1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/lockcnt.h" 37 #include "qemu/thread.h" 38 #include "qom/object.h" 39 40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 41 void *opaque); 42 43 /** 44 * SECTION:cpu 45 * @section_id: QEMU-cpu 46 * @title: CPU Class 47 * @short_description: Base class for all CPUs 48 */ 49 50 #define TYPE_CPU "cpu" 51 52 /* Since this macro is used a lot in hot code paths and in conjunction with 53 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 54 * an unchecked cast. 55 */ 56 #define CPU(obj) ((CPUState *)(obj)) 57 58 /* 59 * The class checkers bring in CPU_GET_CLASS() which is potentially 60 * expensive given the eventual call to 61 * object_class_dynamic_cast_assert(). Because of this the CPUState 62 * has a cached value for the class in cs->cc which is set up in 63 * cpu_exec_realizefn() for use in hot code paths. 64 */ 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 /** 70 * OBJECT_DECLARE_CPU_TYPE: 71 * @CpuInstanceType: instance struct name 72 * @CpuClassType: class struct name 73 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 74 * 75 * This macro is typically used in "cpu-qom.h" header file, and will: 76 * 77 * - create the typedefs for the CPU object and class structs 78 * - register the type for use with g_autoptr 79 * - provide three standard type cast functions 80 * 81 * The object struct and class struct need to be declared manually. 82 */ 83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 84 typedef struct ArchCPU CpuInstanceType; \ 85 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 86 87 typedef struct CPUWatchpoint CPUWatchpoint; 88 89 /* see physmem.c */ 90 struct CPUAddressSpace; 91 92 /* see accel/tcg/tb-jmp-cache.h */ 93 struct CPUJumpCache; 94 95 /* see accel-cpu.h */ 96 struct AccelCPUClass; 97 98 /* see sysemu-cpu-ops.h */ 99 struct SysemuCPUOps; 100 101 /** 102 * CPUClass: 103 * @class_by_name: Callback to map -cpu command line model name to an 104 * instantiatable CPU type. 105 * @parse_features: Callback to parse command line arguments. 106 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 107 * @has_work: Callback for checking if there is work to do. 108 * @mmu_index: Callback for choosing softmmu mmu index; 109 * may be used internally by memory_rw_debug without TCG. 110 * @memory_rw_debug: Callback for GDB memory access. 111 * @dump_state: Callback for dumping state. 112 * @query_cpu_fast: 113 * Fill in target specific information for the "query-cpus-fast" 114 * QAPI call. 115 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 116 * @set_pc: Callback for setting the Program Counter register. This 117 * should have the semantics used by the target architecture when 118 * setting the PC from a source such as an ELF file entry point; 119 * for example on Arm it will also set the Thumb mode bit based 120 * on the least significant bit of the new PC value. 121 * If the target behaviour here is anything other than "set 122 * the PC register to the value passed in" then the target must 123 * also implement the synchronize_from_tb hook. 124 * @get_pc: Callback for getting the Program Counter register. 125 * As above, with the semantics of the target architecture. 126 * @gdb_read_register: Callback for letting GDB read a register. 127 * No more than @gdb_num_core_regs registers can be read. 128 * @gdb_write_register: Callback for letting GDB write a register. 129 * No more than @gdb_num_core_regs registers can be written. 130 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 131 * breakpoint. Used by AVR to handle a gdb mis-feature with 132 * its Harvard architecture split code and data. 133 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 134 * from @gdb_core_xml_file. 135 * @gdb_core_xml_file: File name for core registers GDB XML description. 136 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 137 * before the insn which triggers a watchpoint rather than after it. 138 * @gdb_arch_name: Optional callback that returns the architecture name known 139 * to GDB. The caller must free the returned string with g_free. 140 * @disas_set_info: Setup architecture specific components of disassembly info 141 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 142 * address before attempting to match it against watchpoints. 143 * @deprecation_note: If this CPUClass is deprecated, this field provides 144 * related information. 145 * 146 * Represents a CPU family or model. 