1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef SYSTEM_MEMORY_H 15 #define SYSTEM_MEMORY_H 16 17 #include "exec/cpu-common.h" 18 #include "exec/hwaddr.h" 19 #include "exec/memattrs.h" 20 #include "exec/memop.h" 21 #include "exec/ramlist.h" 22 #include "exec/tswap.h" 23 #include "qemu/bswap.h" 24 #include "qemu/queue.h" 25 #include "qemu/int128.h" 26 #include "qemu/range.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 Range range; 83 unsigned type; 84 }; 85 86 /** 87 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 88 * 89 * @mr: the region, or %NULL if empty 90 * @fv: the flat view of the address space the region is mapped in 91 * @offset_within_region: the beginning of the section, relative to @mr's start 92 * @size: the size of the section; will not exceed @mr's boundaries 93 * @offset_within_address_space: the address of the first byte of the section 94 * relative to the region's address space 95 * @readonly: writes to this section are ignored 96 * @nonvolatile: this section is non-volatile 97 * @unmergeable: this section should not get merged with adjacent sections 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 bool unmergeable; 108 }; 109 110 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 111 112 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 113 typedef enum { 114 IOMMU_NONE = 0, 115 IOMMU_RO = 1, 116 IOMMU_WO = 2, 117 IOMMU_RW = 3, 118 } IOMMUAccessFlags; 119 120 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 121 122 struct IOMMUTLBEntry { 123 AddressSpace *target_as; 124 hwaddr iova; 125 hwaddr translated_addr; 126 hwaddr addr_mask; /* 0xfff = 4k translation */ 127 IOMMUAccessFlags perm; 128 }; 129 130 /* 131 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 132 * register with one or multiple IOMMU Notifier capability bit(s). 133 * 134 * Normally there're two use cases for the notifiers: 135 * 136 * (1) When the device needs accurate synchronizations of the vIOMMU page 137 * tables, it needs to register with both MAP|UNMAP notifies (which 138 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 139 * 140 * Regarding to accurate synchronization, it's when the notified 141 * device maintains a shadow page table and must be notified on each 142 * guest MAP (page table entry creation) and UNMAP (invalidation) 143 * events (e.g. VFIO). Both notifications must be accurate so that 144 * the shadow page table is fully in sync with the guest view. 145 * 146 * (2) When the device doesn't need accurate synchronizations of the 147 * vIOMMU page tables, it needs to register only with UNMAP or 148 * DEVIOTLB_UNMAP notifies. 149 * 150 * It's when the device maintains a cache of IOMMU translations 151 * (IOTLB) and is able to fill that cache by requesting translations 152 * from the vIOMMU through a protocol similar to ATS (Address 153 * Translation Service). 154 * 155 * Note that in this mode the vIOMMU will not maintain a shadowed 156 * page table for the address space, and the UNMAP messages can cover 157 * more than the pages that used to get mapped. The IOMMU notifiee 158 * should be able to take care of over-sized invalidations. 159 */ 160 typedef enum { 161 IOMMU_NOTIFIER_NONE = 0, 162 /* Notify cache invalidations */ 163 IOMMU_NOTIFIER_UNMAP = 0x1, 164 /* Notify entry changes (newly created entries) */ 165 IOMMU_NOTIFIER_MAP = 0x2, 166 /* Notify changes on device IOTLB entries */ 167 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 168 } IOMMUNotifierFlag; 169 170 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 171 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 172 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 173 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 174 175 struct IOMMUNotifier; 176 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 177 IOMMUTLBEntry *data); 178 179 struct IOMMUNotifier { 180 IOMMUNotify notify; 181 IOMMUNotifierFlag notifier_flags; 182 /* Notify for address space range start <= addr <= end */ 183 hwaddr start; 184 hwaddr end; 185 int iommu_idx; 186 void *opaque; 187 QLIST_ENTRY(IOMMUNotifier) node; 188 }; 189 typedef struct IOMMUNotifier IOMMUNotifier; 190 191 typedef struct IOMMUTLBEvent { 192 IOMMUNotifierFlag type; 193 IOMMUTLBEntry entry; 194 } IOMMUTLBEvent; 195 196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 197 #define RAM_PREALLOC (1 << 0) 198 199 /* RAM is mmap-ed with MAP_SHARED */ 200 #define RAM_SHARED (1 << 1) 201 202 /* Only a portion of RAM (used_length) is actually used, and migrated. 203 * Resizing RAM while migrating can result in the migration being canceled. 204 */ 205 #define RAM_RESIZEABLE (1 << 2) 206 207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 208 * zero the page and wake waiting processes. 209 * (Set during postcopy) 210 */ 211 #define RAM_UF_ZEROPAGE (1 << 3) 212 213 /* RAM can be migrated */ 214 #define RAM_MIGRATABLE (1 << 4) 215 216 /* RAM is a persistent kind memory */ 217 #define RAM_PMEM (1 << 5) 218 219 220 /* 221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 222 * support 'write-tracking' migration type. 223 * Implies ram_state->ram_wt_enabled. 224 */ 225 #define RAM_UF_WRITEPROTECT (1 << 6) 226 227 /* 228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 229 * pages if applicable) is skipped: will bail out if not supported. When not 230 * set, the OS will do the reservation, if supported for the memory type. 231 */ 232 #define RAM_NORESERVE (1 << 7) 233 234 /* RAM that isn't accessible through normal means. */ 235 #define RAM_PROTECTED (1 << 8) 236 237 /* RAM is an mmap-ed named file */ 238 #define RAM_NAMED_FILE (1 << 9) 239 240 /* RAM is mmap-ed read-only */ 241 #define RAM_READONLY (1 << 10) 242 243 /* RAM FD is opened read-only */ 244 #define RAM_READONLY_FD (1 << 11) 245 246 /* RAM can be private that has kvm guest memfd backend */ 247 #define RAM_GUEST_MEMFD (1 << 12) 248 249 /* 250 * In RAMBlock creation functions, if MAP_SHARED is 0 in the flags parameter, 251 * the implementation may still create a shared mapping if other conditions 252 * require it. Callers who specifically want a private mapping, eg objects 253 * specified by the user, must pass RAM_PRIVATE. 254 * After RAMBlock creation, MAP_SHARED in the block's flags indicates whether 255 * the block is shared or private, and MAP_PRIVATE is omitted. 256 */ 257 #define RAM_PRIVATE (1 << 13) 258 259 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 260 IOMMUNotifierFlag flags, 261 hwaddr start, hwaddr end, 262 int iommu_idx) 263 { 264 n->notify = fn; 265 n->notifier_flags = flags; 266 n->start = start; 267 n->end = end; 268 n->iommu_idx = iommu_idx; 269 } 270 271 /* 272 * Memory region callbacks 273 */ 274 struct MemoryRegionOps { 275 /* Read from the memory region. @addr is relative to @mr; @size is 276 * in bytes. */ 277 uint64_t (*read)(void *opaque, 278 hwaddr addr, 279 unsigned size); 280 /* Write to the memory region. @addr is relative to @mr; @size is 281 * in bytes. */ 282 void (*write)(void *opaque, 283 hwaddr addr, 284 uint64_t data, 285 unsigned size); 286 287 MemTxResult (*read_with_attrs)(void *opaque, 288 hwaddr addr, 289 uint64_t *data, 290 unsigned size, 291 MemTxAttrs attrs); 292 MemTxResult (*write_with_attrs)(void *opaque, 293 hwaddr addr, 294 uint64_t data, 295 unsigned size, 296 MemTxAttrs attrs); 297 298 enum device_endian endianness; 299 /* Guest-visible constraints: */ 300 struct { 301 /* If nonzero, specify bounds on access sizes beyond which a machine 302 * check is thrown. 303 */ 304 unsigned min_access_size; 305 unsigned max_access_size; 306 /* If true, unaligned accesses are supported. Otherwise unaligned 307 * accesses throw machine checks. 308 */ 309 bool unaligned; 310 /* 311 * If present, and returns #false, the transaction is not accepted 312 * by the device (and results in machine dependent behaviour such 313 * as a machine check exception). 314 */ 315 bool (*accepts)(void *opaque, hwaddr addr, 316 unsigned size, bool is_write, 317 MemTxAttrs attrs); 318 } valid; 319 /* Internal implementation constraints: */ 320 struct { 321 /* If nonzero, specifies the minimum size implemented. Smaller sizes 322 * will be rounded upwards and a partial result will be returned. 323 */ 324 unsigned min_access_size; 325 /* If nonzero, specifies the maximum size implemented. Larger sizes 326 * will be done as a series of accesses with smaller sizes. 327 */ 328 unsigned max_access_size; 329 /* If true, unaligned accesses are supported. Otherwise all accesses 330 * are converted to (possibly multiple) naturally aligned accesses. 331 */ 332 bool unaligned; 333 } impl; 334 }; 335 336 typedef struct MemoryRegionClass { 337 /* private */ 338 ObjectClass parent_class; 339 } MemoryRegionClass; 340 341 342 enum IOMMUMemoryRegionAttr { 343 IOMMU_ATTR_SPAPR_TCE_FD 344 }; 345 346 /* 347 * IOMMUMemoryRegionClass: 348 * 349 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 350 * and provide an implementation of at least the @translate method here 351 * to handle requests to the memory region. Other methods are optional. 352 * 353 * The IOMMU implementation must use the IOMMU notifier infrastructure 354 * to report whenever mappings are changed, by calling 355 * memory_region_notify_iommu() (or, if necessary, by calling 356 * memory_region_notify_iommu_one() for each registered notifier). 357 * 358 * Conceptually an IOMMU provides a mapping from input address 359 * to an output TLB entry. If the IOMMU is aware of memory transaction 360 * attributes and the output TLB entry depends on the transaction 361 * attributes, we represent this using IOMMU indexes. Each index 362 * selects a particular translation table that the IOMMU has: 363 * 364 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 365 * 366 * @translate takes an input address and an IOMMU index 367 * 368 * and the mapping returned can only depend on the input address and the 369 * IOMMU index. 370 * 371 * Most IOMMUs don't care about the transaction attributes and support 372 * only a single IOMMU index. A more complex IOMMU might have one index 373 * for secure transactions and one for non-secure transactions. 374 */ 375 struct IOMMUMemoryRegionClass { 376 /* private: */ 377 MemoryRegionClass parent_class; 378 379 /* public: */ 380 /** 381 * @translate: 382 * 383 * Return a TLB entry that contains a given address. 384 * 385 * The IOMMUAccessFlags indicated via @flag are optional and may 386 * be specified as IOMMU_NONE to indicate that the caller needs 387 * the full translation information for both reads and writes. If 388 * the access flags are specified then the IOMMU implementation 389 * may use this as an optimization, to stop doing a page table 390 * walk as soon as it knows that the requested permissions are not 391 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 392 * full page table walk and report the permissions in the returned 393 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 394 * return different mappings for reads and writes.) 395 * 396 * The returned information remains valid while the caller is 397 * holding the big QEMU lock or is inside an RCU critical section; 398 * if the caller wishes to cache the mapping beyond that it must 399 * register an IOMMU notifier so it can invalidate its cached 400 * information when the IOMMU mapping changes. 401 * 402 * @iommu: the IOMMUMemoryRegion 403 * 404 * @hwaddr: address to be translated within the memory region 405 * 406 * @flag: requested access permission 407 * 408 * @iommu_idx: IOMMU index for the translation 409 */ 410 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 411 IOMMUAccessFlags flag, int iommu_idx); 412 /** 413 * @get_min_page_size: 414 * 415 * Returns minimum supported page size in bytes. 416 * 417 * If this method is not provided then the minimum is assumed to 418 * be TARGET_PAGE_SIZE. 419 * 420 * @iommu: the IOMMUMemoryRegion 421 */ 422 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 423 /** 424 * @notify_flag_changed: 425 * 426 * Called when IOMMU Notifier flag changes (ie when the set of 427 * events which IOMMU users are requesting notification for changes). 428 * Optional method -- need not be provided if the IOMMU does not 429 * need to know exactly which events must be notified. 430 * 431 * @iommu: the IOMMUMemoryRegion 432 * 433 * @old_flags: events which previously needed to be notified 434 * 435 * @new_flags: events which now need to be notified 436 * 437 * Returns 0 on success, or a negative errno; in particular 438 * returns -EINVAL if the new flag bitmap is not supported by the 439 * IOMMU memory region. In case of failure, the error object 440 * must be created 441 */ 442 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 443 IOMMUNotifierFlag old_flags, 444 IOMMUNotifierFlag new_flags, 445 Error **errp); 446 /** 447 * @replay: 448 * 449 * Called to handle memory_region_iommu_replay(). 450 * 451 * The default implementation of memory_region_iommu_replay() is to 452 * call the IOMMU translate method for every page in the address space 453 * with flag == IOMMU_NONE and then call the notifier if translate 454 * returns a valid mapping. If this method is implemented then it 455 * overrides the default behaviour, and must provide the full semantics 456 * of memory_region_iommu_replay(), by calling @notifier for every 457 * translation present in the IOMMU. 458 * 459 * Optional method -- an IOMMU only needs to provide this method 460 * if the default is inefficient or produces undesirable side effects. 461 * 462 * Note: this is not related to record-and-replay functionality. 463 */ 464 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 465 466 /** 467 * @get_attr: 468 * 469 * Get IOMMU misc attributes. This is an optional method that 470 * can be used to allow users of the IOMMU to get implementation-specific 471 * information. The IOMMU implements this method to handle calls 472 * by IOMMU users to memory_region_iommu_get_attr() by filling in 473 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 474 * the IOMMU supports. If the method is unimplemented then 475 * memory_region_iommu_get_attr() will always return -EINVAL. 