1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/lockcnt.h" 37 #include "qemu/thread.h" 38 #include "qom/object.h" 39 40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 41 void *opaque); 42 43 /** 44 * SECTION:cpu 45 * @section_id: QEMU-cpu 46 * @title: CPU Class 47 * @short_description: Base class for all CPUs 48 */ 49 50 #define TYPE_CPU "cpu" 51 52 /* Since this macro is used a lot in hot code paths and in conjunction with 53 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 54 * an unchecked cast. 55 */ 56 #define CPU(obj) ((CPUState *)(obj)) 57 58 /* 59 * The class checkers bring in CPU_GET_CLASS() which is potentially 60 * expensive given the eventual call to 61 * object_class_dynamic_cast_assert(). Because of this the CPUState 62 * has a cached value for the class in cs->cc which is set up in 63 * cpu_exec_realizefn() for use in hot code paths. 64 */ 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 /** 70 * OBJECT_DECLARE_CPU_TYPE: 71 * @CpuInstanceType: instance struct name 72 * @CpuClassType: class struct name 73 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 74 * 75 * This macro is typically used in "cpu-qom.h" header file, and will: 76 * 77 * - create the typedefs for the CPU object and class structs 78 * - register the type for use with g_autoptr 79 * - provide three standard type cast functions 80 * 81 * The object struct and class struct need to be declared manually. 82 */ 83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 84 typedef struct ArchCPU CpuInstanceType; \ 85 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 86 87 typedef struct CPUWatchpoint CPUWatchpoint; 88 89 /* see physmem.c */ 90 struct CPUAddressSpace; 91 92 /* see accel/tcg/tb-jmp-cache.h */ 93 struct CPUJumpCache; 94 95 /* see accel-cpu.h */ 96 struct AccelCPUClass; 97 98 /* see sysemu-cpu-ops.h */ 99 struct SysemuCPUOps; 100 101 /** 102 * CPUClass: 103 * @class_by_name: Callback to map -cpu command line model name to an 104 * instantiatable CPU type. 105 * @list_cpus: list available CPU models and flags. 106 * @parse_features: Callback to parse command line arguments. 107 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 108 * @memory_rw_debug: Callback for GDB memory access. 109 * @dump_state: Callback for dumping state. 110 * @query_cpu_fast: 111 * Fill in target specific information for the "query-cpus-fast" 112 * QAPI call. 113 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 114 * @set_pc: Callback for setting the Program Counter register. This 115 * should have the semantics used by the target architecture when 116 * setting the PC from a source such as an ELF file entry point; 117 * for example on Arm it will also set the Thumb mode bit based 118 * on the least significant bit of the new PC value. 119 * If the target behaviour here is anything other than "set 120 * the PC register to the value passed in" then the target must 121 * also implement the synchronize_from_tb hook. 122 * @get_pc: Callback for getting the Program Counter register. 123 * As above, with the semantics of the target architecture. 124 * @gdb_read_register: Callback for letting GDB read a register. 125 * No more than @gdb_num_core_regs registers can be read. 126 * @gdb_write_register: Callback for letting GDB write a register. 127 * No more than @gdb_num_core_regs registers can be written. 128 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 129 * breakpoint. Used by AVR to handle a gdb mis-feature with 130 * its Harvard architecture split code and data. 131 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 132 * from @gdb_core_xml_file. 133 * @gdb_core_xml_file: File name for core registers GDB XML description. 134 * @gdb_get_core_xml_file: Optional callback that returns the file name for 135 * the core registers GDB XML description. The returned value is expected to 136 * be a simple constant string: the caller will not g_free() it. If this 137 * is NULL then @gdb_core_xml_file will be used instead. 138 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 139 * before the insn which triggers a watchpoint rather than after it. 140 * @gdb_arch_name: Optional callback that returns the architecture name known 141 * to GDB. The returned value is expected to be a simple constant string: 142 * the caller will not g_free() it. 143 * @disas_set_info: Setup architecture specific components of disassembly info 144 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 145 * address before attempting to match it against watchpoints. 