xref: /qemu/include/hw/core/cpu.h (revision cc944932ecef3b7a56ae62d89dd92fb9e56c5cc8)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39 
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41                                      void *opaque);
42 
43 /**
44  * SECTION:cpu
45  * @section_id: QEMU-cpu
46  * @title: CPU Class
47  * @short_description: Base class for all CPUs
48  */
49 
50 #define TYPE_CPU "cpu"
51 
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54  * an unchecked cast.
55  */
56 #define CPU(obj) ((CPUState *)(obj))
57 
58 /*
59  * The class checkers bring in CPU_GET_CLASS() which is potentially
60  * expensive given the eventual call to
61  * object_class_dynamic_cast_assert(). Because of this the CPUState
62  * has a cached value for the class in cs->cc which is set up in
63  * cpu_exec_realizefn() for use in hot code paths.
64  */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 /**
70  * OBJECT_DECLARE_CPU_TYPE:
71  * @CpuInstanceType: instance struct name
72  * @CpuClassType: class struct name
73  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74  *
75  * This macro is typically used in "cpu-qom.h" header file, and will:
76  *
77  *   - create the typedefs for the CPU object and class structs
78  *   - register the type for use with g_autoptr
79  *   - provide three standard type cast functions
80  *
81  * The object struct and class struct need to be declared manually.
82  */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84     typedef struct ArchCPU CpuInstanceType; \
85     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86 
87 typedef struct CPUWatchpoint CPUWatchpoint;
88 
89 /* see physmem.c */
90 struct CPUAddressSpace;
91 
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94 
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97 
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100 
101 /**
102  * CPUClass:
103  * @class_by_name: Callback to map -cpu command line model name to an
104  *                 instantiatable CPU type.
105  * @parse_features: Callback to parse command line arguments.
106  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
107  * @mmu_index: Callback for choosing softmmu mmu index.
108  * @memory_rw_debug: Callback for GDB memory access.
109  * @dump_state: Callback for dumping state.
110  * @query_cpu_fast:
111  *       Fill in target specific information for the "query-cpus-fast"
112  *       QAPI call.
113  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
114  * @set_pc: Callback for setting the Program Counter register. This
115  *       should have the semantics used by the target architecture when
116  *       setting the PC from a source such as an ELF file entry point;
117  *       for example on Arm it will also set the Thumb mode bit based
118  *       on the least significant bit of the new PC value.
119  *       If the target behaviour here is anything other than "set
120  *       the PC register to the value passed in" then the target must
121  *       also implement the synchronize_from_tb hook.
122  * @get_pc: Callback for getting the Program Counter register.
123  *       As above, with the semantics of the target architecture.
124  * @gdb_read_register: Callback for letting GDB read a register.
125  *                     No more than @gdb_num_core_regs registers can be read.
126  * @gdb_write_register: Callback for letting GDB write a register.
127  *                     No more than @gdb_num_core_regs registers can be written.
128  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
129  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
130  *       its Harvard architecture split code and data.
131  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
132  *                     from @gdb_core_xml_file.
133  * @gdb_core_xml_file: File name for core registers GDB XML description.
134  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
135  *           before the insn which triggers a watchpoint rather than after it.
136  * @gdb_arch_name: Optional callback that returns the architecture name known
137  * to GDB. The caller must free the returned string with g_free.
138  * @disas_set_info: Setup architecture specific components of disassembly info
139  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
140  * address before attempting to match it against watchpoints.
141  * @deprecation_note: If this CPUClass is deprecated, this field provides
142  *                    related information.
143  *
144  * Represents a CPU family or model.
145  */
146 struct CPUClass {
147     /*< private >*/
148     DeviceClass parent_class;
149     /*< public >*/
150 
151     ObjectClass *(*class_by_name)(const char *cpu_model);
152     void (*parse_features)(const char *typename, char *str, Error **errp);
153 
154     int (*mmu_index)(CPUState *cpu, bool ifetch);
155     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
156                            uint8_t *buf, size_t len, bool is_write);
157     void (*dump_state)(CPUState *cpu, FILE *, int flags);
158     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
159     int64_t (*get_arch_id)(CPUState *cpu);
160     void (*set_pc)(CPUState *cpu, vaddr value);
161     vaddr (*get_pc)(CPUState *cpu);
162     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
163     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
164     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
165 
166     const char *gdb_core_xml_file;
167     const gchar * (*gdb_arch_name)(CPUState *cpu);
168 
169     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
170 
171     const char *deprecation_note;
172     struct AccelCPUClass *accel_cpu;
173 
174     /* when system emulation is not available, this pointer is NULL */
175     const struct SysemuCPUOps *sysemu_ops;
176 
177     /* when TCG is not available, this pointer is NULL */
178     const TCGCPUOps *tcg_ops;
179 
180     /*
181      * if not NULL, this is called in order for the CPUClass to initialize
182      * class data that depends on the accelerator, see accel/accel-common.c.
