xref: /qemu/include/hw/core/cpu.h (revision 9c2ff9cdc9b33472333e9431cbf4417f5f228883)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39 
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41                                      void *opaque);
42 
43 /**
44  * SECTION:cpu
45  * @section_id: QEMU-cpu
46  * @title: CPU Class
47  * @short_description: Base class for all CPUs
48  */
49 
50 #define TYPE_CPU "cpu"
51 
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54  * an unchecked cast.
55  */
56 #define CPU(obj) ((CPUState *)(obj))
57 
58 /*
59  * The class checkers bring in CPU_GET_CLASS() which is potentially
60  * expensive given the eventual call to
61  * object_class_dynamic_cast_assert(). Because of this the CPUState
62  * has a cached value for the class in cs->cc which is set up in
63  * cpu_exec_realizefn() for use in hot code paths.
64  */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 /**
70  * OBJECT_DECLARE_CPU_TYPE:
71  * @CpuInstanceType: instance struct name
72  * @CpuClassType: class struct name
73  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74  *
75  * This macro is typically used in "cpu-qom.h" header file, and will:
76  *
77  *   - create the typedefs for the CPU object and class structs
78  *   - register the type for use with g_autoptr
79  *   - provide three standard type cast functions
80  *
81  * The object struct and class struct need to be declared manually.
82  */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84     typedef struct ArchCPU CpuInstanceType; \
85     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86 
87 typedef struct CPUWatchpoint CPUWatchpoint;
88 
89 /* see physmem.c */
90 struct CPUAddressSpace;
91 
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94 
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97 
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100 
101 /**
102  * CPUClass:
103  * @class_by_name: Callback to map -cpu command line model name to an
104  *                 instantiatable CPU type.
105  * @parse_features: Callback to parse command line arguments.
106  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
107  * @memory_rw_debug: Callback for GDB memory access.
108  * @dump_state: Callback for dumping state.
109  * @query_cpu_fast:
110  *       Fill in target specific information for the "query-cpus-fast"
111  *       QAPI call.
112  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
113  * @set_pc: Callback for setting the Program Counter register. This
114  *       should have the semantics used by the target architecture when
115  *       setting the PC from a source such as an ELF file entry point;
116  *       for example on Arm it will also set the Thumb mode bit based
117  *       on the least significant bit of the new PC value.
118  *       If the target behaviour here is anything other than "set
119  *       the PC register to the value passed in" then the target must
120  *       also implement the synchronize_from_tb hook.
121  * @get_pc: Callback for getting the Program Counter register.
122  *       As above, with the semantics of the target architecture.
123  * @gdb_read_register: Callback for letting GDB read a register.
124  *                     No more than @gdb_num_core_regs registers can be read.
125  * @gdb_write_register: Callback for letting GDB write a register.
126  *                     No more than @gdb_num_core_regs registers can be written.
127  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
128  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
129  *       its Harvard architecture split code and data.
130  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
131  *                     from @gdb_core_xml_file.
132  * @gdb_core_xml_file: File name for core registers GDB XML description.
133  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
134  *           before the insn which triggers a watchpoint rather than after it.
135  * @gdb_arch_name: Optional callback that returns the architecture name known
136  * to GDB. The caller must free the returned string with g_free.
137  * @disas_set_info: Setup architecture specific components of disassembly info
138  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
139  * address before attempting to match it against watchpoints.
140  * @deprecation_note: If this CPUClass is deprecated, this field provides
141  *                    related information.
142  *
143  * Represents a CPU family or model.
144  */
145 struct CPUClass {
146     /*< private >*/
147     DeviceClass parent_class;
148     /*< public >*/
149 
150     ObjectClass *(*class_by_name)(const char *cpu_model);
151     void (*parse_features)(const char *typename, char *str, Error **errp);
152 
153     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
154                            uint8_t *buf, size_t len, bool is_write);
155     void (*dump_state)(CPUState *cpu, FILE *, int flags);
156     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
157     int64_t (*get_arch_id)(CPUState *cpu);
158     void (*set_pc)(CPUState *cpu, vaddr value);
159     vaddr (*get_pc)(CPUState *cpu);
160     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
161     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
162     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
163 
164     const char *gdb_core_xml_file;
165     const gchar * (*gdb_arch_name)(CPUState *cpu);
166 
167     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
168 
169     const char *deprecation_note;
170     struct AccelCPUClass *accel_cpu;
171 
172     /* when system emulation is not available, this pointer is NULL */
173     const struct SysemuCPUOps *sysemu_ops;
174 
175     /* when TCG is not available, this pointer is NULL */
176     const TCGCPUOps *tcg_ops;
177 
178     /*
179      * if not NULL, this is called in order for the CPUClass to initialize
180      * class data that depends on the accelerator, see accel/accel-common.c.