146 * @deprecation_note: If this CPUClass is deprecated, this field provides 147 * related information. 148 * 149 * Represents a CPU family or model. 150 */ 151 struct CPUClass { 152 /*< private >*/ 153 DeviceClass parent_class; 154 /*< public >*/ 155 156 ObjectClass *(*class_by_name)(const char *cpu_model); 157 void (*list_cpus)(void); 158 void (*parse_features)(const char *typename, char *str, Error **errp); 159 160 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 161 uint8_t *buf, size_t len, bool is_write); 162 void (*dump_state)(CPUState *cpu, FILE *, int flags); 163 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 164 int64_t (*get_arch_id)(CPUState *cpu); 165 void (*set_pc)(CPUState *cpu, vaddr value); 166 vaddr (*get_pc)(CPUState *cpu); 167 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 168 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 169 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 170 171 const char *gdb_core_xml_file; 172 const gchar * (*gdb_arch_name)(CPUState *cpu); 173 const char * (*gdb_get_core_xml_file)(CPUState *cpu); 174 175 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 176 177 const char *deprecation_note; 178 struct AccelCPUClass *accel_cpu; 179 180 /* when system emulation is not available, this pointer is NULL */ 181 const struct SysemuCPUOps *sysemu_ops; 182 183 /* when TCG is not available, this pointer is NULL */ 184 const TCGCPUOps *tcg_ops; 185 186 /* 187 * if not NULL, this is called in order for the CPUClass to initialize 188 * class data that depends on the accelerator, see accel/accel-common.c. 189 */ 190 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 191 192 /* 193 * Keep non-pointer data at the end to minimize holes. 194 */ 195 int reset_dump_flags; 196 int gdb_num_core_regs; 197 bool gdb_stop_before_watchpoint; 198 }; 199 200 /* 201 * Fix the number of mmu modes to 16, which is also the maximum 202 * supported by the softmmu tlb api. 203 */ 204 #define NB_MMU_MODES 16 205 206 /* Use a fully associative victim tlb of 8 entries. */ 207 #define CPU_VTLB_SIZE 8 208 209 /* 210 * The full TLB entry, which is not accessed by generated TCG code, 211 * so the layout is not as critical as that of CPUTLBEntry. This is 212 * also why we don't want to combine the two structs. 213 */ 214 struct CPUTLBEntryFull { 215 /* 216 * @xlat_section contains: 217 * - in the lower TARGET_PAGE_BITS, a physical section number 218 * - with the lower TARGET_PAGE_BITS masked off, an offset which 219 * must be added to the virtual address to obtain: 220 * + the ram_addr_t of the target RAM (if the physical section 221 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 222 * + the offset within the target MemoryRegion (otherwise) 223 */ 224 hwaddr xlat_section; 225 226 /* 227 * @phys_addr contains the physical address in the address space 228 * given by cpu_asidx_from_attrs(cpu, @attrs). 229 */ 230 hwaddr phys_addr; 231 232 /* @attrs contains the memory transaction attributes for the page. */ 233 MemTxAttrs attrs; 234 235 /* @prot contains the complete protections for the page. */ 236 uint8_t prot; 237 238 /* @lg_page_size contains the log2 of the page size. */ 239 uint8_t lg_page_size; 240 241 /* Additional tlb flags requested by tlb_fill. */ 242 uint8_t tlb_fill_flags; 243 244 /* 245 * Additional tlb flags for use by the slow path. If non-zero, 246 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 247 */ 248 uint8_t slow_flags[MMU_ACCESS_COUNT]; 249 250 /* 251 * Allow target-specific additions to this structure. 252 * This may be used to cache items from the guest cpu 253 * page tables for later use by the implementation. 254 */ 255 union { 256 /* 257 * Cache the attrs and shareability fields from the page table entry. 