xref: /qemu/include/standard-headers/drm/drm_fourcc.h (revision d0fb9657a33dd3d1db1b492c4dcc7c778e40e5c0)
1  /*
2   * Copyright 2011 Intel Corporation
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice (including the next
12   * paragraph) shall be included in all copies or substantial portions of the
13   * Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18   * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21   * OTHER DEALINGS IN THE SOFTWARE.
22   */
23  
24  #ifndef DRM_FOURCC_H
25  #define DRM_FOURCC_H
26  
27  
28  #if defined(__cplusplus)
29  extern "C" {
30  #endif
31  
32  /**
33   * DOC: overview
34   *
35   * In the DRM subsystem, framebuffer pixel formats are described using the
36   * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37   * fourcc code, a Format Modifier may optionally be provided, in order to
38   * further describe the buffer's format - for example tiling or compression.
39   *
40   * Format Modifiers
41   * ----------------
42   *
43   * Format modifiers are used in conjunction with a fourcc code, forming a
44   * unique fourcc:modifier pair. This format:modifier pair must fully define the
45   * format and data layout of the buffer, and should be the only way to describe
46   * that particular buffer.
47   *
48   * Having multiple fourcc:modifier pairs which describe the same layout should
49   * be avoided, as such aliases run the risk of different drivers exposing
50   * different names for the same data format, forcing userspace to understand
51   * that they are aliases.
52   *
53   * Format modifiers may change any property of the buffer, including the number
54   * of planes and/or the required allocation size. Format modifiers are
55   * vendor-namespaced, and as such the relationship between a fourcc code and a
56   * modifier is specific to the modifer being used. For example, some modifiers
57   * may preserve meaning - such as number of planes - from the fourcc code,
58   * whereas others may not.
59   *
60   * Modifiers must uniquely encode buffer layout. In other words, a buffer must
61   * match only a single modifier. A modifier must not be a subset of layouts of
62   * another modifier. For instance, it's incorrect to encode pitch alignment in
63   * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
64   * aligned modifier. That said, modifiers can have implicit minimal
65   * requirements.
66   *
67   * For modifiers where the combination of fourcc code and modifier can alias,
68   * a canonical pair needs to be defined and used by all drivers. Preferred
69   * combinations are also encouraged where all combinations might lead to
70   * confusion and unnecessarily reduced interoperability. An example for the
71   * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
72   *
73   * There are two kinds of modifier users:
74   *
75   * - Kernel and user-space drivers: for drivers it's important that modifiers
76   *   don't alias, otherwise two drivers might support the same format but use
77   *   different aliases, preventing them from sharing buffers in an efficient
78   *   format.
79   * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
80   *   see modifiers as opaque tokens they can check for equality and intersect.
81   *   These users musn't need to know to reason about the modifier value
82   *   (i.e. they are not expected to extract information out of the modifier).
83   *
84   * Vendors should document their modifier usage in as much detail as
85   * possible, to ensure maximum compatibility across devices, drivers and
86   * applications.
87   *
88   * The authoritative list of format modifier codes is found in
89   * `include/uapi/drm/drm_fourcc.h`
90   */
91  
92  #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
93  				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
94  
95  #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
96  
97  /* Reserve 0 for the invalid format specifier */
98  #define DRM_FORMAT_INVALID	0
99  
100  /* color index */
101  #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
102  
103  /* 8 bpp Red */
104  #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
105  
106  /* 16 bpp Red */
107  #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
108  
109  /* 16 bpp RG */
110  #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
111  #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
112  
113  /* 32 bpp RG */
114  #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
115  #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
116  
117  /* 8 bpp RGB */
118  #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
119  #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
120  
121  /* 16 bpp RGB */
122  #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
123  #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
124  #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
125  #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
126  
127  #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
128  #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
129  #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
130  #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
131  
132  #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
133  #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
134  #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
135  #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
136  
137  #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
138  #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
139  #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
140  #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
141  
142  #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
143  #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
144  
145  /* 24 bpp RGB */
146  #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
147  #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
148  
149  /* 32 bpp RGB */
150  #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
151  #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
152  #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
153  #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
154  
155  #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
156  #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
157  #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
158  #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
159  
160  #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
161  #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
162  #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
163  #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
164  
165  #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
166  #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
167  #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
168  #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
169  
170  /*
171   * Floating point 64bpp RGB
172   * IEEE 754-2008 binary16 half-precision float
173   * [15:0] sign:exponent:mantissa 1:5:10
174   */
175  #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
176  #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
177  
178  #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
179  #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
180  
181  /*
182   * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
183   * of unused padding per component:
184   */
185  #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
186  
187  /* packed YCbCr */
188  #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
189  #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
190  #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
191  #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
192  
193  #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
194  #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
195  #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
196  #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
197  
198  /*
199   * packed Y2xx indicate for each component, xx valid data occupy msb
200   * 16-xx padding occupy lsb
201   */
202  #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
203  #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
204  #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
205  
206  /*
207   * packed Y4xx indicate for each component, xx valid data occupy msb
208   * 16-xx padding occupy lsb except Y410
209   */
210  #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
211  #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
212  #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
213  
214  #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
215  #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
216  #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
217  
218  /*
219   * packed YCbCr420 2x2 tiled formats
220   * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
221   */
222  /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
223  #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
224  /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
225  #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
226  
227  /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
228  #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
229  /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
230  #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
231  
232  /*
233   * 1-plane YUV 4:2:0
234   * In these formats, the component ordering is specified (Y, followed by U
235   * then V), but the exact Linear layout is undefined.