183      */
184     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
185 
186     /*
187      * Keep non-pointer data at the end to minimize holes.
188      */
189     int reset_dump_flags;
190     int gdb_num_core_regs;
191     bool gdb_stop_before_watchpoint;
192 };
193 
194 /*
195  * Fix the number of mmu modes to 16, which is also the maximum
196  * supported by the softmmu tlb api.
197  */
198 #define NB_MMU_MODES 16
199 
200 /* Use a fully associative victim tlb of 8 entries. */
201 #define CPU_VTLB_SIZE 8
202 
203 /*
204  * The full TLB entry, which is not accessed by generated TCG code,
205  * so the layout is not as critical as that of CPUTLBEntry. This is
206  * also why we don't want to combine the two structs.
207  */
208 struct CPUTLBEntryFull {
209     /*
210      * @xlat_section contains:
211      *  - in the lower TARGET_PAGE_BITS, a physical section number
212      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
213      *    must be added to the virtual address to obtain:
214      *     + the ram_addr_t of the target RAM (if the physical section
215      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
216      *     + the offset within the target MemoryRegion (otherwise)
217      */
218     hwaddr xlat_section;
219 
220     /*
221      * @phys_addr contains the physical address in the address space
222      * given by cpu_asidx_from_attrs(cpu, @attrs).
223      */
224     hwaddr phys_addr;
225 
226     /* @attrs contains the memory transaction attributes for the page. */
227     MemTxAttrs attrs;
228 
229     /* @prot contains the complete protections for the page. */
230     uint8_t prot;
231 
232     /* @lg_page_size contains the log2 of the page size. */
233     uint8_t lg_page_size;
234 
235     /* Additional tlb flags requested by tlb_fill. */
236     uint8_t tlb_fill_flags;
237 
238     /*
239      * Additional tlb flags for use by the slow path. If non-zero,
240      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
241      */
242     uint8_t slow_flags[MMU_ACCESS_COUNT];
243 
244     /*
245      * Allow target-specific additions to this structure.
246      * This may be used to cache items from the guest cpu
247      * page tables for later use by the implementation.
248      */
249     union {
250         /*
251          * Cache the attrs and shareability fields from the page table entry.
252          *
253          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
254          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
255          * For shareability and guarded, as in the SH and GP fields respectively
256          * of the VMSAv8-64 PTEs.
257          */
258         struct {
259             uint8_t pte_attrs;
260             uint8_t shareability;
261             bool guarded;
262         } arm;
263     } extra;
264 };
265 
266 /*
267  * Data elements that are per MMU mode, minus the bits accessed by
268  * the TCG fast path.
269  */
270 typedef struct CPUTLBDesc {
271     /*
272      * Describe a region covering all of the large pages allocated
273      * into the tlb.  When any page within this region is flushed,
274      * we must flush the entire tlb.  The region is matched if
275      * (addr & large_page_mask) == large_page_addr.
276      */
277     vaddr large_page_addr;
278     vaddr large_page_mask;
279     /* host time (in ns) at the beginning of the time window */
280     int64_t window_begin_ns;
281     /* maximum number of entries observed in the window */
282     size_t window_max_entries;
283     size_t n_used_entries;
284     /* The next index to use in the tlb victim table.  */
285     size_t vindex;
286     /* The tlb victim table, in two parts.  */
287     CPUTLBEntry vtable[CPU_VTLB_SIZE];
288     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
289     CPUTLBEntryFull *fulltlb;
290 } CPUTLBDesc;
291 
292 /*
293  * Data elements that are shared between all MMU modes.
294  */
295 typedef struct CPUTLBCommon {
296     /* Serialize updates to f.table and d.vtable, and others as noted. */
297     QemuSpin lock;
298     /*
299      * Within dirty, for each bit N, modifications have been made to
300      * mmu_idx N since the last time that mmu_idx was flushed.