258 * 259 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 260 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 261 * For shareability and guarded, as in the SH and GP fields respectively 262 * of the VMSAv8-64 PTEs. 263 */ 264 struct { 265 uint8_t pte_attrs; 266 uint8_t shareability; 267 bool guarded; 268 } arm; 269 } extra; 270 }; 271 272 /* 273 * Data elements that are per MMU mode, minus the bits accessed by 274 * the TCG fast path. 275 */ 276 typedef struct CPUTLBDesc { 277 /* 278 * Describe a region covering all of the large pages allocated 279 * into the tlb. When any page within this region is flushed, 280 * we must flush the entire tlb. The region is matched if 281 * (addr & large_page_mask) == large_page_addr. 282 */ 283 vaddr large_page_addr; 284 vaddr large_page_mask; 285 /* host time (in ns) at the beginning of the time window */ 286 int64_t window_begin_ns; 287 /* maximum number of entries observed in the window */ 288 size_t window_max_entries; 289 size_t n_used_entries; 290 /* The next index to use in the tlb victim table. */ 291 size_t vindex; 292 /* The tlb victim table, in two parts. */ 293 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 294 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 295 CPUTLBEntryFull *fulltlb; 296 } CPUTLBDesc; 297 298 /* 299 * Data elements that are shared between all MMU modes. 300 */ 301 typedef struct CPUTLBCommon { 302 /* Serialize updates to f.table and d.vtable, and others as noted. */ 303 QemuSpin lock; 304 /* 305 * Within dirty, for each bit N, modifications have been made to 306 * mmu_idx N since the last time that mmu_idx was flushed. 307 * Protected by tlb_c.lock. 308 */ 309 uint16_t dirty; 310 /* 311 * Statistics. These are not lock protected, but are read and 312 * written atomically. This allows the monitor to print a snapshot 313 * of the stats without interfering with the cpu. 314 */ 315 size_t full_flush_count; 316 size_t part_flush_count; 317 size_t elide_flush_count; 318 } CPUTLBCommon; 319 320 /* 321 * The entire softmmu tlb, for all MMU modes. 322 * The meaning of each of the MMU modes is defined in the target code. 323 * Since this is placed within CPUNegativeOffsetState, the smallest 324 * negative offsets are at the end of the struct. 325 */ 326 typedef struct CPUTLB { 327 #ifdef CONFIG_TCG 328 CPUTLBCommon c; 329 CPUTLBDesc d[NB_MMU_MODES]; 330 CPUTLBDescFast f[NB_MMU_MODES]; 331 #endif 332 } CPUTLB; 333 334 /* 335 * Low 16 bits: number of cycles left, used only in icount mode. 336 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 337 * for this CPU and return to its top level loop (even in non-icount mode). 338 * This allows a single read-compare-cbranch-write sequence to test 339 * for both decrementer underflow and exceptions. 340 */ 341 typedef union IcountDecr { 342 uint32_t u32; 343 struct { 344 #if HOST_BIG_ENDIAN 345 uint16_t high; 346 uint16_t low; 347 #else 348 uint16_t low; 349 uint16_t high; 350 #endif 351 } u16; 352 } IcountDecr; 353 354 /** 355 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed 356 * from CPUArchState, via small negative offsets. 357 * @can_do_io: True if memory-mapped IO is allowed. 358 * @plugin_mem_cbs: active plugin memory callbacks 359 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value. 360 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value. 361 */ 362 typedef struct CPUNegativeOffsetState { 363 CPUTLB tlb; 364 #ifdef CONFIG_PLUGIN 365 /* 366 * The callback pointer are accessed via TCG (see gen_empty_mem_helper). 367 */ 368 GArray *plugin_mem_cbs; 369 uint64_t plugin_mem_value_low; 370 uint64_t plugin_mem_value_high; 371 #endif 372 IcountDecr icount_decr; 373 bool can_do_io; 374 } CPUNegativeOffsetState; 375 376 struct KVMState; 377 struct kvm_run; 378 379 /* work queue */ 380 381 /* The union type allows passing of 64 bit target pointers on 32 bit 382 * hosts in a single parameter 383 */ 384 typedef union { 385 int host_int; 386 unsigned long host_ulong; 387 void *host_ptr; 388 vaddr target_ptr; 389 } run_on_cpu_data; 390 391 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 392 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 393 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 394 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 395 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 396 397 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 398 399 struct qemu_work_item; 400 401 #define CPU_UNSET_NUMA_NODE_ID -1 402 403 /** 404 * struct CPUState - common state of one CPU core or thread. 405 * 406 * @cpu_index: CPU index (informative). 407 * @cluster_index: Identifies which cluster this CPU is in. 408 * For boards which don't define clusters or for "loose" CPUs not assigned 409 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 410 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 411 * QOM parent. 412 * Under TCG this value is propagated to @tcg_cflags. 