @memory_region_init_resizeable_ram. 2012 * @newsize: the new size the region 2013 * @errp: pointer to Error*, to store an error if it happens. 2014 */ 2015 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 2016 Error **errp); 2017 2018 /** 2019 * memory_region_msync: Synchronize selected address range of 2020 * a memory mapped region 2021 * 2022 * @mr: the memory region to be msync 2023 * @addr: the initial address of the range to be sync 2024 * @size: the size of the range to be sync 2025 */ 2026 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 2027 2028 /** 2029 * memory_region_writeback: Trigger cache writeback for 2030 * selected address range 2031 * 2032 * @mr: the memory region to be updated 2033 * @addr: the initial address of the range to be written back 2034 * @size: the size of the range to be written back 2035 */ 2036 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 2037 2038 /** 2039 * memory_region_set_log: Turn dirty logging on or off for a region. 2040 * 2041 * Turns dirty logging on or off for a specified client (display, migration). 2042 * Only meaningful for RAM regions. 2043 * 2044 * @mr: the memory region being updated. 2045 * @log: whether dirty logging is to be enabled or disabled. 2046 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 2047 */ 2048 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2049 2050 /** 2051 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2052 * 2053 * Marks a range of bytes as dirty, after it has been dirtied outside 2054 * guest code. 2055 * 2056 * @mr: the memory region being dirtied. 2057 * @addr: the address (relative to the start of the region) being dirtied. 2058 * @size: size of the range being dirtied. 2059 */ 2060 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2061 hwaddr size); 2062 2063 /** 2064 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2065 * 2066 * This function is called when the caller wants to clear the remote 2067 * dirty bitmap of a memory range within the memory region. This can 2068 * be used by e.g. KVM to manually clear dirty log when 2069 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2070 * kernel. 2071 * 2072 * @mr: the memory region to clear the dirty log upon 2073 * @start: start address offset within the memory region 2074 * @len: length of the memory region to clear dirty bitmap 2075 */ 2076 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2077 hwaddr len); 2078 2079 /** 2080 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2081 * bitmap and clear it. 2082 * 2083 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2084 * returns the snapshot. The snapshot can then be used to query dirty 2085 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2086 * querying the same page multiple times, which is especially useful for 2087 * display updates where the scanlines often are not page aligned. 2088 * 2089 * The dirty bitmap region which gets copied into the snapshot (and 2090 * cleared afterwards) can be larger than requested. The boundaries 2091 * are rounded up/down so complete bitmap longs (covering 64 pages on 2092 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2093 * isn't a problem for display updates as the extra pages are outside 2094 * the visible area, and in case the visible area changes a full 2095 * display redraw is due anyway. Should other use cases for this 2096 * function emerge we might have to revisit this implementation 2097 * detail. 2098 * 2099 * Use g_free to release DirtyBitmapSnapshot. 2100 * 2101 * @mr: the memory region being queried. 2102 * @addr: the address (relative to the start of the region) being queried. 2103 * @size: the size of the range being queried. 2104 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2105 */ 2106 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2107 hwaddr addr, 2108 hwaddr size, 2109 unsigned client); 2110 2111 /** 2112 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2113 * in the specified dirty bitmap snapshot. 2114 * 2115 * @mr: the memory region being queried. 2116 * @snap: the dirty bitmap snapshot 2117 * @addr: the address (relative to the start of the region) being queried. 2118 * @size: the size of the range being queried. 2119 */ 2120 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2121 DirtyBitmapSnapshot *snap, 2122 hwaddr addr, hwaddr size); 2123 2124 /** 2125 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2126 * client. 2127 * 2128 * Marks a range of pages as no longer dirty. 2129 * 2130 * @mr: the region being updated. 2131 * @addr: the start of the subrange being cleaned. 2132 * @size: the size of the subrange being cleaned. 2133 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2134 * %DIRTY_MEMORY_VGA. 2135 */ 2136 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2137 hwaddr size, unsigned client); 2138 2139 /** 2140 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2141 * TBs (for self-modifying code). 2142 * 2143 * The MemoryRegionOps->write() callback of a ROM device must use this function 2144 * to mark byte ranges that have been modified internally, such as by directly 2145 * accessing the memory returned by memory_region_get_ram_ptr(). 2146 * 2147 * This function marks the range dirty and invalidates TBs so that TCG can 2148 * detect self-modifying code. 2149 * 2150 * @mr: the region being flushed. 2151 * @addr: the start, relative to the start of the region, of the range being 2152 * flushed. 