xref: /qemu/include/exec/cpu-common.h (revision b103cc6e74ac92f070a0e004bd84334e845c20b5)
1 /*
2  * CPU interfaces that are target independent.
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * SPDX-License-Identifier: LGPL-2.1+
7  */
8 #ifndef CPU_COMMON_H
9 #define CPU_COMMON_H
10 
11 #include "exec/vaddr.h"
12 #include "exec/hwaddr.h"
13 #include "hw/core/cpu.h"
14 #include "tcg/debug-assert.h"
15 #include "exec/page-protection.h"
16 
17 #define EXCP_INTERRUPT  0x10000 /* async interruption */
18 #define EXCP_HLT        0x10001 /* hlt instruction reached */
19 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
20 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
21 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
22 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
23 
24 void cpu_exec_init_all(void);
25 void cpu_exec_step_atomic(CPUState *cpu);
26 
27 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
28 
29 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
30 extern QemuMutex qemu_cpu_list_lock;
31 void qemu_init_cpu_list(void);
32 void cpu_list_lock(void);
33 void cpu_list_unlock(void);
34 unsigned int cpu_list_generation_id_get(void);
35 
36 int cpu_get_free_index(void);
37 
38 void tcg_iommu_init_notifier_list(CPUState *cpu);
39 void tcg_iommu_free_notifier_list(CPUState *cpu);
40 
41 enum device_endian {
42     DEVICE_NATIVE_ENDIAN,
43     DEVICE_BIG_ENDIAN,
44     DEVICE_LITTLE_ENDIAN,
45 };
46 
47 #if HOST_BIG_ENDIAN
48 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
49 #else
50 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
51 #endif
52 
53 /* address in the RAM (different from a physical address) */
54 #if defined(CONFIG_XEN_BACKEND)
55 typedef uint64_t ram_addr_t;
56 #  define RAM_ADDR_MAX UINT64_MAX
57 #  define RAM_ADDR_FMT "%" PRIx64
58 #else
59 typedef uintptr_t ram_addr_t;
60 #  define RAM_ADDR_MAX UINTPTR_MAX
61 #  define RAM_ADDR_FMT "%" PRIxPTR
62 #endif
63 
64 /* memory API */
65 
66 void qemu_ram_remap(ram_addr_t addr);
67 /* This should not be used by devices.  */
68 ram_addr_t qemu_ram_addr_from_host(void *ptr);
69 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
70 RAMBlock *qemu_ram_block_by_name(const char *name);
71 
72 /*
73  * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock.
74  *
75  * @ptr: The host pointer to translate.
76  * @round_offset: Whether to round the result offset down to a target page
77  * @offset: Will be set to the offset within the returned RAMBlock.
78  *
79  * Returns: RAMBlock (or NULL if not found)
80  *
81  * By the time this function returns, the returned pointer is not protected
82  * by RCU anymore.  If the caller is not within an RCU critical section and
83  * does not hold the BQL, it must have other means of protecting the
84  * pointer, such as a reference to the memory region that owns the RAMBlock.
85  */
86 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
87                                    ram_addr_t *offset);
88 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
89 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
90 void qemu_ram_unset_idstr(RAMBlock *block);
91 const char *qemu_ram_get_idstr(RAMBlock *rb);
92 void *qemu_ram_get_host_addr(RAMBlock *rb);
93 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
94 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
95 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
96 bool qemu_ram_is_shared(RAMBlock *rb);
97 bool qemu_ram_is_noreserve(RAMBlock *rb);
98 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
99 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
100 bool qemu_ram_is_migratable(RAMBlock *rb);
101 void qemu_ram_set_migratable(RAMBlock *rb);
102 void qemu_ram_unset_migratable(RAMBlock *rb);
103 bool qemu_ram_is_named_file(RAMBlock *rb);
104 int qemu_ram_get_fd(RAMBlock *rb);
105 
106 size_t qemu_ram_pagesize(RAMBlock *block);
107 size_t qemu_ram_pagesize_largest(void);
108 
109 /**
110  * cpu_address_space_init:
111  * @cpu: CPU to add this address space to
112  * @asidx: integer index of this address space
113  * @prefix: prefix to be used as name of address space
114  * @mr: the root memory region of address space
115  *
116  * Add the specified address space to the CPU's cpu_ases list.
117  * The address space added with @asidx 0 is the one used for the
118  * convenience pointer cpu->as.
119  * The target-specific code which registers ASes is responsible
120  * for defining what semantics address space 0, 1, 2, etc have.
121  *
122  * Before the first call to this function, the caller must set
123  * cpu->num_ases to the total number of address spaces it needs
124  * to support.
