xref: /qemu/hw/xtensa/xtfpga.c (revision 4be0fce498d0a08f18b3a9accdb9ded79484d30a)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "exec/tswap.h"
39 #include "hw/char/serial-mm.h"
40 #include "net/net.h"
41 #include "hw/sysbus.h"
42 #include "hw/block/flash.h"
43 #include "chardev/char.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/reset.h"
46 #include "sysemu/runstate.h"
47 #include "qemu/error-report.h"
48 #include "qemu/option.h"
49 #include "bootparam.h"
50 #include "xtensa_memory.h"
51 #include "hw/xtensa/mx_pic.h"
52 #include "migration/vmstate.h"
53 
54 typedef struct XtfpgaFlashDesc {
55     hwaddr base;
56     size_t size;
57     size_t boot_base;
58     size_t sector_size;
59 } XtfpgaFlashDesc;
60 
61 typedef struct XtfpgaBoardDesc {
62     const XtfpgaFlashDesc *flash;
63     size_t sram_size;
64     const hwaddr *io;
65 } XtfpgaBoardDesc;
66 
67 typedef struct XtfpgaFpgaState {
68     MemoryRegion iomem;
69     uint32_t freq;
70     uint32_t leds;
71     uint32_t switches;
72 } XtfpgaFpgaState;
73 
74 static void xtfpga_fpga_reset(void *opaque)
75 {
76     XtfpgaFpgaState *s = opaque;
77 
78     s->leds = 0;
79     s->switches = 0;
80 }
81 
82 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
83         unsigned size)
84 {
85     XtfpgaFpgaState *s = opaque;
86 
87     switch (addr) {
88     case 0x0: /*build date code*/
89         return 0x09272011;
90 
91     case 0x4: /*processor clock frequency, Hz*/
92         return s->freq;
93 
94     case 0x8: /*LEDs (off = 0, on = 1)*/
95         return s->leds;
96 
97     case 0xc: /*DIP switches (off = 0, on = 1)*/
98         return s->switches;
99     }
100     return 0;
101 }
102 
103 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
104         uint64_t val, unsigned size)
105 {
106     XtfpgaFpgaState *s = opaque;
107 
108     switch (addr) {
109     case 0x8: /*LEDs (off = 0, on = 1)*/
110         s->leds = val;
111         break;
112 
113     case 0x10: /*board reset*/
114         if (val == 0xdead) {
115             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
116         }
117         break;
118     }
119 }
120 
121 static const MemoryRegionOps xtfpga_fpga_ops = {
122     .read = xtfpga_fpga_read,
123     .write = xtfpga_fpga_write,
124     .endianness = DEVICE_NATIVE_ENDIAN,
125 };
126 
127 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
128                                          hwaddr base, uint32_t freq)
129 {
130     XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1);
131 
132     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
133                           "xtfpga.fpga", 0x10000);
134     memory_region_add_subregion(address_space, base, &s->iomem);
135     s->freq = freq;
136     xtfpga_fpga_reset(s);
137     qemu_register_reset(xtfpga_fpga_reset, s);
138     return s;
139 }
140 
141 static void xtfpga_net_init(MemoryRegion *address_space,
142         hwaddr base,
143         hwaddr descriptors,
144         hwaddr buffers,
145         qemu_irq irq)
146 {
147     DeviceState *dev;
148     SysBusDevice *s;
149     MemoryRegion *ram;
150 
151     dev = qemu_create_nic_device("open_eth", true, NULL);
152     if (!dev) {
153         return;
154     }
155 
156     s = SYS_BUS_DEVICE(dev);
157     sysbus_realize_and_unref(s, &error_fatal);
158     sysbus_connect_irq(s, 0, irq);
159     memory_region_add_subregion(address_space, base,
160             sysbus_mmio_get_region(s, 0));
161     memory_region_add_subregion(address_space, descriptors,
162             sysbus_mmio_get_region(s, 1));
163 
164     ram = g_malloc(sizeof(*ram));
165     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
166                            &error_fatal);
167     vmstate_register_ram_global(ram);
168     memory_region_add_subregion(address_space, buffers, ram);
169 }
170 
171 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
172                                       const XtfpgaBoardDesc *board,
173                                       DriveInfo *dinfo, int be)
174 {
175     SysBusDevice *s;
176     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
177 
178     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
179     qdev_prop_set_uint32(dev, "num-blocks",
180                          board->flash->size / board->flash->sector_size);
181     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
182     qdev_prop_set_uint8(dev, "width", 2);
183     qdev_prop_set_bit(dev, "big-endian", be);
184     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
185     s = SYS_BUS_DEVICE(dev);
186     sysbus_realize_and_unref(s, &error_fatal);
187     memory_region_add_subregion(address_space, board->flash->base,
188                                 sysbus_mmio_get_region(s, 0));
189     return PFLASH_CFI01(dev);
190 }
191 
192 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
193 {
194     XtensaCPU *cpu = opaque;
195 
196     return cpu_get_phys_page_debug(CPU(cpu), addr);
197 }
198 
