xref: /qemu/include/hw/core/cpu.h (revision 70ce076fa6dff60585c229a4b641b13e64bf03cf)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39 
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41                                      void *opaque);
42 
43 /**
44  * SECTION:cpu
45  * @section_id: QEMU-cpu
46  * @title: CPU Class
47  * @short_description: Base class for all CPUs
48  */
49 
50 #define TYPE_CPU "cpu"
51 
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54  * an unchecked cast.
55  */
56 #define CPU(obj) ((CPUState *)(obj))
57 
58 /*
59  * The class checkers bring in CPU_GET_CLASS() which is potentially
60  * expensive given the eventual call to
61  * object_class_dynamic_cast_assert(). Because of this the CPUState
62  * has a cached value for the class in cs->cc which is set up in
63  * cpu_exec_realizefn() for use in hot code paths.
64  */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 /**
70  * OBJECT_DECLARE_CPU_TYPE:
71  * @CpuInstanceType: instance struct name
72  * @CpuClassType: class struct name
73  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74  *
75  * This macro is typically used in "cpu-qom.h" header file, and will:
76  *
77  *   - create the typedefs for the CPU object and class structs
78  *   - register the type for use with g_autoptr
79  *   - provide three standard type cast functions
80  *
81  * The object struct and class struct need to be declared manually.
82  */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84     typedef struct ArchCPU CpuInstanceType; \
85     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86 
87 typedef struct CPUWatchpoint CPUWatchpoint;
88 
89 /* see physmem.c */
90 struct CPUAddressSpace;
91 
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94 
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97 
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100 
101 /**
102  * CPUClass:
103  * @class_by_name: Callback to map -cpu command line model name to an
104  *                 instantiatable CPU type.
105  * @parse_features: Callback to parse command line arguments.
106  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
107  * @has_work: Callback for checking if there is work to do.
108  * @mmu_index: Callback for choosing softmmu mmu index;
109  *       may be used internally by memory_rw_debug without TCG.
110  * @memory_rw_debug: Callback for GDB memory access.
111  * @dump_state: Callback for dumping state.
112  * @query_cpu_fast:
113  *       Fill in target specific information for the "query-cpus-fast"
114  *       QAPI call.
115  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
116  * @set_pc: Callback for setting the Program Counter register. This
117  *       should have the semantics used by the target architecture when
118  *       setting the PC from a source such as an ELF file entry point;
119  *       for example on Arm it will also set the Thumb mode bit based
120  *       on the least significant bit of the new PC value.
121  *       If the target behaviour here is anything other than "set
122  *       the PC register to the value passed in" then the target must
123  *       also implement the synchronize_from_tb hook.
124  * @get_pc: Callback for getting the Program Counter register.
125  *       As above, with the semantics of the target architecture.
126  * @gdb_read_register: Callback for letting GDB read a register.
127  * @gdb_write_register: Callback for letting GDB write a register.
128  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
129  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
130  *       its Harvard architecture split code and data.
131  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
132  *                     from @gdb_core_xml_file.
133  * @gdb_core_xml_file: File name for core registers GDB XML description.
134  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
135  *           before the insn which triggers a watchpoint rather than after it.
136  * @gdb_arch_name: Optional callback that returns the architecture name known
137  * to GDB. The caller must free the returned string with g_free.
138  * @disas_set_info: Setup architecture specific components of disassembly info
139  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
140  * address before attempting to match it against watchpoints.
141  * @deprecation_note: If this CPUClass is deprecated, this field provides
142  *                    related information.
143  *
144  * Represents a CPU family or model.
145  */
146 struct CPUClass {
147     /*< private >*/
148     DeviceClass parent_class;
149     /*< public >*/
150 
151     ObjectClass *(*class_by_name)(const char *cpu_model);
152     void (*parse_features)(const char *typename, char *str, Error **errp);
153 
154     bool (*has_work)(CPUState *cpu);
155     int (*mmu_index)(CPUState *cpu, bool ifetch);
156     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
157                            uint8_t *buf, int len, bool is_write);
158     void (*dump_state)(CPUState *cpu, FILE *, int flags);
159     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
160     int64_t (*get_arch_id)(CPUState *cpu);
161     void (*set_pc)(CPUState *cpu, vaddr value);
162     vaddr (*get_pc)(CPUState *cpu);
163     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
164     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
165     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
166 
167     const char *gdb_core_xml_file;
168     const gchar * (*gdb_arch_name)(CPUState *cpu);
169 
170     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
171 
172     const char *deprecation_note;
173     struct AccelCPUClass *accel_cpu;
174 
175     /* when system emulation is not available, this pointer is NULL */
176     const struct SysemuCPUOps *sysemu_ops;
177 
178     /* when TCG is not available, this pointer is NULL */
179     const TCGCPUOps *tcg_ops;
180 
181     /*
182      * if not NULL, this is called in order for the CPUClass to initialize
183      * class data that depends on the accelerator, see accel/accel-common.c.