181      */
182     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
183 
184     /*
185      * Keep non-pointer data at the end to minimize holes.
186      */
187     int reset_dump_flags;
188     int gdb_num_core_regs;
189     bool gdb_stop_before_watchpoint;
190 };
191 
192 /*
193  * Fix the number of mmu modes to 16, which is also the maximum
194  * supported by the softmmu tlb api.
195  */
196 #define NB_MMU_MODES 16
197 
198 /* Use a fully associative victim tlb of 8 entries. */
199 #define CPU_VTLB_SIZE 8
200 
201 /*
202  * The full TLB entry, which is not accessed by generated TCG code,
203  * so the layout is not as critical as that of CPUTLBEntry. This is
204  * also why we don't want to combine the two structs.
205  */
206 struct CPUTLBEntryFull {
207     /*
208      * @xlat_section contains:
209      *  - in the lower TARGET_PAGE_BITS, a physical section number
210      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
211      *    must be added to the virtual address to obtain:
212      *     + the ram_addr_t of the target RAM (if the physical section
213      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
214      *     + the offset within the target MemoryRegion (otherwise)
215      */
216     hwaddr xlat_section;
217 
218     /*
219      * @phys_addr contains the physical address in the address space
220      * given by cpu_asidx_from_attrs(cpu, @attrs).
221      */
222     hwaddr phys_addr;
223 
224     /* @attrs contains the memory transaction attributes for the page. */
225     MemTxAttrs attrs;
226 
227     /* @prot contains the complete protections for the page. */
228     uint8_t prot;
229 
230     /* @lg_page_size contains the log2 of the page size. */
231     uint8_t lg_page_size;
232 
233     /* Additional tlb flags requested by tlb_fill. */
234     uint8_t tlb_fill_flags;
235 
236     /*
237      * Additional tlb flags for use by the slow path. If non-zero,
238      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
239      */
240     uint8_t slow_flags[MMU_ACCESS_COUNT];
241 
242     /*
243      * Allow target-specific additions to this structure.
244      * This may be used to cache items from the guest cpu
245      * page tables for later use by the implementation.
246      */
247     union {
248         /*
249          * Cache the attrs and shareability fields from the page table entry.
250          *
251          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
252          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
253          * For shareability and guarded, as in the SH and GP fields respectively
254          * of the VMSAv8-64 PTEs.
255          */
256         struct {
257             uint8_t pte_attrs;
258             uint8_t shareability;
259             bool guarded;
260         } arm;
261     } extra;
262 };
263 
264 /*
265  * Data elements that are per MMU mode, minus the bits accessed by
266  * the TCG fast path.
267  */
268 typedef struct CPUTLBDesc {
269     /*
270      * Describe a region covering all of the large pages allocated
271      * into the tlb.  When any page within this region is flushed,
272      * we must flush the entire tlb.  The region is matched if
273      * (addr & large_page_mask) == large_page_addr.
274      */
275     vaddr large_page_addr;
276     vaddr large_page_mask;
277     /* host time (in ns) at the beginning of the time window */
278     int64_t window_begin_ns;
279     /* maximum number of entries observed in the window */
280     size_t window_max_entries;
281     size_t n_used_entries;
282     /* The next index to use in the tlb victim table.  */
283     size_t vindex;
284     /* The tlb victim table, in two parts.  */
285     CPUTLBEntry vtable[CPU_VTLB_SIZE];
286     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
287     CPUTLBEntryFull *fulltlb;
288 } CPUTLBDesc;
289 
290 /*
291  * Data elements that are shared between all MMU modes.
292  */
293 typedef struct CPUTLBCommon {
294     /* Serialize updates to f.table and d.vtable, and others as noted. */
295     QemuSpin lock;
296     /*
297      * Within dirty, for each bit N, modifications have been made to
298      * mmu_idx N since the last time that mmu_idx was flushed.
299      * Protected by tlb_c.lock.