147 */ 148 struct CPUClass { 149 /*< private >*/ 150 DeviceClass parent_class; 151 /*< public >*/ 152 153 ObjectClass *(*class_by_name)(const char *cpu_model); 154 void (*parse_features)(const char *typename, char *str, Error **errp); 155 156 bool (*has_work)(CPUState *cpu); 157 int (*mmu_index)(CPUState *cpu, bool ifetch); 158 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 159 uint8_t *buf, int len, bool is_write); 160 void (*dump_state)(CPUState *cpu, FILE *, int flags); 161 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 162 int64_t (*get_arch_id)(CPUState *cpu); 163 void (*set_pc)(CPUState *cpu, vaddr value); 164 vaddr (*get_pc)(CPUState *cpu); 165 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 166 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 167 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 168 169 const char *gdb_core_xml_file; 170 const gchar * (*gdb_arch_name)(CPUState *cpu); 171 172 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 173 174 const char *deprecation_note; 175 struct AccelCPUClass *accel_cpu; 176 177 /* when system emulation is not available, this pointer is NULL */ 178 const struct SysemuCPUOps *sysemu_ops; 179 180 /* when TCG is not available, this pointer is NULL */ 181 const TCGCPUOps *tcg_ops; 182 183 /* 184 * if not NULL, this is called in order for the CPUClass to initialize 185 * class data that depends on the accelerator, see accel/accel-common.c. 186 */ 187 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 188 189 /* 190 * Keep non-pointer data at the end to minimize holes. 191 */ 192 int reset_dump_flags; 193 int gdb_num_core_regs; 194 bool gdb_stop_before_watchpoint; 195 }; 196 197 /* 198 * Fix the number of mmu modes to 16, which is also the maximum 199 * supported by the softmmu tlb api. 200 */ 201 #define NB_MMU_MODES 16 202 203 /* Use a fully associative victim tlb of 8 entries. */ 204 #define CPU_VTLB_SIZE 8 205 206 /* 207 * The full TLB entry, which is not accessed by generated TCG code, 208 * so the layout is not as critical as that of CPUTLBEntry. This is 209 * also why we don't want to combine the two structs. 210 */ 211 struct CPUTLBEntryFull { 212 /* 213 * @xlat_section contains: 214 * - in the lower TARGET_PAGE_BITS, a physical section number 215 * - with the lower TARGET_PAGE_BITS masked off, an offset which 216 * must be added to the virtual address to obtain: 217 * + the ram_addr_t of the target RAM (if the physical section 218 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 219 * + the offset within the target MemoryRegion (otherwise) 220 */ 221 hwaddr xlat_section; 222 223 /* 224 * @phys_addr contains the physical address in the address space 225 * given by cpu_asidx_from_attrs(cpu, @attrs). 226 */ 227 hwaddr phys_addr; 228 229 /* @attrs contains the memory transaction attributes for the page. */ 230 MemTxAttrs attrs; 231 232 /* @prot contains the complete protections for the page. */ 233 uint8_t prot; 234 235 /* @lg_page_size contains the log2 of the page size. */ 236 uint8_t lg_page_size; 237 238 /* Additional tlb flags requested by tlb_fill. */ 239 uint8_t tlb_fill_flags; 240 241 /* 242 * Additional tlb flags for use by the slow path. If non-zero, 243 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 244 */ 245 uint8_t slow_flags[MMU_ACCESS_COUNT]; 246 247 /* 248 * Allow target-specific additions to this structure. 249 * This may be used to cache items from the guest cpu 250 * page tables for later use by the implementation. 251 */ 252 union { 253 /* 254 * Cache the attrs and shareability fields from the page table entry. 255 * 256 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 257 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 258 * For shareability and guarded, as in the SH and GP fields respectively 259 * of the VMSAv8-64 PTEs. 260 */ 261 struct { 262 uint8_t pte_attrs; 263 uint8_t shareability; 264 bool guarded; 265 } arm; 266 } extra; 267 }; 268 269 /* 270 * Data elements that are per MMU mode, minus the bits accessed by 271 * the TCG fast path. 272 */ 273 typedef struct CPUTLBDesc { 274 /* 275 * Describe a region covering all of the large pages allocated 276 * into the tlb. When any page within this region is flushed, 277 * we must flush the entire tlb. The region is matched if 278 * (addr & large_page_mask) == large_page_addr. 279 */ 280 vaddr large_page_addr; 281 vaddr large_page_mask; 282 /* host time (in ns) at the beginning of the time window */ 283 int64_t window_begin_ns; 284 /* maximum number of entries observed in the window */ 285 size_t window_max_entries; 286 size_t n_used_entries; 287 /* The next index to use in the tlb victim table. */ 288 size_t vindex; 289 /* The tlb victim table, in two parts. */ 290 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 291 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 292 CPUTLBEntryFull *fulltlb; 293 } CPUTLBDesc; 294 295 /* 296 * Data elements that are shared between all MMU modes. 