184      */
185     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
186 
187     /*
188      * Keep non-pointer data at the end to minimize holes.
189      */
190     int reset_dump_flags;
191     int gdb_num_core_regs;
192     bool gdb_stop_before_watchpoint;
193 };
194 
195 /*
196  * Fix the number of mmu modes to 16, which is also the maximum
197  * supported by the softmmu tlb api.
198  */
199 #define NB_MMU_MODES 16
200 
201 /* Use a fully associative victim tlb of 8 entries. */
202 #define CPU_VTLB_SIZE 8
203 
204 /*
205  * The full TLB entry, which is not accessed by generated TCG code,
206  * so the layout is not as critical as that of CPUTLBEntry. This is
207  * also why we don't want to combine the two structs.
208  */
209 struct CPUTLBEntryFull {
210     /*
211      * @xlat_section contains:
212      *  - in the lower TARGET_PAGE_BITS, a physical section number
213      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
214      *    must be added to the virtual address to obtain:
215      *     + the ram_addr_t of the target RAM (if the physical section
216      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
217      *     + the offset within the target MemoryRegion (otherwise)
218      */
219     hwaddr xlat_section;
220 
221     /*
222      * @phys_addr contains the physical address in the address space
223      * given by cpu_asidx_from_attrs(cpu, @attrs).
224      */
225     hwaddr phys_addr;
226 
227     /* @attrs contains the memory transaction attributes for the page. */
228     MemTxAttrs attrs;
229 
230     /* @prot contains the complete protections for the page. */
231     uint8_t prot;
232 
233     /* @lg_page_size contains the log2 of the page size. */
234     uint8_t lg_page_size;
235 
236     /* Additional tlb flags requested by tlb_fill. */
237     uint8_t tlb_fill_flags;
238 
239     /*
240      * Additional tlb flags for use by the slow path. If non-zero,
241      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
242      */
243     uint8_t slow_flags[MMU_ACCESS_COUNT];
244 
245     /*
246      * Allow target-specific additions to this structure.
247      * This may be used to cache items from the guest cpu
248      * page tables for later use by the implementation.
249      */
250     union {
251         /*
252          * Cache the attrs and shareability fields from the page table entry.
253          *
254          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
255          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
256          * For shareability and guarded, as in the SH and GP fields respectively
257          * of the VMSAv8-64 PTEs.
258          */
259         struct {
260             uint8_t pte_attrs;
261             uint8_t shareability;
262             bool guarded;
263         } arm;
264     } extra;
265 };
266 
267 /*
268  * Data elements that are per MMU mode, minus the bits accessed by
269  * the TCG fast path.
270  */
271 typedef struct CPUTLBDesc {
272     /*
273      * Describe a region covering all of the large pages allocated
274      * into the tlb.  When any page within this region is flushed,
275      * we must flush the entire tlb.  The region is matched if
276      * (addr & large_page_mask) == large_page_addr.
277      */
278     vaddr large_page_addr;
279     vaddr large_page_mask;
280     /* host time (in ns) at the beginning of the time window */
281     int64_t window_begin_ns;
282     /* maximum number of entries observed in the window */
283     size_t window_max_entries;
284     size_t n_used_entries;
285     /* The next index to use in the tlb victim table.  */
286     size_t vindex;
287     /* The tlb victim table, in two parts.  */
288     CPUTLBEntry vtable[CPU_VTLB_SIZE];
289     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
290     CPUTLBEntryFull *fulltlb;
291 } CPUTLBDesc;
292 
293 /*
294  * Data elements that are shared between all MMU modes.
295  */
296 typedef struct CPUTLBCommon {
297     /* Serialize updates to f.table and d.vtable, and others as noted. */
298     QemuSpin lock;
299     /*
300      * Within dirty, for each bit N, modifications have been made to
301      * mmu_idx N since the last time that mmu_idx was flushed.
302      * Protected by tlb_c.lock.
303      */
304     uint16_t dirty;
305     /*
306      * Statistics.  These are not lock protected, but are read and
307      * written atomically.  This allows the monitor to print a snapshot
308      * of the stats without interfering with the cpu.