476 * 477 * @iommu: the IOMMUMemoryRegion 478 * 479 * @attr: attribute being queried 480 * 481 * @data: memory to fill in with the attribute data 482 * 483 * Returns 0 on success, or a negative errno; in particular 484 * returns -EINVAL for unrecognized or unimplemented attribute types. 485 */ 486 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 487 void *data); 488 489 /** 490 * @attrs_to_index: 491 * 492 * Return the IOMMU index to use for a given set of transaction attributes. 493 * 494 * Optional method: if an IOMMU only supports a single IOMMU index then 495 * the default implementation of memory_region_iommu_attrs_to_index() 496 * will return 0. 497 * 498 * The indexes supported by an IOMMU must be contiguous, starting at 0. 499 * 500 * @iommu: the IOMMUMemoryRegion 501 * @attrs: memory transaction attributes 502 */ 503 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 504 505 /** 506 * @num_indexes: 507 * 508 * Return the number of IOMMU indexes this IOMMU supports. 509 * 510 * Optional method: if this method is not provided, then 511 * memory_region_iommu_num_indexes() will return 1, indicating that 512 * only a single IOMMU index is supported. 513 * 514 * @iommu: the IOMMUMemoryRegion 515 */ 516 int (*num_indexes)(IOMMUMemoryRegion *iommu); 517 }; 518 519 typedef struct RamDiscardListener RamDiscardListener; 520 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 521 MemoryRegionSection *section); 522 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 523 MemoryRegionSection *section); 524 525 struct RamDiscardListener { 526 /* 527 * @notify_populate: 528 * 529 * Notification that previously discarded memory is about to get populated. 530 * Listeners are able to object. If any listener objects, already 531 * successfully notified listeners are notified about a discard again. 532 * 533 * @rdl: the #RamDiscardListener getting notified 534 * @section: the #MemoryRegionSection to get populated. The section 535 * is aligned within the memory region to the minimum granularity 536 * unless it would exceed the registered section. 537 * 538 * Returns 0 on success. If the notification is rejected by the listener, 539 * an error is returned. 540 */ 541 NotifyRamPopulate notify_populate; 542 543 /* 544 * @notify_discard: 545 * 546 * Notification that previously populated memory was discarded successfully 547 * and listeners should drop all references to such memory and prevent 548 * new population (e.g., unmap). 549 * 550 * @rdl: the #RamDiscardListener getting notified 551 * @section: the #MemoryRegionSection to get populated. The section 552 * is aligned within the memory region to the minimum granularity 553 * unless it would exceed the registered section. 554 */ 555 NotifyRamDiscard notify_discard; 556 557 /* 558 * @double_discard_supported: 559 * 560 * The listener suppors getting @notify_discard notifications that span 561 * already discarded parts. 562 */ 563 bool double_discard_supported; 564 565 MemoryRegionSection *section; 566 QLIST_ENTRY(RamDiscardListener) next; 567 }; 568 569 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 570 NotifyRamPopulate populate_fn, 571 NotifyRamDiscard discard_fn, 572 bool double_discard_supported) 573 { 574 rdl->notify_populate = populate_fn; 575 rdl->notify_discard = discard_fn; 576 rdl->double_discard_supported = double_discard_supported; 577 } 578 579 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 580 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 581 582 /* 583 * RamDiscardManagerClass: 584 * 585 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 586 * regions are currently populated to be used/accessed by the VM, notifying 587 * after parts were discarded (freeing up memory) and before parts will be 588 * populated (consuming memory), to be used/accessed by the VM. 589 * 590 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 591 * #MemoryRegion isn't mapped into an address space yet (either directly 592 * or via an alias); it cannot change while the #MemoryRegion is 593 * mapped into an address space. 594 * 595 * The #RamDiscardManager is intended to be used by technologies that are 596 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 597 * memory inside a #MemoryRegion), and require proper coordination to only 598 * map the currently populated parts, to hinder parts that are expected to 599 * remain discarded from silently getting populated and consuming memory. 600 * Technologies that support discarding of RAM don't have to bother and can 601 * simply map the whole #MemoryRegion. 602 * 603 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 604 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 605 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 606 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 607 * properly coordinate with listeners before memory is plugged (populated), 608 * and after memory is unplugged (discarded). 609 * 610 * Listeners are called in multiples of the minimum granularity (unless it 611 * would exceed the registered range) and changes are aligned to the minimum 612 * granularity within the #MemoryRegion. Listeners have to prepare for memory 613 * becoming discarded in a different granularity than it was populated and the 614 * other way around. 615 */ 616 struct RamDiscardManagerClass { 617 /* private */ 618 InterfaceClass parent_class; 619 620 /* public */ 621 622 /** 623 * @get_min_granularity: 624 * 625 * Get the minimum granularity in which listeners will get notified 626 * about changes within the #MemoryRegion via the #RamDiscardManager. 627 * 628 * @rdm: the #RamDiscardManager 629 * @mr: the #MemoryRegion 630 * 631 * Returns the minimum granularity. 632 */ 633 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 634 const MemoryRegion *mr); 635 636 /** 637 * @is_populated: 638 * 639 * Check whether the given #MemoryRegionSection is completely populated 640 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 641 * There are no alignment requirements. 642 * 643 * @rdm: the #RamDiscardManager 644 * @section: the #MemoryRegionSection 645 * 646 * Returns whether the given range is completely populated. 647 */ 648 bool (*is_populated)(const RamDiscardManager *rdm, 649 const MemoryRegionSection *section); 650 651 /** 652 * @replay_populated: 653 * 654 * Call the #ReplayRamPopulate callback for all populated parts within the 655 * #MemoryRegionSection via the #RamDiscardManager. 656 * 657 * In case any call fails, no further calls are made. 658 * 659 * @rdm: the #RamDiscardManager 660 * @section: the #MemoryRegionSection 661 * @replay_fn: the #ReplayRamPopulate callback 662 * @opaque: pointer to forward to the callback 663 * 664 * Returns 0 on success, or a negative error if any notification failed. 665 */ 666 int (*replay_populated)(const RamDiscardManager *rdm, 667 MemoryRegionSection *section, 668 ReplayRamPopulate replay_fn, void *opaque); 669 670 /** 671 * @replay_discarded: 672 * 673 * Call the #ReplayRamDiscard callback for all discarded parts within the 674 * #MemoryRegionSection via the #RamDiscardManager. 675 * 676 * @rdm: the #RamDiscardManager 677 * @section: the #MemoryRegionSection 678 * @replay_fn: the #ReplayRamDiscard callback 679 * @opaque: pointer to forward to the callback 680 */ 681 void (*replay_discarded)(const RamDiscardManager *rdm, 682 MemoryRegionSection *section, 683 ReplayRamDiscard replay_fn, void *opaque); 684 685 /** 686 * @register_listener: 687 * 688 * Register a #RamDiscardListener for the given #MemoryRegionSection and 689 * immediately notify the #RamDiscardListener about all populated parts 690 * within the #MemoryRegionSection via the #RamDiscardManager. 691 * 692 * In case any notification fails, no further notifications are triggered 693 * and an error is logged. 694 * 695 * @rdm: the #RamDiscardManager 696 * @rdl: the #RamDiscardListener 697 * @section: the #MemoryRegionSection 698 */ 699 void (*register_listener)(RamDiscardManager *rdm, 700 RamDiscardListener *rdl, 701 MemoryRegionSection *section); 702 703 /** 704 * @unregister_listener: 705 * 706 * Unregister a previously registered #RamDiscardListener via the 707 * #RamDiscardManager after notifying the #RamDiscardListener about all 708 * populated parts becoming unpopulated within the registered 709 * #MemoryRegionSection. 710 * 711 * @rdm: the #RamDiscardManager 712 * @rdl: the #RamDiscardListener 713 */ 714 void (*unregister_listener)(RamDiscardManager *rdm, 715 RamDiscardListener *rdl); 716 }; 717 718 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 719 const MemoryRegion *mr); 720 721 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 722 const MemoryRegionSection *section); 723 724 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 725 MemoryRegionSection *section, 726 ReplayRamPopulate replay_fn, 727 void *opaque); 728 729 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 730 MemoryRegionSection *section, 731 ReplayRamDiscard replay_fn, 732 void *opaque); 733 734 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 735 RamDiscardListener *rdl, 736 MemoryRegionSection *section); 737 738 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 739 RamDiscardListener *rdl); 740 741 /** 742 * memory_get_xlat_addr: Extract addresses from a TLB entry 743 * 744 * @iotlb: pointer to an #IOMMUTLBEntry 745 * @vaddr: virtual address 746 * @ram_addr: RAM address 747 * @read_only: indicates if writes are allowed 748 * @mr_has_discard_manager: indicates memory is controlled by a 749 * RamDiscardManager 750 * @errp: pointer to Error*, to store an error if it happens. 751 * 752 * Return: true on success, else false setting @errp with error. 753 */ 754 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 755 ram_addr_t *ram_addr, bool *read_only, 756 bool *mr_has_discard_manager, Error **errp); 757 758 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 759 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 760 761 /** MemoryRegion: 762 * 763 * A struct representing a memory region. 764 */ 765 struct MemoryRegion { 766 Object parent_obj; 767 768 /* private: */ 769 770 /* The following fields should fit in a cache line */ 771 bool romd_mode; 772 bool ram; 773 bool subpage; 774 bool readonly; /* For RAM regions */ 775 bool nonvolatile; 776 bool rom_device; 777 bool flush_coalesced_mmio; 778 bool unmergeable; 779 uint8_t dirty_log_mask; 780 bool is_iommu; 781 RAMBlock *ram_block; 782 Object *owner; 783 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 784 DeviceState *dev; 785 786 const MemoryRegionOps *ops; 787 void *opaque; 788 MemoryRegion *container; 789 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 790 Int128 size; 791 hwaddr addr; 792 void (*destructor)(MemoryRegion *mr); 793 uint64_t align; 794 bool terminates; 795 bool ram_device; 796 bool enabled; 797 uint8_t vga_logging_count; 798 MemoryRegion *alias; 799 hwaddr alias_offset; 800 int32_t priority; 801 QTAILQ_HEAD(, MemoryRegion) subregions; 802 QTAILQ_ENTRY(MemoryRegion) subregions_link; 803 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 804 const char *name; 805 unsigned ioeventfd_nb; 806 MemoryRegionIoeventfd *ioeventfds; 807 RamDiscardManager *rdm; /* Only for RAM */ 808 809 /* For devices designed to perform re-entrant IO into their own IO MRs */ 810 bool disable_reentrancy_guard; 811 }; 812 813 struct IOMMUMemoryRegion { 814 MemoryRegion parent_obj; 815 816 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 817 IOMMUNotifierFlag iommu_notify_flags; 818 }; 819 820 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 821 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 822 823 #define MEMORY_LISTENER_PRIORITY_MIN 0 824 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 825 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 826 827 /** 828 * struct MemoryListener: callbacks structure for updates to the physical memory map 829 * 830 * Allows a component to adjust to changes in the guest-visible memory map. 831 * Use with memory_listener_register() and memory_listener_unregister(). 832 */ 833 struct MemoryListener { 834 /** 835 * @begin: 836 * 837 * Called at the beginning of an address space update transaction. 838 * Followed by calls to #MemoryListener.region_add(), 839 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 840 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 841 * increasing address order. 842 * 843 * @listener: The #MemoryListener. 844 */ 845 void (*begin)(MemoryListener *listener); 846 847 /** 848 * @commit: 849 * 850 * Called at the end of an address space update transaction, 851 * after the last call to #MemoryListener.region_add(), 852 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 853 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 854 * 855 * @listener: The #MemoryListener. 856 */ 857 void (*commit)(MemoryListener *listener); 858 859 /** 860 * @region_add: 861 * 862 * Called during an address space update transaction, 863 * for a section of the address space that is new in this address space 864 * space since the last transaction. 865 * 866 * @listener: The #MemoryListener. 867 * @section: The new #MemoryRegionSection. 868 */ 869 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 870 871 /** 872 * @region_del: 873 * 874 * Called during an address space update transaction, 875 * for a section of the address space that has disappeared in the address 876 * space since the last transaction. 877 * 878 * @listener: The #MemoryListener. 879 * @section: The old #MemoryRegionSection. 880 */ 881 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 882 883 /** 884 * @region_nop: 885 * 886 * Called during an address space update transaction, 887 * for a section of the address space that is in the same place in the address 888 * space as in the last transaction. 889 * 890 * @listener: The #MemoryListener. 891 * @section: The #MemoryRegionSection. 