1 /* 2 * QEMU PowerPC XIVE internal structure definitions 3 * 4 * 5 * The XIVE structures are accessed by the HW and their format is 6 * architected to be big-endian. Some macros are provided to ease 7 * access to the different fields. 8 * 9 * 10 * Copyright (c) 2016-2024, IBM Corporation. 11 * 12 * SPDX-License-Identifier: GPL-2.0-or-later 13 */ 14 15 #ifndef PPC_XIVE_REGS_H 16 #define PPC_XIVE_REGS_H 17 18 #include "qemu/bswap.h" 19 #include "qemu/host-utils.h" 20 21 /* 22 * Interrupt source number encoding on PowerBUS 23 */ 24 /* 25 * Trigger data definition 26 * 27 * The trigger definition is used for triggers both for HW source 28 * interrupts (PHB, PSI), as well as for rerouting interrupts between 29 * Interrupt Controller. 30 * 31 * HW source controllers set bit0 of word0 to ‘0’ as they provide EAS 32 * information (EAS block + EAS index) in the 8 byte data and not END 33 * information, which is use for rerouting interrupts. 34 * 35 * bit1 of word0 to ‘1’ signals that the state bit check has been 36 * performed. 37 */ 38 #define XIVE_TRIGGER_END PPC_BIT(0) 39 #define XIVE_TRIGGER_PQ PPC_BIT(1) 40 41 /* 42 * QEMU macros to manipulate the trigger payload in native endian 43 */ 44 #define XIVE_EAS_BLOCK(n) (((n) >> 28) & 0xf) 45 #define XIVE_EAS_INDEX(n) ((n) & 0x0fffffff) 46 #define XIVE_EAS(blk, idx) ((uint32_t)(blk) << 28 | (idx)) 47 48 #define TM_SHIFT 16 49 50 /* 51 * TIMA addresses are 12-bits (4k page). 52 * The MSB indicates a special op with side effect, which can be 53 * refined with bit 10 (see below). 54 * The registers, logically grouped in 4 rings (a quad-word each), are 55 * defined on the 6 LSBs (offset below 0x40) 56 * In between, we can add a cache line index from 0...3 (ie, 0, 0x80, 57 * 0x100, 0x180) to select a specific snooper. Those 'snoop port 58 * address' bits should be dropped when processing the operations as 59 * they are all equivalent. 60 */ 61 #define TM_ADDRESS_MASK 0xC3F 62 #define TM_SPECIAL_OP 0x800 63 #define TM_RING_OFFSET 0x30 64 #define TM_REG_OFFSET 0x3F 65 66 /* TM register offsets */ 67 #define TM_QW0_USER 0x000 /* All rings */ 68 #define TM_QW1_OS 0x010 /* Ring 0..2 */ 69 #define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */ 70 #define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */ 71 72 /* Byte offsets inside a QW QW0 QW1 QW2 QW3 */ 73 #define TM_NSR 0x0 /* + + - + */ 74 #define TM_CPPR 0x1 /* - + - + */ 75 #define TM_IPB 0x2 /* - + + + */ 76 #define TM_LSMFB 0x3 /* - + + + */ 77 #define TM_ACK_CNT 0x4 /* - + - - */ 78 #define TM_INC 0x5 /* - + - + */ 79 #define TM_LGS 0x5 /* + + + + */ /* Rename P10 */ 80 #define TM_AGE 0x6 /* - + - + */ 81 #define TM_T 0x6 /* - + - + */ /* Rename P10 */ 82 #define TM_PIPR 0x7 /* - + - + */ 83 #define TM_OGEN 0xF /* - + - - */ /* P10 only */ 84 85 #define TM_WORD0 0x0 86 #define TM_WORD1 0x4 87 88 /* 89 * QW word 2 contains the valid bit at the top and other fields 90 * depending on the QW. 91 */ 92 #define TM_WORD2 0x8 93 #define TM_QW0W2_VU PPC_BIT32(0) 94 #define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1, 31) /* XX 2,31 ? */ 95 #define TM_QW1W2_VO PPC_BIT32(0) 96 #define