2153 * @size: the size, in bytes, of the range being flushed. 2154 */ 2155 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2156 2157 /** 2158 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2159 * 2160 * Allows a memory region to be marked as read-only (turning it into a ROM). 2161 * only useful on RAM regions. 2162 * 2163 * @mr: the region being updated. 2164 * @readonly: whether the region is to be ROM or RAM. 2165 */ 2166 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2167 2168 /** 2169 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2170 * 2171 * Allows a memory region to be marked as non-volatile. 2172 * only useful on RAM regions. 2173 * 2174 * @mr: the region being updated. 2175 * @nonvolatile: whether the region is to be non-volatile. 2176 */ 2177 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2178 2179 /** 2180 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2181 * 2182 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2183 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2184 * device is mapped to guest memory and satisfies read access directly. 2185 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2186 * Writes are always handled by the #MemoryRegion.write function. 2187 * 2188 * @mr: the memory region to be updated 2189 * @romd_mode: %true to put the region into ROMD mode 2190 */ 2191 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2192 2193 /** 2194 * memory_region_set_coalescing: Enable memory coalescing for the region. 2195 * 2196 * Enabled writes to a region to be queued for later processing. MMIO ->write 2197 * callbacks may be delayed until a non-coalesced MMIO is issued. 2198 * Only useful for IO regions. Roughly similar to write-combining hardware. 2199 * 2200 * @mr: the memory region to be write coalesced 2201 */ 2202 void memory_region_set_coalescing(MemoryRegion *mr); 2203 2204 /** 2205 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2206 * a region. 2207 * 2208 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2209 * Multiple calls can be issued coalesced disjoint ranges. 2210 * 2211 * @mr: the memory region to be updated. 2212 * @offset: the start of the range within the region to be coalesced. 2213 * @size: the size of the subrange to be coalesced. 2214 */ 2215 void memory_region_add_coalescing(MemoryRegion *mr, 2216 hwaddr offset, 2217 uint64_t size); 2218 2219 /** 2220 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2221 * 2222 * Disables any coalescing caused by memory_region_set_coalescing() or 2223 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2224 * hardware. 2225 * 2226 * @mr: the memory region to be updated. 2227 */ 2228 void memory_region_clear_coalescing(MemoryRegion *mr); 2229 2230 /** 2231 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2232 * accesses. 2233 * 2234 * Ensure that pending coalesced MMIO request are flushed before the memory 2235 * region is accessed. This property is automatically enabled for all regions 2236 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2237 * 2238 * @mr: the memory region to be updated. 2239 */ 2240 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2241 2242 /** 2243 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2244 * accesses. 2245 * 2246 * Clear the automatic coalesced MMIO flushing enabled via 2247 * memory_region_set_flush_coalesced. Note that this service has no effect on 2248 * memory regions that have MMIO coalescing enabled for themselves. For them, 2249 * automatic flushing will stop once coalescing is disabled. 2250 * 2251 * @mr: the memory region to be updated. 2252 */ 2253 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2254 2255 /** 2256 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2257 * is written to a location. 2258 * 2259 * Marks a word in an IO region (initialized with memory_region_init_io()) 2260 * as a trigger for an eventfd event. The I/O callback will not be called. 2261 * The caller must be prepared to handle failure (that is, take the required 2262 * action if the callback _is_ called). 2263 * 2264 * @mr: the memory region being updated. 2265 * @addr: the address within @mr that is to be monitored 2266 * @size: the size of the access to trigger the eventfd 2267 * @match_data: whether to match against @data, instead of just @addr 2268 * @data: the data to match against the guest write 2269 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2270 **/ 2271 void memory_region_add_eventfd(MemoryRegion *mr, 2272 hwaddr addr, 2273 unsigned size, 2274 bool match_data, 2275 uint64_t data, 2276 EventNotifier *e); 2277 2278 /** 2279 * memory_region_del_eventfd: Cancel an eventfd. 2280 * 2281 * Cancels an eventfd trigger requested by a previous 2282 * memory_region_add_eventfd() call. 2283 * 2284 * @mr: the memory region being updated. 2285 * @addr: the address within @mr that is to be monitored 2286 * @size: the size of the access to trigger the eventfd 2287 * @match_data: whether to match against @data, instead of just @addr 2288 * @data: the data to match against the guest write 2289 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2290 */ 2291 void memory_region_del_eventfd(MemoryRegion *mr, 2292 hwaddr addr, 2293 unsigned size, 2294 bool match_data, 2295 uint64_t data, 2296 EventNotifier *e); 2297 2298 /** 2299 * memory_region_add_subregion: Add a subregion to a container. 