236   * These formats can only be used with a non-Linear modifier.
237   */
238  #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
239  #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
240  
241  /*
242   * 2 plane RGB + A
243   * index 0 = RGB plane, same format as the corresponding non _A8 format has
244   * index 1 = A plane, [7:0] A
245   */
246  #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
247  #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
248  #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
249  #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
250  #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
251  #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
252  #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
253  #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
254  
255  /*
256   * 2 plane YCbCr
257   * index 0 = Y plane, [7:0] Y
258   * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
259   * or
260   * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
261   */
262  #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
263  #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
264  #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
265  #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
266  #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
267  #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
268  /*
269   * 2 plane YCbCr
270   * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
271   * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
272   */
273  #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
274  
275  /*
276   * 2 plane YCbCr MSB aligned
277   * index 0 = Y plane, [15:0] Y:x [10:6] little endian
278   * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
279   */
280  #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
281  
282  /*
283   * 2 plane YCbCr MSB aligned
284   * index 0 = Y plane, [15:0] Y:x [10:6] little endian
285   * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
286   */
287  #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
288  
289  /*
290   * 2 plane YCbCr MSB aligned
291   * index 0 = Y plane, [15:0] Y:x [12:4] little endian
292   * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
293   */
294  #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
295  
296  /*
297   * 2 plane YCbCr MSB aligned
298   * index 0 = Y plane, [15:0] Y little endian
299   * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
300   */
301  #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
302  
303  /* 3 plane non-subsampled (444) YCbCr
304   * 16 bits per component, but only 10 bits are used and 6 bits are padded
305   * index 0: Y plane, [15:0] Y:x [10:6] little endian
306   * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
307   * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
308   */
309  #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
310  
311  /* 3 plane non-subsampled (444) YCrCb
312   * 16 bits per component, but only 10 bits are used and 6 bits are padded
313   * index 0: Y plane, [15:0] Y:x [10:6] little endian
314   * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
315   * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
316   */
317  #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
318  
319  /*
320   * 3 plane YCbCr
321   * index 0: Y plane, [7:0] Y
322   * index 1: Cb plane, [7:0] Cb
323   * index 2: Cr plane, [7:0] Cr
324   * or
325   * index 1: Cr plane, [7:0] Cr
326   * index 2: Cb plane, [7:0] Cb
327   */
328  #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
329  #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
330  #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
331  #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
332  #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
333  #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
334  #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
335  #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
336  #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
337  #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
338  
339  
340  /*
341   * Format Modifiers:
342   *
343   * Format modifiers describe, typically, a re-ordering or modification
344   * of the data in a plane of an FB.  This can be used to express tiled/
345   * swizzled formats, or compression, or a combination of the two.
346   *
347   * The upper 8 bits of the format modifier are a vendor-id as assigned
348   * below.  The lower 56 bits are assigned as vendor sees fit.
349   */
350  
351  /* Vendor Ids: */
352  #define DRM_FORMAT_MOD_VENDOR_NONE    0
353  #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
354  #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
355  #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
356  #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
357  #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
358  #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
359  #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
360  #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
361  #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
362  #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
363  
364  /* add more to the end as needed */
365  
366  #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
367  
368  #define fourcc_mod_code(vendor, val) \
369  	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
370  
371  /*
372   * Format Modifier tokens:
373   *
374   * When adding a new token please document the layout with a code comment,
375   * similar to the fourcc codes above. drm_fourcc.h is considered the
376   * authoritative source for all of these.