301      * Protected by tlb_c.lock.
302      */
303     uint16_t dirty;
304     /*
305      * Statistics.  These are not lock protected, but are read and
306      * written atomically.  This allows the monitor to print a snapshot
307      * of the stats without interfering with the cpu.
308      */
309     size_t full_flush_count;
310     size_t part_flush_count;
311     size_t elide_flush_count;
312 } CPUTLBCommon;
313 
314 /*
315  * The entire softmmu tlb, for all MMU modes.
316  * The meaning of each of the MMU modes is defined in the target code.
317  * Since this is placed within CPUNegativeOffsetState, the smallest
318  * negative offsets are at the end of the struct.
319  */
320 typedef struct CPUTLB {
321 #ifdef CONFIG_TCG
322     CPUTLBCommon c;
323     CPUTLBDesc d[NB_MMU_MODES];
324     CPUTLBDescFast f[NB_MMU_MODES];
325 #endif
326 } CPUTLB;
327 
328 /*
329  * Low 16 bits: number of cycles left, used only in icount mode.
330  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
331  * for this CPU and return to its top level loop (even in non-icount mode).
332  * This allows a single read-compare-cbranch-write sequence to test
333  * for both decrementer underflow and exceptions.
334  */
335 typedef union IcountDecr {
336     uint32_t u32;
337     struct {
338 #if HOST_BIG_ENDIAN
339         uint16_t high;
340         uint16_t low;
341 #else
342         uint16_t low;
343         uint16_t high;
344 #endif
345     } u16;
346 } IcountDecr;
347 
348 /**
349  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
350  *                         from CPUArchState, via small negative offsets.
351  * @can_do_io: True if memory-mapped IO is allowed.
352  * @plugin_mem_cbs: active plugin memory callbacks
353  * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
354  * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
355  */
356 typedef struct CPUNegativeOffsetState {
357     CPUTLB tlb;
358 #ifdef CONFIG_PLUGIN
359     /*
360      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
361      */
362     GArray *plugin_mem_cbs;
363     uint64_t plugin_mem_value_low;
364     uint64_t plugin_mem_value_high;
365 #endif
366     IcountDecr icount_decr;
367     bool can_do_io;
368 } CPUNegativeOffsetState;
369 
370 struct KVMState;
371 struct kvm_run;
372 
373 /* work queue */
374 
375 /* The union type allows passing of 64 bit target pointers on 32 bit
376  * hosts in a single parameter
377  */
378 typedef union {
379     int           host_int;
380     unsigned long host_ulong;
381     void         *host_ptr;
382     vaddr         target_ptr;
383 } run_on_cpu_data;
384 
385 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
386 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
387 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
388 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
389 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
390 
391 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
392 
393 struct qemu_work_item;
394 
395 #define CPU_UNSET_NUMA_NODE_ID -1
396 
397 /**
398  * struct CPUState - common state of one CPU core or thread.
399  *
400  * @cpu_index: CPU index (informative).
401  * @cluster_index: Identifies which cluster this CPU is in.
402  *   For boards which don't define clusters or for "loose" CPUs not assigned
403  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
404  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
405  *   QOM parent.
406  *   Under TCG this value is propagated to @tcg_cflags.
407  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
408  * @tcg_cflags: Pre-computed cflags for this cpu.
409  * @nr_threads: Number of threads within this CPU core.
410  * @thread: Host thread details, only live once @created is #true
411  * @sem: WIN32 only semaphore used only for qtest
412  * @thread_id: native thread id of vCPU, only live once @created is #true
413  * @running: #true if CPU is currently running (lockless).
414  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
415  * valid under cpu_list_lock.
416  * @created: Indicates whether the CPU thread has been successfully created.
417  * @halt_cond: condition variable sleeping threads can wait on.
418  * @interrupt_request: Indicates a pending interrupt request.
419  * @halted: Nonzero if the CPU is in suspended state.
420  * @stop: Indicates a pending stop request.
421  * @stopped: Indicates the CPU has been artificially stopped.
422  * @unplug: Indicates a pending CPU unplug request.
423  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
424  * @singlestep_enabled: Flags for single-stepping.
425  * @icount_extra: Instructions until next timer event.
426  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
427  *            AddressSpaces this CPU has)
428  * @num_ases: number of CPUAddressSpaces in @cpu_ases
429  * @as: Pointer to the first AddressSpace, for the convenience of targets which
430  *      only have a single AddressSpace
431  * @gdb_regs: Additional GDB registers.
