xref: /qemu/include/qom/object.h (revision 4a5f0545d2ccd8153a66086f17d0a70cd9c14014)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19 
20 struct TypeImpl;
21 typedef struct TypeImpl *Type;
22 
23 typedef struct TypeInfo TypeInfo;
24 
25 typedef struct InterfaceClass InterfaceClass;
26 typedef struct InterfaceInfo InterfaceInfo;
27 
28 #define TYPE_OBJECT "object"
29 
30 /**
31  * SECTION:object.h
32  * @title:Base Object Type System
33  * @short_description: interfaces for creating new types and objects
34  *
35  * The QEMU Object Model provides a framework for registering user creatable
36  * types and instantiating objects from those types.  QOM provides the following
37  * features:
38  *
39  *  - System for dynamically registering types
40  *  - Support for single-inheritance of types
41  *  - Multiple inheritance of stateless interfaces
42  *
43  * <example>
44  *   <title>Creating a minimal type</title>
45  *   <programlisting>
46  * #include "qdev.h"
47  *
48  * #define TYPE_MY_DEVICE "my-device"
49  *
50  * // No new virtual functions: we can reuse the typedef for the
51  * // superclass.
52  * typedef DeviceClass MyDeviceClass;
53  * typedef struct MyDevice
54  * {
55  *     DeviceState parent;
56  *
57  *     int reg0, reg1, reg2;
58  * } MyDevice;
59  *
60  * static const TypeInfo my_device_info = {
61  *     .name = TYPE_MY_DEVICE,
62  *     .parent = TYPE_DEVICE,
63  *     .instance_size = sizeof(MyDevice),
64  * };
65  *
66  * static void my_device_register_types(void)
67  * {
68  *     type_register_static(&my_device_info);
69  * }
70  *
71  * type_init(my_device_register_types)
72  *   </programlisting>
73  * </example>
74  *
75  * In the above example, we create a simple type that is described by #TypeInfo.
76  * #TypeInfo describes information about the type including what it inherits
77  * from, the instance and class size, and constructor/destructor hooks.
78  *
79  * Alternatively several static types could be registered using helper macro
80  * DEFINE_TYPES()
81  *
82  * <example>
83  *   <programlisting>
84  * static const TypeInfo device_types_info[] = {
85  *     {
86  *         .name = TYPE_MY_DEVICE_A,
87  *         .parent = TYPE_DEVICE,
88  *         .instance_size = sizeof(MyDeviceA),
89  *     },
90  *     {
91  *         .name = TYPE_MY_DEVICE_B,
92  *         .parent = TYPE_DEVICE,
93  *         .instance_size = sizeof(MyDeviceB),
94  *     },
95  * };
96  *
97  * DEFINE_TYPES(device_types_info)
98  *   </programlisting>
99  * </example>
100  *
101  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
102  * are instantiated dynamically but there is only ever one instance for any
103  * given type.  The #ObjectClass typically holds a table of function pointers
104  * for the virtual methods implemented by this type.
105  *
106  * Using object_new(), a new #Object derivative will be instantiated.  You can
107  * cast an #Object to a subclass (or base-class) type using
108  * object_dynamic_cast().  You typically want to define macro wrappers around
109  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
110  * specific type:
111  *
112  * <example>
113  *   <title>Typecasting macros</title>
114  *   <programlisting>
115  *    #define MY_DEVICE_GET_CLASS(obj) \
116  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
117  *    #define MY_DEVICE_CLASS(klass) \
118  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
119  *    #define MY_DEVICE(obj) \
120  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
121  *   </programlisting>
122  * </example>
123  *
124  * # Class Initialization #
125  *
126  * Before an object is initialized, the class for the object must be
127  * initialized.  There is only one class object for all instance objects
128  * that is created lazily.
129  *
130  * Classes are initialized by first initializing any parent classes (if
131  * necessary).  After the parent class object has initialized, it will be
132  * copied into the current class object and any additional storage in the
133  * class object is zero filled.
134  *
135  * The effect of this is that classes automatically inherit any virtual
136  * function pointers that the parent class has already initialized.  All
137  * other fields will be zero filled.
138  *
139  * Once all of the parent classes have been initialized, #TypeInfo::class_init
140  * is called to let the class being instantiated provide default initialize for
141  * its virtual functions.  Here is how the above example might be modified
142  * to introduce an overridden virtual function:
143  *
144  * <example>
145  *   <title>Overriding a virtual function</title>
146  *   <programlisting>
147  * #include "qdev.h"
148  *
149  * void my_device_class_init(ObjectClass *klass, void *class_data)
150  * {
151  *     DeviceClass *dc = DEVICE_CLASS(klass);
152  *     dc->reset = my_device_reset;
153  * }
154  *
155  * static const TypeInfo my_device_info = {
156  *     .name = TYPE_MY_DEVICE,
157  *     .parent = TYPE_DEVICE,
158  *     .instance_size = sizeof(MyDevice),
159  *     .class_init = my_device_class_init,
160  * };
161  *   </programlisting>
162  * </example>
163  *
164  * Introducing new virtual methods requires a class to define its own
165  * struct and to add a .class_size member to the #TypeInfo.  Each method
166  * will also have a wrapper function to call it easily:
167  *
168  * <example>
169  *   <title>Defining an abstract class</title>
170  *   <programlisting>
171  * #include "qdev.h"
172  *
173  * typedef struct MyDeviceClass
174  * {
175  *     DeviceClass parent;
176  *
177  *     void (*frobnicate) (MyDevice *obj);
178  * } MyDeviceClass;
179  *
180  * static const TypeInfo my_device_info = {
181  *     .name = TYPE_MY_DEVICE,
182  *     .parent = TYPE_DEVICE,
183  *     .instance_size = sizeof(MyDevice),
184  *     .abstract = true, // or set a default in my_device_class_init
185  *     .class_size = sizeof(MyDeviceClass),
186  * };
187  *
188  * void my_device_frobnicate(MyDevice *obj)
189  * {
190  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
191  *
192  *     klass->frobnicate(obj);
193  * }
194  *   </programlisting>
195  * </example>
196  *
197  * # Interfaces #
198  *
199  * Interfaces allow a limited form of multiple inheritance.  Instances are
200  * similar to normal types except for the fact that are only defined by
201  * their classes and never carry any state.  As a consequence, a pointer to
202  * an interface instance should always be of incomplete type in order to be
203  * sure it cannot be dereferenced.  That is, you should define the
204  * 'typedef struct SomethingIf SomethingIf' so that you can pass around
205  * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'.
206  * The only things you can validly do with a 'SomethingIf *' are to pass it as
207  * an argument to a method on its corresponding SomethingIfClass, or to
208  * dynamically cast it to an object that implements the interface.
209  *
210  * # Methods #
211  *
212  * A <emphasis>method</emphasis> is a function within the namespace scope of
213  * a class. It usually operates on the object instance by passing it as a
214  * strongly-typed first argument.
215  * If it does not operate on an object instance, it is dubbed
216  * <emphasis>class method</emphasis>.
217  *
218  * Methods cannot be overloaded. That is, the #ObjectClass and method name
219  * uniquely identity the function to be called; the signature does not vary
220  * except for trailing varargs.
221  *
222  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
223  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
224  * via OBJECT_GET_CLASS() accessing the overridden function.
225  * The original function is not automatically invoked. It is the responsibility
226  * of the overriding class to determine whether and when to invoke the method
227  * being overridden.
228  *
229  * To invoke the method being overridden, the preferred solution is to store
230  * the original value in the overriding class before overriding the method.
231  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
232  * respectively; this frees the overriding class from hardcoding its parent
233  * class, which someone might choose to change at some point.
234  *
235  * <example>
236  *   <title>Overriding a virtual method</title>
237  *   <programlisting>
238  * typedef struct MyState MyState;
239  *
240  * typedef void (*MyDoSomething)(MyState *obj);
241  *
242  * typedef struct MyClass {
243  *     ObjectClass parent_class;
244  *
245  *     MyDoSomething do_something;
246  * } MyClass;
247  *
248  * static void my_do_something(MyState *obj)
249  * {
250  *     // do something
251  * }
252  *
253  * static void my_class_init(ObjectClass *oc, void *data)
254  * {
255  *     MyClass *mc = MY_CLASS(oc);
256  *
257  *     mc->do_something = my_do_something;
258  * }
259  *
260  * static const TypeInfo my_type_info = {
261  *     .name = TYPE_MY,
262  *     .parent = TYPE_OBJECT,
263  *     .instance_size = sizeof(MyState),
264  *     .class_size = sizeof(MyClass),
265  *     .class_init = my_class_init,
266  * };
267  *
268  * typedef struct DerivedClass {
269  *     MyClass parent_class;
270  *
271  *     MyDoSomething parent_do_something;
272  * } DerivedClass;
273  *
274  * static void derived_do_something(MyState *obj)
275  * {
276  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
277  *
278  *     // do something here
279  *     dc->parent_do_something(obj);
280  *     // do something else here
281  * }
282  *
283  * static void derived_class_init(ObjectClass *oc, void *data)
284  * {
285  *     MyClass *mc = MY_CLASS(oc);
286  *     DerivedClass *dc = DERIVED_CLASS(oc);
287  *
288  *     dc->parent_do_something = mc->do_something;
289  *     mc->do_something = derived_do_something;
290  * }
291  *
292  * static const TypeInfo derived_type_info = {
293  *     .name = TYPE_DERIVED,
294  *     .parent = TYPE_MY,
295  *     .class_size = sizeof(DerivedClass),
296  *     .class_init = derived_class_init,
297  * };
298  *   </programlisting>
299  * </example>
300  *
301  * Alternatively, object_class_by_name() can be used to obtain the class and
302  * its non-overridden methods for a specific type. This would correspond to
303  * |[ MyClass::method(...) ]| in C++.