199 static void xtfpga_reset(void *opaque)
200 {
201     XtensaCPU *cpu = opaque;
202 
203     cpu_reset(CPU(cpu));
204 }
205 
206 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
207         unsigned size)
208 {
209     return 0;
210 }
211 
212 static void xtfpga_io_write(void *opaque, hwaddr addr,
213         uint64_t val, unsigned size)
214 {
215 }
216 
217 static const MemoryRegionOps xtfpga_io_ops = {
218     .read = xtfpga_io_read,
219     .write = xtfpga_io_write,
220     .endianness = DEVICE_NATIVE_ENDIAN,
221 };
222 
223 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
224 {
225     MemoryRegion *system_memory = get_system_memory();
226     XtensaCPU *cpu = NULL;
227     CPUXtensaState *env = NULL;
228     MemoryRegion *system_io;
229     XtensaMxPic *mx_pic = NULL;
230     qemu_irq *extints;
231     DriveInfo *dinfo;
232     PFlashCFI01 *flash = NULL;
233     const char *kernel_filename = machine->kernel_filename;
234     const char *kernel_cmdline = machine->kernel_cmdline;
235     const char *dtb_filename = machine->dtb;
236     const char *initrd_filename = machine->initrd_filename;
237     const unsigned system_io_size = 224 * MiB;
238     uint32_t freq = 10000000;
239     int n;
240     unsigned int smp_cpus = machine->smp.cpus;
241 
242     if (smp_cpus > 1) {
243         mx_pic = xtensa_mx_pic_init(31);
244         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
245     }
246     for (n = 0; n < smp_cpus; n++) {
247         CPUXtensaState *cenv = NULL;
248 
249         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
250         cenv = &cpu->env;
251         if (!env) {
252             env = cenv;
253             freq = env->config->clock_freq_khz * 1000;
254         }
255 
256         if (mx_pic) {
257             MemoryRegion *mx_eri;
258 
259             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
260                                                 xtensa_get_extints(cenv),
261                                                 xtensa_get_runstall(cenv));
262             memory_region_add_subregion(xtensa_get_er_region(cenv),
263                                         0, mx_eri);
264         }
265         cenv->sregs[PRID] = n;
266         xtensa_select_static_vectors(cenv, n != 0);
267         qemu_register_reset(xtfpga_reset, cpu);
268         /* Need MMU initialized prior to ELF loading,
269          * so that ELF gets loaded into virtual addresses
270          */
271         cpu_reset(CPU(cpu));
272     }
273     if (smp_cpus > 1) {
274         extints = xtensa_mx_pic_get_extints(mx_pic);
275     } else {
276         extints = xtensa_get_extints(env);
277     }
278 
279     if (env) {
280         XtensaMemory sysram = env->config->sysram;
281 
282         sysram.location[0].size = machine->ram_size;
283         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
284                                      system_memory);
285         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
286                                      system_memory);
287         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
288                                      system_memory);
289         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
290                                      system_memory);
291         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
292                                      system_memory);
293     }
294 
295     system_io = g_malloc(sizeof(*system_io));
296     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
297                           system_io_size);
298     memory_region_add_subregion(system_memory, board->io[0], system_io);
299     if (board->io[1]) {
300         MemoryRegion *io = g_malloc(sizeof(*io));
301 
302         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
303                                  system_io, 0, system_io_size);
304         memory_region_add_subregion(system_memory, board->io[1], io);
305     }
306     xtfpga_fpga_init(system_io, 0x0d020000, freq);
307     xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, extints[1]);
308 
309     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
310                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
311 
312     dinfo = drive_get(IF_PFLASH, 0, 0);
313     if (dinfo) {
314         flash = xtfpga_flash_init(system_io, board, dinfo, TARGET_BIG_ENDIAN);
315     }
316 
317     /* Use presence of kernel file name as 'boot from SRAM' switch. */
318     if (kernel_filename) {
319         uint32_t entry_point = env->pc;
320         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
321         uint32_t tagptr = env->config->sysrom.location[0].addr +
322             board->sram_size;
323         uint32_t cur_tagptr;
324         BpMemInfo memory_location = {
325             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
326             .start = tswap32(env->config->sysram.location[0].addr),
327             .end = tswap32(env->config->sysram.location[0].addr +