309      */
310     size_t full_flush_count;
311     size_t part_flush_count;
312     size_t elide_flush_count;
313 } CPUTLBCommon;
314 
315 /*
316  * The entire softmmu tlb, for all MMU modes.
317  * The meaning of each of the MMU modes is defined in the target code.
318  * Since this is placed within CPUNegativeOffsetState, the smallest
319  * negative offsets are at the end of the struct.
320  */
321 typedef struct CPUTLB {
322 #ifdef CONFIG_TCG
323     CPUTLBCommon c;
324     CPUTLBDesc d[NB_MMU_MODES];
325     CPUTLBDescFast f[NB_MMU_MODES];
326 #endif
327 } CPUTLB;
328 
329 /*
330  * Low 16 bits: number of cycles left, used only in icount mode.
331  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
332  * for this CPU and return to its top level loop (even in non-icount mode).
333  * This allows a single read-compare-cbranch-write sequence to test
334  * for both decrementer underflow and exceptions.
335  */
336 typedef union IcountDecr {
337     uint32_t u32;
338     struct {
339 #if HOST_BIG_ENDIAN
340         uint16_t high;
341         uint16_t low;
342 #else
343         uint16_t low;
344         uint16_t high;
345 #endif
346     } u16;
347 } IcountDecr;
348 
349 /**
350  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
351  *                         from CPUArchState, via small negative offsets.
352  * @can_do_io: True if memory-mapped IO is allowed.
353  * @plugin_mem_cbs: active plugin memory callbacks
354  * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
355  * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
356  */
357 typedef struct CPUNegativeOffsetState {
358     CPUTLB tlb;
359 #ifdef CONFIG_PLUGIN
360     /*
361      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
362      */
363     GArray *plugin_mem_cbs;
364     uint64_t plugin_mem_value_low;
365     uint64_t plugin_mem_value_high;
366 #endif
367     IcountDecr icount_decr;
368     bool can_do_io;
369 } CPUNegativeOffsetState;
370 
371 struct KVMState;
372 struct kvm_run;
373 
374 /* work queue */
375 
376 /* The union type allows passing of 64 bit target pointers on 32 bit
377  * hosts in a single parameter
378  */
379 typedef union {
380     int           host_int;
381     unsigned long host_ulong;
382     void         *host_ptr;
383     vaddr         target_ptr;
384 } run_on_cpu_data;
385 
386 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
387 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
388 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
389 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
390 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
391 
392 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
393 
394 struct qemu_work_item;
395 
396 #define CPU_UNSET_NUMA_NODE_ID -1
397 
398 /**
399  * struct CPUState - common state of one CPU core or thread.
400  *
401  * @cpu_index: CPU index (informative).
402  * @cluster_index: Identifies which cluster this CPU is in.
403  *   For boards which don't define clusters or for "loose" CPUs not assigned
404  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
405  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
406  *   QOM parent.
407  *   Under TCG this value is propagated to @tcg_cflags.
408  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
409  * @tcg_cflags: Pre-computed cflags for this cpu.
410  * @nr_threads: Number of threads within this CPU core.
411  * @thread: Host thread details, only live once @created is #true
412  * @sem: WIN32 only semaphore used only for qtest
413  * @thread_id: native thread id of vCPU, only live once @created is #true
414  * @running: #true if CPU is currently running (lockless).
415  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
416  * valid under cpu_list_lock.
417  * @created: Indicates whether the CPU thread has been successfully created.
418  * @halt_cond: condition variable sleeping threads can wait on.
419  * @interrupt_request: Indicates a pending interrupt request.
420  * @halted: Nonzero if the CPU is in suspended state.
421  * @stop: Indicates a pending stop request.
422  * @stopped: Indicates the CPU has been artificially stopped.
423  * @unplug: Indicates a pending CPU unplug request.
424  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
425  * @singlestep_enabled: Flags for single-stepping.
426  * @icount_extra: Instructions until next timer event.
427  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
428  *            AddressSpaces this CPU has)
429  * @num_ases: number of CPUAddressSpaces in @cpu_ases
430  * @as: Pointer to the first AddressSpace, for the convenience of targets which
431  *      only have a single AddressSpace
432  * @gdb_regs: Additional GDB registers.
433  * @gdb_num_regs: Number of total registers accessible to GDB.
434  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
435  * @node: QTAILQ of CPUs sharing TB cache.
436  * @opaque: User data.
437  * @mem_io_pc: Host Program Counter at which the memory was accessed.
438  * @accel: Pointer to accelerator specific state.