892 */ 893 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 894 895 /** 896 * @log_start: 897 * 898 * Called during an address space update transaction, after 899 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 900 * #MemoryListener.region_nop(), if dirty memory logging clients have 901 * become active since the last transaction. 902 * 903 * @listener: The #MemoryListener. 904 * @section: The #MemoryRegionSection. 905 * @old: A bitmap of dirty memory logging clients that were active in 906 * the previous transaction. 907 * @new: A bitmap of dirty memory logging clients that are active in 908 * the current transaction. 909 */ 910 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 911 int old_val, int new_val); 912 913 /** 914 * @log_stop: 915 * 916 * Called during an address space update transaction, after 917 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 918 * #MemoryListener.region_nop() and possibly after 919 * #MemoryListener.log_start(), if dirty memory logging clients have 920 * become inactive since the last transaction. 921 * 922 * @listener: The #MemoryListener. 923 * @section: The #MemoryRegionSection. 924 * @old: A bitmap of dirty memory logging clients that were active in 925 * the previous transaction. 926 * @new: A bitmap of dirty memory logging clients that are active in 927 * the current transaction. 928 */ 929 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 930 int old_val, int new_val); 931 932 /** 933 * @log_sync: 934 * 935 * Called by memory_region_snapshot_and_clear_dirty() and 936 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 937 * copy of the dirty memory bitmap for a #MemoryRegionSection. 938 * 939 * @listener: The #MemoryListener. 940 * @section: The #MemoryRegionSection. 941 */ 942 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 943 944 /** 945 * @log_sync_global: 946 * 947 * This is the global version of @log_sync when the listener does 948 * not have a way to synchronize the log with finer granularity. 949 * When the listener registers with @log_sync_global defined, then 950 * its @log_sync must be NULL. Vice versa. 951 * 952 * @listener: The #MemoryListener. 953 * @last_stage: The last stage to synchronize the log during migration. 954 * The caller should guarantee that the synchronization with true for 955 * @last_stage is triggered for once after all VCPUs have been stopped. 956 */ 957 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 958 959 /** 960 * @log_clear: 961 * 962 * Called before reading the dirty memory bitmap for a 963 * #MemoryRegionSection. 964 * 965 * @listener: The #MemoryListener. 966 * @section: The #MemoryRegionSection. 967 */ 968 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 969 970 /** 971 * @log_global_start: 972 * 973 * Called by memory_global_dirty_log_start(), which 974 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 975 * the address space. #MemoryListener.log_global_start() is also 976 * called when a #MemoryListener is added, if global dirty logging is 977 * active at that time. 978 * 979 * @listener: The #MemoryListener. 980 * @errp: pointer to Error*, to store an error if it happens. 981 * 982 * Return: true on success, else false setting @errp with error. 983 */ 984 bool (*log_global_start)(MemoryListener *listener, Error **errp); 985 986 /** 987 * @log_global_stop: 988 * 989 * Called by memory_global_dirty_log_stop(), which 990 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 991 * the address space. 992 * 993 * @listener: The #MemoryListener. 994 */ 995 void (*log_global_stop)(MemoryListener *listener); 996 997 /** 998 * @log_global_after_sync: 999 * 1000 * Called after reading the dirty memory bitmap 1001 * for any #MemoryRegionSection. 1002 * 1003 * @listener: The #MemoryListener. 1004 */ 1005 void (*log_global_after_sync)(MemoryListener *listener); 1006 1007 /** 1008 * @eventfd_add: 1009 * 1010 * Called during an address space update transaction, 1011 * for a section of the address space that has had a new ioeventfd 1012 * registration since the last transaction. 1013 * 1014 * @listener: The #MemoryListener. 1015 * @section: The new #MemoryRegionSection. 1016 * @match_data: The @match_data parameter for the new ioeventfd. 1017 * @data: The @data parameter for the new ioeventfd. 1018 * @e: The #EventNotifier parameter for the new ioeventfd. 1019 */ 1020 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1021 bool match_data, uint64_t data, EventNotifier *e); 1022 1023 /** 1024 * @eventfd_del: 1025 * 1026 * Called during an address space update transaction, 1027 * for a section of the address space that has dropped an ioeventfd 1028 * registration since the last transaction. 1029 * 1030 * @listener: The #MemoryListener. 1031 * @section: The new #MemoryRegionSection. 1032 * @match_data: The @match_data parameter for the dropped ioeventfd. 1033 * @data: The @data parameter for the dropped ioeventfd. 1034 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1035 */ 1036 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1037 bool match_data, uint64_t data, EventNotifier *e); 1038 1039 /** 1040 * @coalesced_io_add: 1041 * 1042 * Called during an address space update transaction, 1043 * for a section of the address space that has had a new coalesced 1044 * MMIO range registration since the last transaction. 1045 * 1046 * @listener: The #MemoryListener. 1047 * @section: The new #MemoryRegionSection. 1048 * @addr: The starting address for the coalesced MMIO range. 1049 * @len: The length of the coalesced MMIO range. 1050 */ 1051 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1052 hwaddr addr, hwaddr len); 1053 1054 /** 1055 * @coalesced_io_del: 1056 * 1057 * Called during an address space update transaction, 1058 * for a section of the address space that has dropped a coalesced 1059 * MMIO range since the last transaction. 1060 * 1061 * @listener: The #MemoryListener. 1062 * @section: The new #MemoryRegionSection. 1063 * @addr: The starting address for the coalesced MMIO range. 1064 * @len: The length of the coalesced MMIO range. 1065 */ 1066 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1067 hwaddr addr, hwaddr len); 1068 /** 1069 * @priority: 1070 * 1071 * Govern the order in which memory listeners are invoked. Lower priorities 1072 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1073 * or "stop" callbacks. 1074 */ 1075 unsigned priority; 1076 1077 /** 1078 * @name: 1079 * 1080 * Name of the listener. It can be used in contexts where we'd like to 1081 * identify one memory listener with the rest. 1082 */ 1083 const char *name; 1084 1085 /* private: */ 1086 AddressSpace *address_space; 1087 QTAILQ_ENTRY(MemoryListener) link; 1088 QTAILQ_ENTRY(MemoryListener) link_as; 1089 }; 1090 1091 typedef struct AddressSpaceMapClient { 1092 QEMUBH *bh; 1093 QLIST_ENTRY(AddressSpaceMapClient) link; 1094 } AddressSpaceMapClient; 1095 1096 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096) 1097 1098 /** 1099 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1100 */ 1101 struct AddressSpace { 1102 /* private: */ 1103 struct rcu_head rcu; 1104 char *name; 1105 MemoryRegion *root; 1106 1107 /* Accessed via RCU. */ 1108 struct FlatView *current_map; 1109 1110 int ioeventfd_nb; 1111 int ioeventfd_notifiers; 1112 struct MemoryRegionIoeventfd *ioeventfds; 1113 QTAILQ_HEAD(, MemoryListener) listeners; 1114 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1115 1116 /* 1117 * Maximum DMA bounce buffer size used for indirect memory map requests. 1118 * This limits the total size of bounce buffer allocations made for 1119 * DMA requests to indirect memory regions within this AddressSpace. DMA 1120 * requests that exceed the limit (e.g. due to overly large requested size 1121 * or concurrent DMA requests having claimed too much buffer space) will be 1122 * rejected and left to the caller to handle. 1123 */ 1124 size_t max_bounce_buffer_size; 1125 /* Total size of bounce buffers currently allocated, atomically accessed */ 1126 size_t bounce_buffer_size; 1127 /* List of callbacks to invoke when buffers free up */ 1128 QemuMutex map_client_list_lock; 1129 QLIST_HEAD(, AddressSpaceMapClient) map_client_list; 1130 }; 1131 1132 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1133 typedef struct FlatRange FlatRange; 1134 1135 /* Flattened global view of current active memory hierarchy. Kept in sorted 1136 * order. 1137 */ 1138 struct FlatView { 1139 struct rcu_head rcu; 1140 unsigned ref; 1141 FlatRange *ranges; 1142 unsigned nr; 1143 unsigned nr_allocated; 1144 struct AddressSpaceDispatch *dispatch; 1145 MemoryRegion *root; 1146 }; 1147 1148 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1149 { 1150 return qatomic_rcu_read(&as->current_map); 1151 } 1152 1153 /** 1154 * typedef flatview_cb: callback for flatview_for_each_range() 1155 * 1156 * @start: start address of the range within the FlatView 1157 * @len: length of the range in bytes 1158 * @mr: MemoryRegion covering this range 1159 * @offset_in_region: offset of the first byte of the range within @mr 1160 * @opaque: data pointer passed to flatview_for_each_range() 1161 * 1162 * Returns: true to stop the iteration, false to keep going. 1163 */ 1164 typedef bool (*flatview_cb)(Int128 start, 1165 Int128 len, 1166 const MemoryRegion *mr, 1167 hwaddr offset_in_region, 1168 void *opaque); 1169 1170 /** 1171 * flatview_for_each_range: Iterate through a FlatView 1172 * @fv: the FlatView to iterate through 1173 * @cb: function to call for each range 1174 * @opaque: opaque data pointer to pass to @cb 1175 * 1176 * A FlatView is made up of a list of non-overlapping ranges, each of 1177 * which is a slice of a MemoryRegion. This function iterates through 1178 * each range in @fv, calling @cb. The callback function can terminate 1179 * iteration early by returning 'true'. 1180 */ 1181 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1182 1183 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1184 MemoryRegionSection *b) 1185 { 1186 return a->mr == b->mr && 1187 a->fv == b->fv && 1188 a->offset_within_region == b->offset_within_region && 1189 a->offset_within_address_space == b->offset_within_address_space && 1190 int128_eq(a->size, b->size) && 1191 a->readonly == b->readonly && 1192 a->nonvolatile == b->nonvolatile; 1193 } 1194 1195 /** 1196 * memory_region_section_new_copy: Copy a memory region section 1197 * 1198 * Allocate memory for a new copy, copy the memory region section, and 1199 * properly take a reference on all relevant members. 1200 * 1201 * @s: the #MemoryRegionSection to copy 1202 */ 1203 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1204 1205 /** 1206 * memory_region_section_free_copy: Free a copied memory region section 1207 * 1208 * Free a copy of a memory section created via memory_region_section_new_copy(). 1209 * properly dropping references on all relevant members. 1210 * 1211 * @s: the #MemoryRegionSection to copy 1212 */ 1213 void memory_region_section_free_copy(MemoryRegionSection *s); 1214 1215 /** 1216 * memory_region_init: Initialize a memory region 1217 * 1218 * The region typically acts as a container for other memory regions. Use 1219 * memory_region_add_subregion() to add subregions. 1220 * 1221 * @mr: the #MemoryRegion to be initialized 1222 * @owner: the object that tracks the region's reference count 1223 * @name: used for debugging; not visible to the user or ABI 1224 * @size: size of the region; any subregions beyond this size will be clipped 1225 */ 1226 void memory_region_init(MemoryRegion *mr, 1227 Object *owner, 1228 const char *name, 1229 uint64_t size); 1230 1231 /** 1232 * memory_region_ref: Add 1 to a memory region's reference count 1233 * 1234 * Whenever memory regions are accessed outside the BQL, they need to be 1235 * preserved against hot-unplug. MemoryRegions actually do not have their 1236 * own reference count; they piggyback on a QOM object, their "owner". 1237 * This function adds a reference to the owner. 1238 * 1239 * All MemoryRegions must have an owner if they can disappear, even if the 1240 * device they belong to operates exclusively under the BQL. This is because 1241 * the region could be returned at any time by memory_region_find, and this 1242 * is usually under guest control. 1243 * 1244 * @mr: the #MemoryRegion 1245 */ 1246 void memory_region_ref(MemoryRegion *mr); 1247 1248 /** 1249 * memory_region_unref: Remove 1 to a memory region's reference count 1250 * 1251 * Whenever memory regions are accessed outside the BQL, they need to be 1252 * preserved against hot-unplug. MemoryRegions actually do not have their 1253 * own reference count; they piggyback on a QOM object, their "owner". 1254 * This function removes a reference to the owner and possibly destroys it. 1255 * 1256 * @mr: the #MemoryRegion 1257 */ 1258 void memory_region_unref(MemoryRegion *mr); 1259 1260 /** 1261 * memory_region_init_io: Initialize an I/O memory region. 1262 * 1263 * Accesses into the region will cause the callbacks in @ops to be called. 1264 * if @size is nonzero, subregions will be clipped to @size. 1265 * 1266 * @mr: the #MemoryRegion to be initialized. 1267 * @owner: the object that tracks the region's reference count 1268 * @ops: a structure containing read and write callbacks to be used when 1269 * I/O is performed on the region. 1270 * @opaque: passed to the read and write callbacks of the @ops structure. 1271 * @name: used for debugging; not visible to the user or ABI 1272 * @size: size of the region. 1273 */ 1274 void memory_region_init_io(MemoryRegion *mr, 1275 Object *owner, 1276 const MemoryRegionOps *ops, 1277 void *opaque, 1278 const char *name, 1279 uint64_t size); 1280 1281 /** 1282 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1283 * into the region will modify memory 1284 * directly. 1285 * 1286 * @mr: the #MemoryRegion to be initialized. 1287 * @owner: the object that tracks the region's reference count 1288 * @name: Region name, becomes part of RAMBlock name used in migration stream 1289 * must be unique within any device 1290 * @size: size of the region. 