300      */
301     uint16_t dirty;
302     /*
303      * Statistics.  These are not lock protected, but are read and
304      * written atomically.  This allows the monitor to print a snapshot
305      * of the stats without interfering with the cpu.
306      */
307     size_t full_flush_count;
308     size_t part_flush_count;
309     size_t elide_flush_count;
310 } CPUTLBCommon;
311 
312 /*
313  * The entire softmmu tlb, for all MMU modes.
314  * The meaning of each of the MMU modes is defined in the target code.
315  * Since this is placed within CPUNegativeOffsetState, the smallest
316  * negative offsets are at the end of the struct.
317  */
318 typedef struct CPUTLB {
319 #ifdef CONFIG_TCG
320     CPUTLBCommon c;
321     CPUTLBDesc d[NB_MMU_MODES];
322     CPUTLBDescFast f[NB_MMU_MODES];
323 #endif
324 } CPUTLB;
325 
326 /*
327  * Low 16 bits: number of cycles left, used only in icount mode.
328  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
329  * for this CPU and return to its top level loop (even in non-icount mode).
330  * This allows a single read-compare-cbranch-write sequence to test
331  * for both decrementer underflow and exceptions.
332  */
333 typedef union IcountDecr {
334     uint32_t u32;
335     struct {
336 #if HOST_BIG_ENDIAN
337         uint16_t high;
338         uint16_t low;
339 #else
340         uint16_t low;
341         uint16_t high;
342 #endif
343     } u16;
344 } IcountDecr;
345 
346 /**
347  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
348  *                         from CPUArchState, via small negative offsets.
349  * @can_do_io: True if memory-mapped IO is allowed.
350  * @plugin_mem_cbs: active plugin memory callbacks
351  * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
352  * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
353  */
354 typedef struct CPUNegativeOffsetState {
355     CPUTLB tlb;
356 #ifdef CONFIG_PLUGIN
357     /*
358      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
359      */
360     GArray *plugin_mem_cbs;
361     uint64_t plugin_mem_value_low;
362     uint64_t plugin_mem_value_high;
363 #endif
364     IcountDecr icount_decr;
365     bool can_do_io;
366 } CPUNegativeOffsetState;
367 
368 struct KVMState;
369 struct kvm_run;
370 
371 /* work queue */
372 
373 /* The union type allows passing of 64 bit target pointers on 32 bit
374  * hosts in a single parameter
375  */
376 typedef union {
377     int           host_int;
378     unsigned long host_ulong;
379     void         *host_ptr;
380     vaddr         target_ptr;
381 } run_on_cpu_data;
382 
383 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
384 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
385 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
386 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
387 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
388 
389 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
390 
391 struct qemu_work_item;
392 
393 #define CPU_UNSET_NUMA_NODE_ID -1
394 
395 /**
396  * struct CPUState - common state of one CPU core or thread.
397  *
398  * @cpu_index: CPU index (informative).
399  * @cluster_index: Identifies which cluster this CPU is in.
400  *   For boards which don't define clusters or for "loose" CPUs not assigned
401  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
402  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
403  *   QOM parent.
404  *   Under TCG this value is propagated to @tcg_cflags.
405  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
406  * @tcg_cflags: Pre-computed cflags for this cpu.
407  * @nr_threads: Number of threads within this CPU core.
408  * @thread: Host thread details, only live once @created is #true
409  * @sem: WIN32 only semaphore used only for qtest
410  * @thread_id: native thread id of vCPU, only live once @created is #true
411  * @running: #true if CPU is currently running (lockless).
412  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
413  * valid under cpu_list_lock.
414  * @created: Indicates whether the CPU thread has been successfully created.
415  * @halt_cond: condition variable sleeping threads can wait on.
416  * @interrupt_request: Indicates a pending interrupt request.
417  * @halted: Nonzero if the CPU is in suspended state.
418  * @stop: Indicates a pending stop request.
419  * @stopped: Indicates the CPU has been artificially stopped.
420  * @unplug: Indicates a pending CPU unplug request.
421  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
422  * @singlestep_enabled: Flags for single-stepping.
423  * @icount_extra: Instructions until next timer event.
424  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
425  *            AddressSpaces this CPU has)
426  * @num_ases: number of CPUAddressSpaces in @cpu_ases
427  * @as: Pointer to the first AddressSpace, for the convenience of targets which
428  *      only have a single AddressSpace
429  * @gdb_regs: Additional GDB registers.