TM_QW1W2_OS_CAM PPC_BITMASK32(8, 31) 97 #define TM_QW2W2_VP PPC_BIT32(0) 98 #define TM_QW2W2_POOL_CAM PPC_BITMASK32(8, 31) 99 #define TM_QW3W2_VT PPC_BIT32(0) 100 #define TM_QW3W2_LP PPC_BIT32(6) 101 #define TM_QW3W2_LE PPC_BIT32(7) 102 #define TM_QW3W2_T PPC_BIT32(31) 103 #define TM_QW3B8_VT PPC_BIT8(0) 104 105 /* 106 * In addition to normal loads to "peek" and writes (only when invalid) 107 * using 4 and 8 bytes accesses, the above registers support these 108 * "special" byte operations: 109 * 110 * - Byte load from QW0[NSR] - User level NSR (EBB) 111 * - Byte store to QW0[NSR] - User level NSR (EBB) 112 * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access 113 * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0 114 * otherwise VT||0000000 115 * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present) 116 * 117 * Then we have all these "special" CI ops at these offset that trigger 118 * all sorts of side effects: 119 */ 120 #define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg */ 121 #define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */ 122 #define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */ 123 #define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user */ 124 /* context */ 125 #define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */ 126 #define TM_SPC_PULL_OS_CTX_G2 0x810 /* Load32/Load64 Pull/Invalidate OS */ 127 /* context to reg */ 128 #define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS */ 129 /* context to reg */ 130 #define TM_SPC_PULL_POOL_CTX_G2 0x820 /* Load32/Load64 Pull/Invalidate Pool */ 131 /* context to reg */ 132 #define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool */ 133 /* context to reg */ 134 #define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */ 135 #define TM_SPC_PULL_PHYS_CTX_G2 0x830 /* Load32 Pull phys ctx to reg */ 136 #define TM_SPC_PULL_PHYS_CTX 0x838 /* Load8 Pull phys ctx to reg */ 137 #define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd */ 138 /* line */ 139 #define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */ 140 #define TM_SPC_PULL_OS_CTX_OL 0xc18 /* Pull/Invalidate OS context to */ 141 /* odd Thread reporting line */ 142 #define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even */ 143 /* line */ 144 #define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */ 145 #define TM_SPC_PULL_PHYS_CTX_OL 0xc38 /* Pull phys ctx to odd cache line */ 146 /* XXX more... */ 147 148 /* 149 * NSR fields for the various QW ack types 150 * 151 * P10 has an extra bit in QW3 for the group level instead of the 152 * reserved 'i' bit. Since it is not used and we don't support group 153 * interrupts on P9, we use the P10 definition for the group level so 154 * that we can have common macros for the NSR 155 */ 156 #define TM_QW0_NSR_EB PPC_BIT8(0) 157 #define TM_QW1_NSR_EO PPC_BIT8(0) 158 #define TM_QW3_NSR_HE PPC_BITMASK8(0, 1) 159 #define TM_QW3_NSR_HE_NONE 0 160 #define TM_QW3_NSR_HE_POOL 1 161 #define TM_QW3_NSR_HE_PHYS 2 162 #define TM_QW3_NSR_HE_LSI 3 163 #define TM_NSR_GRP_LVL PPC_BITMASK8(2, 7) 164 /* 165 * On P10, the format of the 6-bit group level is: 2 bits for