439  * @kvm_fd: vCPU file descriptor for KVM.
440  * @work_mutex: Lock to prevent multiple access to @work_list.
441  * @work_list: List of pending asynchronous work.
442  * @plugin_state: per-CPU plugin state
443  * @ignore_memory_transaction_failures: Cached copy of the MachineState
444  *    flag of the same name: allows the board to suppress calling of the
445  *    CPU do_transaction_failed hook function.
446  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
447  *    ring is enabled.
448  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
449  *    dirty ring structure.
450  *
451  * @neg_align: The CPUState is the common part of a concrete ArchCPU
452  * which is allocated when an individual CPU instance is created. As
453  * such care is taken is ensure there is no gap between between
454  * CPUState and CPUArchState within ArchCPU.
455  *
456  * @neg: The architectural register state ("cpu_env") immediately follows
457  * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
458  * some common TCG CPU variables which are accessed with a negative offset
459  * from cpu_env.
460  */
461 struct CPUState {
462     /*< private >*/
463     DeviceState parent_obj;
464     /* cache to avoid expensive CPU_GET_CLASS */
465     CPUClass *cc;
466     /*< public >*/
467 
468     int nr_threads;
469 
470     struct QemuThread *thread;
471 #ifdef _WIN32
472     QemuSemaphore sem;
473 #endif
474     int thread_id;
475     bool running, has_waiter;
476     struct QemuCond *halt_cond;
477     bool thread_kicked;
478     bool created;
479     bool stop;
480     bool stopped;
481 
482     /* Should CPU start in powered-off state? */
483     bool start_powered_off;
484 
485     bool unplug;
486     bool crash_occurred;
487     bool exit_request;
488     int exclusive_context_count;
489     uint32_t cflags_next_tb;
490     /* updates protected by BQL */
491     uint32_t interrupt_request;
492     int singlestep_enabled;
493     int64_t icount_budget;
494     int64_t icount_extra;
495     uint64_t random_seed;
496     sigjmp_buf jmp_env;
497 
498     QemuMutex work_mutex;
499     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
500 
501     struct CPUAddressSpace *cpu_ases;
502     int cpu_ases_count;
503     int num_ases;
504     AddressSpace *as;
505     MemoryRegion *memory;
506 
507     struct CPUJumpCache *tb_jmp_cache;
508 
509     GArray *gdb_regs;
510     int gdb_num_regs;
511     int gdb_num_g_regs;
512     QTAILQ_ENTRY(CPUState) node;
513 
514     /* ice debug support */
515     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
516 
517     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
518     CPUWatchpoint *watchpoint_hit;
519 
520     void *opaque;
521 
522     /* In order to avoid passing too many arguments to the MMIO helpers,
523      * we store some rarely used information in the CPU context.
524      */
525     uintptr_t mem_io_pc;
526 
527     /* Only used in KVM */
528     int kvm_fd;
529     struct KVMState *kvm_state;
530     struct kvm_run *kvm_run;
531     struct kvm_dirty_gfn *kvm_dirty_gfns;
532     uint32_t kvm_fetch_index;
533     uint64_t dirty_pages;
534     int kvm_vcpu_stats_fd;
535     bool vcpu_dirty;
536 
537     /* Use by accel-block: CPU is executing an ioctl() */
538     QemuLockCnt in_ioctl_lock;
539 
540 #ifdef CONFIG_PLUGIN
541     CPUPluginState *plugin_state;
542 #endif
543 
544     /* TODO Move common fields from CPUArchState here. */
545     int cpu_index;
546     int cluster_index;
547     uint32_t tcg_cflags;
548     uint32_t halted;
549     int32_t exception_index;
550 
551     AccelCPUState *accel;
552 
553     /* Used to keep track of an outstanding cpu throttle thread for migration
554      * autoconverge
555      */
556     bool throttle_thread_scheduled;
557 
558     /*
559      * Sleep throttle_us_per_full microseconds once dirty ring is full
560      * if dirty page rate limit is enabled.
561      */
562     int64_t throttle_us_per_full;
563 
564     bool ignore_memory_transaction_failures;
565 
566     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
567     bool prctl_unalign_sigbus;
568 
569     /* track IOMMUs whose translations we've cached in the TCG TLB */
570     GArray *iommu_notifiers;
571 
572     /*
573      * MUST BE LAST in order to minimize the displacement to CPUArchState.