432  * @gdb_num_regs: Number of total registers accessible to GDB.
433  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
434  * @node: QTAILQ of CPUs sharing TB cache.
435  * @opaque: User data.
436  * @mem_io_pc: Host Program Counter at which the memory was accessed.
437  * @accel: Pointer to accelerator specific state.
438  * @kvm_fd: vCPU file descriptor for KVM.
439  * @work_mutex: Lock to prevent multiple access to @work_list.
440  * @work_list: List of pending asynchronous work.
441  * @plugin_state: per-CPU plugin state
442  * @ignore_memory_transaction_failures: Cached copy of the MachineState
443  *    flag of the same name: allows the board to suppress calling of the
444  *    CPU do_transaction_failed hook function.
445  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
446  *    ring is enabled.
447  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
448  *    dirty ring structure.
449  *
450  * @neg_align: The CPUState is the common part of a concrete ArchCPU
451  * which is allocated when an individual CPU instance is created. As
452  * such care is taken is ensure there is no gap between between
453  * CPUState and CPUArchState within ArchCPU.
454  *
455  * @neg: The architectural register state ("cpu_env") immediately follows
456  * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
457  * some common TCG CPU variables which are accessed with a negative offset
458  * from cpu_env.
459  */
460 struct CPUState {
461     /*< private >*/
462     DeviceState parent_obj;
463     /* cache to avoid expensive CPU_GET_CLASS */
464     CPUClass *cc;
465     /*< public >*/
466 
467     int nr_threads;
468 
469     struct QemuThread *thread;
470 #ifdef _WIN32
471     QemuSemaphore sem;
472 #endif
473     int thread_id;
474     bool running, has_waiter;
475     struct QemuCond *halt_cond;
476     bool thread_kicked;
477     bool created;
478     bool stop;
479     bool stopped;
480 
481     /* Should CPU start in powered-off state? */
482     bool start_powered_off;
483 
484     bool unplug;
485     bool crash_occurred;
486     bool exit_request;
487     int exclusive_context_count;
488     uint32_t cflags_next_tb;
489     /* updates protected by BQL */
490     uint32_t interrupt_request;
491     int singlestep_enabled;
492     int64_t icount_budget;
493     int64_t icount_extra;
494     uint64_t random_seed;
495     sigjmp_buf jmp_env;
496 
497     QemuMutex work_mutex;
498     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
499 
500     struct CPUAddressSpace *cpu_ases;
501     int cpu_ases_count;
502     int num_ases;
503     AddressSpace *as;
504     MemoryRegion *memory;
505 
506     struct CPUJumpCache *tb_jmp_cache;
507 
508     GArray *gdb_regs;
509     int gdb_num_regs;
510     int gdb_num_g_regs;
511     QTAILQ_ENTRY(CPUState) node;
512 
513     /* ice debug support */
514     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
515 
516     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
517     CPUWatchpoint *watchpoint_hit;
518 
519     void *opaque;
520 
521     /* In order to avoid passing too many arguments to the MMIO helpers,
522      * we store some rarely used information in the CPU context.
523      */
524     uintptr_t mem_io_pc;
525 
526     /* Only used in KVM */
527     int kvm_fd;
528     struct KVMState *kvm_state;
529     struct kvm_run *kvm_run;
530     struct kvm_dirty_gfn *kvm_dirty_gfns;
531     uint32_t kvm_fetch_index;
532     uint64_t dirty_pages;
533     int kvm_vcpu_stats_fd;
534     bool vcpu_dirty;
535 
536     /* Use by accel-block: CPU is executing an ioctl() */
537     QemuLockCnt in_ioctl_lock;
538 
539 #ifdef CONFIG_PLUGIN
540     CPUPluginState *plugin_state;
541 #endif
542 
543     /* TODO Move common fields from CPUArchState here. */
544     int cpu_index;
545     int cluster_index;
546     uint32_t tcg_cflags;
547     uint32_t halted;
548     int32_t exception_index;
549 
550     AccelCPUState *accel;
551 
552     /* Used to keep track of an outstanding cpu throttle thread for migration
553      * autoconverge
554      */
555     bool throttle_thread_scheduled;
556 
557     /*
558      * Sleep throttle_us_per_full microseconds once dirty ring is full
559      * if dirty page rate limit is enabled.