430  * @gdb_num_regs: Number of total registers accessible to GDB.
431  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
432  * @node: QTAILQ of CPUs sharing TB cache.
433  * @opaque: User data.
434  * @mem_io_pc: Host Program Counter at which the memory was accessed.
435  * @accel: Pointer to accelerator specific state.
436  * @kvm_fd: vCPU file descriptor for KVM.
437  * @work_mutex: Lock to prevent multiple access to @work_list.
438  * @work_list: List of pending asynchronous work.
439  * @plugin_state: per-CPU plugin state
440  * @ignore_memory_transaction_failures: Cached copy of the MachineState
441  *    flag of the same name: allows the board to suppress calling of the
442  *    CPU do_transaction_failed hook function.
443  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
444  *    ring is enabled.
445  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
446  *    dirty ring structure.
447  *
448  * @neg_align: The CPUState is the common part of a concrete ArchCPU
449  * which is allocated when an individual CPU instance is created. As
450  * such care is taken is ensure there is no gap between between
451  * CPUState and CPUArchState within ArchCPU.
452  *
453  * @neg: The architectural register state ("cpu_env") immediately follows
454  * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
455  * some common TCG CPU variables which are accessed with a negative offset
456  * from cpu_env.
457  */
458 struct CPUState {
459     /*< private >*/
460     DeviceState parent_obj;
461     /* cache to avoid expensive CPU_GET_CLASS */
462     CPUClass *cc;
463     /*< public >*/
464 
465     int nr_threads;
466 
467     struct QemuThread *thread;
468 #ifdef _WIN32
469     QemuSemaphore sem;
470 #endif
471     int thread_id;
472     bool running, has_waiter;
473     struct QemuCond *halt_cond;
474     bool thread_kicked;
475     bool created;
476     bool stop;
477     bool stopped;
478 
479     /* Should CPU start in powered-off state? */
480     bool start_powered_off;
481 
482     bool unplug;
483     bool crash_occurred;
484     bool exit_request;
485     int exclusive_context_count;
486     uint32_t cflags_next_tb;
487     /* updates protected by BQL */
488     uint32_t interrupt_request;
489     int singlestep_enabled;
490     int64_t icount_budget;
491     int64_t icount_extra;
492     uint64_t random_seed;
493     sigjmp_buf jmp_env;
494 
495     QemuMutex work_mutex;
496     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
497 
498     struct CPUAddressSpace *cpu_ases;
499     int cpu_ases_count;
500     int num_ases;
501     AddressSpace *as;
502     MemoryRegion *memory;
503 
504     struct CPUJumpCache *tb_jmp_cache;
505 
506     GArray *gdb_regs;
507     int gdb_num_regs;
508     int gdb_num_g_regs;
509     QTAILQ_ENTRY(CPUState) node;
510 
511     /* ice debug support */
512     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
513 
514     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
515     CPUWatchpoint *watchpoint_hit;
516 
517     void *opaque;
518 
519     /* In order to avoid passing too many arguments to the MMIO helpers,
520      * we store some rarely used information in the CPU context.
521      */
522     uintptr_t mem_io_pc;
523 
524     /* Only used in KVM */
525     int kvm_fd;
526     struct KVMState *kvm_state;
527     struct kvm_run *kvm_run;
528     struct kvm_dirty_gfn *kvm_dirty_gfns;
529     uint32_t kvm_fetch_index;
530     uint64_t dirty_pages;
531     int kvm_vcpu_stats_fd;
532     bool vcpu_dirty;
533 
534     /* Use by accel-block: CPU is executing an ioctl() */
535     QemuLockCnt in_ioctl_lock;
536 
537 #ifdef CONFIG_PLUGIN
538     CPUPluginState *plugin_state;
539 #endif
540 
541     /* TODO Move common fields from CPUArchState here. */
542     int cpu_index;
543     int cluster_index;
544     uint32_t tcg_cflags;
545     uint32_t halted;
546     int32_t exception_index;
547 
548     AccelCPUState *accel;
549 
550     /* Used to keep track of an outstanding cpu throttle thread for migration
551      * autoconverge
552      */
553     bool throttle_thread_scheduled;
554 
555     /*
556      * Sleep throttle_us_per_full microseconds once dirty ring is full
557      * if dirty page rate limit is enabled.