304  *
305  * The first example of such a QOM method was #CPUClass.reset,
306  * another example is #DeviceClass.realize.
307  *
308  * # Standard type declaration and definition macros #
309  *
310  * A lot of the code outlined above follows a standard pattern and naming
311  * convention. To reduce the amount of boilerplate code that needs to be
312  * written for a new type there are two sets of macros to generate the
313  * common parts in a standard format.
314  *
315  * A type is declared using the OBJECT_DECLARE macro family. In types
316  * which do not require any virtual functions in the class, the
317  * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
318  * in the header file:
319  *
320  * <example>
321  *   <title>Declaring a simple type</title>
322  *   <programlisting>
323  *     OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
324  *   </programlisting>
325  * </example>
326  *
327  * This is equivalent to the following:
328  *
329  * <example>
330  *   <title>Expansion from declaring a simple type</title>
331  *   <programlisting>
332  *     typedef struct MyDevice MyDevice;
333  *     typedef struct MyDeviceClass MyDeviceClass;
334  *
335  *     G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
336  *
337  *     #define MY_DEVICE_GET_CLASS(void *obj) \
338  *             OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
339  *     #define MY_DEVICE_CLASS(void *klass) \
340  *             OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
341  *     #define MY_DEVICE(void *obj)
342  *             OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
343  *
344  *     struct MyDeviceClass {
345  *         DeviceClass parent_class;
346  *     };
347  *   </programlisting>
348  * </example>
349  *
350  * The 'struct MyDevice' needs to be declared separately.
351  * If the type requires virtual functions to be declared in the class
352  * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
353  * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
354  * the 'struct MyDeviceClass' definition.
355  *
356  * To implement the type, the OBJECT_DEFINE macro family is available.
357  * In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
358  *
359  * <example>
360  *   <title>Defining a simple type</title>
361  *   <programlisting>
362  *     OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
363  *   </programlisting>
364  * </example>
365  *
366  * This is equivalent to the following:
367  *
368  * <example>
369  *   <title>Expansion from defining a simple type</title>
370  *   <programlisting>
371  *     static void my_device_finalize(Object *obj);
372  *     static void my_device_class_init(ObjectClass *oc, void *data);
373  *     static void my_device_init(Object *obj);
374  *
375  *     static const TypeInfo my_device_info = {
376  *         .parent = TYPE_DEVICE,
377  *         .name = TYPE_MY_DEVICE,
378  *         .instance_size = sizeof(MyDevice),
379  *         .instance_init = my_device_init,
380  *         .instance_finalize = my_device_finalize,
381  *         .class_size = sizeof(MyDeviceClass),
382  *         .class_init = my_device_class_init,
383  *     };
384  *
385  *     static void
386  *     my_device_register_types(void)
387  *     {
388  *         type_register_static(&my_device_info);
389  *     }
390  *     type_init(my_device_register_types);
391  *   </programlisting>
392  * </example>
393  *
394  * This is sufficient to get the type registered with the type
395  * system, and the three standard methods now need to be implemented
396  * along with any other logic required for the type.
397  *
398  * If the type needs to implement one or more interfaces, then the
399  * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
400  * This accepts an array of interface type names.
401  *
402  * <example>
403  *   <title>Defining a simple type implementing interfaces</title>
404  *   <programlisting>
405  *     OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
406  *                                        MY_DEVICE, DEVICE,
407  *                                        { TYPE_USER_CREATABLE }, { NULL })
408  *   </programlisting>
409  * </example>
410  *
411  * If the type is not intended to be instantiated, then then
412  * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
413  *
414  * <example>
415  *   <title>Defining a simple type</title>
416  *   <programlisting>
417  *     OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
418  *   </programlisting>
419  * </example>
420  */
421 
422 
423 typedef struct ObjectProperty ObjectProperty;
424 
425 /**
426  * ObjectPropertyAccessor:
427  * @obj: the object that owns the property
428  * @v: the visitor that contains the property data
429  * @name: the name of the property
430  * @opaque: the object property opaque
431  * @errp: a pointer to an Error that is filled if getting/setting fails.
432  *
433  * Called when trying to get/set a property.
434  */
435 typedef void (ObjectPropertyAccessor)(Object *obj,
436                                       Visitor *v,
437                                       const char *name,
438                                       void *opaque,
439                                       Error **errp);
440 
441 /**
442  * ObjectPropertyResolve:
443  * @obj: the object that owns the property
444  * @opaque: the opaque registered with the property
445  * @part: the name of the property
446  *
447  * Resolves the #Object corresponding to property @part.
448  *
449  * The returned object can also be used as a starting point
450  * to resolve a relative path starting with "@part".
451  *
452  * Returns: If @path is the path that led to @obj, the function
453  * returns the #Object corresponding to "@path/@part".
454  * If "@path/@part" is not a valid object path, it returns #NULL.
455  */
456 typedef Object *(ObjectPropertyResolve)(Object *obj,
457                                         void *opaque,
458                                         const char *part);
459 
460 /**
461  * ObjectPropertyRelease:
462  * @obj: the object that owns the property
463  * @name: the name of the property
464  * @opaque: the opaque registered with the property
465  *
466  * Called when a property is removed from a object.
467  */
468 typedef void (ObjectPropertyRelease)(Object *obj,
469                                      const char *name,
470                                      void *opaque);
471 
472 /**
473  * ObjectPropertyInit:
474  * @obj: the object that owns the property
475  * @prop: the property to set
476  *
477  * Called when a property is initialized.
478  */
479 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
480 
481 struct ObjectProperty
482 {
483     char *name;
484     char *type;
485     char *description;
486     ObjectPropertyAccessor *get;
487     ObjectPropertyAccessor *set;
488     ObjectPropertyResolve *resolve;
489     ObjectPropertyRelease *release;
490     ObjectPropertyInit *init;
491     void *opaque;
492     QObject *defval;
493 };
494 
495 /**
496  * ObjectUnparent:
497  * @obj: the object that is being removed from the composition tree
498  *
499  * Called when an object is being removed from the QOM composition tree.
500  * The function should remove any backlinks from children objects to @obj.
501  */
502 typedef void (ObjectUnparent)(Object *obj);
503 
504 /**
505  * ObjectFree:
506  * @obj: the object being freed
507  *
508  * Called when an object's last reference is removed.
509  */
510 typedef void (ObjectFree)(void *obj);
511 
512 #define OBJECT_CLASS_CAST_CACHE 4
513 
514 /**
515  * ObjectClass:
516  *
517  * The base for all classes.  The only thing that #ObjectClass contains is an
518  * integer type handle.
519  */
520 struct ObjectClass
521 {
522     /*< private >*/
523     Type type;
524     GSList *interfaces;
525 
526     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
527     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
528 
529     ObjectUnparent *unparent;
530 
531     GHashTable *properties;
532 };
533 
534 /**
535  * Object:
536  *
537  * The base for all objects.  The first member of this object is a pointer to
538  * a #ObjectClass.  Since C guarantees that the first member of a structure
539  * always begins at byte 0 of that structure, as long as any sub-object places
540  * its parent as the first member, we can cast directly to a #Object.
541  *
542  * As a result, #Object contains a reference to the objects type as its
543  * first member.  This allows identification of the real type of the object at
544  * run time.
545  */
546 struct Object
547 {
548     /*< private >*/
549     ObjectClass *class;
550     ObjectFree *free;
551     GHashTable *properties;
552     uint32_t ref;
553     Object *parent;
554 };
555 
556 /**
557  * OBJECT_DECLARE_TYPE:
558  * @InstanceType: instance struct name
559  * @ClassType: class struct name
560  * @module_obj_name: the object name in lowercase with underscore separators
561  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
562  *
563  * This macro is typically used in a header file, and will:
564  *
565  *   - create the typedefs for the object and class structs
566  *   - register the type for use with g_autoptr
567  *   - provide three standard type cast functions
568  *
569  * The object struct and class struct need to be declared manually.