413 * See TranslationBlock::TCG CF_CLUSTER_MASK. 414 * @tcg_cflags: Pre-computed cflags for this cpu. 415 * @nr_threads: Number of threads within this CPU core. 416 * @thread: Host thread details, only live once @created is #true 417 * @sem: WIN32 only semaphore used only for qtest 418 * @thread_id: native thread id of vCPU, only live once @created is #true 419 * @running: #true if CPU is currently running (lockless). 420 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 421 * valid under cpu_list_lock. 422 * @created: Indicates whether the CPU thread has been successfully created. 423 * @halt_cond: condition variable sleeping threads can wait on. 424 * @interrupt_request: Indicates a pending interrupt request. 425 * @halted: Nonzero if the CPU is in suspended state. 426 * @stop: Indicates a pending stop request. 427 * @stopped: Indicates the CPU has been artificially stopped. 428 * @unplug: Indicates a pending CPU unplug request. 429 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 430 * @singlestep_enabled: Flags for single-stepping. 431 * @icount_extra: Instructions until next timer event. 432 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 433 * AddressSpaces this CPU has) 434 * @num_ases: number of CPUAddressSpaces in @cpu_ases 435 * @as: Pointer to the first AddressSpace, for the convenience of targets which 436 * only have a single AddressSpace 437 * @gdb_regs: Additional GDB registers. 438 * @gdb_num_regs: Number of total registers accessible to GDB. 439 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 440 * @node: QTAILQ of CPUs sharing TB cache. 441 * @opaque: User data. 442 * @mem_io_pc: Host Program Counter at which the memory was accessed. 443 * @accel: Pointer to accelerator specific state. 444 * @kvm_fd: vCPU file descriptor for KVM. 445 * @work_mutex: Lock to prevent multiple access to @work_list. 446 * @work_list: List of pending asynchronous work. 447 * @plugin_state: per-CPU plugin state 448 * @ignore_memory_transaction_failures: Cached copy of the MachineState 449 * flag of the same name: allows the board to suppress calling of the 450 * CPU do_transaction_failed hook function. 451 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 452 * ring is enabled. 453 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 454 * dirty ring structure. 455 * 456 * @neg_align: The CPUState is the common part of a concrete ArchCPU 457 * which is allocated when an individual CPU instance is created. As 458 * such care is taken is ensure there is no gap between between 459 * CPUState and CPUArchState within ArchCPU. 460 * 461 * @neg: The architectural register state ("cpu_env") immediately follows 462 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds 463 * some common TCG CPU variables which are accessed with a negative offset 464 * from cpu_env. 465 */ 466 struct CPUState { 467 /*< private >*/ 468 DeviceState parent_obj; 469 /* cache to avoid expensive CPU_GET_CLASS */ 470 CPUClass *cc; 471 /*< public >*/ 472 473 int nr_threads; 474 475 struct QemuThread *thread; 476 #ifdef _WIN32 477 QemuSemaphore sem; 478 #endif 479 int thread_id; 480 bool running, has_waiter; 481 struct QemuCond *halt_cond; 482 bool thread_kicked; 483 bool created; 484 bool stop; 485 bool stopped; 486 487 /* Should CPU start in powered-off state? */ 488 bool start_powered_off; 489 490 bool unplug; 491 bool crash_occurred; 492 bool exit_request; 493 int exclusive_context_count; 494 uint32_t cflags_next_tb; 495 /* updates protected by BQL */ 496 uint32_t interrupt_request; 497 int singlestep_enabled; 498 int64_t icount_budget; 499 int64_t icount_extra; 500 uint64_t random_seed; 501 sigjmp_buf jmp_env; 502 503 QemuMutex work_mutex; 504 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 505 506 struct CPUAddressSpace *cpu_ases; 507 int cpu_ases_count; 508 int num_ases; 509 AddressSpace *as; 510 MemoryRegion *memory; 511 512 struct CPUJumpCache *tb_jmp_cache; 513 514 GArray *gdb_regs; 515 int gdb_num_regs; 516 int gdb_num_g_regs; 517 QTAILQ_ENTRY(CPUState) node; 518 519 /* ice debug support */ 520 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 521 522 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 523 CPUWatchpoint *watchpoint_hit; 524 525 void *opaque; 526 527 /* In order to avoid passing too many arguments to the MMIO helpers, 528 * we store some rarely used information in the CPU context. 