328                            machine->ram_size),
329         };
330         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
331             machine->ram_size : 0x08000000;
332         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
333 
334         lowmem_end += env->config->sysram.location[0].addr;
335         cur_lowmem += env->config->sysram.location[0].addr;
336 
337         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
338                                      system_memory);
339 
340         if (kernel_cmdline) {
341             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
342         }
343         if (dtb_filename) {
344             bp_size += get_tag_size(sizeof(uint32_t));
345         }
346         if (initrd_filename) {
347             bp_size += get_tag_size(sizeof(BpMemInfo));
348         }
349 
350         /* Put kernel bootparameters to the end of that SRAM */
351         tagptr = (tagptr - bp_size) & ~0xff;
352         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
353         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
354                              sizeof(memory_location), &memory_location);
355 
356         if (kernel_cmdline) {
357             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
358                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
359         }
360         if (dtb_filename) {
361             int fdt_size;
362             void *fdt = load_device_tree(dtb_filename, &fdt_size);
363             uint32_t dtb_addr = tswap32(cur_lowmem);
364 
365             if (!fdt) {
366                 error_report("could not load DTB '%s'", dtb_filename);
367                 exit(EXIT_FAILURE);
368             }
369 
370             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
371             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
372                                  sizeof(dtb_addr), &dtb_addr);
373             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
374             g_free(fdt);
375         }
376         if (initrd_filename) {
377             BpMemInfo initrd_location = { 0 };
378             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
379                                            lowmem_end - cur_lowmem);
380 
381             if (initrd_size < 0) {
382                 initrd_size = load_image_targphys(initrd_filename,
383                                                   cur_lowmem,
384                                                   lowmem_end - cur_lowmem);
385             }
386             if (initrd_size < 0) {
387                 error_report("could not load initrd '%s'", initrd_filename);
388                 exit(EXIT_FAILURE);
389             }
390             initrd_location.start = tswap32(cur_lowmem);
391             initrd_location.end = tswap32(cur_lowmem + initrd_size);
392             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
393                                  sizeof(initrd_location), &initrd_location);
394             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
395         }
396         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
397         env->regs[2] = tagptr;
398 
399         uint64_t elf_entry;
400         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
401                                &elf_entry, NULL, NULL, NULL, TARGET_BIG_ENDIAN,
402                                EM_XTENSA, 0, 0);
403         if (success > 0) {
404             entry_point = elf_entry;
405         } else {
406             hwaddr ep;
407             int is_linux;
408             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
409                                   translate_phys_addr, cpu);
410             if (success > 0 && is_linux) {
411                 entry_point = ep;
412             } else {
413                 error_report("could not load kernel '%s'",
414                              kernel_filename);
415                 exit(EXIT_FAILURE);
416             }
417         }
418         if (entry_point != env->pc) {
419             uint8_t boot_be[] = {
420                 0x60, 0x00, 0x08,       /* j    1f */
421                 0x00,                   /* .literal_position */
422                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
423                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
424                                         /* 1: */
425                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
426                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
427                 0x0a, 0x00, 0x00,       /* jx   a0 */
428             };
429             uint8_t boot_le[] = {
430                 0x06, 0x02, 0x00,       /* j    1f */
431                 0x00,                   /* .literal_position */
432                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
433                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
