1 /* 2 * Virtio MEM device 3 * 4 * Copyright (C) 2020 Red Hat, Inc. 5 * 6 * Authors: 7 * David Hildenbrand <david@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/iov.h" 15 #include "qemu/cutils.h" 16 #include "qemu/error-report.h" 17 #include "qemu/units.h" 18 #include "system/numa.h" 19 #include "system/system.h" 20 #include "system/reset.h" 21 #include "system/runstate.h" 22 #include "hw/virtio/virtio.h" 23 #include "hw/virtio/virtio-bus.h" 24 #include "hw/virtio/virtio-mem.h" 25 #include "qapi/error.h" 26 #include "qapi/visitor.h" 27 #include "system/ram_addr.h" 28 #include "migration/misc.h" 29 #include "hw/boards.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/acpi/acpi.h" 32 #include "trace.h" 33 34 static const VMStateDescription vmstate_virtio_mem_device_early; 35 36 /* 37 * We only had legacy x86 guests that did not support 38 * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests. 39 */ 40 #if defined(TARGET_X86_64) || defined(TARGET_I386) 41 #define VIRTIO_MEM_HAS_LEGACY_GUESTS 42 #endif 43 44 /* 45 * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking 46 * bitmap small. 47 */ 48 #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB)) 49 50 static uint32_t virtio_mem_default_thp_size(void) 51 { 52 uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 53 54 #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__) 55 default_thp_size = 2 * MiB; 56 #elif defined(__aarch64__) 57 if (qemu_real_host_page_size() == 4 * KiB) { 58 default_thp_size = 2 * MiB; 59 } else if (qemu_real_host_page_size() == 16 * KiB) { 60 default_thp_size = 32 * MiB; 61 } else if (qemu_real_host_page_size() == 64 * KiB) { 62 default_thp_size = 512 * MiB; 63 } 64 #elif defined(__s390x__) 65 default_thp_size = 1 * MiB; 66 #endif 67 68 return default_thp_size; 69 } 70 71 /* 72 * The minimum memslot size depends on this setting ("sane default"), the 73 * device block size, and the memory backend page size. The last (or single) 74 * memslot might be smaller than this constant. 75 */ 76 #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB) 77 78 /* 79 * We want to have a reasonable default block size such that 80 * 1. We avoid splitting THPs when unplugging memory, which degrades 81 * performance. 82 * 2. We avoid placing THPs for plugged blocks that also cover unplugged 83 * blocks. 84 * 85 * The actual THP size might differ between Linux kernels, so we try to probe 86 * it. In the future (if we ever run into issues regarding 2.), we might want 87 * to disable THP in case we fail to properly probe the THP size, or if the 88 * block size is configured smaller than the THP size. 89 */ 90 static uint32_t thp_size; 91 92 #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size" 93 #define HPAGE_PATH "/sys/kernel/mm/transparent_hugepage/" 94 static uint32_t virtio_mem_thp_size(void) 95 { 96 gchar *content = NULL; 97 const char *endptr; 98 uint64_t tmp; 99 100 if (thp_size) { 101 return thp_size; 102 } 103 104 /* No THP -> no restrictions. */ 105 if (!g_file_test(HPAGE_PATH, G_FILE_TEST_EXISTS)) { 106 thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 107 return thp_size; 108 } 109 110 /* 111 * Try to probe the actual THP size, fallback to (sane but eventually 112 * incorrect) default sizes. 113 */ 114 if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) && 115 !qemu_strtou64(content, &endptr, 0, &tmp) && 116 (!endptr || *endptr == '\n')) { 117 /* Sanity-check the value and fallback to something reasonable. */ 118 if (!tmp || !is_power_of_2(tmp)) { 119 warn_report("Read unsupported THP size: %" PRIx64, tmp); 120 } else { 121 thp_size = tmp; 122 } 123 } 124 125 if (!thp_size) { 126 thp_size = virtio_mem_default_thp_size(); 127 warn_report("Could not detect THP size, falling back to %" PRIx64 128 " MiB.", thp_size / MiB); 129 } 130 131 g_free(content); 132 return thp_size; 133 } 134 135 static uint64_t virtio_mem_default_block_size(RAMBlock *rb) 136 { 137 const uint64_t page_size = qemu_ram_pagesize(rb); 138 139 /* We can have hugetlbfs with a page size smaller than the THP size. */ 140 if (page_size == qemu_real_host_page_size()) { 141 return MAX(page_size, virtio_mem_thp_size()); 142 } 143 return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE); 144 } 145 146 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 147 static bool virtio_mem_has_shared_zeropage(RAMBlock *rb) 148 { 149 /* 150 * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE 151 * anonymous RAM. In any other case, reading unplugged *can* populate a 152 * fresh page, consuming actual memory. 153 */ 154 return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 && 155 qemu_ram_pagesize(rb) == qemu_real_host_page_size(); 156 } 157 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 158 159 /* 160 * Size the usable region bigger than the requested size if possible. Esp. 161 * Linux guests will only add (aligned) memory blocks in case they fully 162 * fit into the usable region, but plug+online only a subset of the pages. 