529 */ 530 uintptr_t mem_io_pc; 531 532 /* Only used in KVM */ 533 int kvm_fd; 534 struct KVMState *kvm_state; 535 struct kvm_run *kvm_run; 536 struct kvm_dirty_gfn *kvm_dirty_gfns; 537 uint32_t kvm_fetch_index; 538 uint64_t dirty_pages; 539 int kvm_vcpu_stats_fd; 540 bool vcpu_dirty; 541 542 /* Use by accel-block: CPU is executing an ioctl() */ 543 QemuLockCnt in_ioctl_lock; 544 545 #ifdef CONFIG_PLUGIN 546 CPUPluginState *plugin_state; 547 #endif 548 549 /* TODO Move common fields from CPUArchState here. */ 550 int cpu_index; 551 int cluster_index; 552 uint32_t tcg_cflags; 553 uint32_t halted; 554 int32_t exception_index; 555 556 AccelCPUState *accel; 557 558 /* Used to keep track of an outstanding cpu throttle thread for migration 559 * autoconverge 560 */ 561 bool throttle_thread_scheduled; 562 563 /* 564 * Sleep throttle_us_per_full microseconds once dirty ring is full 565 * if dirty page rate limit is enabled. 566 */ 567 int64_t throttle_us_per_full; 568 569 bool ignore_memory_transaction_failures; 570 571 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 572 bool prctl_unalign_sigbus; 573 574 /* track IOMMUs whose translations we've cached in the TCG TLB */ 575 GArray *iommu_notifiers; 576 577 /* 578 * MUST BE LAST in order to minimize the displacement to CPUArchState. 579 */ 580 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 581 CPUNegativeOffsetState neg; 582 }; 583 584 /* Validate placement of CPUNegativeOffsetState. */ 585 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 586 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 587 588 static inline CPUArchState *cpu_env(CPUState *cpu) 589 { 590 /* We validate that CPUArchState follows CPUState in cpu-target.c */ 591 return (CPUArchState *)(cpu + 1); 592 } 593 594 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 595 extern CPUTailQ cpus_queue; 596 597 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 598 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 599 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 600 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 601 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 602 603 extern __thread CPUState *current_cpu; 604 605 /** 606 * cpu_paging_enabled: 607 * @cpu: The CPU whose state is to be inspected. 608 * 609 * Returns: %true if paging is enabled, %false otherwise. 610 */ 611 bool cpu_paging_enabled(const CPUState *cpu); 612 613 /** 614 * cpu_get_memory_mapping: 615 * @cpu: The CPU whose memory mappings are to be obtained. 616 * @list: Where to write the memory mappings to. 617 * @errp: Pointer for reporting an #Error. 618 * 619 * Returns: %true on success, %false otherwise. 620 */ 621 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 622 Error **errp); 623 624 /** 625 * cpu_write_elf64_note: 626 * @f: pointer to a function that writes memory to a file 627 * @cpu: The CPU whose memory is to be dumped 628 * @cpuid: ID number of the CPU 629 * @opaque: pointer to the CPUState struct 630 */ 631 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 632 int cpuid, void *opaque); 633 634 /** 635 * cpu_write_elf64_qemunote: 636 * @f: pointer to a function that writes memory to a file 637 * @cpu: The CPU whose memory is to be dumped 638 * @cpuid: ID number of the CPU 639 * @opaque: pointer to the CPUState struct 640 */ 641 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 642 void *opaque); 643 644 /** 645 * cpu_write_elf32_note: 646 * @f: pointer to a function that writes memory to a file 647 * @cpu: The CPU whose memory is to be dumped 648 * @cpuid: ID number of the CPU 649 * @opaque: pointer to the CPUState struct 650 */ 651 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 652 int cpuid, void *opaque); 653 654 /** 655 * cpu_write_elf32_qemunote: 656 * @f: pointer to a function that writes memory to a file 657 * @cpu: The CPU whose memory is to be dumped 658 * @cpuid: ID number of the CPU 659 * @opaque: pointer to the CPUState struct 660 */ 661 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 662 void *opaque); 663 664 /** 665 * cpu_get_crash_info: 666 * @cpu: The CPU to get crash information for 667 * 668 * Gets the previously saved crash information. 