574      */
575     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
576     CPUNegativeOffsetState neg;
577 };
578 
579 /* Validate placement of CPUNegativeOffsetState. */
580 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
581                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
582 
583 static inline CPUArchState *cpu_env(CPUState *cpu)
584 {
585     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
586     return (CPUArchState *)(cpu + 1);
587 }
588 
589 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
590 extern CPUTailQ cpus_queue;
591 
592 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
593 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
594 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
595 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
596     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
597 
598 extern __thread CPUState *current_cpu;
599 
600 /**
601  * qemu_tcg_mttcg_enabled:
602  * Check whether we are running MultiThread TCG or not.
603  *
604  * Returns: %true if we are in MTTCG mode %false otherwise.
605  */
606 extern bool mttcg_enabled;
607 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
608 
609 /**
610  * cpu_paging_enabled:
611  * @cpu: The CPU whose state is to be inspected.
612  *
613  * Returns: %true if paging is enabled, %false otherwise.
614  */
615 bool cpu_paging_enabled(const CPUState *cpu);
616 
617 /**
618  * cpu_get_memory_mapping:
619  * @cpu: The CPU whose memory mappings are to be obtained.
620  * @list: Where to write the memory mappings to.
621  * @errp: Pointer for reporting an #Error.
622  *
623  * Returns: %true on success, %false otherwise.
624  */
625 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
626                             Error **errp);
627 
628 #if !defined(CONFIG_USER_ONLY)
629 
630 /**
631  * cpu_write_elf64_note:
632  * @f: pointer to a function that writes memory to a file
633  * @cpu: The CPU whose memory is to be dumped
634  * @cpuid: ID number of the CPU
635  * @opaque: pointer to the CPUState struct
636  */
637 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
638                          int cpuid, void *opaque);
639 
640 /**
641  * cpu_write_elf64_qemunote:
642  * @f: pointer to a function that writes memory to a file
643  * @cpu: The CPU whose memory is to be dumped
644  * @cpuid: ID number of the CPU
645  * @opaque: pointer to the CPUState struct
646  */
647 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
648                              void *opaque);
649 
650 /**
651  * cpu_write_elf32_note:
652  * @f: pointer to a function that writes memory to a file
653  * @cpu: The CPU whose memory is to be dumped
654  * @cpuid: ID number of the CPU
655  * @opaque: pointer to the CPUState struct
656  */
657 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
658                          int cpuid, void *opaque);
659 
660 /**
661  * cpu_write_elf32_qemunote:
662  * @f: pointer to a function that writes memory to a file
663  * @cpu: The CPU whose memory is to be dumped
664  * @cpuid: ID number of the CPU
665  * @opaque: pointer to the CPUState struct
666  */
667 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
668                              void *opaque);
669 
670 /**
671  * cpu_get_crash_info:
672  * @cpu: The CPU to get crash information for
673  *
674  * Gets the previously saved crash information.
675  * Caller is responsible for freeing the data.
676  */
677 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
678 
679 #endif /* !CONFIG_USER_ONLY */
680 
681 /**
682  * CPUDumpFlags:
683  * @CPU_DUMP_CODE:
684  * @CPU_DUMP_FPU: dump FPU register state, not just integer
685  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
686  * @CPU_DUMP_VPU: dump VPU registers
687  */
688 enum CPUDumpFlags {
689     CPU_DUMP_CODE = 0x00010000,
690     CPU_DUMP_FPU  = 0x00020000,
691     CPU_DUMP_CCOP = 0x00040000,
692     CPU_DUMP_VPU  = 0x00080000,
693 };
694 
695 /**
696  * cpu_dump_state:
697  * @cpu: The CPU whose state is to be dumped.
698  * @f: If non-null, dump to this stream, else to current print sink.
699  *
700  * Dumps CPU state.
701  */
702 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
703 
704 #ifndef CONFIG_USER_ONLY
705 /**
706  * cpu_get_phys_page_attrs_debug:
707  * @cpu: The CPU to obtain the physical page address for.
708  * @addr: The virtual address.
709  * @attrs: Updated on return with the memory transaction attributes to use
710  *         for this access.
711  *
712  * Obtains the physical page corresponding to a virtual one, together
713  * with the corresponding memory transaction attributes to use for the access.
714  * Use it only for debugging because no protection checks are done.
715  *
716  * Returns: Corresponding physical page address or -1 if no page found.
717  */
718 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
719                                      MemTxAttrs *attrs);
720 
721 /**
722  * cpu_get_phys_page_debug:
723  * @cpu: The CPU to obtain the physical page address for.
724  * @addr: The virtual address.
725  *
726  * Obtains the physical page corresponding to a virtual one.
727  * Use it only for debugging because no protection checks are done.