297 */ 298 typedef struct CPUTLBCommon { 299 /* Serialize updates to f.table and d.vtable, and others as noted. */ 300 QemuSpin lock; 301 /* 302 * Within dirty, for each bit N, modifications have been made to 303 * mmu_idx N since the last time that mmu_idx was flushed. 304 * Protected by tlb_c.lock. 305 */ 306 uint16_t dirty; 307 /* 308 * Statistics. These are not lock protected, but are read and 309 * written atomically. This allows the monitor to print a snapshot 310 * of the stats without interfering with the cpu. 311 */ 312 size_t full_flush_count; 313 size_t part_flush_count; 314 size_t elide_flush_count; 315 } CPUTLBCommon; 316 317 /* 318 * The entire softmmu tlb, for all MMU modes. 319 * The meaning of each of the MMU modes is defined in the target code. 320 * Since this is placed within CPUNegativeOffsetState, the smallest 321 * negative offsets are at the end of the struct. 322 */ 323 typedef struct CPUTLB { 324 #ifdef CONFIG_TCG 325 CPUTLBCommon c; 326 CPUTLBDesc d[NB_MMU_MODES]; 327 CPUTLBDescFast f[NB_MMU_MODES]; 328 #endif 329 } CPUTLB; 330 331 /* 332 * Low 16 bits: number of cycles left, used only in icount mode. 333 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 334 * for this CPU and return to its top level loop (even in non-icount mode). 335 * This allows a single read-compare-cbranch-write sequence to test 336 * for both decrementer underflow and exceptions. 337 */ 338 typedef union IcountDecr { 339 uint32_t u32; 340 struct { 341 #if HOST_BIG_ENDIAN 342 uint16_t high; 343 uint16_t low; 344 #else 345 uint16_t low; 346 uint16_t high; 347 #endif 348 } u16; 349 } IcountDecr; 350 351 /** 352 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed 353 * from CPUArchState, via small negative offsets. 354 * @can_do_io: True if memory-mapped IO is allowed. 355 * @plugin_mem_cbs: active plugin memory callbacks 356 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value. 357 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value. 358 */ 359 typedef struct CPUNegativeOffsetState { 360 CPUTLB tlb; 361 #ifdef CONFIG_PLUGIN 362 /* 363 * The callback pointer are accessed via TCG (see gen_empty_mem_helper). 364 */ 365 GArray *plugin_mem_cbs; 366 uint64_t plugin_mem_value_low; 367 uint64_t plugin_mem_value_high; 368 #endif 369 IcountDecr icount_decr; 370 bool can_do_io; 371 } CPUNegativeOffsetState; 372 373 struct KVMState; 374 struct kvm_run; 375 376 /* work queue */ 377 378 /* The union type allows passing of 64 bit target pointers on 32 bit 379 * hosts in a single parameter 380 */ 381 typedef union { 382 int host_int; 383 unsigned long host_ulong; 384 void *host_ptr; 385 vaddr target_ptr; 386 } run_on_cpu_data; 387 388 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 389 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 390 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 391 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 392 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 393 394 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 395 396 struct qemu_work_item; 397 398 #define CPU_UNSET_NUMA_NODE_ID -1 399 400 /** 401 * struct CPUState - common state of one CPU core or thread. 402 * 403 * @cpu_index: CPU index (informative). 404 * @cluster_index: Identifies which cluster this CPU is in. 405 * For boards which don't define clusters or for "loose" CPUs not assigned 406 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 407 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 408 * QOM parent. 409 * Under TCG this value is propagated to @tcg_cflags. 410 * See TranslationBlock::TCG CF_CLUSTER_MASK. 411 * @tcg_cflags: Pre-computed cflags for this cpu. 412 * @nr_threads: Number of threads within this CPU core. 413 * @thread: Host thread details, only live once @created is #true 414 * @sem: WIN32 only semaphore used only for qtest 415 * @thread_id: native thread id of vCPU, only live once @created is #true 416 * @running: #true if CPU is currently running (lockless). 417 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 418 * valid under cpu_list_lock. 419 * @created: Indicates whether the CPU thread has been successfully created. 