669 * Caller is responsible for freeing the data. 670 */ 671 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 672 673 /** 674 * CPUDumpFlags: 675 * @CPU_DUMP_CODE: 676 * @CPU_DUMP_FPU: dump FPU register state, not just integer 677 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 678 * @CPU_DUMP_VPU: dump VPU registers 679 */ 680 enum CPUDumpFlags { 681 CPU_DUMP_CODE = 0x00010000, 682 CPU_DUMP_FPU = 0x00020000, 683 CPU_DUMP_CCOP = 0x00040000, 684 CPU_DUMP_VPU = 0x00080000, 685 }; 686 687 /** 688 * cpu_dump_state: 689 * @cpu: The CPU whose state is to be dumped. 690 * @f: If non-null, dump to this stream, else to current print sink. 691 * 692 * Dumps CPU state. 693 */ 694 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 695 696 /** 697 * cpu_get_phys_page_attrs_debug: 698 * @cpu: The CPU to obtain the physical page address for. 699 * @addr: The virtual address. 700 * @attrs: Updated on return with the memory transaction attributes to use 701 * for this access. 702 * 703 * Obtains the physical page corresponding to a virtual one, together 704 * with the corresponding memory transaction attributes to use for the access. 705 * Use it only for debugging because no protection checks are done. 706 * 707 * Returns: Corresponding physical page address or -1 if no page found. 708 */ 709 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 710 MemTxAttrs *attrs); 711 712 /** 713 * cpu_get_phys_page_debug: 714 * @cpu: The CPU to obtain the physical page address for. 715 * @addr: The virtual address. 716 * 717 * Obtains the physical page corresponding to a virtual one. 718 * Use it only for debugging because no protection checks are done. 719 * 720 * Returns: Corresponding physical page address or -1 if no page found. 721 */ 722 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 723 724 /** cpu_asidx_from_attrs: 725 * @cpu: CPU 726 * @attrs: memory transaction attributes 727 * 728 * Returns the address space index specifying the CPU AddressSpace 729 * to use for a memory access with the given transaction attributes. 730 */ 731 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 732 733 /** 734 * cpu_virtio_is_big_endian: 735 * @cpu: CPU 736 737 * Returns %true if a CPU which supports runtime configurable endianness 738 * is currently big-endian. 739 */ 740 bool cpu_virtio_is_big_endian(CPUState *cpu); 741 742 /** 743 * cpu_has_work: 744 * @cpu: The vCPU to check. 745 * 746 * Checks whether the CPU has work to do. 747 * 748 * Returns: %true if the CPU has work, %false otherwise. 749 */ 750 bool cpu_has_work(CPUState *cpu); 751 752 /** 753 * cpu_list_add: 754 * @cpu: The CPU to be added to the list of CPUs. 755 */ 756 void cpu_list_add(CPUState *cpu); 757 758 /** 759 * cpu_list_remove: 760 * @cpu: The CPU to be removed from the list of CPUs. 761 */ 762 void cpu_list_remove(CPUState *cpu); 763 764 /** 765 * cpu_reset: 766 * @cpu: The CPU whose state is to be reset. 767 */ 768 void cpu_reset(CPUState *cpu); 769 770 /** 771 * cpu_class_by_name: 772 * @typename: The CPU base type. 773 * @cpu_model: The model string without any parameters. 774 * 775 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 776 * 777 * Returns: A concrete #CPUClass or %NULL if no matching class is found 778 * or if the matching class is abstract. 779 */ 780 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 781 782 /** 783 * cpu_model_from_type: 784 * @typename: The CPU type name 785 * 786 * Extract the CPU model name from the CPU type name. The 787 * CPU type name is either the combination of the CPU model 788 * name and suffix, or same to the CPU model name. 789 * 790 * Returns: CPU model name or NULL if the CPU class doesn't exist 791 * The user should g_free() the string once no longer needed. 792 */ 793 char *cpu_model_from_type(const char *typename); 794 795 /** 796 * cpu_create: 797 * @typename: The CPU type. 798 * 799 * Instantiates a CPU and realizes the CPU. 800 * 801 * Returns: A #CPUState or %NULL if an error occurred. 802 */ 803 CPUState *cpu_create(const char *typename); 804 805 /** 806 * parse_cpu_option: 807 * @cpu_option: The -cpu option including optional parameters. 808 * 809 * processes optional parameters and registers them as global properties 810 * 811 * Returns: type of CPU to create or prints error and terminates process 812 * if an error occurred. 813 */ 814 const char *parse_cpu_option(const char *cpu_option); 815 816 /** 817 * qemu_cpu_is_self: 818 * @cpu: The vCPU to check against. 819 * 820 * Checks whether the caller is executing on the vCPU thread. 