558      */
559     int64_t throttle_us_per_full;
560 
561     bool ignore_memory_transaction_failures;
562 
563     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
564     bool prctl_unalign_sigbus;
565 
566     /* track IOMMUs whose translations we've cached in the TCG TLB */
567     GArray *iommu_notifiers;
568 
569     /*
570      * MUST BE LAST in order to minimize the displacement to CPUArchState.
571      */
572     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
573     CPUNegativeOffsetState neg;
574 };
575 
576 /* Validate placement of CPUNegativeOffsetState. */
577 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
578                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
579 
580 static inline CPUArchState *cpu_env(CPUState *cpu)
581 {
582     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
583     return (CPUArchState *)(cpu + 1);
584 }
585 
586 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
587 extern CPUTailQ cpus_queue;
588 
589 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
590 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
591 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
592 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
593     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
594 
595 extern __thread CPUState *current_cpu;
596 
597 /**
598  * qemu_tcg_mttcg_enabled:
599  * Check whether we are running MultiThread TCG or not.
600  *
601  * Returns: %true if we are in MTTCG mode %false otherwise.
602  */
603 extern bool mttcg_enabled;
604 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
605 
606 /**
607  * cpu_paging_enabled:
608  * @cpu: The CPU whose state is to be inspected.
609  *
610  * Returns: %true if paging is enabled, %false otherwise.
611  */
612 bool cpu_paging_enabled(const CPUState *cpu);
613 
614 /**
615  * cpu_get_memory_mapping:
616  * @cpu: The CPU whose memory mappings are to be obtained.
617  * @list: Where to write the memory mappings to.
618  * @errp: Pointer for reporting an #Error.
619  *
620  * Returns: %true on success, %false otherwise.
621  */
622 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
623                             Error **errp);
624 
625 /**
626  * cpu_write_elf64_note:
627  * @f: pointer to a function that writes memory to a file
628  * @cpu: The CPU whose memory is to be dumped
629  * @cpuid: ID number of the CPU
630  * @opaque: pointer to the CPUState struct
631  */
632 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
633                          int cpuid, void *opaque);
634 
635 /**
636  * cpu_write_elf64_qemunote:
637  * @f: pointer to a function that writes memory to a file
638  * @cpu: The CPU whose memory is to be dumped
639  * @cpuid: ID number of the CPU
640  * @opaque: pointer to the CPUState struct
641  */
642 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
643                              void *opaque);
644 
645 /**
646  * cpu_write_elf32_note:
647  * @f: pointer to a function that writes memory to a file
648  * @cpu: The CPU whose memory is to be dumped
649  * @cpuid: ID number of the CPU
650  * @opaque: pointer to the CPUState struct
651  */
652 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
653                          int cpuid, void *opaque);
654 
655 /**
656  * cpu_write_elf32_qemunote:
657  * @f: pointer to a function that writes memory to a file
658  * @cpu: The CPU whose memory is to be dumped
659  * @cpuid: ID number of the CPU
660  * @opaque: pointer to the CPUState struct
661  */
662 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
663                              void *opaque);
664 
665 /**
666  * cpu_get_crash_info:
667  * @cpu: The CPU to get crash information for
668  *
669  * Gets the previously saved crash information.
670  * Caller is responsible for freeing the data.
671  */
672 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
673 
674 /**
675  * CPUDumpFlags:
676  * @CPU_DUMP_CODE:
677  * @CPU_DUMP_FPU: dump FPU register state, not just integer
678  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
679  * @CPU_DUMP_VPU: dump VPU registers
680  */
681 enum CPUDumpFlags {
682     CPU_DUMP_CODE = 0x00010000,
683     CPU_DUMP_FPU  = 0x00020000,
684     CPU_DUMP_CCOP = 0x00040000,
685     CPU_DUMP_VPU  = 0x00080000,
686 };
687 
688 /**
689  * cpu_dump_state:
690  * @cpu: The CPU whose state is to be dumped.
691  * @f: If non-null, dump to this stream, else to current print sink.
692  *
693  * Dumps CPU state.
694  */
695 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
696 
697 /**
698  * cpu_get_phys_page_attrs_debug:
699  * @cpu: The CPU to obtain the physical page address for.
700  * @addr: The virtual address.
701  * @attrs: Updated on return with the memory transaction attributes to use
702  *         for this access.
703  *
704  * Obtains the physical page corresponding to a virtual one, together
705  * with the corresponding memory transaction attributes to use for the access.
