xref: /qemu/include/accel/tcg/cpu-ops.h (revision 6ff5da16000f908140723e164d33a0b51a6c4162)
1 /*
2  * TCG CPU-specific operations
3  *
4  * Copyright 2021 SUSE LLC
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  */
9 
10 #ifndef TCG_CPU_OPS_H
11 #define TCG_CPU_OPS_H
12 
13 #include "exec/breakpoint.h"
14 #include "exec/hwaddr.h"
15 #include "exec/memattrs.h"
16 #include "exec/memop.h"
17 #include "exec/mmu-access-type.h"
18 #include "exec/vaddr.h"
19 
20 struct TCGCPUOps {
21     /**
22      * @initialize: Initialize TCG state
23      *
24      * Called when the first CPU is realized.
25      */
26     void (*initialize)(void);
27     /**
28      * @translate_code: Translate guest instructions to TCGOps
29      * @cpu: cpu context
30      * @tb: translation block
31      * @max_insns: max number of instructions to translate
32      * @pc: guest virtual program counter address
33      * @host_pc: host physical program counter address
34      *
35      * This function must be provided by the target, which should create
36      * the target-specific DisasContext, and then invoke translator_loop.
37      */
38     void (*translate_code)(CPUState *cpu, TranslationBlock *tb,
39                            int *max_insns, vaddr pc, void *host_pc);
40     /**
41      * @synchronize_from_tb: Synchronize state from a TCG #TranslationBlock
42      *
43      * This is called when we abandon execution of a TB before starting it,
44      * and must set all parts of the CPU state which the previous TB in the
45      * chain may not have updated.
46      * By default, when this is NULL, a call is made to @set_pc(tb->pc).
47      *
48      * If more state needs to be restored, the target must implement a
49      * function to restore all the state, and register it here.
50      */
51     void (*synchronize_from_tb)(CPUState *cpu, const TranslationBlock *tb);
52     /**
53      * @restore_state_to_opc: Synchronize state from INDEX_op_start_insn
54      *
55      * This is called when we unwind state in the middle of a TB,
56      * usually before raising an exception.  Set all part of the CPU
57      * state which are tracked insn-by-insn in the target-specific
58      * arguments to start_insn, passed as @data.
59      */
60     void (*restore_state_to_opc)(CPUState *cpu, const TranslationBlock *tb,
61                                  const uint64_t *data);
62 
63     /** @cpu_exec_enter: Callback for cpu_exec preparation */
64     void (*cpu_exec_enter)(CPUState *cpu);
65     /** @cpu_exec_exit: Callback for cpu_exec cleanup */
66     void (*cpu_exec_exit)(CPUState *cpu);
67     /** @debug_excp_handler: Callback for handling debug exceptions */
68     void (*debug_excp_handler)(CPUState *cpu);
69 
70 #ifdef CONFIG_USER_ONLY
71     /**
72      * @fake_user_interrupt: Callback for 'fake exception' handling.
73      *
74      * Simulate 'fake exception' which will be handled outside the
75      * cpu execution loop (hack for x86 user mode).
76      */
77     void (*fake_user_interrupt)(CPUState *cpu);
78 
79     /**
80      * record_sigsegv:
81      * @cpu: cpu context
82      * @addr: faulting guest address
83      * @access_type: access was read/write/execute
84      * @maperr: true for invalid page, false for permission fault
85      * @ra: host pc for unwinding
86      *
87      * We are about to raise SIGSEGV with si_code set for @maperr,
88      * and si_addr set for @addr.  Record anything further needed
89      * for the signal ucontext_t.
90      *
91      * If the emulated kernel does not provide anything to the signal
92      * handler with anything besides the user context registers, and
93      * the siginfo_t, then this hook need do nothing and may be omitted.
94      * Otherwise, record the data and return; the caller will raise
95      * the signal, unwind the cpu state, and return to the main loop.
96      *
97      * If it is simpler to re-use the sysemu tlb_fill code, @ra is provided
98      * so that a "normal" cpu exception can be raised.  In this case,
99      * the signal must be raised by the architecture cpu_loop.
100      */
101     void (*record_sigsegv)(CPUState *cpu, vaddr addr,
102                            MMUAccessType access_type,
103                            bool maperr, uintptr_t ra);
104     /**
105      * record_sigbus:
106      * @cpu: cpu context
107      * @addr: misaligned guest address
108      * @access_type: access was read/write/execute
109      * @ra: host pc for unwinding
110      *
111      * We are about to raise SIGBUS with si_code BUS_ADRALN,
112      * and si_addr set for @addr.  Record anything further needed
113      * for the signal ucontext_t.
114      *
115      * If the emulated kernel does not provide the signal handler with
116      * anything besides the user context registers, and the siginfo_t,
117      * then this hook need do nothing and may be omitted.
118      * Otherwise, record the data and return; the caller will raise
119      * the signal, unwind the cpu state, and return to the main loop.
120      *
121      * If it is simpler to re-use the sysemu do_unaligned_access code,
122      * @ra is provided so that a "normal" cpu exception can be raised.
123      * In this case, the signal must be raised by the architecture cpu_loop.