570  */
571 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, module_obj_name, MODULE_OBJ_NAME) \
572     typedef struct InstanceType InstanceType; \
573     typedef struct ClassType ClassType; \
574     \
575     G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
576     \
577     static inline G_GNUC_UNUSED ClassType * \
578     MODULE_OBJ_NAME##_GET_CLASS(void *obj) \
579     { return OBJECT_GET_CLASS(ClassType, obj, \
580                               TYPE_##MODULE_OBJ_NAME); } \
581     \
582     static inline G_GNUC_UNUSED ClassType * \
583     MODULE_OBJ_NAME##_CLASS(void *klass) \
584     { return OBJECT_CLASS_CHECK(ClassType, klass, \
585                                 TYPE_##MODULE_OBJ_NAME); } \
586     \
587     static inline G_GNUC_UNUSED InstanceType * \
588     MODULE_OBJ_NAME(void *obj) \
589     { return OBJECT_CHECK(InstanceType, obj, \
590                           TYPE_##MODULE_OBJ_NAME); }
591 
592 /**
593  * OBJECT_DECLARE_SIMPLE_TYPE:
594  * @InstanceType: instance struct name
595  * @module_obj_name: the object name in lowercase with underscore separators
596  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
597  * @ParentClassType: class struct name of parent type
598  *
599  * This does the same as OBJECT_DECLARE_TYPE(), but also declares
600  * the class struct, thus only the object struct needs to be declare
601  * manually.
602  *
603  * This macro should be used unless the class struct needs to have
604  * virtual methods declared.
605  */
606 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, module_obj_name, \
607                                    MODULE_OBJ_NAME, ParentClassType) \
608     OBJECT_DECLARE_TYPE(InstanceType, InstanceType##Class, module_obj_name, MODULE_OBJ_NAME) \
609     struct InstanceType##Class { ParentClassType parent_class; };
610 
611 
612 /**
613  * OBJECT_DEFINE_TYPE_EXTENDED:
614  * @ModuleObjName: the object name with initial caps
615  * @module_obj_name: the object name in lowercase with underscore separators
616  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
617  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
618  *                          separators
619  * @ABSTRACT: boolean flag to indicate whether the object can be instantiated
620  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
621  *
622  * This macro is typically used in a source file, and will:
623  *
624  *   - declare prototypes for _finalize, _class_init and _init methods
625  *   - declare the TypeInfo struct instance
626  *   - provide the constructor to register the type
627  *
628  * After using this macro, implementations of the _finalize, _class_init,
629  * and _init methods need to be written. Any of these can be zero-line
630  * no-op impls if no special logic is required for a given type.
631  *
632  * This macro should rarely be used, instead one of the more specialized
633  * macros is usually a better choice.
634  */
635 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
636                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
637                                     ABSTRACT, ...) \
638     static void \
639     module_obj_name##_finalize(Object *obj); \
640     static void \
641     module_obj_name##_class_init(ObjectClass *oc, void *data); \
642     static void \
643     module_obj_name##_init(Object *obj); \
644     \
645     static const TypeInfo module_obj_name##_info = { \
646         .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \
647         .name = TYPE_##MODULE_OBJ_NAME, \
648         .instance_size = sizeof(ModuleObjName), \
649         .instance_init = module_obj_name##_init, \
650         .instance_finalize = module_obj_name##_finalize, \
651         .class_size = sizeof(ModuleObjName##Class), \
652         .class_init = module_obj_name##_class_init, \
653         .abstract = ABSTRACT, \
654         .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \
655     }; \
656     \
657     static void \
658     module_obj_name##_register_types(void) \
659     { \
660         type_register_static(&module_obj_name##_info); \
661     } \
662     type_init(module_obj_name##_register_types);
663 
664 /**
665  * OBJECT_DEFINE_TYPE:
666  * @ModuleObjName: the object name with initial caps
667  * @module_obj_name: the object name in lowercase with underscore separators
668  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
669  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
670  *                          separators
671  *
672  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
673  * for the common case of a non-abstract type, without any interfaces.
674  */
675 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \
676                            PARENT_MODULE_OBJ_NAME) \
677     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
678                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
679                                 false, { NULL })
680 
681 /**
682  * OBJECT_DEFINE_TYPE_WITH_INTERFACES:
683  * @ModuleObjName: the object name with initial caps
684  * @module_obj_name: the object name in lowercase with underscore separators
685  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
686  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
687  *                          separators
688  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
689  *
690  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
691  * for the common case of a non-abstract type, with one or more implemented
692  * interfaces.
693  *
694  * Note when passing the list of interfaces, be sure to include the final
695  * NULL entry, e.g.  { TYPE_USER_CREATABLE }, { NULL }
696  */
697 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \
698                                            MODULE_OBJ_NAME, \
699                                            PARENT_MODULE_OBJ_NAME, ...) \
700     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
701                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
702                                 false, __VA_ARGS__)
703 
704 /**
705  * OBJECT_DEFINE_ABSTRACT_TYPE:
706  * @ModuleObjName: the object name with initial caps
707  * @module_obj_name: the object name in lowercase with underscore separators
708  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
709  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
710  *                          separators
711  *
712  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
713  * for defining an abstract type, without any interfaces.
714  */
715 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \
716                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \
717     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
718                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
719                                 true, { NULL })
720 
721 /**
722  * TypeInfo:
723  * @name: The name of the type.
724  * @parent: The name of the parent type.
725  * @instance_size: The size of the object (derivative of #Object).  If
726  *   @instance_size is 0, then the size of the object will be the size of the
727  *   parent object.
728  * @instance_init: This function is called to initialize an object.  The parent
729  *   class will have already been initialized so the type is only responsible
730  *   for initializing its own members.
731  * @instance_post_init: This function is called to finish initialization of
732  *   an object, after all @instance_init functions were called.
733  * @instance_finalize: This function is called during object destruction.  This
734  *   is called before the parent @instance_finalize function has been called.
735  *   An object should only free the members that are unique to its type in this
736  *   function.
737  * @abstract: If this field is true, then the class is considered abstract and
738  *   cannot be directly instantiated.
739  * @class_size: The size of the class object (derivative of #ObjectClass)
740  *   for this object.  If @class_size is 0, then the size of the class will be
741  *   assumed to be the size of the parent class.  This allows a type to avoid
742  *   implementing an explicit class type if they are not adding additional
743  *   virtual functions.
744  * @class_init: This function is called after all parent class initialization
745  *   has occurred to allow a class to set its default virtual method pointers.
746  *   This is also the function to use to override virtual methods from a parent
747  *   class.
748  * @class_base_init: This function is called for all base classes after all
749  *   parent class initialization has occurred, but before the class itself
750  *   is initialized.  This is the function to use to undo the effects of
751  *   memcpy from the parent class to the descendants.
752  * @class_data: Data to pass to the @class_init,
753  *   @class_base_init. This can be useful when building dynamic
754  *   classes.
755  * @interfaces: The list of interfaces associated with this type.  This
756  *   should point to a static array that's terminated with a zero filled
757  *   element.
758  */
759 struct TypeInfo
760 {
761     const char *name;
762     const char *parent;
763 
764     size_t instance_size;
765     void (*instance_init)(Object *obj);
766     void (*instance_post_init)(Object *obj);
767     void (*instance_finalize)(Object *obj);
768 
769     bool abstract;
770     size_t class_size;
771 
772     void (*class_init)(ObjectClass *klass, void *data);
773     void (*class_base_init)(ObjectClass *klass, void *data);
774     void *class_data;
775 
776     InterfaceInfo *interfaces;
777 };
778 
779 /**
780  * OBJECT:
781  * @obj: A derivative of #Object
782  *
783  * Converts an object to a #Object.  Since all objects are #Objects,
784  * this function will always succeed.
785  */
786 #define OBJECT(obj) \
787     ((Object *)(obj))
788 
789 /**
790  * OBJECT_CLASS:
791  * @class: A derivative of #ObjectClass.
792  *
793  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
794  * this function will always succeed.
795  */
796 #define OBJECT_CLASS(class) \
797     ((ObjectClass *)(class))
798 
799 /**
800  * OBJECT_CHECK:
801  * @type: The C type to use for the return value.
802  * @obj: A derivative of @type to cast.
803  * @name: The QOM typename of @type
804  *
805  * A type safe version of @object_dynamic_cast_assert.  Typically each class
806  * will define a macro based on this type to perform type safe dynamic_casts to
807  * this object type.
808  *
809  * If an invalid object is passed to this function, a run time assert will be
810  * generated.
811  */
812 #define OBJECT_CHECK(type, obj, name) \
813     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
814                                         __FILE__, __LINE__, __func__))
815 
816 /**
817  * OBJECT_CLASS_CHECK:
818  * @class_type: The C type to use for the return value.
819  * @class: A derivative class of @class_type to cast.
820  * @name: the QOM typename of @class_type.
821  *
822  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
823  * typically wrapped by each type to perform type safe casts of a class to a
824  * specific class type.
825  */
826 #define OBJECT_CLASS_CHECK(class_type, class, name) \
827     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
828                                                __FILE__, __LINE__, __func__))
829 
830 /**
831  * OBJECT_GET_CLASS:
832  * @class: The C type to use for the return value.
833  * @obj: The object to obtain the class for.
834  * @name: The QOM typename of @obj.
835  *
836  * This function will return a specific class for a given object.  Its generally
837  * used by each type to provide a type safe macro to get a specific class type
838  * from an object.
839  */
840 #define OBJECT_GET_CLASS(class, obj, name) \
841     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
842 
843 /**
844  * InterfaceInfo:
845  * @type: The name of the interface.
846  *
847  * The information associated with an interface.
848  */
849 struct InterfaceInfo {
850     const char *type;
851 };
852 
853 /**
854  * InterfaceClass:
855  * @parent_class: the base class
856  *
857  * The class for all interfaces.  Subclasses of this class should only add
858  * virtual methods.