706  * Use it only for debugging because no protection checks are done.
707  *
708  * Returns: Corresponding physical page address or -1 if no page found.
709  */
710 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
711                                      MemTxAttrs *attrs);
712 
713 /**
714  * cpu_get_phys_page_debug:
715  * @cpu: The CPU to obtain the physical page address for.
716  * @addr: The virtual address.
717  *
718  * Obtains the physical page corresponding to a virtual one.
719  * Use it only for debugging because no protection checks are done.
720  *
721  * Returns: Corresponding physical page address or -1 if no page found.
722  */
723 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
724 
725 /** cpu_asidx_from_attrs:
726  * @cpu: CPU
727  * @attrs: memory transaction attributes
728  *
729  * Returns the address space index specifying the CPU AddressSpace
730  * to use for a memory access with the given transaction attributes.
731  */
732 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
733 
734 /**
735  * cpu_virtio_is_big_endian:
736  * @cpu: CPU
737 
738  * Returns %true if a CPU which supports runtime configurable endianness
739  * is currently big-endian.
740  */
741 bool cpu_virtio_is_big_endian(CPUState *cpu);
742 
743 /**
744  * cpu_has_work:
745  * @cpu: The vCPU to check.
746  *
747  * Checks whether the CPU has work to do.
748  *
749  * Returns: %true if the CPU has work, %false otherwise.
750  */
751 bool cpu_has_work(CPUState *cpu);
752 
753 /**
754  * cpu_list_add:
755  * @cpu: The CPU to be added to the list of CPUs.
756  */
757 void cpu_list_add(CPUState *cpu);
758 
759 /**
760  * cpu_list_remove:
761  * @cpu: The CPU to be removed from the list of CPUs.
762  */
763 void cpu_list_remove(CPUState *cpu);
764 
765 /**
766  * cpu_reset:
767  * @cpu: The CPU whose state is to be reset.
768  */
769 void cpu_reset(CPUState *cpu);
770 
771 /**
772  * cpu_class_by_name:
773  * @typename: The CPU base type.
774  * @cpu_model: The model string without any parameters.
775  *
776  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
777  *
778  * Returns: A concrete #CPUClass or %NULL if no matching class is found
779  *          or if the matching class is abstract.
780  */
781 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
782 
783 /**
784  * cpu_model_from_type:
785  * @typename: The CPU type name
786  *
787  * Extract the CPU model name from the CPU type name. The
788  * CPU type name is either the combination of the CPU model
789  * name and suffix, or same to the CPU model name.
790  *
791  * Returns: CPU model name or NULL if the CPU class doesn't exist
792  *          The user should g_free() the string once no longer needed.
793  */
794 char *cpu_model_from_type(const char *typename);
795 
796 /**
797  * cpu_create:
798  * @typename: The CPU type.
799  *
800  * Instantiates a CPU and realizes the CPU.
801  *
802  * Returns: A #CPUState or %NULL if an error occurred.
803  */
804 CPUState *cpu_create(const char *typename);
805 
806 /**
807  * parse_cpu_option:
808  * @cpu_option: The -cpu option including optional parameters.
809  *
810  * processes optional parameters and registers them as global properties
811  *
812  * Returns: type of CPU to create or prints error and terminates process
813  *          if an error occurred.
814  */
815 const char *parse_cpu_option(const char *cpu_option);
816 
817 /**
818  * qemu_cpu_is_self:
819  * @cpu: The vCPU to check against.
820  *
821  * Checks whether the caller is executing on the vCPU thread.
822  *
823  * Returns: %true if called from @cpu's thread, %false otherwise.
824  */
825 bool qemu_cpu_is_self(CPUState *cpu);
826 
827 /**
828  * qemu_cpu_kick:
829  * @cpu: The vCPU to kick.
830  *
831  * Kicks @cpu's thread.
832  */
833 void qemu_cpu_kick(CPUState *cpu);
834 
835 /**
836  * cpu_is_stopped:
837  * @cpu: The CPU to check.
838  *
839  * Checks whether the CPU is stopped.
840  *
841  * Returns: %true if run state is not running or if artificially stopped;
842  * %false otherwise.
843  */
844 bool cpu_is_stopped(CPUState *cpu);
845 
846 /**
847  * do_run_on_cpu:
848  * @cpu: The vCPU to run on.
849  * @func: The function to be executed.
850  * @data: Data to pass to the function.