560      */
561     int64_t throttle_us_per_full;
562 
563     bool ignore_memory_transaction_failures;
564 
565     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
566     bool prctl_unalign_sigbus;
567 
568     /* track IOMMUs whose translations we've cached in the TCG TLB */
569     GArray *iommu_notifiers;
570 
571     /*
572      * MUST BE LAST in order to minimize the displacement to CPUArchState.
573      */
574     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
575     CPUNegativeOffsetState neg;
576 };
577 
578 /* Validate placement of CPUNegativeOffsetState. */
579 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
580                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
581 
582 static inline CPUArchState *cpu_env(CPUState *cpu)
583 {
584     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
585     return (CPUArchState *)(cpu + 1);
586 }
587 
588 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
589 extern CPUTailQ cpus_queue;
590 
591 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
592 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
593 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
594 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
595     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
596 
597 extern __thread CPUState *current_cpu;
598 
599 /**
600  * qemu_tcg_mttcg_enabled:
601  * Check whether we are running MultiThread TCG or not.
602  *
603  * Returns: %true if we are in MTTCG mode %false otherwise.
604  */
605 extern bool mttcg_enabled;
606 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
607 
608 /**
609  * cpu_paging_enabled:
610  * @cpu: The CPU whose state is to be inspected.
611  *
612  * Returns: %true if paging is enabled, %false otherwise.
613  */
614 bool cpu_paging_enabled(const CPUState *cpu);
615 
616 /**
617  * cpu_get_memory_mapping:
618  * @cpu: The CPU whose memory mappings are to be obtained.
619  * @list: Where to write the memory mappings to.
620  * @errp: Pointer for reporting an #Error.
621  *
622  * Returns: %true on success, %false otherwise.
623  */
624 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
625                             Error **errp);
626 
627 /**
628  * cpu_write_elf64_note:
629  * @f: pointer to a function that writes memory to a file
630  * @cpu: The CPU whose memory is to be dumped
631  * @cpuid: ID number of the CPU
632  * @opaque: pointer to the CPUState struct
633  */
634 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
635                          int cpuid, void *opaque);
636 
637 /**
638  * cpu_write_elf64_qemunote:
639  * @f: pointer to a function that writes memory to a file
640  * @cpu: The CPU whose memory is to be dumped
641  * @cpuid: ID number of the CPU
642  * @opaque: pointer to the CPUState struct
643  */
644 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
645                              void *opaque);
646 
647 /**
648  * cpu_write_elf32_note:
649  * @f: pointer to a function that writes memory to a file
650  * @cpu: The CPU whose memory is to be dumped
651  * @cpuid: ID number of the CPU
652  * @opaque: pointer to the CPUState struct
653  */
654 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
655                          int cpuid, void *opaque);
656 
657 /**
658  * cpu_write_elf32_qemunote:
659  * @f: pointer to a function that writes memory to a file
660  * @cpu: The CPU whose memory is to be dumped
661  * @cpuid: ID number of the CPU
662  * @opaque: pointer to the CPUState struct
663  */
664 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
665                              void *opaque);
666 
667 /**
668  * cpu_get_crash_info:
669  * @cpu: The CPU to get crash information for
670  *
671  * Gets the previously saved crash information.
672  * Caller is responsible for freeing the data.
673  */
674 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
675 
676 /**
677  * CPUDumpFlags:
678  * @CPU_DUMP_CODE:
679  * @CPU_DUMP_FPU: dump FPU register state, not just integer
680  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
681  * @CPU_DUMP_VPU: dump VPU registers
682  */
683 enum CPUDumpFlags {
684     CPU_DUMP_CODE = 0x00010000,
685     CPU_DUMP_FPU  = 0x00020000,
686     CPU_DUMP_CCOP = 0x00040000,
687     CPU_DUMP_VPU  = 0x00080000,
688 };
689 
690 /**
691  * cpu_dump_state:
692  * @cpu: The CPU whose state is to be dumped.
693  * @f: If non-null, dump to this stream, else to current print sink.
694  *
695  * Dumps CPU state.
696  */
697 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
698 
699 /**
700  * cpu_get_phys_page_attrs_debug:
701  * @cpu: The CPU to obtain the physical page address for.
702  * @addr: The virtual address.
703  * @attrs: Updated on return with the memory transaction attributes to use
704  *         for this access.
705  *
706  * Obtains the physical page corresponding to a virtual one, together
707  * with the corresponding memory transaction attributes to use for the access.