859  */
860 struct InterfaceClass
861 {
862     ObjectClass parent_class;
863     /*< private >*/
864     ObjectClass *concrete_class;
865     Type interface_type;
866 };
867 
868 #define TYPE_INTERFACE "interface"
869 
870 /**
871  * INTERFACE_CLASS:
872  * @klass: class to cast from
873  * Returns: An #InterfaceClass or raise an error if cast is invalid
874  */
875 #define INTERFACE_CLASS(klass) \
876     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
877 
878 /**
879  * INTERFACE_CHECK:
880  * @interface: the type to return
881  * @obj: the object to convert to an interface
882  * @name: the interface type name
883  *
884  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
885  */
886 #define INTERFACE_CHECK(interface, obj, name) \
887     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
888                                              __FILE__, __LINE__, __func__))
889 
890 /**
891  * object_new_with_class:
892  * @klass: The class to instantiate.
893  *
894  * This function will initialize a new object using heap allocated memory.
895  * The returned object has a reference count of 1, and will be freed when
896  * the last reference is dropped.
897  *
898  * Returns: The newly allocated and instantiated object.
899  */
900 Object *object_new_with_class(ObjectClass *klass);
901 
902 /**
903  * object_new:
904  * @typename: The name of the type of the object to instantiate.
905  *
906  * This function will initialize a new object using heap allocated memory.
907  * The returned object has a reference count of 1, and will be freed when
908  * the last reference is dropped.
909  *
910  * Returns: The newly allocated and instantiated object.
911  */
912 Object *object_new(const char *typename);
913 
914 /**
915  * object_new_with_props:
916  * @typename:  The name of the type of the object to instantiate.
917  * @parent: the parent object
918  * @id: The unique ID of the object
919  * @errp: pointer to error object
920  * @...: list of property names and values
921  *
922  * This function will initialize a new object using heap allocated memory.
923  * The returned object has a reference count of 1, and will be freed when
924  * the last reference is dropped.
925  *
926  * The @id parameter will be used when registering the object as a
927  * child of @parent in the composition tree.
928  *
929  * The variadic parameters are a list of pairs of (propname, propvalue)
930  * strings. The propname of %NULL indicates the end of the property
931  * list. If the object implements the user creatable interface, the
932  * object will be marked complete once all the properties have been
933  * processed.
934  *
935  * <example>
936  *   <title>Creating an object with properties</title>
937  *   <programlisting>
938  *   Error *err = NULL;
939  *   Object *obj;
940  *
941  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
942  *                               object_get_objects_root(),
943  *                               "hostmem0",
944  *                               &err,
945  *                               "share", "yes",
946  *                               "mem-path", "/dev/shm/somefile",
947  *                               "prealloc", "yes",
948  *                               "size", "1048576",
949  *                               NULL);
950  *
951  *   if (!obj) {
952  *     error_reportf_err(err, "Cannot create memory backend: ");
953  *   }
954  *   </programlisting>
955  * </example>
956  *
957  * The returned object will have one stable reference maintained
958  * for as long as it is present in the object hierarchy.
959  *
960  * Returns: The newly allocated, instantiated & initialized object.
961  */
962 Object *object_new_with_props(const char *typename,
963                               Object *parent,
964                               const char *id,
965                               Error **errp,
966                               ...) QEMU_SENTINEL;
967 
968 /**
969  * object_new_with_propv:
970  * @typename:  The name of the type of the object to instantiate.
971  * @parent: the parent object
972  * @id: The unique ID of the object
973  * @errp: pointer to error object
974  * @vargs: list of property names and values
975  *
976  * See object_new_with_props() for documentation.
977  */
978 Object *object_new_with_propv(const char *typename,
979                               Object *parent,
980                               const char *id,
981                               Error **errp,
982                               va_list vargs);
983 
984 bool object_apply_global_props(Object *obj, const GPtrArray *props,
985                                Error **errp);
986 void object_set_machine_compat_props(GPtrArray *compat_props);
987 void object_set_accelerator_compat_props(GPtrArray *compat_props);
988 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
989 void object_apply_compat_props(Object *obj);
990 
991 /**
992  * object_set_props:
993  * @obj: the object instance to set properties on
994  * @errp: pointer to error object
995  * @...: list of property names and values
996  *
997  * This function will set a list of properties on an existing object
998  * instance.
999  *
1000  * The variadic parameters are a list of pairs of (propname, propvalue)
1001  * strings. The propname of %NULL indicates the end of the property
1002  * list.
1003  *
1004  * <example>
1005  *   <title>Update an object's properties</title>
1006  *   <programlisting>
1007  *   Error *err = NULL;
1008  *   Object *obj = ...get / create object...;
1009  *
1010  *   if (!object_set_props(obj,
1011  *                         &err,
1012  *                         "share", "yes",
1013  *                         "mem-path", "/dev/shm/somefile",
1014  *                         "prealloc", "yes",
1015  *                         "size", "1048576",
1016  *                         NULL)) {
1017  *     error_reportf_err(err, "Cannot set properties: ");
1018  *   }
1019  *   </programlisting>
1020  * </example>
1021  *
1022  * The returned object will have one stable reference maintained
1023  * for as long as it is present in the object hierarchy.
1024  *
1025  * Returns: %true on success, %false on error.
1026  */
1027 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL;
1028 
1029 /**
1030  * object_set_propv:
1031  * @obj: the object instance to set properties on
1032  * @errp: pointer to error object
1033  * @vargs: list of property names and values
1034  *
1035  * See object_set_props() for documentation.
1036  *
1037  * Returns: %true on success, %false on error.
1038  */
1039 bool object_set_propv(Object *obj, Error **errp, va_list vargs);
1040 
1041 /**
1042  * object_initialize:
1043  * @obj: A pointer to the memory to be used for the object.
1044  * @size: The maximum size available at @obj for the object.
1045  * @typename: The name of the type of the object to instantiate.
1046  *
1047  * This function will initialize an object.  The memory for the object should
1048  * have already been allocated.  The returned object has a reference count of 1,
1049  * and will be finalized when the last reference is dropped.
1050  */
1051 void object_initialize(void *obj, size_t size, const char *typename);
1052 
1053 /**
1054  * object_initialize_child_with_props:
1055  * @parentobj: The parent object to add a property to
1056  * @propname: The name of the property
1057  * @childobj: A pointer to the memory to be used for the object.
1058  * @size: The maximum size available at @childobj for the object.
1059  * @type: The name of the type of the object to instantiate.
1060  * @errp: If an error occurs, a pointer to an area to store the error
1061  * @...: list of property names and values
1062  *
1063  * This function will initialize an object. The memory for the object should
1064  * have already been allocated. The object will then be added as child property
1065  * to a parent with object_property_add_child() function. The returned object
1066  * has a reference count of 1 (for the "child<...>" property from the parent),
1067  * so the object will be finalized automatically when the parent gets removed.
1068  *
1069  * The variadic parameters are a list of pairs of (propname, propvalue)
1070  * strings. The propname of %NULL indicates the end of the property list.
1071  * If the object implements the user creatable interface, the object will
1072  * be marked complete once all the properties have been processed.
1073  *
1074  * Returns: %true on success, %false on failure.
1075  */
1076 bool object_initialize_child_with_props(Object *parentobj,
1077                              const char *propname,
1078                              void *childobj, size_t size, const char *type,
1079                              Error **errp, ...) QEMU_SENTINEL;
1080 
1081 /**
1082  * object_initialize_child_with_propsv:
1083  * @parentobj: The parent object to add a property to
1084  * @propname: The name of the property
1085  * @childobj: A pointer to the memory to be used for the object.
1086  * @size: The maximum size available at @childobj for the object.
1087  * @type: The name of the type of the object to instantiate.
1088  * @errp: If an error occurs, a pointer to an area to store the error
1089  * @vargs: list of property names and values
1090  *
1091  * See object_initialize_child() for documentation.
1092  *
1093  * Returns: %true on success, %false on failure.
1094  */
1095 bool object_initialize_child_with_propsv(Object *parentobj,
1096                               const char *propname,
1097                               void *childobj, size_t size, const char *type,
1098                               Error **errp, va_list vargs);
1099 
1100 /**
1101  * object_initialize_child:
1102  * @parent: The parent object to add a property to
1103  * @propname: The name of the property
1104  * @child: A precisely typed pointer to the memory to be used for the
1105  * object.
1106  * @type: The name of the type of the object to instantiate.
1107  *
1108  * This is like
1109  * object_initialize_child_with_props(parent, propname,
1110  *                                    child, sizeof(*child), type,
1111  *                                    &error_abort, NULL)
1112  */
1113 #define object_initialize_child(parent, propname, child, type)          \
1114     object_initialize_child_internal((parent), (propname),              \
1115                                      (child), sizeof(*(child)), (type))
1116 void object_initialize_child_internal(Object *parent, const char *propname,
1117                                       void *child, size_t size,
1118                                       const char *type);
1119 
1120 /**
1121  * object_dynamic_cast:
1122  * @obj: The object to cast.
1123  * @typename: The @typename to cast to.