2300 * 2301 * Adds a subregion at @offset. The subregion may not overlap with other 2302 * subregions (except for those explicitly marked as overlapping). A region 2303 * may only be added once as a subregion (unless removed with 2304 * memory_region_del_subregion()); use memory_region_init_alias() if you 2305 * want a region to be a subregion in multiple locations. 2306 * 2307 * @mr: the region to contain the new subregion; must be a container 2308 * initialized with memory_region_init(). 2309 * @offset: the offset relative to @mr where @subregion is added. 2310 * @subregion: the subregion to be added. 2311 */ 2312 void memory_region_add_subregion(MemoryRegion *mr, 2313 hwaddr offset, 2314 MemoryRegion *subregion); 2315 /** 2316 * memory_region_add_subregion_overlap: Add a subregion to a container 2317 * with overlap. 2318 * 2319 * Adds a subregion at @offset. The subregion may overlap with other 2320 * subregions. Conflicts are resolved by having a higher @priority hide a 2321 * lower @priority. Subregions without priority are taken as @priority 0. 2322 * A region may only be added once as a subregion (unless removed with 2323 * memory_region_del_subregion()); use memory_region_init_alias() if you 2324 * want a region to be a subregion in multiple locations. 2325 * 2326 * @mr: the region to contain the new subregion; must be a container 2327 * initialized with memory_region_init(). 2328 * @offset: the offset relative to @mr where @subregion is added. 2329 * @subregion: the subregion to be added. 2330 * @priority: used for resolving overlaps; highest priority wins. 2331 */ 2332 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2333 hwaddr offset, 2334 MemoryRegion *subregion, 2335 int priority); 2336 2337 /** 2338 * memory_region_get_ram_addr: Get the ram address associated with a memory 2339 * region 2340 * 2341 * @mr: the region to be queried 2342 */ 2343 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2344 2345 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2346 /** 2347 * memory_region_del_subregion: Remove a subregion. 2348 * 2349 * Removes a subregion from its container. 2350 * 2351 * @mr: the container to be updated. 2352 * @subregion: the region being removed; must be a current subregion of @mr. 2353 */ 2354 void memory_region_del_subregion(MemoryRegion *mr, 2355 MemoryRegion *subregion); 2356 2357 /* 2358 * memory_region_set_enabled: dynamically enable or disable a region 2359 * 2360 * Enables or disables a memory region. A disabled memory region 2361 * ignores all accesses to itself and its subregions. It does not 2362 * obscure sibling subregions with lower priority - it simply behaves as 2363 * if it was removed from the hierarchy. 2364 * 2365 * Regions default to being enabled. 2366 * 2367 * @mr: the region to be updated 2368 * @enabled: whether to enable or disable the region 2369 */ 2370 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2371 2372 /* 2373 * memory_region_set_address: dynamically update the address of a region 2374 * 2375 * Dynamically updates the address of a region, relative to its container. 2376 * May be used on regions are currently part of a memory hierarchy. 2377 * 2378 * @mr: the region to be updated 2379 * @addr: new address, relative to container region 2380 */ 2381 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2382 2383 /* 2384 * memory_region_set_size: dynamically update the size of a region. 2385 * 2386 * Dynamically updates the size of a region. 2387 * 2388 * @mr: the region to be updated 2389 * @size: used size of the region. 2390 */ 2391 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2392 2393 /* 2394 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2395 * 2396 * Dynamically updates the offset into the target region that an alias points 2397 * to, as if the fourth argument to memory_region_init_alias() has changed. 2398 * 2399 * @mr: the #MemoryRegion to be updated; should be an alias. 2400 * @offset: the new offset into the target memory region 2401 */ 2402 void memory_region_set_alias_offset(MemoryRegion *mr, 2403 hwaddr offset); 2404 2405 /* 2406 * memory_region_set_unmergeable: Set a memory region unmergeable 2407 * 2408 * Mark a memory region unmergeable, resulting in the memory region (or 2409 * everything contained in a memory region container) not getting merged when 2410 * simplifying the address space and notifying memory listeners. Consequently, 2411 * memory listeners will never get notified about ranges that are larger than 2412 * the original memory regions. 2413 * 2414 * This is primarily useful when multiple aliases to a RAM memory region are 2415 * mapped into a memory region container, and updates (e.g., enable/disable or 2416 * map/unmap) of individual memory region aliases are not supposed to affect 2417 * other memory regions in the same container. 2418 * 2419 * @mr: the #MemoryRegion to be updated 2420 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2421 */ 2422 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2423 2424 /** 2425 * memory_region_present: checks if an address relative to a @container 2426 * translates into #MemoryRegion within @container 2427 * 2428 * Answer whether a #MemoryRegion within @container covers the address 2429 * @addr. 2430 * 2431 * @container: a #MemoryRegion within which @addr is a relative address 2432 * @addr: the area within @container to be searched 2433 */ 2434 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2435 2436 /** 2437 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2438 * into another memory region, which does not necessarily imply that it is 2439 * mapped into an address space. 