708  * Use it only for debugging because no protection checks are done.
709  *
710  * Returns: Corresponding physical page address or -1 if no page found.
711  */
712 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
713                                      MemTxAttrs *attrs);
714 
715 /**
716  * cpu_get_phys_page_debug:
717  * @cpu: The CPU to obtain the physical page address for.
718  * @addr: The virtual address.
719  *
720  * Obtains the physical page corresponding to a virtual one.
721  * Use it only for debugging because no protection checks are done.
722  *
723  * Returns: Corresponding physical page address or -1 if no page found.
724  */
725 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
726 
727 /** cpu_asidx_from_attrs:
728  * @cpu: CPU
729  * @attrs: memory transaction attributes
730  *
731  * Returns the address space index specifying the CPU AddressSpace
732  * to use for a memory access with the given transaction attributes.
733  */
734 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
735 
736 /**
737  * cpu_virtio_is_big_endian:
738  * @cpu: CPU
739 
740  * Returns %true if a CPU which supports runtime configurable endianness
741  * is currently big-endian.
742  */
743 bool cpu_virtio_is_big_endian(CPUState *cpu);
744 
745 /**
746  * cpu_has_work:
747  * @cpu: The vCPU to check.
748  *
749  * Checks whether the CPU has work to do.
750  *
751  * Returns: %true if the CPU has work, %false otherwise.
752  */
753 bool cpu_has_work(CPUState *cpu);
754 
755 /**
756  * cpu_list_add:
757  * @cpu: The CPU to be added to the list of CPUs.
758  */
759 void cpu_list_add(CPUState *cpu);
760 
761 /**
762  * cpu_list_remove:
763  * @cpu: The CPU to be removed from the list of CPUs.
764  */
765 void cpu_list_remove(CPUState *cpu);
766 
767 /**
768  * cpu_reset:
769  * @cpu: The CPU whose state is to be reset.
770  */
771 void cpu_reset(CPUState *cpu);
772 
773 /**
774  * cpu_class_by_name:
775  * @typename: The CPU base type.
776  * @cpu_model: The model string without any parameters.
777  *
778  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
779  *
780  * Returns: A concrete #CPUClass or %NULL if no matching class is found
781  *          or if the matching class is abstract.
782  */
783 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
784 
785 /**
786  * cpu_model_from_type:
787  * @typename: The CPU type name
788  *
789  * Extract the CPU model name from the CPU type name. The
790  * CPU type name is either the combination of the CPU model
791  * name and suffix, or same to the CPU model name.
792  *
793  * Returns: CPU model name or NULL if the CPU class doesn't exist
794  *          The user should g_free() the string once no longer needed.
795  */
796 char *cpu_model_from_type(const char *typename);
797 
798 /**
799  * cpu_create:
800  * @typename: The CPU type.
801  *
802  * Instantiates a CPU and realizes the CPU.
803  *
804  * Returns: A #CPUState or %NULL if an error occurred.
805  */
806 CPUState *cpu_create(const char *typename);
807 
808 /**
809  * parse_cpu_option:
810  * @cpu_option: The -cpu option including optional parameters.
811  *
812  * processes optional parameters and registers them as global properties
813  *
814  * Returns: type of CPU to create or prints error and terminates process
815  *          if an error occurred.
816  */
817 const char *parse_cpu_option(const char *cpu_option);
818 
819 /**
820  * qemu_cpu_is_self:
821  * @cpu: The vCPU to check against.
822  *
823  * Checks whether the caller is executing on the vCPU thread.
824  *
825  * Returns: %true if called from @cpu's thread, %false otherwise.
826  */
827 bool qemu_cpu_is_self(CPUState *cpu);
828 
829 /**
830  * qemu_cpu_kick:
831  * @cpu: The vCPU to kick.
832  *
833  * Kicks @cpu's thread.
834  */
835 void qemu_cpu_kick(CPUState *cpu);
836 
837 /**
838  * cpu_is_stopped:
839  * @cpu: The CPU to check.
840  *
841  * Checks whether the CPU is stopped.
842  *
843  * Returns: %true if run state is not running or if artificially stopped;
844  * %false otherwise.
845  */
846 bool cpu_is_stopped(CPUState *cpu);
847 
848 /**
849  * do_run_on_cpu:
850  * @cpu: The vCPU to run on.
851  * @func: The function to be executed.
852  * @data: Data to pass to the function.