851  * @mutex: Mutex to release while waiting for @func to run.
852  *
853  * Used internally in the implementation of run_on_cpu.
854  */
855 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
856                    QemuMutex *mutex);
857 
858 /**
859  * run_on_cpu:
860  * @cpu: The vCPU to run on.
861  * @func: The function to be executed.
862  * @data: Data to pass to the function.
863  *
864  * Schedules the function @func for execution on the vCPU @cpu.
865  */
866 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
867 
868 /**
869  * async_run_on_cpu:
870  * @cpu: The vCPU to run on.
871  * @func: The function to be executed.
872  * @data: Data to pass to the function.
873  *
874  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
875  */
876 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
877 
878 /**
879  * async_safe_run_on_cpu:
880  * @cpu: The vCPU to run on.
881  * @func: The function to be executed.
882  * @data: Data to pass to the function.
883  *
884  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
885  * while all other vCPUs are sleeping.
886  *
887  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
888  * BQL.
889  */
890 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
891 
892 /**
893  * cpu_in_exclusive_context()
894  * @cpu: The vCPU to check
895  *
896  * Returns true if @cpu is an exclusive context, for example running
897  * something which has previously been queued via async_safe_run_on_cpu().
898  */
899 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
900 {
901     return cpu->exclusive_context_count;
902 }
903 
904 /**
905  * qemu_get_cpu:
906  * @index: The CPUState@cpu_index value of the CPU to obtain.
907  *
908  * Gets a CPU matching @index.
909  *
910  * Returns: The CPU or %NULL if there is no matching CPU.
911  */
912 CPUState *qemu_get_cpu(int index);
913 
914 /**
915  * cpu_exists:
916  * @id: Guest-exposed CPU ID to lookup.
917  *
918  * Search for CPU with specified ID.
919  *
920  * Returns: %true - CPU is found, %false - CPU isn't found.
921  */
922 bool cpu_exists(int64_t id);
923 
924 /**
925  * cpu_by_arch_id:
926  * @id: Guest-exposed CPU ID of the CPU to obtain.
927  *
928  * Get a CPU with matching @id.
929  *
930  * Returns: The CPU or %NULL if there is no matching CPU.
931  */
932 CPUState *cpu_by_arch_id(int64_t id);
933 
934 /**
935  * cpu_interrupt:
936  * @cpu: The CPU to set an interrupt on.
937  * @mask: The interrupts to set.
938  *
939  * Invokes the interrupt handler.
940  */
941 
942 void cpu_interrupt(CPUState *cpu, int mask);
943 
944 /**
945  * cpu_set_pc:
946  * @cpu: The CPU to set the program counter for.
947  * @addr: Program counter value.
948  *
949  * Sets the program counter for a CPU.
950  */
951 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
952 {
953     cpu->cc->set_pc(cpu, addr);
954 }
955 
956 /**
957  * cpu_reset_interrupt:
958  * @cpu: The CPU to clear the interrupt on.
959  * @mask: The interrupt mask to clear.
960  *
961  * Resets interrupts on the vCPU @cpu.
962  */
963 void cpu_reset_interrupt(CPUState *cpu, int mask);
964 
965 /**
966  * cpu_exit:
967  * @cpu: The CPU to exit.
968  *
969  * Requests the CPU @cpu to exit execution.
970  */
971 void cpu_exit(CPUState *cpu);
972 
973 /**
974  * cpu_pause:
975  * @cpu: The CPU to pause.
976  *
977  * Pauses CPU, i.e. puts CPU into stopped state.
978  */
979 void cpu_pause(CPUState *cpu);
980 
981 /**
982  * cpu_resume:
983  * @cpu: The CPU to resume.
984  *
985  * Resumes CPU, i.e. puts CPU into runnable state.
986  */
987 void cpu_resume(CPUState *cpu);
988 
989 /**
990  * cpu_remove_sync:
991  * @cpu: The CPU to remove.
992  *
993  * Requests the CPU to be removed and waits till it is removed.
994  */
995 void cpu_remove_sync(CPUState *cpu);
996 
997 /**
998  * free_queued_cpu_work() - free all items on CPU work queue
999  * @cpu: The CPU which work queue to free.
1000  */
1001 void free_queued_cpu_work(CPUState *cpu);
1002 
1003 /**
1004  * process_queued_cpu_work() - process all items on CPU work queue
1005  * @cpu: The CPU which work queue to process.