377   *
378   * Generic modifier names:
379   *
380   * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
381   * for layouts which are common across multiple vendors. To preserve
382   * compatibility, in cases where a vendor-specific definition already exists and
383   * a generic name for it is desired, the common name is a purely symbolic alias
384   * and must use the same numerical value as the original definition.
385   *
386   * Note that generic names should only be used for modifiers which describe
387   * generic layouts (such as pixel re-ordering), which may have
388   * independently-developed support across multiple vendors.
389   *
390   * In future cases where a generic layout is identified before merging with a
391   * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
392   * 'NONE' could be considered. This should only be for obvious, exceptional
393   * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
394   * apply to a single vendor.
395   *
396   * Generic names should not be used for cases where multiple hardware vendors
397   * have implementations of the same standardised compression scheme (such as
398   * AFBC). In those cases, all implementations should use the same format
399   * modifier(s), reflecting the vendor of the standard.
400   */
401  
402  #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
403  
404  /*
405   * Invalid Modifier
406   *
407   * This modifier can be used as a sentinel to terminate the format modifiers
408   * list, or to initialize a variable with an invalid modifier. It might also be
409   * used to report an error back to userspace for certain APIs.
410   */
411  #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
412  
413  /*
414   * Linear Layout
415   *
416   * Just plain linear layout. Note that this is different from no specifying any
417   * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
418   * which tells the driver to also take driver-internal information into account
419   * and so might actually result in a tiled framebuffer.
420   */
421  #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
422  
423  /*
424   * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
425   *
426   * The "none" format modifier doesn't actually mean that the modifier is
427   * implicit, instead it means that the layout is linear. Whether modifiers are
428   * used is out-of-band information carried in an API-specific way (e.g. in a
429   * flag for drm_mode_fb_cmd2).
430   */
431  #define DRM_FORMAT_MOD_NONE	0
432  
433  /* Intel framebuffer modifiers */
434  
435  /*
436   * Intel X-tiling layout
437   *
438   * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
439   * in row-major layout. Within the tile bytes are laid out row-major, with
440   * a platform-dependent stride. On top of that the memory can apply
441   * platform-depending swizzling of some higher address bits into bit6.
442   *
443   * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
444   * On earlier platforms the is highly platforms specific and not useful for
445   * cross-driver sharing. It exists since on a given platform it does uniquely
446   * identify the layout in a simple way for i915-specific userspace, which
447   * facilitated conversion of userspace to modifiers. Additionally the exact
448   * format on some really old platforms is not known.
449   */
450  #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
451  
452  /*
453   * Intel Y-tiling layout
454   *
455   * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
456   * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
457   * chunks column-major, with a platform-dependent height. On top of that the
458   * memory can apply platform-depending swizzling of some higher address bits
459   * into bit6.
460   *
461   * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
462   * On earlier platforms the is highly platforms specific and not useful for
463   * cross-driver sharing. It exists since on a given platform it does uniquely
464   * identify the layout in a simple way for i915-specific userspace, which
465   * facilitated conversion of userspace to modifiers. Additionally the exact
466   * format on some really old platforms is not known.
467   */
468  #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
469  
470  /*
471   * Intel Yf-tiling layout
472   *
473   * This is a tiled layout using 4Kb tiles in row-major layout.
474   * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
475   * are arranged in four groups (two wide, two high) with column-major layout.
476   * Each group therefore consits out of four 256 byte units, which are also laid
477   * out as 2x2 column-major.
478   * 256 byte units are made out of four 64 byte blocks of pixels, producing
479   * either a square block or a 2:1 unit.
480   * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
481   * in pixel depends on the pixel depth.
482   */
483  #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
484  
485  /*
486   * Intel color control surface (CCS) for render compression
487   *
488   * The framebuffer format must be one of the 8:8:8:8 RGB formats.
489   * The main surface will be plane index 0 and must be Y/Yf-tiled,
490   * the CCS will be plane index 1.
491   *
492   * Each CCS tile matches a 1024x512 pixel area of the main surface.
493   * To match certain aspects of the 3D hardware the CCS is
494   * considered to be made up of normal 128Bx32 Y tiles, Thus
495   * the CCS pitch must be specified in multiples of 128 bytes.
496   *
497   * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
498   * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
499   * But that fact is not relevant unless the memory is accessed
500   * directly.
501   */
502  #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
503  #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
504  
505  /*
506   * Intel color control surfaces (CCS) for Gen-12 render compression.