821 * 822 * Returns: %true if called from @cpu's thread, %false otherwise. 823 */ 824 bool qemu_cpu_is_self(CPUState *cpu); 825 826 /** 827 * qemu_cpu_kick: 828 * @cpu: The vCPU to kick. 829 * 830 * Kicks @cpu's thread. 831 */ 832 void qemu_cpu_kick(CPUState *cpu); 833 834 /** 835 * cpu_is_stopped: 836 * @cpu: The CPU to check. 837 * 838 * Checks whether the CPU is stopped. 839 * 840 * Returns: %true if run state is not running or if artificially stopped; 841 * %false otherwise. 842 */ 843 bool cpu_is_stopped(CPUState *cpu); 844 845 /** 846 * do_run_on_cpu: 847 * @cpu: The vCPU to run on. 848 * @func: The function to be executed. 849 * @data: Data to pass to the function. 850 * @mutex: Mutex to release while waiting for @func to run. 851 * 852 * Used internally in the implementation of run_on_cpu. 853 */ 854 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 855 QemuMutex *mutex); 856 857 /** 858 * run_on_cpu: 859 * @cpu: The vCPU to run on. 860 * @func: The function to be executed. 861 * @data: Data to pass to the function. 862 * 863 * Schedules the function @func for execution on the vCPU @cpu. 864 */ 865 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 866 867 /** 868 * async_run_on_cpu: 869 * @cpu: The vCPU to run on. 870 * @func: The function to be executed. 871 * @data: Data to pass to the function. 872 * 873 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 874 */ 875 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 876 877 /** 878 * async_safe_run_on_cpu: 879 * @cpu: The vCPU to run on. 880 * @func: The function to be executed. 881 * @data: Data to pass to the function. 882 * 883 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 884 * while all other vCPUs are sleeping. 885 * 886 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 887 * BQL. 888 */ 889 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 890 891 /** 892 * cpu_in_exclusive_context() 893 * @cpu: The vCPU to check 894 * 895 * Returns true if @cpu is an exclusive context, for example running 896 * something which has previously been queued via async_safe_run_on_cpu(). 897 */ 898 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 899 { 900 return cpu->exclusive_context_count; 901 } 902 903 /** 904 * qemu_get_cpu: 905 * @index: The CPUState@cpu_index value of the CPU to obtain. 906 * 907 * Gets a CPU matching @index. 908 * 909 * Returns: The CPU or %NULL if there is no matching CPU. 910 */ 911 CPUState *qemu_get_cpu(int index); 912 913 /** 914 * cpu_exists: 915 * @id: Guest-exposed CPU ID to lookup. 916 * 917 * Search for CPU with specified ID. 918 * 919 * Returns: %true - CPU is found, %false - CPU isn't found. 920 */ 921 bool cpu_exists(int64_t id); 922 923 /** 924 * cpu_by_arch_id: 925 * @id: Guest-exposed CPU ID of the CPU to obtain. 926 * 927 * Get a CPU with matching @id. 928 * 929 * Returns: The CPU or %NULL if there is no matching CPU. 930 */ 931 CPUState *cpu_by_arch_id(int64_t id); 932 933 /** 934 * cpu_interrupt: 935 * @cpu: The CPU to set an interrupt on. 936 * @mask: The interrupts to set. 937 * 938 * Invokes the interrupt handler. 939 */ 940 941 void cpu_interrupt(CPUState *cpu, int mask); 942 943 /** 944 * cpu_set_pc: 945 * @cpu: The CPU to set the program counter for. 946 * @addr: Program counter value. 947 * 948 * Sets the program counter for a CPU. 949 */ 950 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 951 { 952 cpu->cc->set_pc(cpu, addr); 953 } 954 955 /** 956 * cpu_reset_interrupt: 957 * @cpu: The CPU to clear the interrupt on. 958 * @mask: The interrupt mask to clear. 959 * 960 * Resets interrupts on the vCPU @cpu. 961 */ 962 void cpu_reset_interrupt(CPUState *cpu, int mask); 963 964 /** 965 * cpu_exit: 966 * @cpu: The CPU to exit. 967 * 968 * Requests the CPU @cpu to exit execution. 969 */ 970 void cpu_exit(CPUState *cpu); 971 972 /** 973 * cpu_pause: 974 * @cpu: The CPU to pause. 975 * 976 * Pauses CPU, i.e. puts CPU into stopped state. 977 */ 978 void cpu_pause(CPUState *cpu); 979 980 /** 981 * cpu_resume: 982 * @cpu: The CPU to resume. 983 * 984 * Resumes CPU, i.e. puts CPU into runnable state. 985 */ 986 void cpu_resume(CPUState *cpu); 987 988 /** 989 * cpu_remove_sync: 990 * @cpu: The CPU to remove. 991 * 992 * Requests the CPU to be removed and waits till it is removed. 