1124  *
1125  * This function will determine if @obj is-a @typename.  @obj can refer to an
1126  * object or an interface associated with an object.
1127  *
1128  * Returns: This function returns @obj on success or #NULL on failure.
1129  */
1130 Object *object_dynamic_cast(Object *obj, const char *typename);
1131 
1132 /**
1133  * object_dynamic_cast_assert:
1134  *
1135  * See object_dynamic_cast() for a description of the parameters of this
1136  * function.  The only difference in behavior is that this function asserts
1137  * instead of returning #NULL on failure if QOM cast debugging is enabled.
1138  * This function is not meant to be called directly, but only through
1139  * the wrapper macro OBJECT_CHECK.
1140  */
1141 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
1142                                    const char *file, int line, const char *func);
1143 
1144 /**
1145  * object_get_class:
1146  * @obj: A derivative of #Object
1147  *
1148  * Returns: The #ObjectClass of the type associated with @obj.
1149  */
1150 ObjectClass *object_get_class(Object *obj);
1151 
1152 /**
1153  * object_get_typename:
1154  * @obj: A derivative of #Object.
1155  *
1156  * Returns: The QOM typename of @obj.
1157  */
1158 const char *object_get_typename(const Object *obj);
1159 
1160 /**
1161  * type_register_static:
1162  * @info: The #TypeInfo of the new type.
1163  *
1164  * @info and all of the strings it points to should exist for the life time
1165  * that the type is registered.
1166  *
1167  * Returns: the new #Type.
1168  */
1169 Type type_register_static(const TypeInfo *info);
1170 
1171 /**
1172  * type_register:
1173  * @info: The #TypeInfo of the new type
1174  *
1175  * Unlike type_register_static(), this call does not require @info or its
1176  * string members to continue to exist after the call returns.
1177  *
1178  * Returns: the new #Type.
1179  */
1180 Type type_register(const TypeInfo *info);
1181 
1182 /**
1183  * type_register_static_array:
1184  * @infos: The array of the new type #TypeInfo structures.
1185  * @nr_infos: number of entries in @infos
1186  *
1187  * @infos and all of the strings it points to should exist for the life time
1188  * that the type is registered.
1189  */
1190 void type_register_static_array(const TypeInfo *infos, int nr_infos);
1191 
1192 /**
1193  * DEFINE_TYPES:
1194  * @type_array: The array containing #TypeInfo structures to register
1195  *
1196  * @type_array should be static constant that exists for the life time
1197  * that the type is registered.
1198  */
1199 #define DEFINE_TYPES(type_array)                                            \
1200 static void do_qemu_init_ ## type_array(void)                               \
1201 {                                                                           \
1202     type_register_static_array(type_array, ARRAY_SIZE(type_array));         \
1203 }                                                                           \
1204 type_init(do_qemu_init_ ## type_array)
1205 
1206 /**
1207  * object_class_dynamic_cast_assert:
1208  * @klass: The #ObjectClass to attempt to cast.
1209  * @typename: The QOM typename of the class to cast to.
1210  *
1211  * See object_class_dynamic_cast() for a description of the parameters
1212  * of this function.  The only difference in behavior is that this function
1213  * asserts instead of returning #NULL on failure if QOM cast debugging is
1214  * enabled.  This function is not meant to be called directly, but only through
1215  * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
1216  */
1217 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
1218                                               const char *typename,
1219                                               const char *file, int line,
1220                                               const char *func);
1221 
1222 /**
1223  * object_class_dynamic_cast:
1224  * @klass: The #ObjectClass to attempt to cast.
1225  * @typename: The QOM typename of the class to cast to.
1226  *
1227  * Returns: If @typename is a class, this function returns @klass if
1228  * @typename is a subtype of @klass, else returns #NULL.
1229  *
1230  * If @typename is an interface, this function returns the interface
1231  * definition for @klass if @klass implements it unambiguously; #NULL
1232  * is returned if @klass does not implement the interface or if multiple
1233  * classes or interfaces on the hierarchy leading to @klass implement
1234  * it.  (FIXME: perhaps this can be detected at type definition time?)
1235  */
1236 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
1237                                        const char *typename);
1238 
1239 /**
1240  * object_class_get_parent:
1241  * @klass: The class to obtain the parent for.
1242  *
1243  * Returns: The parent for @klass or %NULL if none.
1244  */
1245 ObjectClass *object_class_get_parent(ObjectClass *klass);
1246 
1247 /**
1248  * object_class_get_name:
1249  * @klass: The class to obtain the QOM typename for.
1250  *
1251  * Returns: The QOM typename for @klass.
1252  */
1253 const char *object_class_get_name(ObjectClass *klass);
1254 
1255 /**
1256  * object_class_is_abstract:
1257  * @klass: The class to obtain the abstractness for.
1258  *
1259  * Returns: %true if @klass is abstract, %false otherwise.
1260  */
1261 bool object_class_is_abstract(ObjectClass *klass);
1262 
1263 /**
1264  * object_class_by_name:
1265  * @typename: The QOM typename to obtain the class for.
1266  *
1267  * Returns: The class for @typename or %NULL if not found.
1268  */
1269 ObjectClass *object_class_by_name(const char *typename);
1270 
1271 /**
1272  * module_object_class_by_name:
1273  * @typename: The QOM typename to obtain the class for.
1274  *
1275  * For objects which might be provided by a module.  Behaves like
1276  * object_class_by_name, but additionally tries to load the module
1277  * needed in case the class is not available.
1278  *
1279  * Returns: The class for @typename or %NULL if not found.
1280  */
1281 ObjectClass *module_object_class_by_name(const char *typename);
1282 
1283 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1284                           const char *implements_type, bool include_abstract,
1285                           void *opaque);
1286 
1287 /**
1288  * object_class_get_list:
1289  * @implements_type: The type to filter for, including its derivatives.
1290  * @include_abstract: Whether to include abstract classes.
1291  *
1292  * Returns: A singly-linked list of the classes in reverse hashtable order.
1293  */
1294 GSList *object_class_get_list(const char *implements_type,
1295                               bool include_abstract);
1296 
1297 /**
1298  * object_class_get_list_sorted:
1299  * @implements_type: The type to filter for, including its derivatives.
1300  * @include_abstract: Whether to include abstract classes.
1301  *
1302  * Returns: A singly-linked list of the classes in alphabetical
1303  * case-insensitive order.
1304  */
1305 GSList *object_class_get_list_sorted(const char *implements_type,
1306                               bool include_abstract);
1307 
1308 /**
1309  * object_ref:
1310  * @obj: the object
1311  *
1312  * Increase the reference count of a object.  A object cannot be freed as long
1313  * as its reference count is greater than zero.
1314  * Returns: @obj
1315  */
1316 Object *object_ref(void *obj);
1317 
1318 /**
1319  * object_unref:
1320  * @obj: the object
1321  *
1322  * Decrease the reference count of a object.  A object cannot be freed as long
1323  * as its reference count is greater than zero.
1324  */
1325 void object_unref(void *obj);
1326 
1327 /**
1328  * object_property_try_add:
1329  * @obj: the object to add a property to
1330  * @name: the name of the property.  This can contain any character except for
1331  *  a forward slash.  In general, you should use hyphens '-' instead of
1332  *  underscores '_' when naming properties.
1333  * @type: the type name of the property.  This namespace is pretty loosely
1334  *   defined.  Sub namespaces are constructed by using a prefix and then
1335  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
1336  *   'link' namespace would be 'link<virtio-net-pci>'.
1337  * @get: The getter to be called to read a property.  If this is NULL, then
1338  *   the property cannot be read.
1339  * @set: the setter to be called to write a property.  If this is NULL,
1340  *   then the property cannot be written.
1341  * @release: called when the property is removed from the object.  This is
1342  *   meant to allow a property to free its opaque upon object
1343  *   destruction.  This may be NULL.
1344  * @opaque: an opaque pointer to pass to the callbacks for the property
1345  * @errp: pointer to error object
1346  *
1347  * Returns: The #ObjectProperty; this can be used to set the @resolve
1348  * callback for child and link properties.
1349  */
1350 ObjectProperty *object_property_try_add(Object *obj, const char *name,
1351                                         const char *type,
1352                                         ObjectPropertyAccessor *get,
1353                                         ObjectPropertyAccessor *set,
1354                                         ObjectPropertyRelease *release,
1355                                         void *opaque, Error **errp);
1356 
1357 /**
1358  * object_property_add:
1359  * Same as object_property_try_add() with @errp hardcoded to
1360  * &error_abort.
1361  */
1362 ObjectProperty *object_property_add(Object *obj, const char *name,
1363                                     const char *type,
1364                                     ObjectPropertyAccessor *get,
1365                                     ObjectPropertyAccessor *set,
1366                                     ObjectPropertyRelease *release,
1367                                     void *opaque);
1368 
1369 void object_property_del(Object *obj, const char *name);
1370 
1371 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1372                                           const char *type,
1373                                           ObjectPropertyAccessor *get,
1374                                           ObjectPropertyAccessor *set,
1375                                           ObjectPropertyRelease *release,
1376                                           void *opaque);
1377 
1378 /**
1379  * object_property_set_default_bool:
1380  * @prop: the property to set
1381  * @value: the value to be written to the property
1382  *
1383  * Set the property default value.