507   *
508   * The main surface is Y-tiled and at plane index 0, the CCS is linear and
509   * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
510   * main surface. In other words, 4 bits in CCS map to a main surface cache
511   * line pair. The main surface pitch is required to be a multiple of four
512   * Y-tile widths.
513   */
514  #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
515  
516  /*
517   * Intel color control surfaces (CCS) for Gen-12 media compression
518   *
519   * The main surface is Y-tiled and at plane index 0, the CCS is linear and
520   * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
521   * main surface. In other words, 4 bits in CCS map to a main surface cache
522   * line pair. The main surface pitch is required to be a multiple of four
523   * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
524   * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
525   * planes 2 and 3 for the respective CCS.
526   */
527  #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
528  
529  /*
530   * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
531   *
532   * Macroblocks are laid in a Z-shape, and each pixel data is following the
533   * standard NV12 style.
534   * As for NV12, an image is the result of two frame buffers: one for Y,
535   * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
536   * Alignment requirements are (for each buffer):
537   * - multiple of 128 pixels for the width
538   * - multiple of  32 pixels for the height
539   *
540   * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
541   */
542  #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
543  
544  /*
545   * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
546   *
547   * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
548   * layout. For YCbCr formats Cb/Cr components are taken in such a way that
549   * they correspond to their 16x16 luma block.
550   */
551  #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
552  
553  /*
554   * Qualcomm Compressed Format
555   *
556   * Refers to a compressed variant of the base format that is compressed.
557   * Implementation may be platform and base-format specific.
558   *
559   * Each macrotile consists of m x n (mostly 4 x 4) tiles.
560   * Pixel data pitch/stride is aligned with macrotile width.
561   * Pixel data height is aligned with macrotile height.
562   * Entire pixel data buffer is aligned with 4k(bytes).
563   */
564  #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
565  
566  /* Vivante framebuffer modifiers */
567  
568  /*
569   * Vivante 4x4 tiling layout
570   *
571   * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
572   * layout.
573   */
574  #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
575  
576  /*
577   * Vivante 64x64 super-tiling layout
578   *
579   * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
580   * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
581   * major layout.
582   *
583   * For more information: see
584   * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
585   */
586  #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
587  
588  /*
589   * Vivante 4x4 tiling layout for dual-pipe
590   *
591   * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
592   * different base address. Offsets from the base addresses are therefore halved
593   * compared to the non-split tiled layout.
594   */
595  #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
596  
597  /*
598   * Vivante 64x64 super-tiling layout for dual-pipe
599   *
600   * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
601   * starts at a different base address. Offsets from the base addresses are
602   * therefore halved compared to the non-split super-tiled layout.
603   */
604  #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
605  
606  /* NVIDIA frame buffer modifiers */
607  
608  /*
609   * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
610   *
611   * Pixels are arranged in simple tiles of 16 x 16 bytes.
612   */
613  #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
614  
615  /*
616   * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
617   * and Tegra GPUs starting with Tegra K1.
618   *
619   * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
620   * based on the architecture generation.  GOBs themselves are then arranged in
621   * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
622   * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
623   * a block depth or height of "4").
624   *
625   * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
626   * in full detail.
627   *
628   *       Macro
629   * Bits  Param Description
630   * ----  ----- -----------------------------------------------------------------
631   *
632   *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
633   *             compatibility with the existing
634   *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
635   *
636   *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
637   *             compatibility with the existing
638   *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
639   *
640   *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
641   *             size).  Must be zero.
642   *
643   *             Note there is no log2(width) parameter.  Some portions of the
644   *             hardware support a block width of two gobs, but it is impractical
645   *             to use due to lack of support elsewhere, and has no known
646   *             benefits.
647   *
648   * 11:9  -     Reserved (To support 2D-array textures with variable array stride
649   *             in blocks, specified via log2(tile width in blocks)).  Must be
650   *             zero.
651   *
652   * 19:12 k     Page Kind.  This value directly maps to a field in the page
653   *             tables of all GPUs >= NV50.  It affects the exact layout of bits
654   *             in memory and can be derived from the tuple
655   *
656   *               (format, GPU model, compression type, samples per pixel)
657   *
658   *             Where compression type is defined below.  If GPU model were
659   *             implied by the format modifier, format, or memory buffer, page
660   *             kind would not need to be included in the modifier itself, but
661   *             since the modifier should define the layout of the associated
662   *             memory buffer independent from any device or other context, it
663   *             must be included here.