853  * @mutex: Mutex to release while waiting for @func to run.
854  *
855  * Used internally in the implementation of run_on_cpu.
856  */
857 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
858                    QemuMutex *mutex);
859 
860 /**
861  * run_on_cpu:
862  * @cpu: The vCPU to run on.
863  * @func: The function to be executed.
864  * @data: Data to pass to the function.
865  *
866  * Schedules the function @func for execution on the vCPU @cpu.
867  */
868 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
869 
870 /**
871  * async_run_on_cpu:
872  * @cpu: The vCPU to run on.
873  * @func: The function to be executed.
874  * @data: Data to pass to the function.
875  *
876  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
877  */
878 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
879 
880 /**
881  * async_safe_run_on_cpu:
882  * @cpu: The vCPU to run on.
883  * @func: The function to be executed.
884  * @data: Data to pass to the function.
885  *
886  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
887  * while all other vCPUs are sleeping.
888  *
889  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
890  * BQL.
891  */
892 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
893 
894 /**
895  * cpu_in_exclusive_context()
896  * @cpu: The vCPU to check
897  *
898  * Returns true if @cpu is an exclusive context, for example running
899  * something which has previously been queued via async_safe_run_on_cpu().
900  */
901 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
902 {
903     return cpu->exclusive_context_count;
904 }
905 
906 /**
907  * qemu_get_cpu:
908  * @index: The CPUState@cpu_index value of the CPU to obtain.
909  *
910  * Gets a CPU matching @index.
911  *
912  * Returns: The CPU or %NULL if there is no matching CPU.
913  */
914 CPUState *qemu_get_cpu(int index);
915 
916 /**
917  * cpu_exists:
918  * @id: Guest-exposed CPU ID to lookup.
919  *
920  * Search for CPU with specified ID.
921  *
922  * Returns: %true - CPU is found, %false - CPU isn't found.
923  */
924 bool cpu_exists(int64_t id);
925 
926 /**
927  * cpu_by_arch_id:
928  * @id: Guest-exposed CPU ID of the CPU to obtain.
929  *
930  * Get a CPU with matching @id.
931  *
932  * Returns: The CPU or %NULL if there is no matching CPU.
933  */
934 CPUState *cpu_by_arch_id(int64_t id);
935 
936 /**
937  * cpu_interrupt:
938  * @cpu: The CPU to set an interrupt on.
939  * @mask: The interrupts to set.
940  *
941  * Invokes the interrupt handler.
942  */
943 
944 void cpu_interrupt(CPUState *cpu, int mask);
945 
946 /**
947  * cpu_set_pc:
948  * @cpu: The CPU to set the program counter for.
949  * @addr: Program counter value.
950  *
951  * Sets the program counter for a CPU.
952  */
953 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
954 {
955     cpu->cc->set_pc(cpu, addr);
956 }
957 
958 /**
959  * cpu_reset_interrupt:
960  * @cpu: The CPU to clear the interrupt on.
961  * @mask: The interrupt mask to clear.
962  *
963  * Resets interrupts on the vCPU @cpu.
964  */
965 void cpu_reset_interrupt(CPUState *cpu, int mask);
966 
967 /**
968  * cpu_exit:
969  * @cpu: The CPU to exit.
970  *
971  * Requests the CPU @cpu to exit execution.
972  */
973 void cpu_exit(CPUState *cpu);
974 
975 /**
976  * cpu_pause:
977  * @cpu: The CPU to pause.
978  *
979  * Pauses CPU, i.e. puts CPU into stopped state.
980  */
981 void cpu_pause(CPUState *cpu);
982 
983 /**
984  * cpu_resume:
985  * @cpu: The CPU to resume.
986  *
987  * Resumes CPU, i.e. puts CPU into runnable state.
988  */
989 void cpu_resume(CPUState *cpu);
990 
991 /**
992  * cpu_remove_sync:
993  * @cpu: The CPU to remove.
994  *
995  * Requests the CPU to be removed and waits till it is removed.
996  */
997 void cpu_remove_sync(CPUState *cpu);
998 
999 /**
1000  * free_queued_cpu_work() - free all items on CPU work queue
1001  * @cpu: The CPU which work queue to free.
1002  */
1003 void free_queued_cpu_work(CPUState *cpu);
1004 
1005 /**
1006  * process_queued_cpu_work() - process all items on CPU work queue
1007  * @cpu: The CPU which work queue to process.