1384  */
1385 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1386 
1387 /**
1388  * object_property_set_default_str:
1389  * @prop: the property to set
1390  * @value: the value to be written to the property
1391  *
1392  * Set the property default value.
1393  */
1394 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1395 
1396 /**
1397  * object_property_set_default_int:
1398  * @prop: the property to set
1399  * @value: the value to be written to the property
1400  *
1401  * Set the property default value.
1402  */
1403 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1404 
1405 /**
1406  * object_property_set_default_uint:
1407  * @prop: the property to set
1408  * @value: the value to be written to the property
1409  *
1410  * Set the property default value.
1411  */
1412 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1413 
1414 /**
1415  * object_property_find:
1416  * @obj: the object
1417  * @name: the name of the property
1418  * @errp: returns an error if this function fails
1419  *
1420  * Look up a property for an object and return its #ObjectProperty if found.
1421  */
1422 ObjectProperty *object_property_find(Object *obj, const char *name,
1423                                      Error **errp);
1424 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
1425                                            Error **errp);
1426 
1427 typedef struct ObjectPropertyIterator {
1428     ObjectClass *nextclass;
1429     GHashTableIter iter;
1430 } ObjectPropertyIterator;
1431 
1432 /**
1433  * object_property_iter_init:
1434  * @obj: the object
1435  *
1436  * Initializes an iterator for traversing all properties
1437  * registered against an object instance, its class and all parent classes.
1438  *
1439  * It is forbidden to modify the property list while iterating,
1440  * whether removing or adding properties.
1441  *
1442  * Typical usage pattern would be
1443  *
1444  * <example>
1445  *   <title>Using object property iterators</title>
1446  *   <programlisting>
1447  *   ObjectProperty *prop;
1448  *   ObjectPropertyIterator iter;
1449  *
1450  *   object_property_iter_init(&iter, obj);
1451  *   while ((prop = object_property_iter_next(&iter))) {
1452  *     ... do something with prop ...
1453  *   }
1454  *   </programlisting>
1455  * </example>
1456  */
1457 void object_property_iter_init(ObjectPropertyIterator *iter,
1458                                Object *obj);
1459 
1460 /**
1461  * object_class_property_iter_init:
1462  * @klass: the class
1463  *
1464  * Initializes an iterator for traversing all properties
1465  * registered against an object class and all parent classes.
1466  *
1467  * It is forbidden to modify the property list while iterating,
1468  * whether removing or adding properties.
1469  *
1470  * This can be used on abstract classes as it does not create a temporary
1471  * instance.
1472  */
1473 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1474                                      ObjectClass *klass);
1475 
1476 /**
1477  * object_property_iter_next:
1478  * @iter: the iterator instance
1479  *
1480  * Return the next available property. If no further properties
1481  * are available, a %NULL value will be returned and the @iter
1482  * pointer should not be used again after this point without
1483  * re-initializing it.
1484  *
1485  * Returns: the next property, or %NULL when all properties
1486  * have been traversed.
1487  */
1488 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1489 
1490 void object_unparent(Object *obj);
1491 
1492 /**
1493  * object_property_get:
1494  * @obj: the object
1495  * @name: the name of the property
1496  * @v: the visitor that will receive the property value.  This should be an
1497  *   Output visitor and the data will be written with @name as the name.
1498  * @errp: returns an error if this function fails
1499  *
1500  * Reads a property from a object.
1501  *
1502  * Returns: %true on success, %false on failure.
1503  */
1504 bool object_property_get(Object *obj, const char *name, Visitor *v,
1505                          Error **errp);
1506 
1507 /**
1508  * object_property_set_str:
1509  * @name: the name of the property
1510  * @value: the value to be written to the property
1511  * @errp: returns an error if this function fails
1512  *
1513  * Writes a string value to a property.
1514  *
1515  * Returns: %true on success, %false on failure.
1516  */
1517 bool object_property_set_str(Object *obj, const char *name,
1518                              const char *value, Error **errp);
1519 
1520 /**
1521  * object_property_get_str:
1522  * @obj: the object
1523  * @name: the name of the property
1524  * @errp: returns an error if this function fails
1525  *
1526  * Returns: the value of the property, converted to a C string, or NULL if
1527  * an error occurs (including when the property value is not a string).
1528  * The caller should free the string.
1529  */
1530 char *object_property_get_str(Object *obj, const char *name,
1531                               Error **errp);
1532 
1533 /**
1534  * object_property_set_link:
1535  * @name: the name of the property
1536  * @value: the value to be written to the property
1537  * @errp: returns an error if this function fails
1538  *
1539  * Writes an object's canonical path to a property.
1540  *
1541  * If the link property was created with
1542  * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1543  * unreferenced, and a reference is added to the new target object.
1544  *
1545  * Returns: %true on success, %false on failure.
1546  */
1547 bool object_property_set_link(Object *obj, const char *name,
1548                               Object *value, Error **errp);
1549 
1550 /**
1551  * object_property_get_link:
1552  * @obj: the object
1553  * @name: the name of the property
1554  * @errp: returns an error if this function fails
1555  *
1556  * Returns: the value of the property, resolved from a path to an Object,
1557  * or NULL if an error occurs (including when the property value is not a
1558  * string or not a valid object path).
1559  */
1560 Object *object_property_get_link(Object *obj, const char *name,
1561                                  Error **errp);
1562 
1563 /**
1564  * object_property_set_bool:
1565  * @name: the name of the property
1566  * @value: the value to be written to the property
1567  * @errp: returns an error if this function fails
1568  *
1569  * Writes a bool value to a property.
1570  *
1571  * Returns: %true on success, %false on failure.
1572  */
1573 bool object_property_set_bool(Object *obj, const char *name,
1574                               bool value, Error **errp);
1575 
1576 /**
1577  * object_property_get_bool:
1578  * @obj: the object
1579  * @name: the name of the property
1580  * @errp: returns an error if this function fails
1581  *
1582  * Returns: the value of the property, converted to a boolean, or NULL if
1583  * an error occurs (including when the property value is not a bool).
1584  */
1585 bool object_property_get_bool(Object *obj, const char *name,
1586                               Error **errp);
1587 
1588 /**
1589  * object_property_set_int:
1590  * @name: the name of the property
1591  * @value: the value to be written to the property
1592  * @errp: returns an error if this function fails
1593  *
1594  * Writes an integer value to a property.
1595  *
1596  * Returns: %true on success, %false on failure.
1597  */
1598 bool object_property_set_int(Object *obj, const char *name,
1599                              int64_t value, Error **errp);
1600 
1601 /**
1602  * object_property_get_int:
1603  * @obj: the object
1604  * @name: the name of the property
1605  * @errp: returns an error if this function fails
1606  *
1607  * Returns: the value of the property, converted to an integer, or negative if
1608  * an error occurs (including when the property value is not an integer).
1609  */
1610 int64_t object_property_get_int(Object *obj, const char *name,
1611                                 Error **errp);
1612 
1613 /**
1614  * object_property_set_uint:
1615  * @name: the name of the property
1616  * @value: the value to be written to the property
1617  * @errp: returns an error if this function fails
1618  *
1619  * Writes an unsigned integer value to a property.
1620  *
1621  * Returns: %true on success, %false on failure.
1622  */
1623 bool object_property_set_uint(Object *obj, const char *name,
1624                               uint64_t value, Error **errp);
1625 
1626 /**
1627  * object_property_get_uint:
1628  * @obj: the object
1629  * @name: the name of the property
1630  * @errp: returns an error if this function fails
1631  *
1632  * Returns: the value of the property, converted to an unsigned integer, or 0
1633  * an error occurs (including when the property value is not an integer).
1634  */
1635 uint64_t object_property_get_uint(Object *obj, const char *name,
1636                                   Error **errp);
1637 
1638 /**
1639  * object_property_get_enum:
1640  * @obj: the object
1641  * @name: the name of the property
1642  * @typename: the name of the enum data type
1643  * @errp: returns an error if this function fails
1644  *
1645  * Returns: the value of the property, converted to an integer, or
1646  * undefined if an error occurs (including when the property value is not
1647  * an enum).
1648  */
1649 int object_property_get_enum(Object *obj, const char *name,
1650                              const char *typename, Error **errp);
1651 
1652 /**
1653  * object_property_set:
1654  * @obj: the object
1655  * @name: the name of the property
1656  * @v: the visitor that will be used to write the property value.  This should
1657  *   be an Input visitor and the data will be first read with @name as the
1658  *   name and then written as the property value.
1659  * @errp: returns an error if this function fails
1660  *
1661  * Writes a property to a object.
1662  *
1663  * Returns: %true on success, %false on failure.
1664  */
1665 bool object_property_set(Object *obj, const char *name, Visitor *v,
1666                          Error **errp);
1667 
1668 /**
1669  * object_property_parse:
1670  * @obj: the object
1671  * @name: the name of the property
1672  * @string: the string that will be used to parse the property value.
1673  * @errp: returns an error if this function fails
1674  *
1675  * Parses a string and writes the result into a property of an object.
1676  *
1677  * Returns: %true on success, %false on failure.