1291 * @errp: pointer to Error*, to store an error if it happens. 1292 * 1293 * Note that this function does not do anything to cause the data in the 1294 * RAM memory region to be migrated; that is the responsibility of the caller. 1295 * 1296 * Return: true on success, else false setting @errp with error. 1297 */ 1298 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1299 Object *owner, 1300 const char *name, 1301 uint64_t size, 1302 Error **errp); 1303 1304 /** 1305 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1306 * Accesses into the region will 1307 * modify memory directly. 1308 * 1309 * @mr: the #MemoryRegion to be initialized. 1310 * @owner: the object that tracks the region's reference count 1311 * @name: Region name, becomes part of RAMBlock name used in migration stream 1312 * must be unique within any device 1313 * @size: size of the region. 1314 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE, 1315 * RAM_GUEST_MEMFD. 1316 * @errp: pointer to Error*, to store an error if it happens. 1317 * 1318 * Note that this function does not do anything to cause the data in the 1319 * RAM memory region to be migrated; that is the responsibility of the caller. 1320 * 1321 * Return: true on success, else false setting @errp with error. 1322 */ 1323 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1324 Object *owner, 1325 const char *name, 1326 uint64_t size, 1327 uint32_t ram_flags, 1328 Error **errp); 1329 1330 /** 1331 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1332 * RAM. Accesses into the region will 1333 * modify memory directly. Only an initial 1334 * portion of this RAM is actually used. 1335 * Changing the size while migrating 1336 * can result in the migration being 1337 * canceled. 1338 * 1339 * @mr: the #MemoryRegion to be initialized. 1340 * @owner: the object that tracks the region's reference count 1341 * @name: Region name, becomes part of RAMBlock name used in migration stream 1342 * must be unique within any device 1343 * @size: used size of the region. 1344 * @max_size: max size of the region. 1345 * @resized: callback to notify owner about used size change. 1346 * @errp: pointer to Error*, to store an error if it happens. 1347 * 1348 * Note that this function does not do anything to cause the data in the 1349 * RAM memory region to be migrated; that is the responsibility of the caller. 1350 * 1351 * Return: true on success, else false setting @errp with error. 1352 */ 1353 bool memory_region_init_resizeable_ram(MemoryRegion *mr, 1354 Object *owner, 1355 const char *name, 1356 uint64_t size, 1357 uint64_t max_size, 1358 void (*resized)(const char*, 1359 uint64_t length, 1360 void *host), 1361 Error **errp); 1362 #ifdef CONFIG_POSIX 1363 1364 /** 1365 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1366 * mmap-ed backend. 1367 * 1368 * @mr: the #MemoryRegion to be initialized. 1369 * @owner: the object that tracks the region's reference count 1370 * @name: Region name, becomes part of RAMBlock name used in migration stream 1371 * must be unique within any device 1372 * @size: size of the region. 1373 * @align: alignment of the region base address; if 0, the default alignment 1374 * (getpagesize()) will be used. 1375 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1376 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1377 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1378 * @path: the path in which to allocate the RAM. 1379 * @offset: offset within the file referenced by path 1380 * @errp: pointer to Error*, to store an error if it happens. 1381 * 1382 * Note that this function does not do anything to cause the data in the 1383 * RAM memory region to be migrated; that is the responsibility of the caller. 1384 * 1385 * Return: true on success, else false setting @errp with error. 1386 */ 1387 bool memory_region_init_ram_from_file(MemoryRegion *mr, 1388 Object *owner, 1389 const char *name, 1390 uint64_t size, 1391 uint64_t align, 1392 uint32_t ram_flags, 1393 const char *path, 1394 ram_addr_t offset, 1395 Error **errp); 1396 1397 /** 1398 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1399 * mmap-ed backend. 1400 * 1401 * @mr: the #MemoryRegion to be initialized. 1402 * @owner: the object that tracks the region's reference count 1403 * @name: the name of the region. 1404 * @size: size of the region. 1405 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1406 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1407 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1408 * @fd: the fd to mmap. 1409 * @offset: offset within the file referenced by fd 1410 * @errp: pointer to Error*, to store an error if it happens. 1411 * 1412 * Note that this function does not do anything to cause the data in the 1413 * RAM memory region to be migrated; that is the responsibility of the caller. 1414 * 1415 * Return: true on success, else false setting @errp with error. 1416 */ 1417 bool memory_region_init_ram_from_fd(MemoryRegion *mr, 1418 Object *owner, 1419 const char *name, 1420 uint64_t size, 1421 uint32_t ram_flags, 1422 int fd, 1423 ram_addr_t offset, 1424 Error **errp); 1425 #endif 1426 1427 /** 1428 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1429 * user-provided pointer. Accesses into the 1430 * region will modify memory directly. 1431 * 1432 * @mr: the #MemoryRegion to be initialized. 1433 * @owner: the object that tracks the region's reference count 1434 * @name: Region name, becomes part of RAMBlock name used in migration stream 1435 * must be unique within any device 1436 * @size: size of the region. 1437 * @ptr: memory to be mapped; must contain at least @size bytes. 1438 * 1439 * Note that this function does not do anything to cause the data in the 1440 * RAM memory region to be migrated; that is the responsibility of the caller. 1441 */ 1442 void memory_region_init_ram_ptr(MemoryRegion *mr, 1443 Object *owner, 1444 const char *name, 1445 uint64_t size, 1446 void *ptr); 1447 1448 /** 1449 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1450 * a user-provided pointer. 1451 * 1452 * A RAM device represents a mapping to a physical device, such as to a PCI 1453 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1454 * into the VM address space and access to the region will modify memory 1455 * directly. However, the memory region should not be included in a memory 1456 * dump (device may not be enabled/mapped at the time of the dump), and 1457 * operations incompatible with manipulating MMIO should be avoided. Replaces 1458 * skip_dump flag. 1459 * 1460 * @mr: the #MemoryRegion to be initialized. 1461 * @owner: the object that tracks the region's reference count 1462 * @name: the name of the region. 1463 * @size: size of the region. 1464 * @ptr: memory to be mapped; must contain at least @size bytes. 1465 * 1466 * Note that this function does not do anything to cause the data in the 1467 * RAM memory region to be migrated; that is the responsibility of the caller. 1468 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1469 */ 1470 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1471 Object *owner, 1472 const char *name, 1473 uint64_t size, 1474 void *ptr); 1475 1476 /** 1477 * memory_region_init_alias: Initialize a memory region that aliases all or a 1478 * part of another memory region. 1479 * 1480 * @mr: the #MemoryRegion to be initialized. 1481 * @owner: the object that tracks the region's reference count 1482 * @name: used for debugging; not visible to the user or ABI 1483 * @orig: the region to be referenced; @mr will be equivalent to 1484 * @orig between @offset and @offset + @size - 1. 1485 * @offset: start of the section in @orig to be referenced. 1486 * @size: size of the region. 1487 */ 1488 void memory_region_init_alias(MemoryRegion *mr, 1489 Object *owner, 1490 const char *name, 1491 MemoryRegion *orig, 1492 hwaddr offset, 1493 uint64_t size); 1494 1495 /** 1496 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1497 * 1498 * This has the same effect as calling memory_region_init_ram_nomigrate() 1499 * and then marking the resulting region read-only with 1500 * memory_region_set_readonly(). 1501 * 1502 * Note that this function does not do anything to cause the data in the 1503 * RAM side of the memory region to be migrated; that is the responsibility 1504 * of the caller. 1505 * 1506 * @mr: the #MemoryRegion to be initialized. 1507 * @owner: the object that tracks the region's reference count 1508 * @name: Region name, becomes part of RAMBlock name used in migration stream 1509 * must be unique within any device 1510 * @size: size of the region. 1511 * @errp: pointer to Error*, to store an error if it happens. 1512 * 1513 * Return: true on success, else false setting @errp with error. 1514 */ 1515 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1516 Object *owner, 1517 const char *name, 1518 uint64_t size, 1519 Error **errp); 1520 1521 /** 1522 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1523 * Writes are handled via callbacks. 1524 * 1525 * Note that this function does not do anything to cause the data in the 1526 * RAM side of the memory region to be migrated; that is the responsibility 1527 * of the caller. 1528 * 1529 * @mr: the #MemoryRegion to be initialized. 1530 * @owner: the object that tracks the region's reference count 1531 * @ops: callbacks for write access handling (must not be NULL). 1532 * @opaque: passed to the read and write callbacks of the @ops structure. 1533 * @name: Region name, becomes part of RAMBlock name used in migration stream 1534 * must be unique within any device 1535 * @size: size of the region. 1536 * @errp: pointer to Error*, to store an error if it happens. 1537 * 1538 * Return: true on success, else false setting @errp with error. 1539 */ 1540 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1541 Object *owner, 1542 const MemoryRegionOps *ops, 1543 void *opaque, 1544 const char *name, 1545 uint64_t size, 1546 Error **errp); 1547 1548 /** 1549 * memory_region_init_iommu: Initialize a memory region of a custom type 1550 * that translates addresses 1551 * 1552 * An IOMMU region translates addresses and forwards accesses to a target 1553 * memory region. 1554 * 1555 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1556 * @_iommu_mr should be a pointer to enough memory for an instance of 1557 * that subclass, @instance_size is the size of that subclass, and 1558 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1559 * instance of the subclass, and its methods will then be called to handle 1560 * accesses to the memory region. See the documentation of 1561 * #IOMMUMemoryRegionClass for further details. 1562 * 1563 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1564 * @instance_size: the IOMMUMemoryRegion subclass instance size 1565 * @mrtypename: the type name of the #IOMMUMemoryRegion 1566 * @owner: the object that tracks the region's reference count 1567 * @name: used for debugging; not visible to the user or ABI 1568 * @size: size of the region. 1569 */ 1570 void memory_region_init_iommu(void *_iommu_mr, 1571 size_t instance_size, 1572 const char *mrtypename, 1573 Object *owner, 1574 const char *name, 1575 uint64_t size); 1576 1577 /** 1578 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1579 * region will modify memory directly. 1580 * 1581 * @mr: the #MemoryRegion to be initialized 1582 * @owner: the object that tracks the region's reference count (must be 1583 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1584 * @name: name of the memory region 1585 * @size: size of the region in bytes 1586 * @errp: pointer to Error*, to store an error if it happens. 1587 * 1588 * This function allocates RAM for a board model or device, and 1589 * arranges for it to be migrated (by calling vmstate_register_ram() 1590 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1591 * @owner is NULL). 1592 * 1593 * TODO: Currently we restrict @owner to being either NULL (for 1594 * global RAM regions with no owner) or devices, so that we can 1595 * give the RAM block a unique name for migration purposes. 1596 * We should lift this restriction and allow arbitrary Objects. 1597 * If you pass a non-NULL non-device @owner then we will assert. 1598 * 1599 * Return: true on success, else false setting @errp with error. 1600 */ 1601 bool memory_region_init_ram(MemoryRegion *mr, 1602 Object *owner, 1603 const char *name, 1604 uint64_t size, 1605 Error **errp); 1606 1607 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr, 1608 Object *owner, 1609 const char *name, 1610 uint64_t size, 1611 Error **errp); 1612 1613 /** 1614 * memory_region_init_rom: Initialize a ROM memory region. 1615 * 1616 * This has the same effect as calling memory_region_init_ram() 1617 * and then marking the resulting region read-only with 1618 * memory_region_set_readonly(). This includes arranging for the 1619 * contents to be migrated. 1620 * 1621 * TODO: Currently we restrict @owner to being either NULL (for 1622 * global RAM regions with no owner) or devices, so that we can 1623 * give the RAM block a unique name for migration purposes. 1624 * We should lift this restriction and allow arbitrary Objects. 1625 * If you pass a non-NULL non-device @owner then we will assert. 1626 * 1627 * @mr: the #MemoryRegion to be initialized. 1628 * @owner: the object that tracks the region's reference count 1629 * @name: Region name, becomes part of RAMBlock name used in migration stream 1630 * must be unique within any device 1631 * @size: size of the region. 1632 * @errp: pointer to Error*, to store an error if it happens. 1633 * 1634 * Return: true on success, else false setting @errp with error. 1635 */ 1636 bool memory_region_init_rom(MemoryRegion *mr, 1637 Object *owner, 1638 const char *name, 1639 uint64_t size, 1640 Error **errp); 1641 1642 /** 1643 * memory_region_init_rom_device: Initialize a ROM memory region. 1644 * Writes are handled via callbacks. 