2440 * 2441 * @mr: a #MemoryRegion which should be checked if it's mapped 2442 */ 2443 bool memory_region_is_mapped(MemoryRegion *mr); 2444 2445 /** 2446 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2447 * #MemoryRegion 2448 * 2449 * The #RamDiscardManager cannot change while a memory region is mapped. 2450 * 2451 * @mr: the #MemoryRegion 2452 */ 2453 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2454 2455 /** 2456 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2457 * #RamDiscardManager assigned 2458 * 2459 * @mr: the #MemoryRegion 2460 */ 2461 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2462 { 2463 return !!memory_region_get_ram_discard_manager(mr); 2464 } 2465 2466 /** 2467 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2468 * #MemoryRegion 2469 * 2470 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2471 * that does not cover RAM, or a #MemoryRegion that already has a 2472 * #RamDiscardManager assigned. 2473 * 2474 * @mr: the #MemoryRegion 2475 * @rdm: #RamDiscardManager to set 2476 */ 2477 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2478 RamDiscardManager *rdm); 2479 2480 /** 2481 * memory_region_find: translate an address/size relative to a 2482 * MemoryRegion into a #MemoryRegionSection. 2483 * 2484 * Locates the first #MemoryRegion within @mr that overlaps the range 2485 * given by @addr and @size. 2486 * 2487 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2488 * It will have the following characteristics: 2489 * - @size = 0 iff no overlap was found 2490 * - @mr is non-%NULL iff an overlap was found 2491 * 2492 * Remember that in the return value the @offset_within_region is 2493 * relative to the returned region (in the .@mr field), not to the 2494 * @mr argument. 2495 * 2496 * Similarly, the .@offset_within_address_space is relative to the 2497 * address space that contains both regions, the passed and the 2498 * returned one. However, in the special case where the @mr argument 2499 * has no container (and thus is the root of the address space), the 2500 * following will hold: 2501 * - @offset_within_address_space >= @addr 2502 * - @offset_within_address_space + .@size <= @addr + @size 2503 * 2504 * @mr: a MemoryRegion within which @addr is a relative address 2505 * @addr: start of the area within @as to be searched 2506 * @size: size of the area to be searched 2507 */ 2508 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2509 hwaddr addr, uint64_t size); 2510 2511 /** 2512 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2513 * 2514 * Synchronizes the dirty page log for all address spaces. 2515 * 2516 * @last_stage: whether this is the last stage of live migration 2517 */ 2518 void memory_global_dirty_log_sync(bool last_stage); 2519 2520 /** 2521 * memory_global_after_dirty_log_sync: synchronize the dirty log for all memory 2522 * 2523 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2524 * This function must be called after the dirty log bitmap is cleared, and 2525 * before dirty guest memory pages are read. If you are using 2526 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2527 * care of doing this. 2528 */ 2529 void memory_global_after_dirty_log_sync(void); 2530 2531 /** 2532 * memory_region_transaction_begin: Start a transaction. 2533 * 2534 * During a transaction, changes will be accumulated and made visible 2535 * only when the transaction ends (is committed). 2536 */ 2537 void memory_region_transaction_begin(void); 2538 2539 /** 2540 * memory_region_transaction_commit: Commit a transaction and make changes 2541 * visible to the guest. 2542 */ 2543 void memory_region_transaction_commit(void); 2544 2545 /** 2546 * memory_listener_register: register callbacks to be called when memory 2547 * sections are mapped or unmapped into an address 2548 * space 2549 * 2550 * @listener: an object containing the callbacks to be called 2551 * @filter: if non-%NULL, only regions in this address space will be observed 2552 */ 2553 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2554 2555 /** 2556 * memory_listener_unregister: undo the effect of memory_listener_register() 2557 * 2558 * @listener: an object containing the callbacks to be removed 2559 */ 2560 void memory_listener_unregister(MemoryListener *listener); 2561 2562 /** 2563 * memory_global_dirty_log_start: begin dirty logging for all regions 2564 * 2565 * @flags: purpose of starting dirty log, migration or dirty rate 2566 * @errp: pointer to Error*, to store an error if it happens. 2567 * 2568 * Return: true on success, else false setting @errp with error. 2569 */ 2570 bool memory_global_dirty_log_start(unsigned int flags, Error **errp); 2571 2572 /** 2573 * memory_global_dirty_log_stop: end dirty logging for all regions 2574 * 2575 * @flags: purpose of stopping dirty log, migration or dirty rate 2576 */ 2577 void memory_global_dirty_log_stop(unsigned int flags); 2578 2579 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2580 2581 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2582 unsigned size, bool is_write, 2583 MemTxAttrs attrs); 2584 2585 /** 2586 * memory_region_dispatch_read: perform a read directly to the specified 2587 * MemoryRegion. 