728  *
729  * Returns: Corresponding physical page address or -1 if no page found.
730  */
731 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
732 
733 /** cpu_asidx_from_attrs:
734  * @cpu: CPU
735  * @attrs: memory transaction attributes
736  *
737  * Returns the address space index specifying the CPU AddressSpace
738  * to use for a memory access with the given transaction attributes.
739  */
740 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
741 
742 /**
743  * cpu_virtio_is_big_endian:
744  * @cpu: CPU
745 
746  * Returns %true if a CPU which supports runtime configurable endianness
747  * is currently big-endian.
748  */
749 bool cpu_virtio_is_big_endian(CPUState *cpu);
750 
751 #endif /* CONFIG_USER_ONLY */
752 
753 /**
754  * cpu_list_add:
755  * @cpu: The CPU to be added to the list of CPUs.
756  */
757 void cpu_list_add(CPUState *cpu);
758 
759 /**
760  * cpu_list_remove:
761  * @cpu: The CPU to be removed from the list of CPUs.
762  */
763 void cpu_list_remove(CPUState *cpu);
764 
765 /**
766  * cpu_reset:
767  * @cpu: The CPU whose state is to be reset.
768  */
769 void cpu_reset(CPUState *cpu);
770 
771 /**
772  * cpu_class_by_name:
773  * @typename: The CPU base type.
774  * @cpu_model: The model string without any parameters.
775  *
776  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
777  *
778  * Returns: A concrete #CPUClass or %NULL if no matching class is found
779  *          or if the matching class is abstract.
780  */
781 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
782 
783 /**
784  * cpu_model_from_type:
785  * @typename: The CPU type name
786  *
787  * Extract the CPU model name from the CPU type name. The
788  * CPU type name is either the combination of the CPU model
789  * name and suffix, or same to the CPU model name.
790  *
791  * Returns: CPU model name or NULL if the CPU class doesn't exist
792  *          The user should g_free() the string once no longer needed.
793  */
794 char *cpu_model_from_type(const char *typename);
795 
796 /**
797  * cpu_create:
798  * @typename: The CPU type.
799  *
800  * Instantiates a CPU and realizes the CPU.
801  *
802  * Returns: A #CPUState or %NULL if an error occurred.
803  */
804 CPUState *cpu_create(const char *typename);
805 
806 /**
807  * parse_cpu_option:
808  * @cpu_option: The -cpu option including optional parameters.
809  *
810  * processes optional parameters and registers them as global properties
811  *
812  * Returns: type of CPU to create or prints error and terminates process
813  *          if an error occurred.
814  */
815 const char *parse_cpu_option(const char *cpu_option);
816 
817 /**
818  * cpu_has_work:
819  * @cpu: The vCPU to check.
820  *
821  * Checks whether the CPU has work to do.
822  *
823  * Returns: %true if the CPU has work, %false otherwise.
824  */
825 static inline bool cpu_has_work(CPUState *cpu)
826 {
827     CPUClass *cc = CPU_GET_CLASS(cpu);
828 
829     g_assert(cc->has_work);
830     return cc->has_work(cpu);
831 }
832 
833 /**
834  * qemu_cpu_is_self:
835  * @cpu: The vCPU to check against.
836  *
837  * Checks whether the caller is executing on the vCPU thread.
838  *
839  * Returns: %true if called from @cpu's thread, %false otherwise.
840  */
841 bool qemu_cpu_is_self(CPUState *cpu);
842 
843 /**
844  * qemu_cpu_kick:
845  * @cpu: The vCPU to kick.
846  *
847  * Kicks @cpu's thread.
848  */
849 void qemu_cpu_kick(CPUState *cpu);
850 
851 /**
852  * cpu_is_stopped:
853  * @cpu: The CPU to check.
854  *
855  * Checks whether the CPU is stopped.
856  *
857  * Returns: %true if run state is not running or if artificially stopped;
858  * %false otherwise.
859  */
860 bool cpu_is_stopped(CPUState *cpu);
861 
862 /**
863  * do_run_on_cpu:
864  * @cpu: The vCPU to run on.
865  * @func: The function to be executed.
866  * @data: Data to pass to the function.
867  * @mutex: Mutex to release while waiting for @func to run.
868  *
869  * Used internally in the implementation of run_on_cpu.
870  */
871 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
872                    QemuMutex *mutex);
873 
874 /**
875  * run_on_cpu:
876  * @cpu: The vCPU to run on.
877  * @func: The function to be executed.
878  * @data: Data to pass to the function.