1645 * 1646 * This function initializes a memory region backed by RAM for reads 1647 * and callbacks for writes, and arranges for the RAM backing to 1648 * be migrated (by calling vmstate_register_ram() 1649 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1650 * @owner is NULL). 1651 * 1652 * TODO: Currently we restrict @owner to being either NULL (for 1653 * global RAM regions with no owner) or devices, so that we can 1654 * give the RAM block a unique name for migration purposes. 1655 * We should lift this restriction and allow arbitrary Objects. 1656 * If you pass a non-NULL non-device @owner then we will assert. 1657 * 1658 * @mr: the #MemoryRegion to be initialized. 1659 * @owner: the object that tracks the region's reference count 1660 * @ops: callbacks for write access handling (must not be NULL). 1661 * @opaque: passed to the read and write callbacks of the @ops structure. 1662 * @name: Region name, becomes part of RAMBlock name used in migration stream 1663 * must be unique within any device 1664 * @size: size of the region. 1665 * @errp: pointer to Error*, to store an error if it happens. 1666 * 1667 * Return: true on success, else false setting @errp with error. 1668 */ 1669 bool memory_region_init_rom_device(MemoryRegion *mr, 1670 Object *owner, 1671 const MemoryRegionOps *ops, 1672 void *opaque, 1673 const char *name, 1674 uint64_t size, 1675 Error **errp); 1676 1677 1678 /** 1679 * memory_region_owner: get a memory region's owner. 1680 * 1681 * @mr: the memory region being queried. 1682 */ 1683 Object *memory_region_owner(MemoryRegion *mr); 1684 1685 /** 1686 * memory_region_size: get a memory region's size. 1687 * 1688 * @mr: the memory region being queried. 1689 */ 1690 uint64_t memory_region_size(MemoryRegion *mr); 1691 1692 /** 1693 * memory_region_is_ram: check whether a memory region is random access 1694 * 1695 * Returns %true if a memory region is random access. 1696 * 1697 * @mr: the memory region being queried 1698 */ 1699 static inline bool memory_region_is_ram(MemoryRegion *mr) 1700 { 1701 return mr->ram; 1702 } 1703 1704 /** 1705 * memory_region_is_ram_device: check whether a memory region is a ram device 1706 * 1707 * Returns %true if a memory region is a device backed ram region 1708 * 1709 * @mr: the memory region being queried 1710 */ 1711 bool memory_region_is_ram_device(MemoryRegion *mr); 1712 1713 /** 1714 * memory_region_is_romd: check whether a memory region is in ROMD mode 1715 * 1716 * Returns %true if a memory region is a ROM device and currently set to allow 1717 * direct reads. 1718 * 1719 * @mr: the memory region being queried 1720 */ 1721 static inline bool memory_region_is_romd(MemoryRegion *mr) 1722 { 1723 return mr->rom_device && mr->romd_mode; 1724 } 1725 1726 /** 1727 * memory_region_is_protected: check whether a memory region is protected 1728 * 1729 * Returns %true if a memory region is protected RAM and cannot be accessed 1730 * via standard mechanisms, e.g. DMA. 1731 * 1732 * @mr: the memory region being queried 1733 */ 1734 bool memory_region_is_protected(MemoryRegion *mr); 1735 1736 /** 1737 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd 1738 * associated 1739 * 1740 * Returns %true if a memory region's ram_block has valid guest_memfd assigned. 1741 * 1742 * @mr: the memory region being queried 1743 */ 1744 bool memory_region_has_guest_memfd(MemoryRegion *mr); 1745 1746 /** 1747 * memory_region_get_iommu: check whether a memory region is an iommu 1748 * 1749 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1750 * otherwise NULL. 1751 * 1752 * @mr: the memory region being queried 1753 */ 1754 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1755 { 1756 if (mr->alias) { 1757 return memory_region_get_iommu(mr->alias); 1758 } 1759 if (mr->is_iommu) { 1760 return (IOMMUMemoryRegion *) mr; 1761 } 1762 return NULL; 1763 } 1764 1765 /** 1766 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1767 * if an iommu or NULL if not 1768 * 1769 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1770 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1771 * 1772 * @iommu_mr: the memory region being queried 1773 */ 1774 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1775 IOMMUMemoryRegion *iommu_mr) 1776 { 1777 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1778 } 1779 1780 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1781 1782 /** 1783 * memory_region_iommu_get_min_page_size: get minimum supported page size 1784 * for an iommu 1785 * 1786 * Returns minimum supported page size for an iommu. 1787 * 1788 * @iommu_mr: the memory region being queried 1789 */ 1790 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1791 1792 /** 1793 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1794 * 1795 * Note: for any IOMMU implementation, an in-place mapping change 1796 * should be notified with an UNMAP followed by a MAP. 1797 * 1798 * @iommu_mr: the memory region that was changed 1799 * @iommu_idx: the IOMMU index for the translation table which has changed 1800 * @event: TLB event with the new entry in the IOMMU translation table. 1801 * The entry replaces all old entries for the same virtual I/O address 1802 * range. 1803 */ 1804 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1805 int iommu_idx, 1806 const IOMMUTLBEvent event); 1807 1808 /** 1809 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1810 * entry to a single notifier 1811 * 1812 * This works just like memory_region_notify_iommu(), but it only 1813 * notifies a specific notifier, not all of them. 1814 * 1815 * @notifier: the notifier to be notified 1816 * @event: TLB event with the new entry in the IOMMU translation table. 1817 * The entry replaces all old entries for the same virtual I/O address 1818 * range. 1819 */ 1820 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1821 const IOMMUTLBEvent *event); 1822 1823 /** 1824 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1825 * translation that covers the 1826 * range of a notifier 1827 * 1828 * @notifier: the notifier to be notified 1829 */ 1830 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1831 1832 1833 /** 1834 * memory_region_register_iommu_notifier: register a notifier for changes to 1835 * IOMMU translation entries. 1836 * 1837 * Returns 0 on success, or a negative errno otherwise. In particular, 1838 * -EINVAL indicates that at least one of the attributes of the notifier 1839 * is not supported (flag/range) by the IOMMU memory region. In case of error 1840 * the error object must be created. 1841 * 1842 * @mr: the memory region to observe 1843 * @n: the IOMMUNotifier to be added; the notify callback receives a 1844 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1845 * ceases to be valid on exit from the notifier. 1846 * @errp: pointer to Error*, to store an error if it happens. 1847 */ 1848 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1849 IOMMUNotifier *n, Error **errp); 1850 1851 /** 1852 * memory_region_iommu_replay: replay existing IOMMU translations to 1853 * a notifier with the minimum page granularity returned by 1854 * mr->iommu_ops->get_page_size(). 1855 * 1856 * Note: this is not related to record-and-replay functionality. 1857 * 1858 * @iommu_mr: the memory region to observe 1859 * @n: the notifier to which to replay iommu mappings 1860 */ 1861 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1862 1863 /** 1864 * memory_region_unregister_iommu_notifier: unregister a notifier for 1865 * changes to IOMMU translation entries. 1866 * 1867 * @mr: the memory region which was observed and for which notify_stopped() 1868 * needs to be called 1869 * @n: the notifier to be removed. 1870 */ 1871 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1872 IOMMUNotifier *n); 1873 1874 /** 1875 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1876 * defined on the IOMMU. 1877 * 1878 * Returns 0 on success, or a negative errno otherwise. In particular, 1879 * -EINVAL indicates that the IOMMU does not support the requested 1880 * attribute. 1881 * 1882 * @iommu_mr: the memory region 1883 * @attr: the requested attribute 1884 * @data: a pointer to the requested attribute data 1885 */ 1886 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1887 enum IOMMUMemoryRegionAttr attr, 1888 void *data); 1889 1890 /** 1891 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1892 * use for translations with the given memory transaction attributes. 1893 * 1894 * @iommu_mr: the memory region 1895 * @attrs: the memory transaction attributes 1896 */ 1897 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1898 MemTxAttrs attrs); 1899 1900 /** 1901 * memory_region_iommu_num_indexes: return the total number of IOMMU 1902 * indexes that this IOMMU supports. 1903 * 1904 * @iommu_mr: the memory region 1905 */ 1906 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1907 1908 /** 1909 * memory_region_name: get a memory region's name 1910 * 1911 * Returns the string that was used to initialize the memory region. 1912 * 1913 * @mr: the memory region being queried 1914 */ 1915 const char *memory_region_name(const MemoryRegion *mr); 1916 1917 /** 1918 * memory_region_is_logging: return whether a memory region is logging writes 1919 * 1920 * Returns %true if the memory region is logging writes for the given client 1921 * 1922 * @mr: the memory region being queried 1923 * @client: the client being queried 1924 */ 1925 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1926 1927 /** 1928 * memory_region_get_dirty_log_mask: return the clients for which a 1929 * memory region is logging writes. 1930 * 1931 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1932 * are the bit indices. 1933 * 1934 * @mr: the memory region being queried 1935 */ 1936 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1937 1938 /** 1939 * memory_region_is_rom: check whether a memory region is ROM 1940 * 1941 * Returns %true if a memory region is read-only memory. 1942 * 1943 * @mr: the memory region being queried 1944 */ 1945 static inline bool memory_region_is_rom(MemoryRegion *mr) 1946 { 1947 return mr->ram && mr->readonly; 1948 } 1949 1950 /** 1951 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1952 * 1953 * Returns %true is a memory region is non-volatile memory. 1954 * 1955 * @mr: the memory region being queried 1956 */ 1957 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1958 { 1959 return mr->nonvolatile; 1960 } 1961 1962 /** 1963 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1964 * 1965 * Returns a file descriptor backing a file-based RAM memory region, 1966 * or -1 if the region is not a file-based RAM memory region. 1967 * 1968 * @mr: the RAM or alias memory region being queried. 1969 */ 1970 int memory_region_get_fd(MemoryRegion *mr); 1971 1972 /** 1973 * memory_region_from_host: Convert a pointer into a RAM memory region 1974 * and an offset within it. 1975 * 1976 * Given a host pointer inside a RAM memory region (created with 1977 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1978 * the MemoryRegion and the offset within it. 1979 * 1980 * Use with care; by the time this function returns, the returned pointer is 1981 * not protected by RCU anymore. If the caller is not within an RCU critical 1982 * section and does not hold the BQL, it must have other means of 1983 * protecting the pointer, such as a reference to the region that includes 1984 * the incoming ram_addr_t. 1985 * 1986 * @ptr: the host pointer to be converted 1987 * @offset: the offset within memory region 1988 */ 1989 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1990 1991 /** 1992 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1993 * 1994 * Returns a host pointer to a RAM memory region (created with 1995 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1996 * 1997 * Use with care; by the time this function returns, the returned pointer is 1998 * not protected by RCU anymore. If the caller is not within an RCU critical 1999 * section and does not hold the BQL, it must have other means of 2000 * protecting the pointer, such as a reference to the region that includes 2001 * the incoming ram_addr_t. 2002 * 2003 * @mr: the memory region being queried. 2004 */ 2005 void *memory_region_get_ram_ptr(MemoryRegion *mr); 2006 2007 /* memory_region_ram_resize: Resize a RAM region. 2008 * 2009 * Resizing RAM while migrating can result in the migration being canceled. 2010 * Care has to be taken if the guest might have already detected the memory. 2011 * 2012 * @mr: a memory region created with @memory_region_init_resizeable_ram. 2013 * @newsize: the new size the region 2014 * @errp: pointer to Error*, to store an error if it happens. 2015 */ 2016 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 2017 Error **errp); 2018 2019 /** 2020 * memory_region_msync: Synchronize selected address range of 2021 * a memory mapped region 2022 * 2023 * @mr: the memory region to be msync 2024 * @addr: the initial address of the range to be sync 2025 * @size: the size of the range to be sync 2026 */ 2027 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 2028 2029 /** 2030 * memory_region_writeback: Trigger cache writeback for 2031 * selected address range 2032 * 2033 * @mr: the memory region to be updated 2034 * @addr: the initial address of the range to be written back 2035 * @size: the size of the range to be written back 2036 */ 2037 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 2038 2039 /** 2040 * memory_region_set_log: Turn dirty logging on or off for a region. 2041 * 2042 * Turns dirty logging on or off for a specified client (display, migration). 2043 * Only meaningful for RAM regions. 2044 * 2045 * @mr: the memory region being updated. 2046 * @log: whether dirty logging is to be enabled or disabled. 2047 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 2048 */ 2049 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2050 2051 /** 2052 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2053 * 2054 * Marks a range of bytes as dirty, after it has been dirtied outside 2055 * guest code. 2056 * 2057 * @mr: the memory region being dirtied. 