2588 * 2589 * @mr: #MemoryRegion to access 2590 * @addr: address within that region 2591 * @pval: pointer to uint64_t which the data is written to 2592 * @op: size, sign, and endianness of the memory operation 2593 * @attrs: memory transaction attributes to use for the access 2594 */ 2595 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2596 hwaddr addr, 2597 uint64_t *pval, 2598 MemOp op, 2599 MemTxAttrs attrs); 2600 /** 2601 * memory_region_dispatch_write: perform a write directly to the specified 2602 * MemoryRegion. 2603 * 2604 * @mr: #MemoryRegion to access 2605 * @addr: address within that region 2606 * @data: data to write 2607 * @op: size, sign, and endianness of the memory operation 2608 * @attrs: memory transaction attributes to use for the access 2609 */ 2610 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2611 hwaddr addr, 2612 uint64_t data, 2613 MemOp op, 2614 MemTxAttrs attrs); 2615 2616 /** 2617 * address_space_init: initializes an address space 2618 * 2619 * @as: an uninitialized #AddressSpace 2620 * @root: a #MemoryRegion that routes addresses for the address space 2621 * @name: an address space name. The name is only used for debugging 2622 * output. 2623 */ 2624 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2625 2626 /** 2627 * address_space_destroy: destroy an address space 2628 * 2629 * Releases all resources associated with an address space. After an address space 2630 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2631 * as well. 2632 * 2633 * @as: address space to be destroyed 2634 */ 2635 void address_space_destroy(AddressSpace *as); 2636 2637 /** 2638 * address_space_remove_listeners: unregister all listeners of an address space 2639 * 2640 * Removes all callbacks previously registered with memory_listener_register() 2641 * for @as. 2642 * 2643 * @as: an initialized #AddressSpace 2644 */ 2645 void address_space_remove_listeners(AddressSpace *as); 2646 2647 /** 2648 * address_space_rw: read from or write to an address space. 2649 * 2650 * Return a MemTxResult indicating whether the operation succeeded 2651 * or failed (eg unassigned memory, device rejected the transaction, 2652 * IOMMU fault). 2653 * 2654 * @as: #AddressSpace to be accessed 2655 * @addr: address within that address space 2656 * @attrs: memory transaction attributes 2657 * @buf: buffer with the data transferred 2658 * @len: the number of bytes to read or write 2659 * @is_write: indicates the transfer direction 2660 */ 2661 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2662 MemTxAttrs attrs, void *buf, 2663 hwaddr len, bool is_write); 2664 2665 /** 2666 * address_space_write: write to address space. 2667 * 2668 * Return a MemTxResult indicating whether the operation succeeded 2669 * or failed (eg unassigned memory, device rejected the transaction, 2670 * IOMMU fault). 2671 * 2672 * @as: #AddressSpace to be accessed 2673 * @addr: address within that address space 2674 * @attrs: memory transaction attributes 2675 * @buf: buffer with the data transferred 2676 * @len: the number of bytes to write 2677 */ 2678 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2679 MemTxAttrs attrs, 2680 const void *buf, hwaddr len); 2681 2682 /** 2683 * address_space_write_rom: write to address space, including ROM. 2684 * 2685 * This function writes to the specified address space, but will 2686 * write data to both ROM and RAM. This is used for non-guest 2687 * writes like writes from the gdb debug stub or initial loading 2688 * of ROM contents. 2689 * 2690 * Note that portions of the write which attempt to write data to 2691 * a device will be silently ignored -- only real RAM and ROM will 2692 * be written to. 2693 * 2694 * Return a MemTxResult indicating whether the operation succeeded 2695 * or failed (eg unassigned memory, device rejected the transaction, 2696 * IOMMU fault). 2697 * 2698 * @as: #AddressSpace to be accessed 2699 * @addr: address within that address space 2700 * @attrs: memory transaction attributes 2701 * @buf: buffer with the data transferred 2702 * @len: the number of bytes to write 2703 */ 2704 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2705 MemTxAttrs attrs, 2706 const void *buf, hwaddr len); 2707 2708 /* address_space_ld*: load from an address space 2709 * address_space_st*: store to an address space 2710 * 2711 * These functions perform a load or store of the byte, word, 2712 * longword or quad to the specified address within the AddressSpace. 2713 * The _le suffixed functions treat the data as little endian; 2714 * _be indicates big endian; no suffix indicates "same endianness 2715 * as guest CPU". 2716 * 2717 * The "guest CPU endianness" accessors are deprecated for use outside 2718 * target-* code; devices should be CPU-agnostic and use either the LE 2719 * or the BE accessors. 2720 * 2721 * @as #AddressSpace to be accessed 2722 * @addr: address within that address space 2723 * @val: data value, for stores 2724 * @attrs: memory transaction attributes 2725 * @result: location to write the success/failure of the transaction; 2726 * if NULL, this information is discarded 2727 */ 2728 2729 #define SUFFIX 2730 #define ARG1 as 2731 #define ARG1_DECL AddressSpace *as 2732 #include "exec/memory_ldst.h.inc" 2733 2734 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) 2735 { 2736 address_space_stl_notdirty(as, addr, val, 2737 MEMTXATTRS_UNSPECIFIED, NULL); 2738 } 2739 2740 #define SUFFIX 2741 #define ARG1 as 2742 #define ARG1_DECL AddressSpace *as 2743 #include "exec/memory_ldst_phys.h.inc" 2744 2745 struct MemoryRegionCache { 2746 uint8_t *ptr; 2747 hwaddr xlat; 2748 hwaddr len; 2749 FlatView *fv; 2750 MemoryRegionSection mrs; 2751 bool is_write; 2752 }; 2753 2754 /* address_space_ld*_cached: load from a cached #MemoryRegion 2755 * address_space_st*_cached: store into a cached #MemoryRegion 2756 * 2757 * These functions perform a load or store of the byte, word, 2758 * longword or quad to the specified address. The address is 2759 * a physical address in the AddressSpace, but it must lie within 2760 * a #MemoryRegion that was mapped with address_space_cache_init. 2761 * 2762 * The _le suffixed functions treat the data as little endian; 2763 * _be indicates big endian; no suffix indicates "same endianness 2764 * as guest CPU". 