664   *
665   * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
666   *             starting with Fermi GPUs.  Additionally, the mapping between page
667   *             kind and bit layout has changed at various points.
668   *
669   *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
670   *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
671   *               2 = Gob Height 8, Turing+ Page Kind mapping
672   *               3 = Reserved for future use.
673   *
674   * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
675   *             bit remapping step that occurs at an even lower level than the
676   *             page kind and block linear swizzles.  This causes the layout of
677   *             surfaces mapped in those SOC's GPUs to be incompatible with the
678   *             equivalent mapping on other GPUs in the same system.
679   *
680   *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
681   *               1 = Desktop GPU and Tegra Xavier+ Layout
682   *
683   * 25:23 c     Lossless Framebuffer Compression type.
684   *
685   *               0 = none
686   *               1 = ROP/3D, layout 1, exact compression format implied by Page
687   *                   Kind field
688   *               2 = ROP/3D, layout 2, exact compression format implied by Page
689   *                   Kind field
690   *               3 = CDE horizontal
691   *               4 = CDE vertical
692   *               5 = Reserved for future use
693   *               6 = Reserved for future use
694   *               7 = Reserved for future use
695   *
696   * 55:25 -     Reserved for future use.  Must be zero.
697   */
698  #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
699  	fourcc_mod_code(NVIDIA, (0x10 | \
700  				 ((h) & 0xf) | \
701  				 (((k) & 0xff) << 12) | \
702  				 (((g) & 0x3) << 20) | \
703  				 (((s) & 0x1) << 22) | \
704  				 (((c) & 0x7) << 23)))
705  
706  /* To grandfather in prior block linear format modifiers to the above layout,
707   * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
708   * with block-linear layouts, is remapped within drivers to the value 0xfe,
709   * which corresponds to the "generic" kind used for simple single-sample
710   * uncompressed color formats on Fermi - Volta GPUs.
711   */
712  static inline uint64_t
713  drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
714  {
715  	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
716  		return modifier;
717  	else
718  		return modifier | (0xfe << 12);
719  }
720  
721  /*
722   * 16Bx2 Block Linear layout, used by Tegra K1 and later
723   *
724   * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
725   * vertically by a power of 2 (1 to 32 GOBs) to form a block.
726   *
727   * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
728   *
729   * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
730   * Valid values are:
731   *
732   * 0 == ONE_GOB
733   * 1 == TWO_GOBS
734   * 2 == FOUR_GOBS
735   * 3 == EIGHT_GOBS
736   * 4 == SIXTEEN_GOBS
737   * 5 == THIRTYTWO_GOBS
738   *
739   * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
740   * in full detail.
741   */
742  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
743  	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
744  
745  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
746  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
747  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
748  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
749  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
750  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
751  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
752  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
753  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
754  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
755  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
756  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
757  
758  /*
759   * Some Broadcom modifiers take parameters, for example the number of
760   * vertical lines in the image. Reserve the lower 32 bits for modifier
761   * type, and the next 24 bits for parameters. Top 8 bits are the
762   * vendor code.
763   */
764  #define __fourcc_mod_broadcom_param_shift 8
765  #define __fourcc_mod_broadcom_param_bits 48
766  #define fourcc_mod_broadcom_code(val, params) \
767  	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
768  #define fourcc_mod_broadcom_param(m) \
769  	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
770  	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
771  #define fourcc_mod_broadcom_mod(m) \
772  	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
773  		 __fourcc_mod_broadcom_param_shift))
774  
775  /*
776   * Broadcom VC4 "T" format
777   *
778   * This is the primary layout that the V3D GPU can texture from (it
779   * can't do linear).  The T format has:
780   *
781   * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
782   *   pixels at 32 bit depth.
783   *
784   * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
785   *   16x16 pixels).
786   *
787   * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
788   *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
789   *   they're (TR, BR, BL, TL), where bottom left is start of memory.
790   *
791   * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
792   *   tiles) or right-to-left (odd rows of 4k tiles).
793   */
794  #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
795  
796  /*
797   * Broadcom SAND format
798   *
799   * This is the native format that the H.264 codec block uses.  For VC4
800   * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
801   *
802   * The image can be considered to be split into columns, and the
803   * columns are placed consecutively into memory.  The width of those
804   * columns can be either 32, 64, 128, or 256 pixels, but in practice
805   * only 128 pixel columns are used.