2058 * @addr: the address (relative to the start of the region) being dirtied. 2059 * @size: size of the range being dirtied. 2060 */ 2061 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2062 hwaddr size); 2063 2064 /** 2065 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2066 * 2067 * This function is called when the caller wants to clear the remote 2068 * dirty bitmap of a memory range within the memory region. This can 2069 * be used by e.g. KVM to manually clear dirty log when 2070 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2071 * kernel. 2072 * 2073 * @mr: the memory region to clear the dirty log upon 2074 * @start: start address offset within the memory region 2075 * @len: length of the memory region to clear dirty bitmap 2076 */ 2077 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2078 hwaddr len); 2079 2080 /** 2081 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2082 * bitmap and clear it. 2083 * 2084 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2085 * returns the snapshot. The snapshot can then be used to query dirty 2086 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2087 * querying the same page multiple times, which is especially useful for 2088 * display updates where the scanlines often are not page aligned. 2089 * 2090 * The dirty bitmap region which gets copied into the snapshot (and 2091 * cleared afterwards) can be larger than requested. The boundaries 2092 * are rounded up/down so complete bitmap longs (covering 64 pages on 2093 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2094 * isn't a problem for display updates as the extra pages are outside 2095 * the visible area, and in case the visible area changes a full 2096 * display redraw is due anyway. Should other use cases for this 2097 * function emerge we might have to revisit this implementation 2098 * detail. 2099 * 2100 * Use g_free to release DirtyBitmapSnapshot. 2101 * 2102 * @mr: the memory region being queried. 2103 * @addr: the address (relative to the start of the region) being queried. 2104 * @size: the size of the range being queried. 2105 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2106 */ 2107 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2108 hwaddr addr, 2109 hwaddr size, 2110 unsigned client); 2111 2112 /** 2113 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2114 * in the specified dirty bitmap snapshot. 2115 * 2116 * @mr: the memory region being queried. 2117 * @snap: the dirty bitmap snapshot 2118 * @addr: the address (relative to the start of the region) being queried. 2119 * @size: the size of the range being queried. 2120 */ 2121 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2122 DirtyBitmapSnapshot *snap, 2123 hwaddr addr, hwaddr size); 2124 2125 /** 2126 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2127 * client. 2128 * 2129 * Marks a range of pages as no longer dirty. 2130 * 2131 * @mr: the region being updated. 2132 * @addr: the start of the subrange being cleaned. 2133 * @size: the size of the subrange being cleaned. 2134 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2135 * %DIRTY_MEMORY_VGA. 2136 */ 2137 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2138 hwaddr size, unsigned client); 2139 2140 /** 2141 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2142 * TBs (for self-modifying code). 2143 * 2144 * The MemoryRegionOps->write() callback of a ROM device must use this function 2145 * to mark byte ranges that have been modified internally, such as by directly 2146 * accessing the memory returned by memory_region_get_ram_ptr(). 2147 * 2148 * This function marks the range dirty and invalidates TBs so that TCG can 2149 * detect self-modifying code. 2150 * 2151 * @mr: the region being flushed. 2152 * @addr: the start, relative to the start of the region, of the range being 2153 * flushed. 2154 * @size: the size, in bytes, of the range being flushed. 2155 */ 2156 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2157 2158 /** 2159 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2160 * 2161 * Allows a memory region to be marked as read-only (turning it into a ROM). 2162 * only useful on RAM regions. 2163 * 2164 * @mr: the region being updated. 2165 * @readonly: whether the region is to be ROM or RAM. 2166 */ 2167 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2168 2169 /** 2170 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2171 * 2172 * Allows a memory region to be marked as non-volatile. 2173 * only useful on RAM regions. 2174 * 2175 * @mr: the region being updated. 2176 * @nonvolatile: whether the region is to be non-volatile. 2177 */ 2178 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2179 2180 /** 2181 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2182 * 2183 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2184 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2185 * device is mapped to guest memory and satisfies read access directly. 2186 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2187 * Writes are always handled by the #MemoryRegion.write function. 2188 * 2189 * @mr: the memory region to be updated 2190 * @romd_mode: %true to put the region into ROMD mode 2191 */ 2192 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2193 2194 /** 2195 * memory_region_set_coalescing: Enable memory coalescing for the region. 2196 * 2197 * Enabled writes to a region to be queued for later processing. MMIO ->write 2198 * callbacks may be delayed until a non-coalesced MMIO is issued. 2199 * Only useful for IO regions. Roughly similar to write-combining hardware. 2200 * 2201 * @mr: the memory region to be write coalesced 2202 */ 2203 void memory_region_set_coalescing(MemoryRegion *mr); 2204 2205 /** 2206 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2207 * a region. 2208 * 2209 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2210 * Multiple calls can be issued coalesced disjoint ranges. 2211 * 2212 * @mr: the memory region to be updated. 2213 * @offset: the start of the range within the region to be coalesced. 2214 * @size: the size of the subrange to be coalesced. 2215 */ 2216 void memory_region_add_coalescing(MemoryRegion *mr, 2217 hwaddr offset, 2218 uint64_t size); 2219 2220 /** 2221 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2222 * 2223 * Disables any coalescing caused by memory_region_set_coalescing() or 2224 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2225 * hardware. 2226 * 2227 * @mr: the memory region to be updated. 2228 */ 2229 void memory_region_clear_coalescing(MemoryRegion *mr); 2230 2231 /** 2232 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2233 * accesses. 2234 * 2235 * Ensure that pending coalesced MMIO request are flushed before the memory 2236 * region is accessed. This property is automatically enabled for all regions 2237 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2238 * 2239 * @mr: the memory region to be updated. 2240 */ 2241 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2242 2243 /** 2244 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2245 * accesses. 2246 * 2247 * Clear the automatic coalesced MMIO flushing enabled via 2248 * memory_region_set_flush_coalesced. Note that this service has no effect on 2249 * memory regions that have MMIO coalescing enabled for themselves. For them, 2250 * automatic flushing will stop once coalescing is disabled. 2251 * 2252 * @mr: the memory region to be updated. 2253 */ 2254 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2255 2256 /** 2257 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2258 * is written to a location. 2259 * 2260 * Marks a word in an IO region (initialized with memory_region_init_io()) 2261 * as a trigger for an eventfd event. The I/O callback will not be called. 2262 * The caller must be prepared to handle failure (that is, take the required 2263 * action if the callback _is_ called). 2264 * 2265 * @mr: the memory region being updated. 2266 * @addr: the address within @mr that is to be monitored 2267 * @size: the size of the access to trigger the eventfd 2268 * @match_data: whether to match against @data, instead of just @addr 2269 * @data: the data to match against the guest write 2270 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2271 **/ 2272 void memory_region_add_eventfd(MemoryRegion *mr, 2273 hwaddr addr, 2274 unsigned size, 2275 bool match_data, 2276 uint64_t data, 2277 EventNotifier *e); 2278 2279 /** 2280 * memory_region_del_eventfd: Cancel an eventfd. 2281 * 2282 * Cancels an eventfd trigger requested by a previous 2283 * memory_region_add_eventfd() call. 2284 * 2285 * @mr: the memory region being updated. 2286 * @addr: the address within @mr that is to be monitored 2287 * @size: the size of the access to trigger the eventfd 2288 * @match_data: whether to match against @data, instead of just @addr 2289 * @data: the data to match against the guest write 2290 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2291 */ 2292 void memory_region_del_eventfd(MemoryRegion *mr, 2293 hwaddr addr, 2294 unsigned size, 2295 bool match_data, 2296 uint64_t data, 2297 EventNotifier *e); 2298 2299 /** 2300 * memory_region_add_subregion: Add a subregion to a container. 2301 * 2302 * Adds a subregion at @offset. The subregion may not overlap with other 2303 * subregions (except for those explicitly marked as overlapping). A region 2304 * may only be added once as a subregion (unless removed with 2305 * memory_region_del_subregion()); use memory_region_init_alias() if you 2306 * want a region to be a subregion in multiple locations. 2307 * 2308 * @mr: the region to contain the new subregion; must be a container 2309 * initialized with memory_region_init(). 2310 * @offset: the offset relative to @mr where @subregion is added. 2311 * @subregion: the subregion to be added. 2312 */ 2313 void memory_region_add_subregion(MemoryRegion *mr, 2314 hwaddr offset, 2315 MemoryRegion *subregion); 2316 /** 2317 * memory_region_add_subregion_overlap: Add a subregion to a container 2318 * with overlap. 2319 * 2320 * Adds a subregion at @offset. The subregion may overlap with other 2321 * subregions. Conflicts are resolved by having a higher @priority hide a 2322 * lower @priority. Subregions without priority are taken as @priority 0. 2323 * A region may only be added once as a subregion (unless removed with 2324 * memory_region_del_subregion()); use memory_region_init_alias() if you 2325 * want a region to be a subregion in multiple locations. 2326 * 2327 * @mr: the region to contain the new subregion; must be a container 2328 * initialized with memory_region_init(). 2329 * @offset: the offset relative to @mr where @subregion is added. 2330 * @subregion: the subregion to be added. 2331 * @priority: used for resolving overlaps; highest priority wins. 2332 */ 2333 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2334 hwaddr offset, 2335 MemoryRegion *subregion, 2336 int priority); 2337 2338 /** 2339 * memory_region_get_ram_addr: Get the ram address associated with a memory 2340 * region 2341 * 2342 * @mr: the region to be queried 2343 */ 2344 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2345 2346 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2347 /** 2348 * memory_region_del_subregion: Remove a subregion. 2349 * 2350 * Removes a subregion from its container. 2351 * 2352 * @mr: the container to be updated. 2353 * @subregion: the region being removed; must be a current subregion of @mr. 2354 */ 2355 void memory_region_del_subregion(MemoryRegion *mr, 2356 MemoryRegion *subregion); 2357 2358 /* 2359 * memory_region_set_enabled: dynamically enable or disable a region 2360 * 2361 * Enables or disables a memory region. A disabled memory region 2362 * ignores all accesses to itself and its subregions. It does not 2363 * obscure sibling subregions with lower priority - it simply behaves as 2364 * if it was removed from the hierarchy. 2365 * 2366 * Regions default to being enabled. 2367 * 2368 * @mr: the region to be updated 2369 * @enabled: whether to enable or disable the region 2370 */ 2371 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2372 2373 /* 2374 * memory_region_set_address: dynamically update the address of a region 2375 * 2376 * Dynamically updates the address of a region, relative to its container. 2377 * May be used on regions are currently part of a memory hierarchy. 2378 * 2379 * @mr: the region to be updated 2380 * @addr: new address, relative to container region 2381 */ 2382 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2383 2384 /* 2385 * memory_region_set_size: dynamically update the size of a region. 2386 * 2387 * Dynamically updates the size of a region. 2388 * 2389 * @mr: the region to be updated 2390 * @size: used size of the region. 2391 */ 2392 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2393 2394 /* 2395 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2396 * 2397 * Dynamically updates the offset into the target region that an alias points 2398 * to, as if the fourth argument to memory_region_init_alias() has changed. 2399 * 2400 * @mr: the #MemoryRegion to be updated; should be an alias. 2401 * @offset: the new offset into the target memory region 2402 */ 2403 void memory_region_set_alias_offset(MemoryRegion *mr, 2404 hwaddr offset); 2405 2406 /* 2407 * memory_region_set_unmergeable: Set a memory region unmergeable 2408 * 2409 * Mark a memory region unmergeable, resulting in the memory region (or 2410 * everything contained in a memory region container) not getting merged when 2411 * simplifying the address space and notifying memory listeners. Consequently, 2412 * memory listeners will never get notified about ranges that are larger than 2413 * the original memory regions. 2414 * 2415 * This is primarily useful when multiple aliases to a RAM memory region are 2416 * mapped into a memory region container, and updates (e.g., enable/disable or 2417 * map/unmap) of individual memory region aliases are not supposed to affect 2418 * other memory regions in the same container. 