420 * @halt_cond: condition variable sleeping threads can wait on. 421 * @interrupt_request: Indicates a pending interrupt request. 422 * @halted: Nonzero if the CPU is in suspended state. 423 * @stop: Indicates a pending stop request. 424 * @stopped: Indicates the CPU has been artificially stopped. 425 * @unplug: Indicates a pending CPU unplug request. 426 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 427 * @singlestep_enabled: Flags for single-stepping. 428 * @icount_extra: Instructions until next timer event. 429 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 430 * AddressSpaces this CPU has) 431 * @num_ases: number of CPUAddressSpaces in @cpu_ases 432 * @as: Pointer to the first AddressSpace, for the convenience of targets which 433 * only have a single AddressSpace 434 * @gdb_regs: Additional GDB registers. 435 * @gdb_num_regs: Number of total registers accessible to GDB. 436 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 437 * @node: QTAILQ of CPUs sharing TB cache. 438 * @opaque: User data. 439 * @mem_io_pc: Host Program Counter at which the memory was accessed. 440 * @accel: Pointer to accelerator specific state. 441 * @kvm_fd: vCPU file descriptor for KVM. 442 * @work_mutex: Lock to prevent multiple access to @work_list. 443 * @work_list: List of pending asynchronous work. 444 * @plugin_state: per-CPU plugin state 445 * @ignore_memory_transaction_failures: Cached copy of the MachineState 446 * flag of the same name: allows the board to suppress calling of the 447 * CPU do_transaction_failed hook function. 448 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 449 * ring is enabled. 450 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 451 * dirty ring structure. 452 * 453 * @neg_align: The CPUState is the common part of a concrete ArchCPU 454 * which is allocated when an individual CPU instance is created. As 455 * such care is taken is ensure there is no gap between between 456 * CPUState and CPUArchState within ArchCPU. 457 * 458 * @neg: The architectural register state ("cpu_env") immediately follows 459 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds 460 * some common TCG CPU variables which are accessed with a negative offset 461 * from cpu_env. 462 */ 463 struct CPUState { 464 /*< private >*/ 465 DeviceState parent_obj; 466 /* cache to avoid expensive CPU_GET_CLASS */ 467 CPUClass *cc; 468 /*< public >*/ 469 470 int nr_threads; 471 472 struct QemuThread *thread; 473 #ifdef _WIN32 474 QemuSemaphore sem; 475 #endif 476 int thread_id; 477 bool running, has_waiter; 478 struct QemuCond *halt_cond; 479 bool thread_kicked; 480 bool created; 481 bool stop; 482 bool stopped; 483 484 /* Should CPU start in powered-off state? */ 485 bool start_powered_off; 486 487 bool unplug; 488 bool crash_occurred; 489 bool exit_request; 490 int exclusive_context_count; 491 uint32_t cflags_next_tb; 492 /* updates protected by BQL */ 493 uint32_t interrupt_request; 494 int singlestep_enabled; 495 int64_t icount_budget; 496 int64_t icount_extra; 497 uint64_t random_seed; 498 sigjmp_buf jmp_env; 499 500 QemuMutex work_mutex; 501 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 502 503 struct CPUAddressSpace *cpu_ases; 504 int cpu_ases_count; 505 int num_ases; 506 AddressSpace *as; 507 MemoryRegion *memory; 508 509 struct CPUJumpCache *tb_jmp_cache; 510 511 GArray *gdb_regs; 512 int gdb_num_regs; 513 int gdb_num_g_regs; 514 QTAILQ_ENTRY(CPUState) node; 515 516 /* ice debug support */ 517 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 518 519 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 520 CPUWatchpoint *watchpoint_hit; 521 522 void *opaque; 523 524 /* In order to avoid passing too many arguments to the MMIO helpers, 525 * we store some rarely used information in the CPU context. 526 */ 527 uintptr_t mem_io_pc; 528 529 /* Only used in KVM */ 530 int kvm_fd; 531 struct KVMState *kvm_state; 532 struct kvm_run *kvm_run; 533 struct kvm_dirty_gfn *kvm_dirty_gfns; 534 uint32_t kvm_fetch_index; 535 uint64_t dirty_pages; 536 int kvm_vcpu_stats_fd; 537 bool vcpu_dirty; 538 539 /* Use by accel-block: CPU is executing an ioctl() */ 540 QemuLockCnt in_ioctl_lock; 541 542 #ifdef CONFIG_PLUGIN 543 CPUPluginState *plugin_state; 544 #endif 545 546 /* TODO Move common fields from CPUArchState here. */ 547 int cpu_index; 548 int cluster_index; 549 uint32_t tcg_cflags; 550 uint32_t halted; 551 int32_t exception_index; 552 553 AccelCPUState *accel; 554 555 /* Used to keep track of an outstanding cpu throttle thread for migration 556 * autoconverge 557 */ 558 bool throttle_thread_scheduled; 559 560 /* 561 * Sleep throttle_us_per_full microseconds once dirty ring is full 562 * if dirty page rate limit is enabled. 