2765 * 2766 * The "guest CPU endianness" accessors are deprecated for use outside 2767 * target-* code; devices should be CPU-agnostic and use either the LE 2768 * or the BE accessors. 2769 * 2770 * @cache: previously initialized #MemoryRegionCache to be accessed 2771 * @addr: address within the address space 2772 * @val: data value, for stores 2773 * @attrs: memory transaction attributes 2774 * @result: location to write the success/failure of the transaction; 2775 * if NULL, this information is discarded 2776 */ 2777 2778 #define SUFFIX _cached_slow 2779 #define ARG1 cache 2780 #define ARG1_DECL MemoryRegionCache *cache 2781 #include "exec/memory_ldst.h.inc" 2782 2783 /* Inline fast path for direct RAM access. */ 2784 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2785 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2786 { 2787 assert(addr < cache->len); 2788 if (likely(cache->ptr)) { 2789 return ldub_p(cache->ptr + addr); 2790 } else { 2791 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2792 } 2793 } 2794 2795 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2796 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2797 { 2798 assert(addr < cache->len); 2799 if (likely(cache->ptr)) { 2800 stb_p(cache->ptr + addr, val); 2801 } else { 2802 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2803 } 2804 } 2805 2806 #define ENDIANNESS 2807 #include "exec/memory_ldst_cached.h.inc" 2808 2809 #define ENDIANNESS _le 2810 #include "exec/memory_ldst_cached.h.inc" 2811 2812 #define ENDIANNESS _be 2813 #include "exec/memory_ldst_cached.h.inc" 2814 2815 #define SUFFIX _cached 2816 #define ARG1 cache 2817 #define ARG1_DECL MemoryRegionCache *cache 2818 #include "exec/memory_ldst_phys.h.inc" 2819 2820 /* address_space_cache_init: prepare for repeated access to a physical 2821 * memory region 2822 * 2823 * @cache: #MemoryRegionCache to be filled 2824 * @as: #AddressSpace to be accessed 2825 * @addr: address within that address space 2826 * @len: length of buffer 2827 * @is_write: indicates the transfer direction 2828 * 2829 * Will only work with RAM, and may map a subset of the requested range by 2830 * returning a value that is less than @len. On failure, return a negative 2831 * errno value. 2832 * 2833 * Because it only works with RAM, this function can be used for 2834 * read-modify-write operations. In this case, is_write should be %true. 2835 * 2836 * Note that addresses passed to the address_space_*_cached functions 2837 * are relative to @addr. 2838 */ 2839 int64_t address_space_cache_init(MemoryRegionCache *cache, 2840 AddressSpace *as, 2841 hwaddr addr, 2842 hwaddr len, 2843 bool is_write); 2844 2845 /** 2846 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2847 * 2848 * @cache: The #MemoryRegionCache to operate on. 2849 * 2850 * Initializes #MemoryRegionCache structure without memory region attached. 2851 * Cache initialized this way can only be safely destroyed, but not used. 2852 */ 2853 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2854 { 2855 cache->mrs.mr = NULL; 2856 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2857 cache->fv = NULL; 2858 } 2859 2860 /** 2861 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2862 * 2863 * @cache: The #MemoryRegionCache to operate on. 2864 * @addr: The first physical address that was written, relative to the 2865 * address that was passed to @address_space_cache_init. 2866 * @access_len: The number of bytes that were written starting at @addr. 2867 */ 2868 void address_space_cache_invalidate(MemoryRegionCache *cache, 2869 hwaddr addr, 2870 hwaddr access_len); 2871 2872 /** 2873 * address_space_cache_destroy: free a #MemoryRegionCache 2874 * 2875 * @cache: The #MemoryRegionCache whose memory should be released. 2876 */ 2877 void address_space_cache_destroy(MemoryRegionCache *cache); 2878 2879 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2880 * entry. Should be called from an RCU critical section. 2881 */ 2882 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2883 bool is_write, MemTxAttrs attrs); 2884 2885 /* address_space_translate: translate an address range into an address space 2886 * into a MemoryRegion and an address range into that section. Should be 2887 * called from an RCU critical section, to avoid that the last reference 2888 * to the returned region disappears after address_space_translate returns. 2889 * 2890 * @fv: #FlatView to be accessed 2891 * @addr: address within that address space 2892 * @xlat: pointer to address within the returned memory region section's 2893 * #MemoryRegion. 