806   *
807   * The pitch between the start of each column is set to optimally
808   * switch between SDRAM banks. This is passed as the number of lines
809   * of column width in the modifier (we can't use the stride value due
810   * to various core checks that look at it , so you should set the
811   * stride to width*cpp).
812   *
813   * Note that the column height for this format modifier is the same
814   * for all of the planes, assuming that each column contains both Y
815   * and UV.  Some SAND-using hardware stores UV in a separate tiled
816   * image from Y to reduce the column height, which is not supported
817   * with these modifiers.
818   */
819  
820  #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
821  	fourcc_mod_broadcom_code(2, v)
822  #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
823  	fourcc_mod_broadcom_code(3, v)
824  #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
825  	fourcc_mod_broadcom_code(4, v)
826  #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
827  	fourcc_mod_broadcom_code(5, v)
828  
829  #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
830  	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
831  #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
832  	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
833  #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
834  	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
835  #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
836  	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
837  
838  /* Broadcom UIF format
839   *
840   * This is the common format for the current Broadcom multimedia
841   * blocks, including V3D 3.x and newer, newer video codecs, and
842   * displays.
843   *
844   * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
845   * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
846   * stored in columns, with padding between the columns to ensure that
847   * moving from one column to the next doesn't hit the same SDRAM page
848   * bank.
849   *
850   * To calculate the padding, it is assumed that each hardware block
851   * and the software driving it knows the platform's SDRAM page size,
852   * number of banks, and XOR address, and that it's identical between
853   * all blocks using the format.  This tiling modifier will use XOR as
854   * necessary to reduce the padding.  If a hardware block can't do XOR,
855   * the assumption is that a no-XOR tiling modifier will be created.
856   */
857  #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
858  
859  /*
860   * Arm Framebuffer Compression (AFBC) modifiers
861   *
862   * AFBC is a proprietary lossless image compression protocol and format.
863   * It provides fine-grained random access and minimizes the amount of data
864   * transferred between IP blocks.
865   *
866   * AFBC has several features which may be supported and/or used, which are
867   * represented using bits in the modifier. Not all combinations are valid,
868   * and different devices or use-cases may support different combinations.
869   *
870   * Further information on the use of AFBC modifiers can be found in
871   * Documentation/gpu/afbc.rst
872   */
873  
874  /*
875   * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
876   * modifiers) denote the category for modifiers. Currently we have only two
877   * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
878   * different categories.
879   */
880  #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
881  	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
882  
883  #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
884  #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
885  
886  #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
887  	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
888  
889  /*
890   * AFBC superblock size
891   *
892   * Indicates the superblock size(s) used for the AFBC buffer. The buffer
893   * size (in pixels) must be aligned to a multiple of the superblock size.
894   * Four lowest significant bits(LSBs) are reserved for block size.
895   *
896   * Where one superblock size is specified, it applies to all planes of the
897   * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
898   * the first applies to the Luma plane and the second applies to the Chroma
899   * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
900   * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
901   */
902  #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
903  #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
904  #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
905  #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
906  #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
907  
908  /*
909   * AFBC lossless colorspace transform
910   *
911   * Indicates that the buffer makes use of the AFBC lossless colorspace
912   * transform.
913   */
914  #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
915  
916  /*
917   * AFBC block-split
918   *
919   * Indicates that the payload of each superblock is split. The second
920   * half of the payload is positioned at a predefined offset from the start
921   * of the superblock payload.
922   */
923  #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
924  
925  /*
926   * AFBC sparse layout
927   *
928   * This flag indicates that the payload of each superblock must be stored at a
929   * predefined position relative to the other superblocks in the same AFBC
930   * buffer. This order is the same order used by the header buffer. In this mode
931   * each superblock is given the same amount of space as an uncompressed
932   * superblock of the particular format would require, rounding up to the next
933   * multiple of 128 bytes in size.
934   */
935  #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
936  
937  /*
938   * AFBC copy-block restrict
939   *
940   * Buffers with this flag must obey the copy-block restriction. The restriction
941   * is such that there are no copy-blocks referring across the border of 8x8
942   * blocks. For the subsampled data the 8x8 limitation is also subsampled.
943   */
944  #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
945  
946  /*
947   * AFBC tiled layout
948   *
949   * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
950   * superblocks inside a tile are stored together in memory. 8x8 tiles are used
951   * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
952   * larger bpp formats. The order between the tiles is scan line.
953   * When the tiled layout is used, the buffer size (in pixels) must be aligned
954   * to the tile size.