1008  */
1009 void process_queued_cpu_work(CPUState *cpu);
1010 
1011 /**
1012  * cpu_exec_start:
1013  * @cpu: The CPU for the current thread.
1014  *
1015  * Record that a CPU has started execution and can be interrupted with
1016  * cpu_exit.
1017  */
1018 void cpu_exec_start(CPUState *cpu);
1019 
1020 /**
1021  * cpu_exec_end:
1022  * @cpu: The CPU for the current thread.
1023  *
1024  * Record that a CPU has stopped execution and exclusive sections
1025  * can be executed without interrupting it.
1026  */
1027 void cpu_exec_end(CPUState *cpu);
1028 
1029 /**
1030  * start_exclusive:
1031  *
1032  * Wait for a concurrent exclusive section to end, and then start
1033  * a section of work that is run while other CPUs are not running
1034  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1035  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1036  * during the exclusive section go to sleep until this CPU calls
1037  * end_exclusive.
1038  */
1039 void start_exclusive(void);
1040 
1041 /**
1042  * end_exclusive:
1043  *
1044  * Concludes an exclusive execution section started by start_exclusive.
1045  */
1046 void end_exclusive(void);
1047 
1048 /**
1049  * qemu_init_vcpu:
1050  * @cpu: The vCPU to initialize.
1051  *
1052  * Initializes a vCPU.
1053  */
1054 void qemu_init_vcpu(CPUState *cpu);
1055 
1056 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1057 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1058 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1059 
1060 /**
1061  * cpu_single_step:
1062  * @cpu: CPU to the flags for.
1063  * @enabled: Flags to enable.
1064  *
1065  * Enables or disables single-stepping for @cpu.
1066  */
1067 void cpu_single_step(CPUState *cpu, int enabled);
1068 
1069 /* Breakpoint/watchpoint flags */
1070 #define BP_MEM_READ           0x01
1071 #define BP_MEM_WRITE          0x02
1072 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1073 #define BP_STOP_BEFORE_ACCESS 0x04
1074 /* 0x08 currently unused */
1075 #define BP_GDB                0x10
1076 #define BP_CPU                0x20
1077 #define BP_ANY                (BP_GDB | BP_CPU)
1078 #define BP_HIT_SHIFT          6
1079 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1080 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1081 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1082 
1083 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1084                           CPUBreakpoint **breakpoint);
1085 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1086 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1087 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1088 
1089 /* Return true if PC matches an installed breakpoint.  */
1090 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1091 {
1092     CPUBreakpoint *bp;
1093 
1094     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1095         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1096             if (bp->pc == pc && (bp->flags & mask)) {
1097                 return true;
1098             }
1099         }
1100     }
1101     return false;
1102 }
1103 
1104 /**
1105  * cpu_get_address_space:
1106  * @cpu: CPU to get address space from
1107  * @asidx: index identifying which address space to get
1108  *
1109  * Return the requested address space of this CPU. @asidx
1110  * specifies which address space to read.
1111  */
1112 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1113 
1114 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1115     G_GNUC_PRINTF(2, 3);
1116 
1117 /* $(top_srcdir)/cpu.c */
1118 void cpu_class_init_props(DeviceClass *dc);
1119 void cpu_exec_class_post_init(CPUClass *cc);
1120 void cpu_exec_initfn(CPUState *cpu);
1121 void cpu_vmstate_register(CPUState *cpu);
1122 void cpu_vmstate_unregister(CPUState *cpu);
1123 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1124 void cpu_exec_unrealizefn(CPUState *cpu);
1125 void cpu_exec_reset_hold(CPUState *cpu);
1126 
1127 const char *target_name(void);
1128 
1129 #ifdef COMPILING_PER_TARGET
1130 
1131 extern const VMStateDescription vmstate_cpu_common;
1132 
1133 #define VMSTATE_CPU() {                                                     \
1134     .name = "parent_obj",                                                   \
1135     .size = sizeof(CPUState),                                               \
1136     .vmsd = &vmstate_cpu_common,                                            \
1137     .flags = VMS_STRUCT,                                                    \
1138     .offset = 0,                                                            \
1139 }
1140 
1141 #endif /* COMPILING_PER_TARGET */
1142 
1143 #define UNASSIGNED_CPU_INDEX -1
1144 #define UNASSIGNED_CLUSTER_INDEX -1
1145 
1146 #endif
1147