2419 * 2420 * @mr: the #MemoryRegion to be updated 2421 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2422 */ 2423 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2424 2425 /** 2426 * memory_region_present: checks if an address relative to a @container 2427 * translates into #MemoryRegion within @container 2428 * 2429 * Answer whether a #MemoryRegion within @container covers the address 2430 * @addr. 2431 * 2432 * @container: a #MemoryRegion within which @addr is a relative address 2433 * @addr: the area within @container to be searched 2434 */ 2435 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2436 2437 /** 2438 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2439 * into another memory region, which does not necessarily imply that it is 2440 * mapped into an address space. 2441 * 2442 * @mr: a #MemoryRegion which should be checked if it's mapped 2443 */ 2444 bool memory_region_is_mapped(MemoryRegion *mr); 2445 2446 /** 2447 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2448 * #MemoryRegion 2449 * 2450 * The #RamDiscardManager cannot change while a memory region is mapped. 2451 * 2452 * @mr: the #MemoryRegion 2453 */ 2454 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2455 2456 /** 2457 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2458 * #RamDiscardManager assigned 2459 * 2460 * @mr: the #MemoryRegion 2461 */ 2462 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2463 { 2464 return !!memory_region_get_ram_discard_manager(mr); 2465 } 2466 2467 /** 2468 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2469 * #MemoryRegion 2470 * 2471 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2472 * that does not cover RAM, or a #MemoryRegion that already has a 2473 * #RamDiscardManager assigned. 2474 * 2475 * @mr: the #MemoryRegion 2476 * @rdm: #RamDiscardManager to set 2477 */ 2478 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2479 RamDiscardManager *rdm); 2480 2481 /** 2482 * memory_region_find: translate an address/size relative to a 2483 * MemoryRegion into a #MemoryRegionSection. 2484 * 2485 * Locates the first #MemoryRegion within @mr that overlaps the range 2486 * given by @addr and @size. 2487 * 2488 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2489 * It will have the following characteristics: 2490 * - @size = 0 iff no overlap was found 2491 * - @mr is non-%NULL iff an overlap was found 2492 * 2493 * Remember that in the return value the @offset_within_region is 2494 * relative to the returned region (in the .@mr field), not to the 2495 * @mr argument. 2496 * 2497 * Similarly, the .@offset_within_address_space is relative to the 2498 * address space that contains both regions, the passed and the 2499 * returned one. However, in the special case where the @mr argument 2500 * has no container (and thus is the root of the address space), the 2501 * following will hold: 2502 * - @offset_within_address_space >= @addr 2503 * - @offset_within_address_space + .@size <= @addr + @size 2504 * 2505 * @mr: a MemoryRegion within which @addr is a relative address 2506 * @addr: start of the area within @as to be searched 2507 * @size: size of the area to be searched 2508 */ 2509 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2510 hwaddr addr, uint64_t size); 2511 2512 /** 2513 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2514 * 2515 * Synchronizes the dirty page log for all address spaces. 2516 * 2517 * @last_stage: whether this is the last stage of live migration 2518 */ 2519 void memory_global_dirty_log_sync(bool last_stage); 2520 2521 /** 2522 * memory_global_after_dirty_log_sync: synchronize the dirty log for all memory 2523 * 2524 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2525 * This function must be called after the dirty log bitmap is cleared, and 2526 * before dirty guest memory pages are read. If you are using 2527 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2528 * care of doing this. 2529 */ 2530 void memory_global_after_dirty_log_sync(void); 2531 2532 /** 2533 * memory_region_transaction_begin: Start a transaction. 2534 * 2535 * During a transaction, changes will be accumulated and made visible 2536 * only when the transaction ends (is committed). 2537 */ 2538 void memory_region_transaction_begin(void); 2539 2540 /** 2541 * memory_region_transaction_commit: Commit a transaction and make changes 2542 * visible to the guest. 2543 */ 2544 void memory_region_transaction_commit(void); 2545 2546 /** 2547 * memory_listener_register: register callbacks to be called when memory 2548 * sections are mapped or unmapped into an address 2549 * space 2550 * 2551 * @listener: an object containing the callbacks to be called 2552 * @filter: if non-%NULL, only regions in this address space will be observed 2553 */ 2554 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2555 2556 /** 2557 * memory_listener_unregister: undo the effect of memory_listener_register() 2558 * 2559 * @listener: an object containing the callbacks to be removed 2560 */ 2561 void memory_listener_unregister(MemoryListener *listener); 2562 2563 /** 2564 * memory_global_dirty_log_start: begin dirty logging for all regions 2565 * 2566 * @flags: purpose of starting dirty log, migration or dirty rate 2567 * @errp: pointer to Error*, to store an error if it happens. 2568 * 2569 * Return: true on success, else false setting @errp with error. 2570 */ 2571 bool memory_global_dirty_log_start(unsigned int flags, Error **errp); 2572 2573 /** 2574 * memory_global_dirty_log_stop: end dirty logging for all regions 2575 * 2576 * @flags: purpose of stopping dirty log, migration or dirty rate 2577 */ 2578 void memory_global_dirty_log_stop(unsigned int flags); 2579 2580 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2581 2582 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2583 unsigned size, bool is_write, 2584 MemTxAttrs attrs); 2585 2586 /** 2587 * memory_region_dispatch_read: perform a read directly to the specified 2588 * MemoryRegion. 2589 * 2590 * @mr: #MemoryRegion to access 2591 * @addr: address within that region 2592 * @pval: pointer to uint64_t which the data is written to 2593 * @op: size, sign, and endianness of the memory operation 2594 * @attrs: memory transaction attributes to use for the access 2595 */ 2596 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2597 hwaddr addr, 2598 uint64_t *pval, 2599 MemOp op, 2600 MemTxAttrs attrs); 2601 /** 2602 * memory_region_dispatch_write: perform a write directly to the specified 2603 * MemoryRegion. 2604 * 2605 * @mr: #MemoryRegion to access 2606 * @addr: address within that region 2607 * @data: data to write 2608 * @op: size, sign, and endianness of the memory operation 2609 * @attrs: memory transaction attributes to use for the access 2610 */ 2611 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2612 hwaddr addr, 2613 uint64_t data, 2614 MemOp op, 2615 MemTxAttrs attrs); 2616 2617 /** 2618 * address_space_init: initializes an address space 2619 * 2620 * @as: an uninitialized #AddressSpace 2621 * @root: a #MemoryRegion that routes addresses for the address space 2622 * @name: an address space name. The name is only used for debugging 2623 * output. 2624 */ 2625 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2626 2627 /** 2628 * address_space_destroy: destroy an address space 2629 * 2630 * Releases all resources associated with an address space. After an address space 2631 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2632 * as well. 2633 * 2634 * @as: address space to be destroyed 2635 */ 2636 void address_space_destroy(AddressSpace *as); 2637 2638 /** 2639 * address_space_remove_listeners: unregister all listeners of an address space 2640 * 2641 * Removes all callbacks previously registered with memory_listener_register() 2642 * for @as. 2643 * 2644 * @as: an initialized #AddressSpace 2645 */ 2646 void address_space_remove_listeners(AddressSpace *as); 2647 2648 /** 2649 * address_space_rw: read from or write to an address space. 2650 * 2651 * Return a MemTxResult indicating whether the operation succeeded 2652 * or failed (eg unassigned memory, device rejected the transaction, 2653 * IOMMU fault). 2654 * 2655 * @as: #AddressSpace to be accessed 2656 * @addr: address within that address space 2657 * @attrs: memory transaction attributes 2658 * @buf: buffer with the data transferred 2659 * @len: the number of bytes to read or write 2660 * @is_write: indicates the transfer direction 2661 */ 2662 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2663 MemTxAttrs attrs, void *buf, 2664 hwaddr len, bool is_write); 2665 2666 /** 2667 * address_space_write: write to address space. 2668 * 2669 * Return a MemTxResult indicating whether the operation succeeded 2670 * or failed (eg unassigned memory, device rejected the transaction, 2671 * IOMMU fault). 2672 * 2673 * @as: #AddressSpace to be accessed 2674 * @addr: address within that address space 2675 * @attrs: memory transaction attributes 2676 * @buf: buffer with the data transferred 2677 * @len: the number of bytes to write 2678 */ 2679 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2680 MemTxAttrs attrs, 2681 const void *buf, hwaddr len); 2682 2683 /** 2684 * address_space_write_rom: write to address space, including ROM. 2685 * 2686 * This function writes to the specified address space, but will 2687 * write data to both ROM and RAM. This is used for non-guest 2688 * writes like writes from the gdb debug stub or initial loading 2689 * of ROM contents. 2690 * 2691 * Note that portions of the write which attempt to write data to 2692 * a device will be silently ignored -- only real RAM and ROM will 2693 * be written to. 2694 * 2695 * Return a MemTxResult indicating whether the operation succeeded 2696 * or failed (eg unassigned memory, device rejected the transaction, 2697 * IOMMU fault). 2698 * 2699 * @as: #AddressSpace to be accessed 2700 * @addr: address within that address space 2701 * @attrs: memory transaction attributes 2702 * @buf: buffer with the data transferred 2703 * @len: the number of bytes to write 2704 */ 2705 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2706 MemTxAttrs attrs, 2707 const void *buf, hwaddr len); 2708 2709 /* address_space_ld*: load from an address space 2710 * address_space_st*: store to an address space 2711 * 2712 * These functions perform a load or store of the byte, word, 2713 * longword or quad to the specified address within the AddressSpace. 2714 * The _le suffixed functions treat the data as little endian; 2715 * _be indicates big endian; no suffix indicates "same endianness 2716 * as guest CPU". 2717 * 2718 * The "guest CPU endianness" accessors are deprecated for use outside 2719 * target-* code; devices should be CPU-agnostic and use either the LE 2720 * or the BE accessors. 2721 * 2722 * @as #AddressSpace to be accessed 2723 * @addr: address within that address space 2724 * @val: data value, for stores 2725 * @attrs: memory transaction attributes 2726 * @result: location to write the success/failure of the transaction; 2727 * if NULL, this information is discarded 2728 */ 2729 2730 #define SUFFIX 2731 #define ARG1 as 2732 #define ARG1_DECL AddressSpace *as 2733 #include "exec/memory_ldst.h.inc" 2734 2735 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) 2736 { 2737 address_space_stl_notdirty(as, addr, val, 2738 MEMTXATTRS_UNSPECIFIED, NULL); 2739 } 2740 2741 #define SUFFIX 2742 #define ARG1 as 2743 #define ARG1_DECL AddressSpace *as 2744 #include "exec/memory_ldst_phys.h.inc" 2745 2746 struct MemoryRegionCache { 2747 uint8_t *ptr; 2748 hwaddr xlat; 2749 hwaddr len; 2750 FlatView *fv; 2751 MemoryRegionSection mrs; 2752 bool is_write; 2753 }; 2754 2755 /* address_space_ld*_cached: load from a cached #MemoryRegion 2756 * address_space_st*_cached: store into a cached #MemoryRegion 2757 * 2758 * These functions perform a load or store of the byte, word, 2759 * longword or quad to the specified address. The address is 2760 * a physical address in the AddressSpace, but it must lie within 2761 * a #MemoryRegion that was mapped with address_space_cache_init. 2762 * 2763 * The _le suffixed functions treat the data as little endian; 2764 * _be indicates big endian; no suffix indicates "same endianness 2765 * as guest CPU". 2766 * 2767 * The "guest CPU endianness" accessors are deprecated for use outside 2768 * target-* code; devices should be CPU-agnostic and use either the LE 2769 * or the BE accessors. 2770 * 2771 * @cache: previously initialized #MemoryRegionCache to be accessed 2772 * @addr: address within the address space 2773 * @val: data value, for stores 2774 * @attrs: memory transaction attributes 2775 * @result: location to write the success/failure of the transaction; 2776 * if NULL, this information is discarded 2777 */ 2778 2779 #define SUFFIX _cached_slow 2780 #define ARG1 cache 2781 #define ARG1_DECL MemoryRegionCache *cache 2782 #include "exec/memory_ldst.h.inc" 2783 2784 /* Inline fast path for direct RAM access. */ 2785 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2786 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2787 { 2788 assert(addr < cache->len); 2789 if (likely(cache->ptr)) { 2790 return ldub_p(cache->ptr + addr); 2791 } else { 2792 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2793 } 2794 } 2795 2796 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2797 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2798 { 2799 assert(addr < cache->len); 2800 if (likely(cache->ptr)) { 2801 stb_p(cache->ptr + addr, val); 2802 } else { 2803 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2804 } 2805 } 2806 2807 #define ENDIANNESS 2808 #include "exec/memory_ldst_cached.h.inc" 2809 2810 #define ENDIANNESS _le 2811 #include "exec/memory_ldst_cached.h.inc" 2812 2813 #define ENDIANNESS _be 2814 #include "exec/memory_ldst_cached.h.inc" 2815 2816 #define SUFFIX _cached 2817 #define ARG1 cache 2818 #define ARG1_DECL MemoryRegionCache *cache 2819 #include "exec/memory_ldst_phys.h.inc" 2820 2821 /* address_space_cache_init: prepare for repeated access to a physical 2822 * memory region 2823 * 2824 * @cache: #MemoryRegionCache to be filled 2825 * @as: #AddressSpace to be accessed 2826 * @addr: address within that address space 2827 * @len: length of buffer 2828 * @is_write: indicates the transfer direction 2829 * 2830 * Will only work with RAM, and may map a subset of the requested range by 2831 * returning a value that is less than @len. On failure, return a negative 2832 * errno value. 