955   */
956  #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
957  
958  /*
959   * AFBC solid color blocks
960   *
961   * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
962   * can be reduced if a whole superblock is a single color.
963   */
964  #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
965  
966  /*
967   * AFBC double-buffer
968   *
969   * Indicates that the buffer is allocated in a layout safe for front-buffer
970   * rendering.
971   */
972  #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
973  
974  /*
975   * AFBC buffer content hints
976   *
977   * Indicates that the buffer includes per-superblock content hints.
978   */
979  #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
980  
981  /* AFBC uncompressed storage mode
982   *
983   * Indicates that the buffer is using AFBC uncompressed storage mode.
984   * In this mode all superblock payloads in the buffer use the uncompressed
985   * storage mode, which is usually only used for data which cannot be compressed.
986   * The buffer layout is the same as for AFBC buffers without USM set, this only
987   * affects the storage mode of the individual superblocks. Note that even a
988   * buffer without USM set may use uncompressed storage mode for some or all
989   * superblocks, USM just guarantees it for all.
990   */
991  #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
992  
993  /*
994   * Arm 16x16 Block U-Interleaved modifier
995   *
996   * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
997   * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
998   * in the block are reordered.
999   */
1000  #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1001  	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1002  
1003  /*
1004   * Allwinner tiled modifier
1005   *
1006   * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1007   * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1008   * planes.
1009   *
1010   * With this tiling, the luminance samples are disposed in tiles representing
1011   * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1012   * The pixel order in each tile is linear and the tiles are disposed linearly,
1013   * both in row-major order.
1014   */
1015  #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1016  
1017  /*
1018   * Amlogic Video Framebuffer Compression modifiers
1019   *
1020   * Amlogic uses a proprietary lossless image compression protocol and format
1021   * for their hardware video codec accelerators, either video decoders or
1022   * video input encoders.
1023   *
1024   * It considerably reduces memory bandwidth while writing and reading
1025   * frames in memory.
1026   *
1027   * The underlying storage is considered to be 3 components, 8bit or 10-bit
1028   * per component YCbCr 420, single plane :
1029   * - DRM_FORMAT_YUV420_8BIT
1030   * - DRM_FORMAT_YUV420_10BIT
1031   *
1032   * The first 8 bits of the mode defines the layout, then the following 8 bits
1033   * defines the options changing the layout.
1034   *
1035   * Not all combinations are valid, and different SoCs may support different
1036   * combinations of layout and options.
1037   */
1038  #define __fourcc_mod_amlogic_layout_mask 0xf
1039  #define __fourcc_mod_amlogic_options_shift 8
1040  #define __fourcc_mod_amlogic_options_mask 0xf
1041  
1042  #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1043  	fourcc_mod_code(AMLOGIC, \
1044  			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1045  			(((__options) & __fourcc_mod_amlogic_options_mask) \
1046  			 << __fourcc_mod_amlogic_options_shift))
1047  
1048  /* Amlogic FBC Layouts */
1049  
1050  /*
1051   * Amlogic FBC Basic Layout
1052   *
1053   * The basic layout is composed of:
1054   * - a body content organized in 64x32 superblocks with 4096 bytes per
1055   *   superblock in default mode.
1056   * - a 32 bytes per 128x64 header block
1057   *
1058   * This layout is transferrable between Amlogic SoCs supporting this modifier.
1059   */
1060  #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1061  
1062  /*
1063   * Amlogic FBC Scatter Memory layout
1064   *
1065   * Indicates the header contains IOMMU references to the compressed
1066   * frames content to optimize memory access and layout.
1067   *
1068   * In this mode, only the header memory address is needed, thus the
1069   * content memory organization is tied to the current producer
1070   * execution and cannot be saved/dumped neither transferrable between
1071   * Amlogic SoCs supporting this modifier.
1072   *
1073   * Due to the nature of the layout, these buffers are not expected to
1074   * be accessible by the user-space clients, but only accessible by the
1075   * hardware producers and consumers.
1076   *
1077   * The user-space clients should expect a failure while trying to mmap
1078   * the DMA-BUF handle returned by the producer.
1079   */
1080  #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1081  
1082  /* Amlogic FBC Layout Options Bit Mask */
1083  
1084  /*
1085   * Amlogic FBC Memory Saving mode
1086   *
1087   * Indicates the storage is packed when pixel size is multiple of word
1088   * boudaries, i.e. 8bit should be stored in this mode to save allocation
1089   * memory.
1090   *
1091   * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1092   * the basic layout and 3200 bytes per 64x32 superblock combined with
1093   * the scatter layout.