879  *
880  * Schedules the function @func for execution on the vCPU @cpu.
881  */
882 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
883 
884 /**
885  * async_run_on_cpu:
886  * @cpu: The vCPU to run on.
887  * @func: The function to be executed.
888  * @data: Data to pass to the function.
889  *
890  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
891  */
892 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
893 
894 /**
895  * async_safe_run_on_cpu:
896  * @cpu: The vCPU to run on.
897  * @func: The function to be executed.
898  * @data: Data to pass to the function.
899  *
900  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
901  * while all other vCPUs are sleeping.
902  *
903  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
904  * BQL.
905  */
906 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
907 
908 /**
909  * cpu_in_exclusive_context()
910  * @cpu: The vCPU to check
911  *
912  * Returns true if @cpu is an exclusive context, for example running
913  * something which has previously been queued via async_safe_run_on_cpu().
914  */
915 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
916 {
917     return cpu->exclusive_context_count;
918 }
919 
920 /**
921  * qemu_get_cpu:
922  * @index: The CPUState@cpu_index value of the CPU to obtain.
923  *
924  * Gets a CPU matching @index.
925  *
926  * Returns: The CPU or %NULL if there is no matching CPU.
927  */
928 CPUState *qemu_get_cpu(int index);
929 
930 /**
931  * cpu_exists:
932  * @id: Guest-exposed CPU ID to lookup.
933  *
934  * Search for CPU with specified ID.
935  *
936  * Returns: %true - CPU is found, %false - CPU isn't found.
937  */
938 bool cpu_exists(int64_t id);
939 
940 /**
941  * cpu_by_arch_id:
942  * @id: Guest-exposed CPU ID of the CPU to obtain.
943  *
944  * Get a CPU with matching @id.
945  *
946  * Returns: The CPU or %NULL if there is no matching CPU.
947  */
948 CPUState *cpu_by_arch_id(int64_t id);
949 
950 /**
951  * cpu_interrupt:
952  * @cpu: The CPU to set an interrupt on.
953  * @mask: The interrupts to set.
954  *
955  * Invokes the interrupt handler.
956  */
957 
958 void cpu_interrupt(CPUState *cpu, int mask);
959 
960 /**
961  * cpu_set_pc:
962  * @cpu: The CPU to set the program counter for.
963  * @addr: Program counter value.
964  *
965  * Sets the program counter for a CPU.
966  */
967 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
968 {
969     CPUClass *cc = CPU_GET_CLASS(cpu);
970 
971     cc->set_pc(cpu, addr);
972 }
973 
974 /**
975  * cpu_reset_interrupt:
976  * @cpu: The CPU to clear the interrupt on.
977  * @mask: The interrupt mask to clear.
978  *
979  * Resets interrupts on the vCPU @cpu.
980  */
981 void cpu_reset_interrupt(CPUState *cpu, int mask);
982 
983 /**
984  * cpu_exit:
985  * @cpu: The CPU to exit.
986  *
987  * Requests the CPU @cpu to exit execution.
988  */
989 void cpu_exit(CPUState *cpu);
990 
991 /**
992  * cpu_pause:
993  * @cpu: The CPU to pause.
994  *
995  * Pauses CPU, i.e. puts CPU into stopped state.
996  */
997 void cpu_pause(CPUState *cpu);
998 
999 /**
1000  * cpu_resume:
1001  * @cpu: The CPU to resume.
1002  *
1003  * Resumes CPU, i.e. puts CPU into runnable state.
1004  */
1005 void cpu_resume(CPUState *cpu);
1006 
1007 /**
1008  * cpu_remove_sync:
1009  * @cpu: The CPU to remove.
1010  *
1011  * Requests the CPU to be removed and waits till it is removed.
1012  */
1013 void cpu_remove_sync(CPUState *cpu);
1014 
1015 /**
1016  * free_queued_cpu_work() - free all items on CPU work queue
1017  * @cpu: The CPU which work queue to free.
1018  */
1019 void free_queued_cpu_work(CPUState *cpu);
1020 
1021 /**
1022  * process_queued_cpu_work() - process all items on CPU work queue
1023  * @cpu: The CPU which work queue to process.
1024  */
1025 void process_queued_cpu_work(CPUState *cpu);
1026 
1027 /**
1028  * cpu_exec_start:
1029  * @cpu: The CPU for the current thread.
1030  *
1031  * Record that a CPU has started execution and can be interrupted with
1032  * cpu_exit.
1033  */
1034 void cpu_exec_start(CPUState *cpu);
1035 
1036 /**
1037  * cpu_exec_end:
1038  * @cpu: The CPU for the current thread.