434                                         /* 1: */
435                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
436                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
437                 0xa0, 0x00, 0x00,       /* jx   a0 */
438             };
439             const size_t boot_sz = TARGET_BIG_ENDIAN ? sizeof(boot_be)
440                                                      : sizeof(boot_le);
441             uint8_t *boot = TARGET_BIG_ENDIAN ? boot_be : boot_le;
442             uint32_t entry_pc = tswap32(entry_point);
443             uint32_t entry_a2 = tswap32(tagptr);
444 
445             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
446             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
447             cpu_physical_memory_write(env->pc, boot, boot_sz);
448         }
449     } else {
450         if (flash) {
451             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
452             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
453             uint32_t size = env->config->sysrom.location[0].size;
454 
455             if (board->flash->size - board->flash->boot_base < size) {
456                 size = board->flash->size - board->flash->boot_base;
457             }
458 
459             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
460                                      flash_mr, board->flash->boot_base, size);
461             memory_region_add_subregion(system_memory,
462                                         env->config->sysrom.location[0].addr,
463                                         flash_io);
464         } else {
465             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
466                                          system_memory);
467         }
468     }
469 }
470 
471 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
472 
473 static const hwaddr xtfpga_mmu_io[2] = {
474     0xf0000000,
475 };
476 
477 static const hwaddr xtfpga_nommu_io[2] = {
478     0x90000000,
479     0x70000000,
480 };
481 
482 static const XtfpgaFlashDesc lx60_flash = {
483     .base = 0x08000000,
484     .size = 0x00400000,
485     .sector_size = 0x10000,
486 };
487 
488 static void xtfpga_lx60_init(MachineState *machine)
489 {
490     static const XtfpgaBoardDesc lx60_board = {
491         .flash = &lx60_flash,
492         .sram_size = 0x20000,
493         .io = xtfpga_mmu_io,
494     };
495     xtfpga_init(&lx60_board, machine);
496 }
497 
498 static void xtfpga_lx60_nommu_init(MachineState *machine)
499 {
500     static const XtfpgaBoardDesc lx60_board = {
501         .flash = &lx60_flash,
502         .sram_size = 0x20000,
503         .io = xtfpga_nommu_io,
504     };
505     xtfpga_init(&lx60_board, machine);
506 }
507 
508 static const XtfpgaFlashDesc lx200_flash = {
509     .base = 0x08000000,
510     .size = 0x01000000,
511     .sector_size = 0x20000,
512 };
513 
514 static void xtfpga_lx200_init(MachineState *machine)
515 {
516     static const XtfpgaBoardDesc lx200_board = {
517         .flash = &lx200_flash,
518         .sram_size = 0x2000000,
519         .io = xtfpga_mmu_io,
520     };
521     xtfpga_init(&lx200_board, machine);
522 }
523 
524 static void xtfpga_lx200_nommu_init(MachineState *machine)
525 {
526     static const XtfpgaBoardDesc lx200_board = {
527         .flash = &lx200_flash,
528         .sram_size = 0x2000000,
529         .io = xtfpga_nommu_io,
530     };
531     xtfpga_init(&lx200_board, machine);
532 }
533 
534 static const XtfpgaFlashDesc ml605_flash = {
535     .base = 0x08000000,
536     .size = 0x01000000,
537     .sector_size = 0x20000,
538 };
539 
540 static void xtfpga_ml605_init(MachineState *machine)
541 {
542     static const XtfpgaBoardDesc ml605_board = {
543         .flash = &ml605_flash,
544         .sram_size = 0x2000000,
545         .io = xtfpga_mmu_io,
546     };
547     xtfpga_init(&ml605_board, machine);
548 }
549 
550 static void xtfpga_ml605_nommu_init(MachineState *machine)
551 {
552     static const XtfpgaBoardDesc ml605_board = {
553         .flash = &ml605_flash,
554         .sram_size = 0x2000000,
555         .io = xtfpga_nommu_io,
556     };
557     xtfpga_init(&ml605_board, machine);
558 }
559 
560 static const XtfpgaFlashDesc kc705_flash = {
561     .base = 0x00000000,
562     .size = 0x08000000,
563     .boot_base = 0x06000000,
564     .sector_size = 0x20000,
565 };
566 
567 static void xtfpga_kc705_init(MachineState *machine)
568 {
569     static const XtfpgaBoardDesc kc705_board = {
570         .flash = &kc705_flash,
571         .sram_size = 0x2000000,
572         .io = xtfpga_mmu_io,
573     };
574     xtfpga_init(&kc705_board, machine);
575 }
576 
577 static void xtfpga_kc705_nommu_init(MachineState *machine)
578 {
579     static const XtfpgaBoardDesc kc705_board = {
580         .flash = &kc705_flash,
581         .sram_size = 0x2000000,
582         .io = xtfpga_nommu_io,
583     };
584     xtfpga_init(&kc705_board, machine);