1678  */
1679 bool object_property_parse(Object *obj, const char *name,
1680                            const char *string, Error **errp);
1681 
1682 /**
1683  * object_property_print:
1684  * @obj: the object
1685  * @name: the name of the property
1686  * @human: if true, print for human consumption
1687  * @errp: returns an error if this function fails
1688  *
1689  * Returns a string representation of the value of the property.  The
1690  * caller shall free the string.
1691  */
1692 char *object_property_print(Object *obj, const char *name, bool human,
1693                             Error **errp);
1694 
1695 /**
1696  * object_property_get_type:
1697  * @obj: the object
1698  * @name: the name of the property
1699  * @errp: returns an error if this function fails
1700  *
1701  * Returns:  The type name of the property.
1702  */
1703 const char *object_property_get_type(Object *obj, const char *name,
1704                                      Error **errp);
1705 
1706 /**
1707  * object_get_root:
1708  *
1709  * Returns: the root object of the composition tree
1710  */
1711 Object *object_get_root(void);
1712 
1713 
1714 /**
1715  * object_get_objects_root:
1716  *
1717  * Get the container object that holds user created
1718  * object instances. This is the object at path
1719  * "/objects"
1720  *
1721  * Returns: the user object container
1722  */
1723 Object *object_get_objects_root(void);
1724 
1725 /**
1726  * object_get_internal_root:
1727  *
1728  * Get the container object that holds internally used object
1729  * instances.  Any object which is put into this container must not be
1730  * user visible, and it will not be exposed in the QOM tree.
1731  *
1732  * Returns: the internal object container
1733  */
1734 Object *object_get_internal_root(void);
1735 
1736 /**
1737  * object_get_canonical_path_component:
1738  *
1739  * Returns: The final component in the object's canonical path.  The canonical
1740  * path is the path within the composition tree starting from the root.
1741  * %NULL if the object doesn't have a parent (and thus a canonical path).
1742  */
1743 const char *object_get_canonical_path_component(const Object *obj);
1744 
1745 /**
1746  * object_get_canonical_path:
1747  *
1748  * Returns: The canonical path for a object, newly allocated.  This is
1749  * the path within the composition tree starting from the root.  Use
1750  * g_free() to free it.
1751  */
1752 char *object_get_canonical_path(const Object *obj);
1753 
1754 /**
1755  * object_resolve_path:
1756  * @path: the path to resolve
1757  * @ambiguous: returns true if the path resolution failed because of an
1758  *   ambiguous match
1759  *
1760  * There are two types of supported paths--absolute paths and partial paths.
1761  *
1762  * Absolute paths are derived from the root object and can follow child<> or
1763  * link<> properties.  Since they can follow link<> properties, they can be
1764  * arbitrarily long.  Absolute paths look like absolute filenames and are
1765  * prefixed with a leading slash.
1766  *
1767  * Partial paths look like relative filenames.  They do not begin with a
1768  * prefix.  The matching rules for partial paths are subtle but designed to make
1769  * specifying objects easy.  At each level of the composition tree, the partial
1770  * path is matched as an absolute path.  The first match is not returned.  At
1771  * least two matches are searched for.  A successful result is only returned if
1772  * only one match is found.  If more than one match is found, a flag is
1773  * returned to indicate that the match was ambiguous.
1774  *
1775  * Returns: The matched object or NULL on path lookup failure.
1776  */
1777 Object *object_resolve_path(const char *path, bool *ambiguous);
1778 
1779 /**
1780  * object_resolve_path_type:
1781  * @path: the path to resolve
1782  * @typename: the type to look for.
1783  * @ambiguous: returns true if the path resolution failed because of an
1784  *   ambiguous match
1785  *
1786  * This is similar to object_resolve_path.  However, when looking for a
1787  * partial path only matches that implement the given type are considered.
1788  * This restricts the search and avoids spuriously flagging matches as
1789  * ambiguous.
1790  *
1791  * For both partial and absolute paths, the return value goes through
1792  * a dynamic cast to @typename.  This is important if either the link,
1793  * or the typename itself are of interface types.
1794  *
1795  * Returns: The matched object or NULL on path lookup failure.
1796  */
1797 Object *object_resolve_path_type(const char *path, const char *typename,
1798                                  bool *ambiguous);
1799 
1800 /**
1801  * object_resolve_path_component:
1802  * @parent: the object in which to resolve the path
1803  * @part: the component to resolve.
1804  *
1805  * This is similar to object_resolve_path with an absolute path, but it
1806  * only resolves one element (@part) and takes the others from @parent.
1807  *
1808  * Returns: The resolved object or NULL on path lookup failure.
1809  */
1810 Object *object_resolve_path_component(Object *parent, const char *part);
1811 
1812 /**
1813  * object_property_try_add_child:
1814  * @obj: the object to add a property to
1815  * @name: the name of the property
1816  * @child: the child object
1817  * @errp: pointer to error object
1818  *
1819  * Child properties form the composition tree.  All objects need to be a child
1820  * of another object.  Objects can only be a child of one object.
1821  *
1822  * There is no way for a child to determine what its parent is.  It is not
1823  * a bidirectional relationship.  This is by design.
1824  *
1825  * The value of a child property as a C string will be the child object's
1826  * canonical path. It can be retrieved using object_property_get_str().
1827  * The child object itself can be retrieved using object_property_get_link().
1828  *
1829  * Returns: The newly added property on success, or %NULL on failure.
1830  */
1831 ObjectProperty *object_property_try_add_child(Object *obj, const char *name,
1832                                               Object *child, Error **errp);
1833 
1834 /**
1835  * object_property_add_child:
1836  * Same as object_property_try_add_child() with @errp hardcoded to
1837  * &error_abort
1838  */
1839 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1840                                           Object *child);
1841 
1842 typedef enum {
1843     /* Unref the link pointer when the property is deleted */
1844     OBJ_PROP_LINK_STRONG = 0x1,
1845 
1846     /* private */
1847     OBJ_PROP_LINK_DIRECT = 0x2,
1848     OBJ_PROP_LINK_CLASS = 0x4,
1849 } ObjectPropertyLinkFlags;
1850 
1851 /**
1852  * object_property_allow_set_link:
1853  *
1854  * The default implementation of the object_property_add_link() check()
1855  * callback function.  It allows the link property to be set and never returns
1856  * an error.
1857  */
1858 void object_property_allow_set_link(const Object *, const char *,
1859                                     Object *, Error **);
1860 
1861 /**
1862  * object_property_add_link:
1863  * @obj: the object to add a property to
1864  * @name: the name of the property
1865  * @type: the qobj type of the link
1866  * @targetp: a pointer to where the link object reference is stored
1867  * @check: callback to veto setting or NULL if the property is read-only
1868  * @flags: additional options for the link
1869  *
1870  * Links establish relationships between objects.  Links are unidirectional
1871  * although two links can be combined to form a bidirectional relationship
1872  * between objects.
1873  *
1874  * Links form the graph in the object model.
1875  *
1876  * The <code>@check()</code> callback is invoked when
1877  * object_property_set_link() is called and can raise an error to prevent the
1878  * link being set.  If <code>@check</code> is NULL, the property is read-only
1879  * and cannot be set.
1880  *
1881  * Ownership of the pointer that @child points to is transferred to the
1882  * link property.  The reference count for <code>*@child</code> is
1883  * managed by the property from after the function returns till the
1884  * property is deleted with object_property_del().  If the
1885  * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
1886  * the reference count is decremented when the property is deleted or
1887  * modified.
1888  *
1889  * Returns: The newly added property on success, or %NULL on failure.
1890  */
1891 ObjectProperty *object_property_add_link(Object *obj, const char *name,
1892                               const char *type, Object **targetp,
1893                               void (*check)(const Object *obj, const char *name,
1894                                             Object *val, Error **errp),
1895                               ObjectPropertyLinkFlags flags);
1896 
1897 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
1898                               const char *name,
1899                               const char *type, ptrdiff_t offset,
1900                               void (*check)(const Object *obj, const char *name,
1901                                             Object *val, Error **errp),
1902                               ObjectPropertyLinkFlags flags);
1903 
1904 /**
1905  * object_property_add_str:
1906  * @obj: the object to add a property to
1907  * @name: the name of the property
1908  * @get: the getter or NULL if the property is write-only.  This function must
1909  *   return a string to be freed by g_free().
1910  * @set: the setter or NULL if the property is read-only
1911  *
1912  * Add a string property using getters/setters.  This function will add a
1913  * property of type 'string'.
1914  *
1915  * Returns: The newly added property on success, or %NULL on failure.
1916  */
1917 ObjectProperty *object_property_add_str(Object *obj, const char *name,
1918                              char *(*get)(Object *, Error **),
1919                              void (*set)(Object *, const char *, Error **));
1920 
1921 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
1922                                    const char *name,
1923                                    char *(*get)(Object *, Error **),
1924                                    void (*set)(Object *, const char *,
1925                                                Error **));
1926 
1927 /**
1928  * object_property_add_bool:
1929  * @obj: the object to add a property to
1930  * @name: the name of the property
1931  * @get: the getter or NULL if the property is write-only.