563 */ 564 int64_t throttle_us_per_full; 565 566 bool ignore_memory_transaction_failures; 567 568 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 569 bool prctl_unalign_sigbus; 570 571 /* track IOMMUs whose translations we've cached in the TCG TLB */ 572 GArray *iommu_notifiers; 573 574 /* 575 * MUST BE LAST in order to minimize the displacement to CPUArchState. 576 */ 577 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 578 CPUNegativeOffsetState neg; 579 }; 580 581 /* Validate placement of CPUNegativeOffsetState. */ 582 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 583 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 584 585 static inline CPUArchState *cpu_env(CPUState *cpu) 586 { 587 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 588 return (CPUArchState *)(cpu + 1); 589 } 590 591 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 592 extern CPUTailQ cpus_queue; 593 594 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 595 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 596 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 597 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 598 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 599 600 extern __thread CPUState *current_cpu; 601 602 /** 603 * qemu_tcg_mttcg_enabled: 604 * Check whether we are running MultiThread TCG or not. 605 * 606 * Returns: %true if we are in MTTCG mode %false otherwise. 607 */ 608 extern bool mttcg_enabled; 609 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 610 611 /** 612 * cpu_paging_enabled: 613 * @cpu: The CPU whose state is to be inspected. 614 * 615 * Returns: %true if paging is enabled, %false otherwise. 616 */ 617 bool cpu_paging_enabled(const CPUState *cpu); 618 619 #if !defined(CONFIG_USER_ONLY) 620 621 /** 622 * cpu_get_memory_mapping: 623 * @cpu: The CPU whose memory mappings are to be obtained. 624 * @list: Where to write the memory mappings to. 625 * @errp: Pointer for reporting an #Error. 626 * 627 * Returns: %true on success, %false otherwise. 628 */ 629 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 630 Error **errp); 631 632 /** 633 * cpu_write_elf64_note: 634 * @f: pointer to a function that writes memory to a file 635 * @cpu: The CPU whose memory is to be dumped 636 * @cpuid: ID number of the CPU 637 * @opaque: pointer to the CPUState struct 638 */ 639 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 640 int cpuid, void *opaque); 641 642 /** 643 * cpu_write_elf64_qemunote: 644 * @f: pointer to a function that writes memory to a file 645 * @cpu: The CPU whose memory is to be dumped 646 * @cpuid: ID number of the CPU 647 * @opaque: pointer to the CPUState struct 648 */ 649 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 650 void *opaque); 651 652 /** 653 * cpu_write_elf32_note: 654 * @f: pointer to a function that writes memory to a file 655 * @cpu: The CPU whose memory is to be dumped 656 * @cpuid: ID number of the CPU 657 * @opaque: pointer to the CPUState struct 658 */ 659 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 660 int cpuid, void *opaque); 661 662 /** 663 * cpu_write_elf32_qemunote: 664 * @f: pointer to a function that writes memory to a file 665 * @cpu: The CPU whose memory is to be dumped 666 * @cpuid: ID number of the CPU 667 * @opaque: pointer to the CPUState struct 668 */ 669 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 670 void *opaque); 671 672 /** 673 * cpu_get_crash_info: 674 * @cpu: The CPU to get crash information for 675 * 676 * Gets the previously saved crash information. 677 * Caller is responsible for freeing the data. 678 */ 679 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 680 681 #endif /* !CONFIG_USER_ONLY */ 682 683 /** 684 * CPUDumpFlags: 685 * @CPU_DUMP_CODE: 686 * @CPU_DUMP_FPU: dump FPU register state, not just integer 687 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 688 * @CPU_DUMP_VPU: dump VPU registers 689 */ 690 enum CPUDumpFlags { 691 CPU_DUMP_CODE = 0x00010000, 692 CPU_DUMP_FPU = 0x00020000, 693 CPU_DUMP_CCOP = 0x00040000, 694 CPU_DUMP_VPU = 0x00080000, 695 }; 696 697 /** 698 * cpu_dump_state: 699 * @cpu: The CPU whose state is to be dumped. 700 * @f: If non-null, dump to this stream, else to current print sink. 701 * 702 * Dumps CPU state. 