993 */ 994 void cpu_remove_sync(CPUState *cpu); 995 996 /** 997 * free_queued_cpu_work() - free all items on CPU work queue 998 * @cpu: The CPU which work queue to free. 999 */ 1000 void free_queued_cpu_work(CPUState *cpu); 1001 1002 /** 1003 * process_queued_cpu_work() - process all items on CPU work queue 1004 * @cpu: The CPU which work queue to process. 1005 */ 1006 void process_queued_cpu_work(CPUState *cpu); 1007 1008 /** 1009 * cpu_exec_start: 1010 * @cpu: The CPU for the current thread. 1011 * 1012 * Record that a CPU has started execution and can be interrupted with 1013 * cpu_exit. 1014 */ 1015 void cpu_exec_start(CPUState *cpu); 1016 1017 /** 1018 * cpu_exec_end: 1019 * @cpu: The CPU for the current thread. 1020 * 1021 * Record that a CPU has stopped execution and exclusive sections 1022 * can be executed without interrupting it. 1023 */ 1024 void cpu_exec_end(CPUState *cpu); 1025 1026 /** 1027 * start_exclusive: 1028 * 1029 * Wait for a concurrent exclusive section to end, and then start 1030 * a section of work that is run while other CPUs are not running 1031 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1032 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1033 * during the exclusive section go to sleep until this CPU calls 1034 * end_exclusive. 1035 */ 1036 void start_exclusive(void); 1037 1038 /** 1039 * end_exclusive: 1040 * 1041 * Concludes an exclusive execution section started by start_exclusive. 1042 */ 1043 void end_exclusive(void); 1044 1045 /** 1046 * qemu_init_vcpu: 1047 * @cpu: The vCPU to initialize. 1048 * 1049 * Initializes a vCPU. 1050 */ 1051 void qemu_init_vcpu(CPUState *cpu); 1052 1053 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1054 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1055 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1056 1057 /** 1058 * cpu_single_step: 1059 * @cpu: CPU to the flags for. 1060 * @enabled: Flags to enable. 1061 * 1062 * Enables or disables single-stepping for @cpu. 1063 */ 1064 void cpu_single_step(CPUState *cpu, int enabled); 1065 1066 /* Breakpoint/watchpoint flags */ 1067 #define BP_MEM_READ 0x01 1068 #define BP_MEM_WRITE 0x02 1069 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1070 #define BP_STOP_BEFORE_ACCESS 0x04 1071 /* 0x08 currently unused */ 1072 #define BP_GDB 0x10 1073 #define BP_CPU 0x20 1074 #define BP_ANY (BP_GDB | BP_CPU) 1075 #define BP_HIT_SHIFT 6 1076 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1077 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1078 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1079 1080 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1081 CPUBreakpoint **breakpoint); 1082 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1083 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1084 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1085 1086 /* Return true if PC matches an installed breakpoint. */ 1087 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1088 { 1089 CPUBreakpoint *bp; 1090 1091 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1092 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1093 if (bp->pc == pc && (bp->flags & mask)) { 1094 return true; 1095 } 1096 } 1097 } 1098 return false; 1099 } 1100 1101 /** 1102 * cpu_get_address_space: 1103 * @cpu: CPU to get address space from 1104 * @asidx: index identifying which address space to get 1105 * 1106 * Return the requested address space of this CPU. @asidx 1107 * specifies which address space to read. 1108 */ 1109 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1110 1111 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1112 G_GNUC_PRINTF(2, 3); 1113 1114 /* $(top_srcdir)/cpu.c */ 1115 void cpu_class_init_props(DeviceClass *dc); 1116 void cpu_exec_class_post_init(CPUClass *cc); 1117 void cpu_exec_initfn(CPUState *cpu); 1118 void cpu_vmstate_register(CPUState *cpu); 1119 void cpu_vmstate_unregister(CPUState *cpu); 1120 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1121 void cpu_exec_unrealizefn(CPUState *cpu); 1122 void cpu_exec_reset_hold(CPUState *cpu); 1123 1124 #ifdef COMPILING_PER_TARGET 1125 1126 extern const VMStateDescription vmstate_cpu_common; 1127 1128 #define VMSTATE_CPU() { \ 1129 .name = "parent_obj", \ 1130 .size = sizeof(CPUState), \ 1131 .vmsd = &vmstate_cpu_common, \ 1132 .flags = VMS_STRUCT, \ 1133 .offset = 0, \ 1134 } 1135 1136 #endif /* COMPILING_PER_TARGET */ 1137 1138 #define UNASSIGNED_CPU_INDEX -1 1139 #define UNASSIGNED_CLUSTER_INDEX -1 1140 1141 #endif 1142