1094   */
1095  #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1096  
1097  /*
1098   * AMD modifiers
1099   *
1100   * Memory layout:
1101   *
1102   * without DCC:
1103   *   - main surface
1104   *
1105   * with DCC & without DCC_RETILE:
1106   *   - main surface in plane 0
1107   *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1108   *
1109   * with DCC & DCC_RETILE:
1110   *   - main surface in plane 0
1111   *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1112   *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1113   *
1114   * For multi-plane formats the above surfaces get merged into one plane for
1115   * each format plane, based on the required alignment only.
1116   *
1117   * Bits  Parameter                Notes
1118   * ----- ------------------------ ---------------------------------------------
1119   *
1120   *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1121   *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1122   *    13 DCC
1123   *    14 DCC_RETILE
1124   *    15 DCC_PIPE_ALIGN
1125   *    16 DCC_INDEPENDENT_64B
1126   *    17 DCC_INDEPENDENT_128B
1127   * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1128   *    20 DCC_CONSTANT_ENCODE
1129   * 23:21 PIPE_XOR_BITS            Only for some chips
1130   * 26:24 BANK_XOR_BITS            Only for some chips
1131   * 29:27 PACKERS                  Only for some chips
1132   * 32:30 RB                       Only for some chips
1133   * 35:33 PIPE                     Only for some chips
1134   * 55:36 -                        Reserved for future use, must be zero
1135   */
1136  #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1137  
1138  #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1139  
1140  /* Reserve 0 for GFX8 and older */
1141  #define AMD_FMT_MOD_TILE_VER_GFX9 1
1142  #define AMD_FMT_MOD_TILE_VER_GFX10 2
1143  #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1144  
1145  /*
1146   * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1147   * version.
1148   */
1149  #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1150  
1151  /*
1152   * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1153   * GFX9 as canonical version.
1154   */
1155  #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1156  #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1157  #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1158  #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1159  
1160  #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1161  #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1162  #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1163  
1164  #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1165  #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1166  #define AMD_FMT_MOD_TILE_SHIFT 8
1167  #define AMD_FMT_MOD_TILE_MASK 0x1F
1168  
1169  /* Whether DCC compression is enabled. */
1170  #define AMD_FMT_MOD_DCC_SHIFT 13
1171  #define AMD_FMT_MOD_DCC_MASK 0x1
1172  
1173  /*
1174   * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1175   * one which is not-aligned.
1176   */
1177  #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1178  #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1179  
1180  /* Only set if DCC_RETILE = false */
1181  #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1182  #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1183  
1184  #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1185  #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1186  #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1187  #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1188  #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1189  #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1190  
1191  /*
1192   * DCC supports embedding some clear colors directly in the DCC surface.
1193   * However, on older GPUs the rendering HW ignores the embedded clear color
1194   * and prefers the driver provided color. This necessitates doing a fastclear
1195   * eliminate operation before a process transfers control.
1196   *
1197   * If this bit is set that means the fastclear eliminate is not needed for these
1198   * embeddable colors.
1199   */
1200  #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1201  #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1202  
1203  /*
1204   * The below fields are for accounting for per GPU differences. These are only
1205   * relevant for GFX9 and later and if the tile field is *_X/_T.
1206   *
1207   * PIPE_XOR_BITS = always needed
1208   * BANK_XOR_BITS = only for TILE_VER_GFX9
1209   * PACKERS = only for TILE_VER_GFX10_RBPLUS
1210   * RB = only for TILE_VER_GFX9 & DCC
1211   * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1212   */
1213  #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1214  #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1215  #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1216  #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1217  #define AMD_FMT_MOD_PACKERS_SHIFT 27
1218  #define AMD_FMT_MOD_PACKERS_MASK 0x7
1219  #define AMD_FMT_MOD_RB_SHIFT 30
1220  #define AMD_FMT_MOD_RB_MASK 0x7
1221  #define AMD_FMT_MOD_PIPE_SHIFT 33
1222  #define AMD_FMT_MOD_PIPE_MASK 0x7
1223  
1224  #define AMD_FMT_MOD_SET(field, value) \
1225  	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1226  #define AMD_FMT_MOD_GET(field, value) \
1227  	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1228  #define AMD_FMT_MOD_CLEAR(field) \
1229  	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1230  
1231  #if defined(__cplusplus)
1232  }
1233  #endif
1234  
1235  #endif /* DRM_FOURCC_H */
1236