1006  */
1007 void process_queued_cpu_work(CPUState *cpu);
1008 
1009 /**
1010  * cpu_exec_start:
1011  * @cpu: The CPU for the current thread.
1012  *
1013  * Record that a CPU has started execution and can be interrupted with
1014  * cpu_exit.
1015  */
1016 void cpu_exec_start(CPUState *cpu);
1017 
1018 /**
1019  * cpu_exec_end:
1020  * @cpu: The CPU for the current thread.
1021  *
1022  * Record that a CPU has stopped execution and exclusive sections
1023  * can be executed without interrupting it.
1024  */
1025 void cpu_exec_end(CPUState *cpu);
1026 
1027 /**
1028  * start_exclusive:
1029  *
1030  * Wait for a concurrent exclusive section to end, and then start
1031  * a section of work that is run while other CPUs are not running
1032  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1033  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1034  * during the exclusive section go to sleep until this CPU calls
1035  * end_exclusive.
1036  */
1037 void start_exclusive(void);
1038 
1039 /**
1040  * end_exclusive:
1041  *
1042  * Concludes an exclusive execution section started by start_exclusive.
1043  */
1044 void end_exclusive(void);
1045 
1046 /**
1047  * qemu_init_vcpu:
1048  * @cpu: The vCPU to initialize.
1049  *
1050  * Initializes a vCPU.
1051  */
1052 void qemu_init_vcpu(CPUState *cpu);
1053 
1054 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1055 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1056 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1057 
1058 /**
1059  * cpu_single_step:
1060  * @cpu: CPU to the flags for.
1061  * @enabled: Flags to enable.
1062  *
1063  * Enables or disables single-stepping for @cpu.
1064  */
1065 void cpu_single_step(CPUState *cpu, int enabled);
1066 
1067 /* Breakpoint/watchpoint flags */
1068 #define BP_MEM_READ           0x01
1069 #define BP_MEM_WRITE          0x02
1070 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1071 #define BP_STOP_BEFORE_ACCESS 0x04
1072 /* 0x08 currently unused */
1073 #define BP_GDB                0x10
1074 #define BP_CPU                0x20
1075 #define BP_ANY                (BP_GDB | BP_CPU)
1076 #define BP_HIT_SHIFT          6
1077 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1078 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1079 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1080 
1081 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1082                           CPUBreakpoint **breakpoint);
1083 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1084 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1085 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1086 
1087 /* Return true if PC matches an installed breakpoint.  */
1088 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1089 {
1090     CPUBreakpoint *bp;
1091 
1092     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1093         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1094             if (bp->pc == pc && (bp->flags & mask)) {
1095                 return true;
1096             }
1097         }
1098     }
1099     return false;
1100 }
1101 
1102 /**
1103  * cpu_get_address_space:
1104  * @cpu: CPU to get address space from
1105  * @asidx: index identifying which address space to get
1106  *
1107  * Return the requested address space of this CPU. @asidx
1108  * specifies which address space to read.
1109  */
1110 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1111 
1112 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1113     G_GNUC_PRINTF(2, 3);
1114 
1115 /* $(top_srcdir)/cpu.c */
1116 void cpu_class_init_props(DeviceClass *dc);
1117 void cpu_exec_class_post_init(CPUClass *cc);
1118 void cpu_exec_initfn(CPUState *cpu);
1119 void cpu_vmstate_register(CPUState *cpu);
1120 void cpu_vmstate_unregister(CPUState *cpu);
1121 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1122 void cpu_exec_unrealizefn(CPUState *cpu);
1123 void cpu_exec_reset_hold(CPUState *cpu);
1124 
1125 const char *target_name(void);
1126 
1127 #ifdef COMPILING_PER_TARGET
1128 
1129 extern const VMStateDescription vmstate_cpu_common;
1130 
1131 #define VMSTATE_CPU() {                                                     \
1132     .name = "parent_obj",                                                   \
1133     .size = sizeof(CPUState),                                               \
1134     .vmsd = &vmstate_cpu_common,                                            \
1135     .flags = VMS_STRUCT,                                                    \
1136     .offset = 0,                                                            \
1137 }
1138 
1139 #endif /* COMPILING_PER_TARGET */
1140 
1141 #define UNASSIGNED_CPU_INDEX -1
1142 #define UNASSIGNED_CLUSTER_INDEX -1
1143 
1144 #endif
1145