124      */
125     void (*record_sigbus)(CPUState *cpu, vaddr addr,
126                           MMUAccessType access_type, uintptr_t ra);
127 #else
128     /** @do_interrupt: Callback for interrupt handling.  */
129     void (*do_interrupt)(CPUState *cpu);
130     /** @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec */
131     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
132     /**
133      * @cpu_exec_halt: Callback for handling halt in cpu_exec.
134      *
135      * The target CPU should do any special processing here that it needs
136      * to do when the CPU is in the halted state.
137      *
138      * Return true to indicate that the CPU should now leave halt, false
139      * if it should remain in the halted state. (This should generally
140      * be the same value that cpu_has_work() would return.)
141      *
142      * This method must be provided. If the target does not need to
143      * do anything special for halt, the same function used for its
144      * CPUClass::has_work method can be used here, as they have the
145      * same function signature.
146      */
147     bool (*cpu_exec_halt)(CPUState *cpu);
148     /**
149      * @tlb_fill_align: Handle a softmmu tlb miss
150      * @cpu: cpu context
151      * @out: output page properties
152      * @addr: virtual address
153      * @access_type: read, write or execute
154      * @mmu_idx: mmu context
155      * @memop: memory operation for the access
156      * @size: memory access size, or 0 for whole page
157      * @probe: test only, no fault
158      * @ra: host return address for exception unwind
159      *
160      * If the access is valid, fill in @out and return true.
161      * Otherwise if probe is true, return false.
162      * Otherwise raise an exception and do not return.
163      *
164      * The alignment check for the access is deferred to this hook,
165      * so that the target can determine the priority of any alignment
166      * fault with respect to other potential faults from paging.
167      * Zero may be passed for @memop to skip any alignment check
168      * for non-memory-access operations such as probing.
169      */
170     bool (*tlb_fill_align)(CPUState *cpu, CPUTLBEntryFull *out, vaddr addr,
171                            MMUAccessType access_type, int mmu_idx,
172                            MemOp memop, int size, bool probe, uintptr_t ra);
173     /**
174      * @tlb_fill: Handle a softmmu tlb miss
175      *
176      * If the access is valid, call tlb_set_page and return true;
177      * if the access is invalid and probe is true, return false;
178      * otherwise raise an exception and do not return.
179      */
180     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
181                      MMUAccessType access_type, int mmu_idx,
182                      bool probe, uintptr_t retaddr);
183     /**
184      * @do_transaction_failed: Callback for handling failed memory transactions
185      * (ie bus faults or external aborts; not MMU faults)
186      */
187     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
188                                   unsigned size, MMUAccessType access_type,
189                                   int mmu_idx, MemTxAttrs attrs,
190                                   MemTxResult response, uintptr_t retaddr);
191     /**
192      * @do_unaligned_access: Callback for unaligned access handling
193      * The callback must exit via raising an exception.
194      */
195     G_NORETURN void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
196                                            MMUAccessType access_type,
197                                            int mmu_idx, uintptr_t retaddr);
198 
199     /**
200      * @adjust_watchpoint_address: hack for cpu_check_watchpoint used by ARM
201      */
202     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
203 
204     /**
205      * @debug_check_watchpoint: return true if the architectural
206      * watchpoint whose address has matched should really fire, used by ARM
207      * and RISC-V
208      */
209     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
210 
211     /**
212      * @debug_check_breakpoint: return true if the architectural
213      * breakpoint whose PC has matched should really fire.
214      */
215     bool (*debug_check_breakpoint)(CPUState *cpu);
216 
217     /**
218      * @io_recompile_replay_branch: Callback for cpu_io_recompile.
219      *
220      * The cpu has been stopped, and cpu_restore_state_from_tb has been
221      * called.  If the faulting instruction is in a delay slot, and the
222      * target architecture requires re-execution of the branch, then
223      * adjust the cpu state as required and return true.
224      */
225     bool (*io_recompile_replay_branch)(CPUState *cpu,
226                                        const TranslationBlock *tb);
227     /**
228      * @need_replay_interrupt: Return %true if @interrupt_request
229      * needs to be recorded for replay purposes.
230      */
231     bool (*need_replay_interrupt)(int interrupt_request);
232 #endif /* !CONFIG_USER_ONLY */
233 };
234 
235 #if defined(CONFIG_USER_ONLY)
236 
237 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
238                                         MemTxAttrs atr, int fl, uintptr_t ra)
239 {
240 }
241 
242 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
243                                                  vaddr addr, vaddr len)
244 {
245     return 0;
246 }
247 
248 #else
249 
250 /**
251  * cpu_check_watchpoint:
252  * @cpu: cpu context
253  * @addr: guest virtual address
254  * @len: access length
255  * @attrs: memory access attributes
256  * @flags: watchpoint access type
257  * @ra: unwind return address
258  *
259  * Check for a watchpoint hit in [addr, addr+len) of the type
260  * specified by @flags.  Exit via exception with a hit.
261  */
262 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
263                           MemTxAttrs attrs, int flags, uintptr_t ra);
264 
265 /**
266  * cpu_watchpoint_address_matches:
267  * @cpu: cpu context
268  * @addr: guest virtual address
269  * @len: access length
270  *
271  * Return the watchpoint flags that apply to [addr, addr+len).
272  * If no watchpoint is registered for the range, the result is 0.
273  */
274 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
275 
276 #endif
277 
278 #endif /* TCG_CPU_OPS_H */
279