125  *
126  * Note that with KVM only one address space is supported.
127  */
128 void cpu_address_space_init(CPUState *cpu, int asidx,
129                             const char *prefix, MemoryRegion *mr);
130 /**
131  * cpu_address_space_destroy:
132  * @cpu: CPU for which address space needs to be destroyed
133  * @asidx: integer index of this address space
134  *
135  * Note that with KVM only one address space is supported.
136  */
137 void cpu_address_space_destroy(CPUState *cpu, int asidx);
138 
139 void cpu_physical_memory_rw(hwaddr addr, void *buf,
140                             hwaddr len, bool is_write);
141 static inline void cpu_physical_memory_read(hwaddr addr,
142                                             void *buf, hwaddr len)
143 {
144     cpu_physical_memory_rw(addr, buf, len, false);
145 }
146 static inline void cpu_physical_memory_write(hwaddr addr,
147                                              const void *buf, hwaddr len)
148 {
149     cpu_physical_memory_rw(addr, (void *)buf, len, true);
150 }
151 void *cpu_physical_memory_map(hwaddr addr,
152                               hwaddr *plen,
153                               bool is_write);
154 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
155                                bool is_write, hwaddr access_len);
156 
157 bool cpu_physical_memory_is_io(hwaddr phys_addr);
158 
159 /* Coalesced MMIO regions are areas where write operations can be reordered.
160  * This usually implies that write operations are side-effect free.  This allows
161  * batching which can make a major impact on performance when using
162  * virtualization.
163  */
164 void qemu_flush_coalesced_mmio_buffer(void);
165 
166 void cpu_flush_icache_range(hwaddr start, hwaddr len);
167 
168 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
169 
170 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
171 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
172 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
173                                         size_t length);
174 
175 /* Returns: 0 on success, -1 on error */
176 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
177                         void *ptr, size_t len, bool is_write);
178 
179 /* vl.c */
180 void list_cpus(void);
181 
182 #ifdef CONFIG_TCG
183 #include "qemu/atomic.h"
184 
185 /**
186  * cpu_unwind_state_data:
187  * @cpu: the cpu context
188  * @host_pc: the host pc within the translation
189  * @data: output data
190  *
191  * Attempt to load the the unwind state for a host pc occurring in
192  * translated code.  If @host_pc is not in translated code, the
193  * function returns false; otherwise @data is loaded.
194  * This is the same unwind info as given to restore_state_to_opc.
195  */
196 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
197 
198 /**
199  * cpu_restore_state:
200  * @cpu: the cpu context
201  * @host_pc: the host pc within the translation
202  * @return: true if state was restored, false otherwise
203  *
204  * Attempt to restore the state for a fault occurring in translated
205  * code. If @host_pc is not in translated code no state is
206  * restored and the function returns false.
207  */
208 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
209 
210 /**
211  * cpu_loop_exit_requested:
212  * @cpu: The CPU state to be tested
213  *
214  * Indicate if somebody asked for a return of the CPU to the main loop
215  * (e.g., via cpu_exit() or cpu_interrupt()).
216  *
217  * This is helpful for architectures that support interruptible
218  * instructions. After writing back all state to registers/memory, this
219  * call can be used to check if it makes sense to return to the main loop
220  * or to continue executing the interruptible instruction.
221  */
222 static inline bool cpu_loop_exit_requested(CPUState *cpu)
223 {
224     return (int32_t)qatomic_read(&cpu->neg.icount_decr.u32) < 0;
225 }
226 
227 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
228 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
229 #endif /* CONFIG_TCG */
230 G_NORETURN void cpu_loop_exit(CPUState *cpu);
231 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
232 
233 /* accel/tcg/cpu-exec.c */
234 int cpu_exec(CPUState *cpu);
235 
236 /**
237  * env_archcpu(env)
238  * @env: The architecture environment
239  *
240  * Return the ArchCPU associated with the environment.
241  */
242 static inline ArchCPU *env_archcpu(CPUArchState *env)
243 {
244     return (void *)env - sizeof(CPUState);
245 }
246 
247 /**
248  * env_cpu_const(env)
249  * @env: The architecture environment
250  *
251  * Return the CPUState associated with the environment.
252  */
253 static inline const CPUState *env_cpu_const(const CPUArchState *env)
254 {
255     return (void *)env - sizeof(CPUState);
256 }
257 
258 /**
259  * env_cpu(env)
260  * @env: The architecture environment
261  *
262  * Return the CPUState associated with the environment.
263  */
264 static inline CPUState *env_cpu(CPUArchState *env)
265 {
266     return (CPUState *)env_cpu_const(env);
267 }
268 
269 #endif /* CPU_COMMON_H */
270