2833 * 2834 * Because it only works with RAM, this function can be used for 2835 * read-modify-write operations. In this case, is_write should be %true. 2836 * 2837 * Note that addresses passed to the address_space_*_cached functions 2838 * are relative to @addr. 2839 */ 2840 int64_t address_space_cache_init(MemoryRegionCache *cache, 2841 AddressSpace *as, 2842 hwaddr addr, 2843 hwaddr len, 2844 bool is_write); 2845 2846 /** 2847 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2848 * 2849 * @cache: The #MemoryRegionCache to operate on. 2850 * 2851 * Initializes #MemoryRegionCache structure without memory region attached. 2852 * Cache initialized this way can only be safely destroyed, but not used. 2853 */ 2854 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2855 { 2856 cache->mrs.mr = NULL; 2857 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2858 cache->fv = NULL; 2859 } 2860 2861 /** 2862 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2863 * 2864 * @cache: The #MemoryRegionCache to operate on. 2865 * @addr: The first physical address that was written, relative to the 2866 * address that was passed to @address_space_cache_init. 2867 * @access_len: The number of bytes that were written starting at @addr. 2868 */ 2869 void address_space_cache_invalidate(MemoryRegionCache *cache, 2870 hwaddr addr, 2871 hwaddr access_len); 2872 2873 /** 2874 * address_space_cache_destroy: free a #MemoryRegionCache 2875 * 2876 * @cache: The #MemoryRegionCache whose memory should be released. 2877 */ 2878 void address_space_cache_destroy(MemoryRegionCache *cache); 2879 2880 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2881 * entry. Should be called from an RCU critical section. 2882 */ 2883 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2884 bool is_write, MemTxAttrs attrs); 2885 2886 /* address_space_translate: translate an address range into an address space 2887 * into a MemoryRegion and an address range into that section. Should be 2888 * called from an RCU critical section, to avoid that the last reference 2889 * to the returned region disappears after address_space_translate returns. 2890 * 2891 * @fv: #FlatView to be accessed 2892 * @addr: address within that address space 2893 * @xlat: pointer to address within the returned memory region section's 2894 * #MemoryRegion. 2895 * @len: pointer to length 2896 * @is_write: indicates the transfer direction 2897 * @attrs: memory attributes 2898 */ 2899 MemoryRegion *flatview_translate(FlatView *fv, 2900 hwaddr addr, hwaddr *xlat, 2901 hwaddr *len, bool is_write, 2902 MemTxAttrs attrs); 2903 2904 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2905 hwaddr addr, hwaddr *xlat, 2906 hwaddr *len, bool is_write, 2907 MemTxAttrs attrs) 2908 { 2909 return flatview_translate(address_space_to_flatview(as), 2910 addr, xlat, len, is_write, attrs); 2911 } 2912 2913 /* address_space_access_valid: check for validity of accessing an address 2914 * space range 2915 * 2916 * Check whether memory is assigned to the given address space range, and 2917 * access is permitted by any IOMMU regions that are active for the address 2918 * space. 2919 * 2920 * For now, addr and len should be aligned to a page size. This limitation 2921 * will be lifted in the future. 2922 * 2923 * @as: #AddressSpace to be accessed 2924 * @addr: address within that address space 2925 * @len: length of the area to be checked 2926 * @is_write: indicates the transfer direction 2927 * @attrs: memory attributes 2928 */ 2929 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2930 bool is_write, MemTxAttrs attrs); 2931 2932 /* address_space_map: map a physical memory region into a host virtual address 2933 * 2934 * May map a subset of the requested range, given by and returned in @plen. 2935 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2936 * the mapping are exhausted. 2937 * Use only for reads OR writes - not for read-modify-write operations. 2938 * Use address_space_register_map_client() to know when retrying the map 2939 * operation is likely to succeed. 2940 * 2941 * @as: #AddressSpace to be accessed 2942 * @addr: address within that address space 2943 * @plen: pointer to length of buffer; updated on return 2944 * @is_write: indicates the transfer direction 2945 * @attrs: memory attributes 2946 */ 2947 void *address_space_map(AddressSpace *as, hwaddr addr, 2948 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2949 2950 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2951 * 2952 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2953 * the amount of memory that was actually read or written by the caller. 2954 * 2955 * @as: #AddressSpace used 2956 * @buffer: host pointer as returned by address_space_map() 2957 * @len: buffer length as returned by address_space_map() 2958 * @access_len: amount of data actually transferred 2959 * @is_write: indicates the transfer direction 2960 */ 2961 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2962 bool is_write, hwaddr access_len); 2963 2964 /* 2965 * address_space_register_map_client: Register a callback to invoke when 2966 * resources for address_space_map() are available again. 2967 * 2968 * address_space_map may fail when there are not enough resources available, 2969 * such as when bounce buffer memory would exceed the limit. The callback can 2970 * be used to retry the address_space_map operation. Note that the callback 2971 * gets automatically removed after firing. 2972 * 2973 * @as: #AddressSpace to be accessed 2974 * @bh: callback to invoke when address_space_map() retry is appropriate 2975 */ 2976 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh); 2977 2978 /* 2979 * address_space_unregister_map_client: Unregister a callback that has 2980 * previously been registered and not fired yet. 2981 * 2982 * @as: #AddressSpace to be accessed 2983 * @bh: callback to unregister 2984 */ 2985 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh); 2986 2987 /* Internal functions, part of the implementation of address_space_read. */ 2988 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2989 MemTxAttrs attrs, void *buf, hwaddr len); 2990 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2991 MemTxAttrs attrs, void *buf, 2992 hwaddr len, hwaddr addr1, hwaddr l, 2993 MemoryRegion *mr); 2994 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2995 2996 /* Internal functions, part of the implementation of address_space_read_cached 2997 * and address_space_write_cached. */ 2998 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2999 hwaddr addr, void *buf, hwaddr len); 3000 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 3001 hwaddr addr, const void *buf, 3002 hwaddr len); 3003 3004 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 3005 bool prepare_mmio_access(MemoryRegion *mr); 3006 3007 static inline bool memory_region_supports_direct_access(MemoryRegion *mr) 3008 { 3009 /* ROM DEVICE regions only allow direct access if in ROMD mode. */ 3010 if (memory_region_is_romd(mr)) { 3011 return true; 3012 } 3013 if (!memory_region_is_ram(mr)) { 3014 return false; 3015 } 3016 /* 3017 * RAM DEVICE regions can be accessed directly using memcpy, but it might 3018 * be MMIO and access using mempy can be wrong (e.g., using instructions not 3019 * intended for MMIO access). So we treat this as IO. 3020 */ 3021 return !memory_region_is_ram_device(mr); 3022 } 3023 3024 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write, 3025 MemTxAttrs attrs) 3026 { 3027 if (!memory_region_supports_direct_access(mr)) { 3028 return false; 3029 } 3030 /* Debug access can write to ROM. */ 3031 if (is_write && !attrs.debug) { 3032 return !mr->readonly && !mr->rom_device; 3033 } 3034 return true; 3035 } 3036 3037 /** 3038 * address_space_read: read from an address space. 3039 * 3040 * Return a MemTxResult indicating whether the operation succeeded 3041 * or failed (eg unassigned memory, device rejected the transaction, 3042 * IOMMU fault). Called within RCU critical section. 3043 * 3044 * @as: #AddressSpace to be accessed 3045 * @addr: address within that address space 3046 * @attrs: memory transaction attributes 3047 * @buf: buffer with the data transferred 3048 * @len: length of the data transferred 3049 */ 3050 static inline __attribute__((__always_inline__)) 3051 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 3052 MemTxAttrs attrs, void *buf, 3053 hwaddr len) 3054 { 3055 MemTxResult result = MEMTX_OK; 3056 hwaddr l, addr1; 3057 void *ptr; 3058 MemoryRegion *mr; 3059 FlatView *fv; 3060 3061 if (__builtin_constant_p(len)) { 3062 if (len) { 3063 RCU_READ_LOCK_GUARD(); 3064 fv = address_space_to_flatview(as); 3065 l = len; 3066 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 3067 if (len == l && memory_access_is_direct(mr, false, attrs)) { 3068 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3069 memcpy(buf, ptr, len); 3070 } else { 3071 result = flatview_read_continue(fv, addr, attrs, buf, len, 3072 addr1, l, mr); 3073 } 3074 } 3075 } else { 3076 result = address_space_read_full(as, addr, attrs, buf, len); 3077 } 3078 return result; 3079 } 3080 3081 /** 3082 * address_space_read_cached: read from a cached RAM region 3083 * 3084 * @cache: Cached region to be addressed 3085 * @addr: address relative to the base of the RAM region 3086 * @buf: buffer with the data transferred 3087 * @len: length of the data transferred 3088 */ 3089 static inline MemTxResult 3090 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 3091 void *buf, hwaddr len) 3092 { 3093 assert(addr < cache->len && len <= cache->len - addr); 3094 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 3095 if (likely(cache->ptr)) { 3096 memcpy(buf, cache->ptr + addr, len); 3097 return MEMTX_OK; 3098 } else { 3099 return address_space_read_cached_slow(cache, addr, buf, len); 3100 } 3101 } 3102 3103 /** 3104 * address_space_write_cached: write to a cached RAM region 3105 * 3106 * @cache: Cached region to be addressed 3107 * @addr: address relative to the base of the RAM region 3108 * @buf: buffer with the data transferred 3109 * @len: length of the data transferred 3110 */ 3111 static inline MemTxResult 3112 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3113 const void *buf, hwaddr len) 3114 { 3115 assert(addr < cache->len && len <= cache->len - addr); 3116 if (likely(cache->ptr)) { 3117 memcpy(cache->ptr + addr, buf, len); 3118 return MEMTX_OK; 3119 } else { 3120 return address_space_write_cached_slow(cache, addr, buf, len); 3121 } 3122 } 3123 3124 /** 3125 * address_space_set: Fill address space with a constant byte. 3126 * 3127 * Return a MemTxResult indicating whether the operation succeeded 3128 * or failed (eg unassigned memory, device rejected the transaction, 3129 * IOMMU fault). 3130 * 3131 * @as: #AddressSpace to be accessed 3132 * @addr: address within that address space 3133 * @c: constant byte to fill the memory 3134 * @len: the number of bytes to fill with the constant byte 3135 * @attrs: memory transaction attributes 3136 */ 3137 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3138 uint8_t c, hwaddr len, MemTxAttrs attrs); 3139 3140 /* 3141 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3142 * to manage the actual amount of memory consumed by the VM (then, the memory 3143 * provided by RAM blocks might be bigger than the desired memory consumption). 3144 * This *must* be set if: 3145 * - Discarding parts of a RAM blocks does not result in the change being 3146 * reflected in the VM and the pages getting freed. 3147 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3148 * discards blindly. 3149 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3150 * encrypted VMs). 3151 * Technologies that only temporarily pin the current working set of a 3152 * driver are fine, because we don't expect such pages to be discarded 3153 * (esp. based on guest action like balloon inflation). 3154 * 3155 * This is *not* to be used to protect from concurrent discards (esp., 3156 * postcopy). 3157 * 3158 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3159 * discards to work reliably is active. 3160 */ 3161 int ram_block_discard_disable(bool state); 3162 3163 /* 3164 * See ram_block_discard_disable(): only disable uncoordinated discards, 3165 * keeping coordinated discards (via the RamDiscardManager) enabled. 3166 */ 3167 int ram_block_uncoordinated_discard_disable(bool state); 3168 3169 /* 3170 * Inhibit technologies that disable discarding of pages in RAM blocks. 3171 * 3172 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3173 * broken. 3174 */ 3175 int ram_block_discard_require(bool state); 3176 3177 /* 3178 * See ram_block_discard_require(): only inhibit technologies that disable 3179 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with 3180 * technologies that only inhibit uncoordinated discards (via the 3181 * RamDiscardManager). 3182 */ 3183 int ram_block_coordinated_discard_require(bool state); 3184 3185 /* 3186 * Test if any discarding of memory in ram blocks is disabled. 3187 */ 3188 bool ram_block_discard_is_disabled(void); 3189 3190 /* 3191 * Test if any discarding of memory in ram blocks is required to work reliably. 3192 */ 3193 bool ram_block_discard_is_required(void); 3194 3195 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp); 3196 void ram_block_del_cpr_blocker(RAMBlock *rb); 3197 3198 #endif 3199