the 166 * crowd size and 4 bits for the group size. Since group/crowd size is 167 * always a power of 2, we encode the log. For example, group_level=4 168 * means crowd size = 0 and group size = 16 (2^4) 169 * Same encoding is used in the NVP and NVGC structures for 170 * PGoFirst and PGoNext fields 171 */ 172 173 /* 174 * EAS (Event Assignment Structure) 175 * 176 * One per interrupt source. Targets an interrupt to a given Event 177 * Notification Descriptor (END) and provides the corresponding 178 * logical interrupt number (END data) 179 */ 180 typedef struct XiveEAS { 181 /* 182 * Use a single 64-bit definition to make it easier to perform 183 * atomic updates 184 */ 185 uint64_t w; 186 #define EAS_VALID PPC_BIT(0) 187 #define EAS_END_BLOCK PPC_BITMASK(4, 7) /* Destination END block# */ 188 #define EAS_END_INDEX PPC_BITMASK(8, 31) /* Destination END index */ 189 #define EAS_MASKED PPC_BIT(32) /* Masked */ 190 #define EAS_END_DATA PPC_BITMASK(33, 63) /* Data written to the END */ 191 } XiveEAS; 192 193 #define xive_eas_is_valid(eas) (be64_to_cpu((eas)->w) & EAS_VALID) 194 #define xive_eas_is_masked(eas) (be64_to_cpu((eas)->w) & EAS_MASKED) 195 196 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, GString *buf); 197 198 static inline uint64_t xive_get_field64(uint64_t mask, uint64_t word) 199 { 200 return (be64_to_cpu(word) & mask) >> ctz64(mask); 201 } 202 203 static inline uint64_t xive_set_field64(uint64_t mask, uint64_t word, 204 uint64_t value) 205 { 206 uint64_t tmp = 207 (be64_to_cpu(word) & ~mask) | ((value << ctz64(mask)) & mask); 208 return cpu_to_be64(tmp); 209 } 210 211 static inline uint32_t xive_get_field32(uint32_t mask, uint32_t word) 212 { 213 return (be32_to_cpu(word) & mask) >> ctz32(mask); 214 } 215 216 static inline uint32_t xive_set_field32(uint32_t mask, uint32_t word, 217 uint32_t value) 218 { 219 uint32_t tmp = 220 (be32_to_cpu(word) & ~mask) | ((value << ctz32(mask)) & mask); 221 return cpu_to_be32(tmp); 222 } 223 224 /* Event Notification Descriptor (END) */ 225 typedef struct XiveEND { 226 uint32_t w0; 227 #define END_W0_VALID PPC_BIT32(0) /* "v" bit */ 228 #define END_W0_ENQUEUE PPC_BIT32(1) /* "q" bit */ 229 #define END_W0_UCOND_NOTIFY PPC_BIT32(2) /* "n" bit */ 230 #define END_W0_BACKLOG PPC_BIT32(3) /* "b" bit */ 231 #define END_W0_PRECL_ESC_CTL PPC_BIT32(4) /* "p" bit */ 232 #define END_W0_ESCALATE_CTL PPC_BIT32(5) /* "e" bit */ 233 #define END_W0_UNCOND_ESCALATE PPC_BIT32(6) /* "u" bit - DD2.0 */ 234 #define END_W0_SILENT_ESCALATE PPC_BIT32(7) /* "s" bit - DD2.0 */ 235 #define END_W0_QSIZE PPC_BITMASK32(12, 15) 236 #define END_W0_SW0 PPC_BIT32(16) 237 #define END_W0_FIRMWARE END_W0_SW0 /* Owned by FW */ 238 #define END_QSIZE_4K 0 239 #define END_QSIZE_64K 4 240 #define END_W0_HWDEP PPC_BITMASK32(24, 31) 241 uint32_t w1; 242 #define END_W1_ESn PPC_BITMASK32(0, 1) 243 #define END_W1_ESn_P PPC_BIT32(0) 244 #define END_W1_ESn_Q PPC_BIT32(1) 245 #define END_W1_ESe PPC_BITMASK32(2, 3) 246 #define END_W1_ESe_P PPC_BIT32(2) 247 #define END_W1_ESe_Q PPC_BIT32(3) 248 #define END_W1_GENERATION PPC_BIT32(9) 249 #define END_W1_PAGE_OFF PPC_BITMASK32(10, 31) 250 