1039  *
1040  * Record that a CPU has stopped execution and exclusive sections
1041  * can be executed without interrupting it.
1042  */
1043 void cpu_exec_end(CPUState *cpu);
1044 
1045 /**
1046  * start_exclusive:
1047  *
1048  * Wait for a concurrent exclusive section to end, and then start
1049  * a section of work that is run while other CPUs are not running
1050  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1051  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1052  * during the exclusive section go to sleep until this CPU calls
1053  * end_exclusive.
1054  */
1055 void start_exclusive(void);
1056 
1057 /**
1058  * end_exclusive:
1059  *
1060  * Concludes an exclusive execution section started by start_exclusive.
1061  */
1062 void end_exclusive(void);
1063 
1064 /**
1065  * qemu_init_vcpu:
1066  * @cpu: The vCPU to initialize.
1067  *
1068  * Initializes a vCPU.
1069  */
1070 void qemu_init_vcpu(CPUState *cpu);
1071 
1072 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1073 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1074 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1075 
1076 /**
1077  * cpu_single_step:
1078  * @cpu: CPU to the flags for.
1079  * @enabled: Flags to enable.
1080  *
1081  * Enables or disables single-stepping for @cpu.
1082  */
1083 void cpu_single_step(CPUState *cpu, int enabled);
1084 
1085 /* Breakpoint/watchpoint flags */
1086 #define BP_MEM_READ           0x01
1087 #define BP_MEM_WRITE          0x02
1088 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1089 #define BP_STOP_BEFORE_ACCESS 0x04
1090 /* 0x08 currently unused */
1091 #define BP_GDB                0x10
1092 #define BP_CPU                0x20
1093 #define BP_ANY                (BP_GDB | BP_CPU)
1094 #define BP_HIT_SHIFT          6
1095 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1096 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1097 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1098 
1099 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1100                           CPUBreakpoint **breakpoint);
1101 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1102 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1103 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1104 
1105 /* Return true if PC matches an installed breakpoint.  */
1106 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1107 {
1108     CPUBreakpoint *bp;
1109 
1110     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1111         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1112             if (bp->pc == pc && (bp->flags & mask)) {
1113                 return true;
1114             }
1115         }
1116     }
1117     return false;
1118 }
1119 
1120 #if defined(CONFIG_USER_ONLY)
1121 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1122                                         int flags, CPUWatchpoint **watchpoint)
1123 {
1124     return -ENOSYS;
1125 }
1126 
1127 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1128                                         vaddr len, int flags)
1129 {
1130     return -ENOSYS;
1131 }
1132 
1133 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1134                                                 CPUWatchpoint *wp)
1135 {
1136 }
1137 
1138 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1139 {
1140 }
1141 #else
1142 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1143                           int flags, CPUWatchpoint **watchpoint);
1144 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1145                           vaddr len, int flags);
1146 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1147 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1148 #endif
1149 
1150 /**
1151  * cpu_get_address_space:
1152  * @cpu: CPU to get address space from
1153  * @asidx: index identifying which address space to get
1154  *
1155  * Return the requested address space of this CPU. @asidx
1156  * specifies which address space to read.
1157  */
1158 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1159 
1160 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1161     G_GNUC_PRINTF(2, 3);
1162 
1163 /* $(top_srcdir)/cpu.c */
1164 void cpu_class_init_props(DeviceClass *dc);
1165 void cpu_exec_initfn(CPUState *cpu);
1166 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1167 void cpu_exec_unrealizefn(CPUState *cpu);
1168 void cpu_exec_reset_hold(CPUState *cpu);
1169 
1170 const char *target_name(void);
1171 
1172 #ifdef COMPILING_PER_TARGET
1173 
1174 #ifndef CONFIG_USER_ONLY
1175 
1176 extern const VMStateDescription vmstate_cpu_common;
1177 
1178 #define VMSTATE_CPU() {                                                     \
1179     .name = "parent_obj",                                                   \
1180     .size = sizeof(CPUState),                                               \
1181     .vmsd = &vmstate_cpu_common,                                            \
1182     .flags = VMS_STRUCT,                                                    \
1183     .offset = 0,                                                            \
1184 }
1185 #endif /* !CONFIG_USER_ONLY */
1186 
1187 #endif /* COMPILING_PER_TARGET */
1188 
1189 #define UNASSIGNED_CPU_INDEX -1
1190 #define UNASSIGNED_CLUSTER_INDEX -1
1191 
1192 #endif
1193