2894 * @len: pointer to length 2895 * @is_write: indicates the transfer direction 2896 * @attrs: memory attributes 2897 */ 2898 MemoryRegion *flatview_translate(FlatView *fv, 2899 hwaddr addr, hwaddr *xlat, 2900 hwaddr *len, bool is_write, 2901 MemTxAttrs attrs); 2902 2903 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2904 hwaddr addr, hwaddr *xlat, 2905 hwaddr *len, bool is_write, 2906 MemTxAttrs attrs) 2907 { 2908 return flatview_translate(address_space_to_flatview(as), 2909 addr, xlat, len, is_write, attrs); 2910 } 2911 2912 /* address_space_access_valid: check for validity of accessing an address 2913 * space range 2914 * 2915 * Check whether memory is assigned to the given address space range, and 2916 * access is permitted by any IOMMU regions that are active for the address 2917 * space. 2918 * 2919 * For now, addr and len should be aligned to a page size. This limitation 2920 * will be lifted in the future. 2921 * 2922 * @as: #AddressSpace to be accessed 2923 * @addr: address within that address space 2924 * @len: length of the area to be checked 2925 * @is_write: indicates the transfer direction 2926 * @attrs: memory attributes 2927 */ 2928 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2929 bool is_write, MemTxAttrs attrs); 2930 2931 /* address_space_map: map a physical memory region into a host virtual address 2932 * 2933 * May map a subset of the requested range, given by and returned in @plen. 2934 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2935 * the mapping are exhausted. 2936 * Use only for reads OR writes - not for read-modify-write operations. 2937 * Use address_space_register_map_client() to know when retrying the map 2938 * operation is likely to succeed. 2939 * 2940 * @as: #AddressSpace to be accessed 2941 * @addr: address within that address space 2942 * @plen: pointer to length of buffer; updated on return 2943 * @is_write: indicates the transfer direction 2944 * @attrs: memory attributes 2945 */ 2946 void *address_space_map(AddressSpace *as, hwaddr addr, 2947 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2948 2949 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2950 * 2951 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2952 * the amount of memory that was actually read or written by the caller. 2953 * 2954 * @as: #AddressSpace used 2955 * @buffer: host pointer as returned by address_space_map() 2956 * @len: buffer length as returned by address_space_map() 2957 * @access_len: amount of data actually transferred 2958 * @is_write: indicates the transfer direction 2959 */ 2960 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2961 bool is_write, hwaddr access_len); 2962 2963 /* 2964 * address_space_register_map_client: Register a callback to invoke when 2965 * resources for address_space_map() are available again. 2966 * 2967 * address_space_map may fail when there are not enough resources available, 2968 * such as when bounce buffer memory would exceed the limit. The callback can 2969 * be used to retry the address_space_map operation. Note that the callback 2970 * gets automatically removed after firing. 2971 * 2972 * @as: #AddressSpace to be accessed 2973 * @bh: callback to invoke when address_space_map() retry is appropriate 2974 */ 2975 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh); 2976 2977 /* 2978 * address_space_unregister_map_client: Unregister a callback that has 2979 * previously been registered and not fired yet. 2980 * 2981 * @as: #AddressSpace to be accessed 2982 * @bh: callback to unregister 2983 */ 2984 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh); 2985 2986 /* Internal functions, part of the implementation of address_space_read. */ 2987 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2988 MemTxAttrs attrs, void *buf, hwaddr len); 2989 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2990 MemTxAttrs attrs, void *buf, 2991 hwaddr len, hwaddr addr1, hwaddr l, 2992 MemoryRegion *mr); 2993 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2994 2995 /* Internal functions, part of the implementation of address_space_read_cached 2996 * and address_space_write_cached. */ 2997 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2998 hwaddr addr, void *buf, hwaddr len); 2999 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 3000 hwaddr addr, const void *buf, 3001 hwaddr len); 3002 3003 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 3004 bool prepare_mmio_access(MemoryRegion *mr); 3005 3006 static inline bool memory_region_supports_direct_access(MemoryRegion *mr) 3007 { 3008 /* ROM DEVICE regions only allow direct access if in ROMD mode. */ 3009 if (memory_region_is_romd(mr)) { 3010 return true; 3011 } 3012 if (!memory_region_is_ram(mr)) { 3013 return false; 3014 } 3015 /* 3016 * RAM DEVICE regions can be accessed directly using memcpy, but it might 3017 * be MMIO and access using mempy can be wrong (e.g., using instructions not 3018 * intended for MMIO access). So we treat this as IO. 3019 */ 3020 return !memory_region_is_ram_device(mr); 3021 } 3022 3023 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write, 3024 MemTxAttrs attrs) 3025 { 3026 if (!memory_region_supports_direct_access(mr)) { 3027 return false; 3028 } 3029 /* Debug access can write to ROM. */ 3030 if (is_write && !attrs.debug) { 3031 return !mr->readonly && !mr->rom_device; 3032 } 3033 return true; 3034 } 3035 3036 /** 3037 * address_space_read: read from an address space. 3038 * 3039 * Return a MemTxResult indicating whether the operation succeeded 3040 * or failed (eg unassigned memory, device rejected the transaction, 3041 * IOMMU fault). Called within RCU critical section. 