uint32_t w2; 251 #define END_W2_MIGRATION_REG PPC_BITMASK32(0, 3) 252 #define END_W2_OP_DESC_HI PPC_BITMASK32(4, 31) 253 uint32_t w3; 254 #define END_W3_OP_DESC_LO PPC_BITMASK32(0, 31) 255 uint32_t w4; 256 #define END_W4_ESC_END_BLOCK PPC_BITMASK32(4, 7) 257 #define END_W4_ESC_END_INDEX PPC_BITMASK32(8, 31) 258 uint32_t w5; 259 #define END_W5_ESC_END_DATA PPC_BITMASK32(1, 31) 260 uint32_t w6; 261 #define END_W6_FORMAT_BIT PPC_BIT32(8) 262 #define END_W6_NVT_BLOCK PPC_BITMASK32(9, 12) 263 #define END_W6_NVT_INDEX PPC_BITMASK32(13, 31) 264 uint32_t w7; 265 #define END_W7_F0_IGNORE PPC_BIT32(0) 266 #define END_W7_F0_BLK_GROUPING PPC_BIT32(1) 267 #define END_W7_F0_PRIORITY PPC_BITMASK32(8, 15) 268 #define END_W7_F1_WAKEZ PPC_BIT32(0) 269 #define END_W7_F1_LOG_SERVER_ID PPC_BITMASK32(1, 31) 270 } XiveEND; 271 272 #define xive_end_is_valid(end) (be32_to_cpu((end)->w0) & END_W0_VALID) 273 #define xive_end_is_enqueue(end) (be32_to_cpu((end)->w0) & END_W0_ENQUEUE) 274 #define xive_end_is_notify(end) (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY) 275 #define xive_end_is_backlog(end) (be32_to_cpu((end)->w0) & END_W0_BACKLOG) 276 #define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL) 277 #define xive_end_is_uncond_escalation(end) \ 278 (be32_to_cpu((end)->w0) & END_W0_UNCOND_ESCALATE) 279 #define xive_end_is_silent_escalation(end) \ 280 (be32_to_cpu((end)->w0) & END_W0_SILENT_ESCALATE) 281 #define xive_end_is_firmware(end) \ 282 (be32_to_cpu((end)->w0) & END_W0_FIRMWARE) 283 284 static inline uint64_t xive_end_qaddr(XiveEND *end) 285 { 286 return ((uint64_t) be32_to_cpu(end->w2) & 0x0fffffff) << 32 | 287 be32_to_cpu(end->w3); 288 } 289 290 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf); 291 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf); 292 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf); 293 294 /* Notification Virtual Target (NVT) */ 295 typedef struct XiveNVT { 296 uint32_t w0; 297 #define NVT_W0_VALID PPC_BIT32(0) 298 uint32_t w1; 299 #define NVT_W1_EQ_BLOCK PPC_BITMASK32(0, 3) 300 #define NVT_W1_EQ_INDEX PPC_BITMASK32(4, 31) 301 uint32_t w2; 302 uint32_t w3; 303 uint32_t w4; 304 #define NVT_W4_IPB PPC_BITMASK32(16, 23) 305 uint32_t w5; 306 uint32_t w6; 307 uint32_t w7; 308 uint32_t w8; 309 #define NVT_W8_GRP_VALID PPC_BIT32(0) 310 uint32_t w9; 311 uint32_t wa; 312 uint32_t wb; 313 uint32_t wc; 314 uint32_t wd; 315 uint32_t we; 316 uint32_t wf; 317 } XiveNVT; 318 319 #define xive_nvt_is_valid(nvt) (be32_to_cpu((nvt)->w0) & NVT_W0_VALID) 320 321 /* 322 * The VP number space in a block is defined by the END_W6_NVT_INDEX 323 * field of the XIVE END 324 */ 325 #define XIVE_NVT_SHIFT 19 326 #define XIVE_NVT_COUNT (1 << XIVE_NVT_SHIFT) 327 328 static inline uint32_t xive_nvt_cam_line(uint8_t nvt_blk, uint32_t nvt_idx) 329 { 330 return (nvt_blk << XIVE_NVT_SHIFT) | nvt_idx; 331 } 332 333 static inline uint32_t xive_nvt_idx(uint32_t cam_line) 334 { 335 return cam_line & ((1 << XIVE_NVT_SHIFT) - 1); 336 } 337 338 static inline uint32_t xive_nvt_blk(uint32_t cam_line) 339 { 340 return (cam_line >> XIVE_NVT_SHIFT) & 0xf; 341 } 342 343 #endif /* PPC_XIVE_REGS_H */ 344