703 */ 704 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 705 706 #ifndef CONFIG_USER_ONLY 707 /** 708 * cpu_get_phys_page_attrs_debug: 709 * @cpu: The CPU to obtain the physical page address for. 710 * @addr: The virtual address. 711 * @attrs: Updated on return with the memory transaction attributes to use 712 * for this access. 713 * 714 * Obtains the physical page corresponding to a virtual one, together 715 * with the corresponding memory transaction attributes to use for the access. 716 * Use it only for debugging because no protection checks are done. 717 * 718 * Returns: Corresponding physical page address or -1 if no page found. 719 */ 720 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 721 MemTxAttrs *attrs); 722 723 /** 724 * cpu_get_phys_page_debug: 725 * @cpu: The CPU to obtain the physical page address for. 726 * @addr: The virtual address. 727 * 728 * Obtains the physical page corresponding to a virtual one. 729 * Use it only for debugging because no protection checks are done. 730 * 731 * Returns: Corresponding physical page address or -1 if no page found. 732 */ 733 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 734 735 /** cpu_asidx_from_attrs: 736 * @cpu: CPU 737 * @attrs: memory transaction attributes 738 * 739 * Returns the address space index specifying the CPU AddressSpace 740 * to use for a memory access with the given transaction attributes. 741 */ 742 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 743 744 /** 745 * cpu_virtio_is_big_endian: 746 * @cpu: CPU 747 748 * Returns %true if a CPU which supports runtime configurable endianness 749 * is currently big-endian. 750 */ 751 bool cpu_virtio_is_big_endian(CPUState *cpu); 752 753 #endif /* CONFIG_USER_ONLY */ 754 755 /** 756 * cpu_list_add: 757 * @cpu: The CPU to be added to the list of CPUs. 758 */ 759 void cpu_list_add(CPUState *cpu); 760 761 /** 762 * cpu_list_remove: 763 * @cpu: The CPU to be removed from the list of CPUs. 764 */ 765 void cpu_list_remove(CPUState *cpu); 766 767 /** 768 * cpu_reset: 769 * @cpu: The CPU whose state is to be reset. 770 */ 771 void cpu_reset(CPUState *cpu); 772 773 /** 774 * cpu_class_by_name: 775 * @typename: The CPU base type. 776 * @cpu_model: The model string without any parameters. 777 * 778 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 779 * 780 * Returns: A concrete #CPUClass or %NULL if no matching class is found 781 * or if the matching class is abstract. 782 */ 783 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 784 785 /** 786 * cpu_model_from_type: 787 * @typename: The CPU type name 788 * 789 * Extract the CPU model name from the CPU type name. The 790 * CPU type name is either the combination of the CPU model 791 * name and suffix, or same to the CPU model name. 792 * 793 * Returns: CPU model name or NULL if the CPU class doesn't exist 794 * The user should g_free() the string once no longer needed. 795 */ 796 char *cpu_model_from_type(const char *typename); 797 798 /** 799 * cpu_create: 800 * @typename: The CPU type. 801 * 802 * Instantiates a CPU and realizes the CPU. 803 * 804 * Returns: A #CPUState or %NULL if an error occurred. 805 */ 806 CPUState *cpu_create(const char *typename); 807 808 /** 809 * parse_cpu_option: 810 * @cpu_option: The -cpu option including optional parameters. 811 * 812 * processes optional parameters and registers them as global properties 813 * 814 * Returns: type of CPU to create or prints error and terminates process 815 * if an error occurred. 816 */ 817 const char *parse_cpu_option(const char *cpu_option); 818 819 /** 820 * cpu_has_work: 821 * @cpu: The vCPU to check. 822 * 823 * Checks whether the CPU has work to do. 824 * 825 * Returns: %true if the CPU has work, %false otherwise. 826 */ 827 static inline bool cpu_has_work(CPUState *cpu) 828 { 829 CPUClass *cc = CPU_GET_CLASS(cpu); 830 831 g_assert(cc->has_work); 832 return cc->has_work(cpu); 833 } 834 835 /** 836 * qemu_cpu_is_self: 837 * @cpu: The vCPU to check against. 838 * 839 * Checks whether the caller is executing on the vCPU thread. 840 * 841 * Returns: %true if called from @cpu's thread, %false otherwise. 842 */ 843 bool qemu_cpu_is_self(CPUState *cpu); 844 845 /** 846 * qemu_cpu_kick: 847 * @cpu: The vCPU to kick. 848 * 849 * Kicks @cpu's thread. 850 */ 851 void qemu_cpu_kick(CPUState *cpu); 852 853 /** 854 * cpu_is_stopped: 855 * @cpu: The CPU to check. 856 * 857 * Checks whether the CPU is stopped. 858 * 859 * Returns: %true if run state is not running or if artificially stopped; 860 * %false otherwise. 861 */ 862 bool cpu_is_stopped(CPUState *cpu); 863 864 /** 865 * do_run_on_cpu: 866 * @cpu: The vCPU to run on. 867 * @func: The function to be executed. 