1932  * @set: the setter or NULL if the property is read-only
1933  *
1934  * Add a bool property using getters/setters.  This function will add a
1935  * property of type 'bool'.
1936  *
1937  * Returns: The newly added property on success, or %NULL on failure.
1938  */
1939 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
1940                               bool (*get)(Object *, Error **),
1941                               void (*set)(Object *, bool, Error **));
1942 
1943 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
1944                                     const char *name,
1945                                     bool (*get)(Object *, Error **),
1946                                     void (*set)(Object *, bool, Error **));
1947 
1948 /**
1949  * object_property_add_enum:
1950  * @obj: the object to add a property to
1951  * @name: the name of the property
1952  * @typename: the name of the enum data type
1953  * @get: the getter or %NULL if the property is write-only.
1954  * @set: the setter or %NULL if the property is read-only
1955  *
1956  * Add an enum property using getters/setters.  This function will add a
1957  * property of type '@typename'.
1958  *
1959  * Returns: The newly added property on success, or %NULL on failure.
1960  */
1961 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
1962                               const char *typename,
1963                               const QEnumLookup *lookup,
1964                               int (*get)(Object *, Error **),
1965                               void (*set)(Object *, int, Error **));
1966 
1967 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
1968                                     const char *name,
1969                                     const char *typename,
1970                                     const QEnumLookup *lookup,
1971                                     int (*get)(Object *, Error **),
1972                                     void (*set)(Object *, int, Error **));
1973 
1974 /**
1975  * object_property_add_tm:
1976  * @obj: the object to add a property to
1977  * @name: the name of the property
1978  * @get: the getter or NULL if the property is write-only.
1979  *
1980  * Add a read-only struct tm valued property using a getter function.
1981  * This function will add a property of type 'struct tm'.
1982  *
1983  * Returns: The newly added property on success, or %NULL on failure.
1984  */
1985 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
1986                             void (*get)(Object *, struct tm *, Error **));
1987 
1988 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
1989                             const char *name,
1990                             void (*get)(Object *, struct tm *, Error **));
1991 
1992 typedef enum {
1993     /* Automatically add a getter to the property */
1994     OBJ_PROP_FLAG_READ = 1 << 0,
1995     /* Automatically add a setter to the property */
1996     OBJ_PROP_FLAG_WRITE = 1 << 1,
1997     /* Automatically add a getter and a setter to the property */
1998     OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
1999 } ObjectPropertyFlags;
2000 
2001 /**
2002  * object_property_add_uint8_ptr:
2003  * @obj: the object to add a property to
2004  * @name: the name of the property
2005  * @v: pointer to value
2006  * @flags: bitwise-or'd ObjectPropertyFlags
2007  *
2008  * Add an integer property in memory.  This function will add a
2009  * property of type 'uint8'.
2010  *
2011  * Returns: The newly added property on success, or %NULL on failure.
2012  */
2013 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
2014                                               const uint8_t *v,
2015                                               ObjectPropertyFlags flags);
2016 
2017 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
2018                                          const char *name,
2019                                          const uint8_t *v,
2020                                          ObjectPropertyFlags flags);
2021 
2022 /**
2023  * object_property_add_uint16_ptr:
2024  * @obj: the object to add a property to
2025  * @name: the name of the property
2026  * @v: pointer to value
2027  * @flags: bitwise-or'd ObjectPropertyFlags
2028  *
2029  * Add an integer property in memory.  This function will add a
2030  * property of type 'uint16'.
2031  *
2032  * Returns: The newly added property on success, or %NULL on failure.
2033  */
2034 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
2035                                     const uint16_t *v,
2036                                     ObjectPropertyFlags flags);
2037 
2038 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
2039                                           const char *name,
2040                                           const uint16_t *v,
2041                                           ObjectPropertyFlags flags);
2042 
2043 /**
2044  * object_property_add_uint32_ptr:
2045  * @obj: the object to add a property to
2046  * @name: the name of the property
2047  * @v: pointer to value
2048  * @flags: bitwise-or'd ObjectPropertyFlags
2049  *
2050  * Add an integer property in memory.  This function will add a
2051  * property of type 'uint32'.
2052  *
2053  * Returns: The newly added property on success, or %NULL on failure.
2054  */
2055 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
2056                                     const uint32_t *v,
2057                                     ObjectPropertyFlags flags);
2058 
2059 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
2060                                           const char *name,
2061                                           const uint32_t *v,
2062                                           ObjectPropertyFlags flags);
2063 
2064 /**
2065  * object_property_add_uint64_ptr:
2066  * @obj: the object to add a property to
2067  * @name: the name of the property
2068  * @v: pointer to value
2069  * @flags: bitwise-or'd ObjectPropertyFlags
2070  *
2071  * Add an integer property in memory.  This function will add a
2072  * property of type 'uint64'.
2073  *
2074  * Returns: The newly added property on success, or %NULL on failure.
2075  */
2076 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
2077                                     const uint64_t *v,
2078                                     ObjectPropertyFlags flags);
2079 
2080 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
2081                                           const char *name,
2082                                           const uint64_t *v,
2083                                           ObjectPropertyFlags flags);
2084 
2085 /**
2086  * object_property_add_alias:
2087  * @obj: the object to add a property to
2088  * @name: the name of the property
2089  * @target_obj: the object to forward property access to
2090  * @target_name: the name of the property on the forwarded object
2091  *
2092  * Add an alias for a property on an object.  This function will add a property
2093  * of the same type as the forwarded property.
2094  *
2095  * The caller must ensure that <code>@target_obj</code> stays alive as long as
2096  * this property exists.  In the case of a child object or an alias on the same
2097  * object this will be the case.  For aliases to other objects the caller is
2098  * responsible for taking a reference.
2099  *
2100  * Returns: The newly added property on success, or %NULL on failure.
2101  */
2102 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
2103                                Object *target_obj, const char *target_name);
2104 
2105 /**
2106  * object_property_add_const_link:
2107  * @obj: the object to add a property to
2108  * @name: the name of the property
2109  * @target: the object to be referred by the link
2110  *
2111  * Add an unmodifiable link for a property on an object.  This function will
2112  * add a property of type link<TYPE> where TYPE is the type of @target.
2113  *
2114  * The caller must ensure that @target stays alive as long as
2115  * this property exists.  In the case @target is a child of @obj,
2116  * this will be the case.  Otherwise, the caller is responsible for
2117  * taking a reference.
2118  *
2119  * Returns: The newly added property on success, or %NULL on failure.
2120  */
2121 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
2122                                                Object *target);
2123 
2124 /**
2125  * object_property_set_description:
2126  * @obj: the object owning the property
2127  * @name: the name of the property
2128  * @description: the description of the property on the object
2129  *
2130  * Set an object property's description.
2131  *
2132  * Returns: %true on success, %false on failure.
2133  */
2134 void object_property_set_description(Object *obj, const char *name,
2135                                      const char *description);
2136 void object_class_property_set_description(ObjectClass *klass, const char *name,
2137                                            const char *description);
2138 
2139 /**
2140  * object_child_foreach:
2141  * @obj: the object whose children will be navigated
2142  * @fn: the iterator function to be called
2143  * @opaque: an opaque value that will be passed to the iterator
2144  *
2145  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2146  * non-zero.
2147  *
2148  * It is forbidden to add or remove children from @obj from the @fn
2149  * callback.
2150  *
2151  * Returns: The last value returned by @fn, or 0 if there is no child.
2152  */
2153 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
2154                          void *opaque);
2155 
2156 /**
2157  * object_child_foreach_recursive:
2158  * @obj: the object whose children will be navigated
2159  * @fn: the iterator function to be called
2160  * @opaque: an opaque value that will be passed to the iterator
2161  *
2162  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2163  * non-zero. Calls recursively, all child nodes of @obj will also be passed
2164  * all the way down to the leaf nodes of the tree. Depth first ordering.
2165  *
2166  * It is forbidden to add or remove children from @obj (or its
2167  * child nodes) from the @fn callback.
2168  *
2169  * Returns: The last value returned by @fn, or 0 if there is no child.
2170  */
2171 int object_child_foreach_recursive(Object *obj,
2172                                    int (*fn)(Object *child, void *opaque),
2173                                    void *opaque);
2174 /**
2175  * container_get:
2176  * @root: root of the #path, e.g., object_get_root()
2177  * @path: path to the container
2178  *
2179  * Return a container object whose path is @path.  Create more containers
2180  * along the path if necessary.
2181  *
2182  * Returns: the container object.
2183  */
2184 Object *container_get(Object *root, const char *path);
2185 
2186 /**
2187  * object_type_get_instance_size:
2188  * @typename: Name of the Type whose instance_size is required
2189  *
2190  * Returns the instance_size of the given @typename.
2191  */
2192 size_t object_type_get_instance_size(const char *typename);
2193 
2194 /**
2195  * object_property_help:
2196  * @name: the name of the property
2197  * @type: the type of the property
2198  * @defval: the default value
2199  * @description: description of the property
2200  *
2201  * Returns: a user-friendly formatted string describing the property
2202  * for help purposes.
2203  */
2204 char *object_property_help(const char *name, const char *type,
2205                            QObject *defval, const char *description);
2206 
2207 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
2208 
2209 #endif
2210