585 }
586 
587 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
588 {
589     MachineClass *mc = MACHINE_CLASS(oc);
590 
591     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
592     mc->init = xtfpga_lx60_init;
593     mc->max_cpus = 32;
594     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
595     mc->default_ram_size = 64 * MiB;
596 }
597 
598 static const TypeInfo xtfpga_lx60_type = {
599     .name = MACHINE_TYPE_NAME("lx60"),
600     .parent = TYPE_MACHINE,
601     .class_init = xtfpga_lx60_class_init,
602 };
603 
604 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
605 {
606     MachineClass *mc = MACHINE_CLASS(oc);
607 
608     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
609     mc->init = xtfpga_lx60_nommu_init;
610     mc->max_cpus = 32;
611     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
612     mc->default_ram_size = 64 * MiB;
613 }
614 
615 static const TypeInfo xtfpga_lx60_nommu_type = {
616     .name = MACHINE_TYPE_NAME("lx60-nommu"),
617     .parent = TYPE_MACHINE,
618     .class_init = xtfpga_lx60_nommu_class_init,
619 };
620 
621 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
622 {
623     MachineClass *mc = MACHINE_CLASS(oc);
624 
625     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
626     mc->init = xtfpga_lx200_init;
627     mc->max_cpus = 32;
628     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
629     mc->default_ram_size = 96 * MiB;
630 }
631 
632 static const TypeInfo xtfpga_lx200_type = {
633     .name = MACHINE_TYPE_NAME("lx200"),
634     .parent = TYPE_MACHINE,
635     .class_init = xtfpga_lx200_class_init,
636 };
637 
638 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
639 {
640     MachineClass *mc = MACHINE_CLASS(oc);
641 
642     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
643     mc->init = xtfpga_lx200_nommu_init;
644     mc->max_cpus = 32;
645     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
646     mc->default_ram_size = 96 * MiB;
647 }
648 
649 static const TypeInfo xtfpga_lx200_nommu_type = {
650     .name = MACHINE_TYPE_NAME("lx200-nommu"),
651     .parent = TYPE_MACHINE,
652     .class_init = xtfpga_lx200_nommu_class_init,
653 };
654 
655 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
656 {
657     MachineClass *mc = MACHINE_CLASS(oc);
658 
659     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
660     mc->init = xtfpga_ml605_init;
661     mc->max_cpus = 32;
662     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
663     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
664 }
665 
666 static const TypeInfo xtfpga_ml605_type = {
667     .name = MACHINE_TYPE_NAME("ml605"),
668     .parent = TYPE_MACHINE,
669     .class_init = xtfpga_ml605_class_init,
670 };
671 
672 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
673 {
674     MachineClass *mc = MACHINE_CLASS(oc);
675 
676     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
677     mc->init = xtfpga_ml605_nommu_init;
678     mc->max_cpus = 32;
679     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
680     mc->default_ram_size = 256 * MiB;
681 }
682 
683 static const TypeInfo xtfpga_ml605_nommu_type = {
684     .name = MACHINE_TYPE_NAME("ml605-nommu"),
685     .parent = TYPE_MACHINE,
686     .class_init = xtfpga_ml605_nommu_class_init,
687 };
688 
689 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
690 {
691     MachineClass *mc = MACHINE_CLASS(oc);
692 
693     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
694     mc->init = xtfpga_kc705_init;
695     mc->max_cpus = 32;
696     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
697     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
698 }
699 
700 static const TypeInfo xtfpga_kc705_type = {
701     .name = MACHINE_TYPE_NAME("kc705"),
702     .parent = TYPE_MACHINE,
703     .class_init = xtfpga_kc705_class_init,
704 };
705 
706 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
707 {
708     MachineClass *mc = MACHINE_CLASS(oc);
709 
710     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
711     mc->init = xtfpga_kc705_nommu_init;
712     mc->max_cpus = 32;
713     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
714     mc->default_ram_size = 256 * MiB;
715 }
716 
717 static const TypeInfo xtfpga_kc705_nommu_type = {
718     .name = MACHINE_TYPE_NAME("kc705-nommu"),
719     .parent = TYPE_MACHINE,
720     .class_init = xtfpga_kc705_nommu_class_init,
721 };
722 
723 static void xtfpga_machines_init(void)
724 {
725     type_register_static(&xtfpga_lx60_type);
726     type_register_static(&xtfpga_lx200_type);
727     type_register_static(&xtfpga_ml605_type);
728     type_register_static(&xtfpga_kc705_type);
729     type_register_static(&xtfpga_lx60_nommu_type);
730     type_register_static(&xtfpga_lx200_nommu_type);
731     type_register_static(&xtfpga_ml605_nommu_type);
732     type_register_static(&xtfpga_kc705_nommu_type);
733 }
734 
735 type_init(xtfpga_machines_init)
736