868 * @data: Data to pass to the function. 869 * @mutex: Mutex to release while waiting for @func to run. 870 * 871 * Used internally in the implementation of run_on_cpu. 872 */ 873 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 874 QemuMutex *mutex); 875 876 /** 877 * run_on_cpu: 878 * @cpu: The vCPU to run on. 879 * @func: The function to be executed. 880 * @data: Data to pass to the function. 881 * 882 * Schedules the function @func for execution on the vCPU @cpu. 883 */ 884 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 885 886 /** 887 * async_run_on_cpu: 888 * @cpu: The vCPU to run on. 889 * @func: The function to be executed. 890 * @data: Data to pass to the function. 891 * 892 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 893 */ 894 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 895 896 /** 897 * async_safe_run_on_cpu: 898 * @cpu: The vCPU to run on. 899 * @func: The function to be executed. 900 * @data: Data to pass to the function. 901 * 902 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 903 * while all other vCPUs are sleeping. 904 * 905 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 906 * BQL. 907 */ 908 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 909 910 /** 911 * cpu_in_exclusive_context() 912 * @cpu: The vCPU to check 913 * 914 * Returns true if @cpu is an exclusive context, for example running 915 * something which has previously been queued via async_safe_run_on_cpu(). 916 */ 917 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 918 { 919 return cpu->exclusive_context_count; 920 } 921 922 /** 923 * qemu_get_cpu: 924 * @index: The CPUState@cpu_index value of the CPU to obtain. 925 * 926 * Gets a CPU matching @index. 927 * 928 * Returns: The CPU or %NULL if there is no matching CPU. 929 */ 930 CPUState *qemu_get_cpu(int index); 931 932 /** 933 * cpu_exists: 934 * @id: Guest-exposed CPU ID to lookup. 935 * 936 * Search for CPU with specified ID. 937 * 938 * Returns: %true - CPU is found, %false - CPU isn't found. 939 */ 940 bool cpu_exists(int64_t id); 941 942 /** 943 * cpu_by_arch_id: 944 * @id: Guest-exposed CPU ID of the CPU to obtain. 945 * 946 * Get a CPU with matching @id. 947 * 948 * Returns: The CPU or %NULL if there is no matching CPU. 949 */ 950 CPUState *cpu_by_arch_id(int64_t id); 951 952 /** 953 * cpu_interrupt: 954 * @cpu: The CPU to set an interrupt on. 955 * @mask: The interrupts to set. 956 * 957 * Invokes the interrupt handler. 958 */ 959 960 void cpu_interrupt(CPUState *cpu, int mask); 961 962 /** 963 * cpu_set_pc: 964 * @cpu: The CPU to set the program counter for. 965 * @addr: Program counter value. 966 * 967 * Sets the program counter for a CPU. 968 */ 969 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 970 { 971 CPUClass *cc = CPU_GET_CLASS(cpu); 972 973 cc->set_pc(cpu, addr); 974 } 975 976 /** 977 * cpu_reset_interrupt: 978 * @cpu: The CPU to clear the interrupt on. 979 * @mask: The interrupt mask to clear. 980 * 981 * Resets interrupts on the vCPU @cpu. 982 */ 983 void cpu_reset_interrupt(CPUState *cpu, int mask); 984 985 /** 986 * cpu_exit: 987 * @cpu: The CPU to exit. 988 * 989 * Requests the CPU @cpu to exit execution. 990 */ 991 void cpu_exit(CPUState *cpu); 992 993 /** 994 * cpu_pause: 995 * @cpu: The CPU to pause. 996 * 997 * Pauses CPU, i.e. puts CPU into stopped state. 998 */ 999 void cpu_pause(CPUState *cpu); 1000 1001 /** 1002 * cpu_resume: 1003 * @cpu: The CPU to resume. 1004 * 1005 * Resumes CPU, i.e. puts CPU into runnable state. 1006 */ 1007 void cpu_resume(CPUState *cpu); 1008 1009 /** 1010 * cpu_remove_sync: 1011 * @cpu: The CPU to remove. 1012 * 1013 * Requests the CPU to be removed and waits till it is removed. 1014 */ 1015 void cpu_remove_sync(CPUState *cpu); 1016 1017 /** 1018 * free_queued_cpu_work() - free all items on CPU work queue 1019 * @cpu: The CPU which work queue to free. 1020 */ 1021 void free_queued_cpu_work(CPUState *cpu); 1022 1023 /** 1024 * process_queued_cpu_work() - process all items on CPU work queue 1025 * @cpu: The CPU which work queue to process. 1026 */ 1027 void process_queued_cpu_work(CPUState *cpu); 1028 1029 /** 1030 * cpu_exec_start: 1031 * @cpu: The CPU for the current thread. 1032 * 1033 * Record that a CPU has started execution and can be interrupted with 1034 * cpu_exit. 1035 */ 1036 void cpu_exec_start(CPUState *cpu); 1037 1038 /** 1039 * cpu_exec_end: 1040 * @cpu: The CPU for the current thread. 