3042 * 3043 * @as: #AddressSpace to be accessed 3044 * @addr: address within that address space 3045 * @attrs: memory transaction attributes 3046 * @buf: buffer with the data transferred 3047 * @len: length of the data transferred 3048 */ 3049 static inline __attribute__((__always_inline__)) 3050 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 3051 MemTxAttrs attrs, void *buf, 3052 hwaddr len) 3053 { 3054 MemTxResult result = MEMTX_OK; 3055 hwaddr l, addr1; 3056 void *ptr; 3057 MemoryRegion *mr; 3058 FlatView *fv; 3059 3060 if (__builtin_constant_p(len)) { 3061 if (len) { 3062 RCU_READ_LOCK_GUARD(); 3063 fv = address_space_to_flatview(as); 3064 l = len; 3065 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 3066 if (len == l && memory_access_is_direct(mr, false, attrs)) { 3067 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3068 memcpy(buf, ptr, len); 3069 } else { 3070 result = flatview_read_continue(fv, addr, attrs, buf, len, 3071 addr1, l, mr); 3072 } 3073 } 3074 } else { 3075 result = address_space_read_full(as, addr, attrs, buf, len); 3076 } 3077 return result; 3078 } 3079 3080 /** 3081 * address_space_read_cached: read from a cached RAM region 3082 * 3083 * @cache: Cached region to be addressed 3084 * @addr: address relative to the base of the RAM region 3085 * @buf: buffer with the data transferred 3086 * @len: length of the data transferred 3087 */ 3088 static inline MemTxResult 3089 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 3090 void *buf, hwaddr len) 3091 { 3092 assert(addr < cache->len && len <= cache->len - addr); 3093 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 3094 if (likely(cache->ptr)) { 3095 memcpy(buf, cache->ptr + addr, len); 3096 return MEMTX_OK; 3097 } else { 3098 return address_space_read_cached_slow(cache, addr, buf, len); 3099 } 3100 } 3101 3102 /** 3103 * address_space_write_cached: write to a cached RAM region 3104 * 3105 * @cache: Cached region to be addressed 3106 * @addr: address relative to the base of the RAM region 3107 * @buf: buffer with the data transferred 3108 * @len: length of the data transferred 3109 */ 3110 static inline MemTxResult 3111 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3112 const void *buf, hwaddr len) 3113 { 3114 assert(addr < cache->len && len <= cache->len - addr); 3115 if (likely(cache->ptr)) { 3116 memcpy(cache->ptr + addr, buf, len); 3117 return MEMTX_OK; 3118 } else { 3119 return address_space_write_cached_slow(cache, addr, buf, len); 3120 } 3121 } 3122 3123 /** 3124 * address_space_set: Fill address space with a constant byte. 3125 * 3126 * Return a MemTxResult indicating whether the operation succeeded 3127 * or failed (eg unassigned memory, device rejected the transaction, 3128 * IOMMU fault). 3129 * 3130 * @as: #AddressSpace to be accessed 3131 * @addr: address within that address space 3132 * @c: constant byte to fill the memory 3133 * @len: the number of bytes to fill with the constant byte 3134 * @attrs: memory transaction attributes 3135 */ 3136 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3137 uint8_t c, hwaddr len, MemTxAttrs attrs); 3138 3139 /* 3140 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3141 * to manage the actual amount of memory consumed by the VM (then, the memory 3142 * provided by RAM blocks might be bigger than the desired memory consumption). 3143 * This *must* be set if: 3144 * - Discarding parts of a RAM blocks does not result in the change being 3145 * reflected in the VM and the pages getting freed. 3146 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3147 * discards blindly. 3148 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3149 * encrypted VMs). 3150 * Technologies that only temporarily pin the current working set of a 3151 * driver are fine, because we don't expect such pages to be discarded 3152 * (esp. based on guest action like balloon inflation). 3153 * 3154 * This is *not* to be used to protect from concurrent discards (esp., 3155 * postcopy). 3156 * 3157 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3158 * discards to work reliably is active. 3159 */ 3160 int ram_block_discard_disable(bool state); 3161 3162 /* 3163 * See ram_block_discard_disable(): only disable uncoordinated discards, 3164 * keeping coordinated discards (via the RamDiscardManager) enabled. 3165 */ 3166 int ram_block_uncoordinated_discard_disable(bool state); 3167 3168 /* 3169 * Inhibit technologies that disable discarding of pages in RAM blocks. 3170 * 3171 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3172 * broken. 3173 */ 3174 int ram_block_discard_require(bool state); 3175 3176 /* 3177 * See ram_block_discard_require(): only inhibit technologies that disable 3178 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with 3179 * technologies that only inhibit uncoordinated discards (via the 3180 * RamDiscardManager). 3181 */ 3182 int ram_block_coordinated_discard_require(bool state); 3183 3184 /* 3185 * Test if any discarding of memory in ram blocks is disabled. 3186 */ 3187 bool ram_block_discard_is_disabled(void); 3188 3189 /* 3190 * Test if any discarding of memory in ram blocks is required to work reliably. 3191 */ 3192 bool ram_block_discard_is_required(void); 3193 3194 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp); 3195 void ram_block_del_cpr_blocker(RAMBlock *rb); 3196 3197 #endif 3198