1041 * 1042 * Record that a CPU has stopped execution and exclusive sections 1043 * can be executed without interrupting it. 1044 */ 1045 void cpu_exec_end(CPUState *cpu); 1046 1047 /** 1048 * start_exclusive: 1049 * 1050 * Wait for a concurrent exclusive section to end, and then start 1051 * a section of work that is run while other CPUs are not running 1052 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1053 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1054 * during the exclusive section go to sleep until this CPU calls 1055 * end_exclusive. 1056 */ 1057 void start_exclusive(void); 1058 1059 /** 1060 * end_exclusive: 1061 * 1062 * Concludes an exclusive execution section started by start_exclusive. 1063 */ 1064 void end_exclusive(void); 1065 1066 /** 1067 * qemu_init_vcpu: 1068 * @cpu: The vCPU to initialize. 1069 * 1070 * Initializes a vCPU. 1071 */ 1072 void qemu_init_vcpu(CPUState *cpu); 1073 1074 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1075 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1076 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1077 1078 /** 1079 * cpu_single_step: 1080 * @cpu: CPU to the flags for. 1081 * @enabled: Flags to enable. 1082 * 1083 * Enables or disables single-stepping for @cpu. 1084 */ 1085 void cpu_single_step(CPUState *cpu, int enabled); 1086 1087 /* Breakpoint/watchpoint flags */ 1088 #define BP_MEM_READ 0x01 1089 #define BP_MEM_WRITE 0x02 1090 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1091 #define BP_STOP_BEFORE_ACCESS 0x04 1092 /* 0x08 currently unused */ 1093 #define BP_GDB 0x10 1094 #define BP_CPU 0x20 1095 #define BP_ANY (BP_GDB | BP_CPU) 1096 #define BP_HIT_SHIFT 6 1097 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1098 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1099 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1100 1101 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1102 CPUBreakpoint **breakpoint); 1103 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1104 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1105 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1106 1107 /* Return true if PC matches an installed breakpoint. */ 1108 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1109 { 1110 CPUBreakpoint *bp; 1111 1112 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1113 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1114 if (bp->pc == pc && (bp->flags & mask)) { 1115 return true; 1116 } 1117 } 1118 } 1119 return false; 1120 } 1121 1122 #if defined(CONFIG_USER_ONLY) 1123 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1124 int flags, CPUWatchpoint **watchpoint) 1125 { 1126 return -ENOSYS; 1127 } 1128 1129 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1130 vaddr len, int flags) 1131 { 1132 return -ENOSYS; 1133 } 1134 1135 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1136 CPUWatchpoint *wp) 1137 { 1138 } 1139 1140 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1141 { 1142 } 1143 #else 1144 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1145 int flags, CPUWatchpoint **watchpoint); 1146 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1147 vaddr len, int flags); 1148 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1149 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1150 #endif 1151 1152 /** 1153 * cpu_get_address_space: 1154 * @cpu: CPU to get address space from 1155 * @asidx: index identifying which address space to get 1156 * 1157 * Return the requested address space of this CPU. @asidx 1158 * specifies which address space to read. 1159 */ 1160 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1161 1162 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1163 G_GNUC_PRINTF(2, 3); 1164 1165 /* $(top_srcdir)/cpu.c */ 1166 void cpu_class_init_props(DeviceClass *dc); 1167 void cpu_exec_initfn(CPUState *cpu); 1168 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1169 void cpu_exec_unrealizefn(CPUState *cpu); 1170 void cpu_exec_reset_hold(CPUState *cpu); 1171 1172 const char *target_name(void); 1173 1174 #ifdef COMPILING_PER_TARGET 1175 1176 #ifndef CONFIG_USER_ONLY 1177 1178 extern const VMStateDescription vmstate_cpu_common; 1179 1180 #define VMSTATE_CPU() { \ 1181 .name = "parent_obj", \ 1182 .size = sizeof(CPUState), \ 1183 .vmsd = &vmstate_cpu_common, \ 1184 .flags = VMS_STRUCT, \ 1185 .offset = 0, \ 1186 } 1187 #endif /* !CONFIG_USER_ONLY */ 1188 1189 #endif /* COMPILING_PER_TARGET */ 1190 1191 #define UNASSIGNED_CPU_INDEX -1 1192 #define UNASSIGNED_CLUSTER_INDEX -1 1193 1194 #endif 1195