163 * The memory block size corresponds mostly to the section size. 164 * 165 * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and 166 * a section size of 512MB on arm64 (as long as the start address is properly 167 * aligned, similar to ordinary DIMMs). 168 * 169 * We can change this at any time and maybe even make it configurable if 170 * necessary (as the section size can change). But it's more likely that the 171 * section size will rather get smaller and not bigger over time. 172 */ 173 #if defined(TARGET_X86_64) || defined(TARGET_I386) || defined(TARGET_S390X) 174 #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB)) 175 #elif defined(TARGET_ARM) 176 #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB)) 177 #else 178 #error VIRTIO_MEM_USABLE_EXTENT not defined 179 #endif 180 181 static bool virtio_mem_is_busy(void) 182 { 183 /* 184 * Postcopy cannot handle concurrent discards and we don't want to migrate 185 * pages on-demand with stale content when plugging new blocks. 186 * 187 * For precopy, we don't want unplugged blocks in our migration stream, and 188 * when plugging new blocks, the page content might differ between source 189 * and destination (observable by the guest when not initializing pages 190 * after plugging them) until we're running on the destination (as we didn't 191 * migrate these blocks when they were unplugged). 192 */ 193 return migration_in_incoming_postcopy() || migration_is_running(); 194 } 195 196 typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg, 197 uint64_t offset, uint64_t size); 198 199 static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg, 200 virtio_mem_range_cb cb) 201 { 202 unsigned long first_zero_bit, last_zero_bit; 203 uint64_t offset, size; 204 int ret = 0; 205 206 first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size); 207 while (first_zero_bit < vmem->bitmap_size) { 208 offset = first_zero_bit * vmem->block_size; 209 last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 210 first_zero_bit + 1) - 1; 211 size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size; 212 213 ret = cb(vmem, arg, offset, size); 214 if (ret) { 215 break; 216 } 217 first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 218 last_zero_bit + 2); 219 } 220 return ret; 221 } 222 223 static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg, 224 virtio_mem_range_cb cb) 225 { 226 unsigned long first_bit, last_bit; 227 uint64_t offset, size; 228 int ret = 0; 229 230 first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size); 231 while (first_bit < vmem->bitmap_size) { 232 offset = first_bit * vmem->block_size; 233 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 234 first_bit + 1) - 1; 235 size = (last_bit - first_bit + 1) * vmem->block_size; 236 237 ret = cb(vmem, arg, offset, size); 238 if (ret) { 239 break; 240 } 241 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 242 last_bit + 2); 243 } 244 return ret; 245 } 246 247 /* 248 * Adjust the memory section to cover the intersection with the given range. 249 * 250 * Returns false if the intersection is empty, otherwise returns true. 251 */ 252 static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s, 253 uint64_t offset, uint64_t size) 254 { 255 uint64_t start = MAX(s->offset_within_region, offset); 256 uint64_t end = MIN(s->offset_within_region + int128_get64(s->size), 257 offset + size); 258 259 if (end <= start) { 260 return false; 261 } 262 263 s->offset_within_address_space += start - s->offset_within_region; 264 s->offset_within_region = start; 265 s->size = int128_make64(end - start); 266 return true; 267 } 268 269 typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg); 270 271 static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem, 272 MemoryRegionSection *s, 273 void *arg, 274 virtio_mem_section_cb cb) 275 { 276 unsigned long first_bit, last_bit; 277 uint64_t offset, size; 278 int ret = 0; 279 280 first_bit = s->offset_within_region / vmem->block_size; 281 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 282 while (first_bit < vmem->bitmap_size) { 283 MemoryRegionSection tmp = *s; 284 285 offset = first_bit * vmem->block_size; 286 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 287 first_bit + 1) - 1; 288 size = (last_bit - first_bit + 1) * vmem->block_size; 289 290 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 291 break; 292 } 293 ret = cb(&tmp, arg); 294 if (ret) { 295 break; 296 } 297 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 298 last_bit + 2); 299 } 300 return ret; 301 } 302 303 static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem, 304 MemoryRegionSection *s, 305 void *arg, 306 virtio_mem_section_cb cb) 307 { 308 unsigned long first_bit, last_bit; 309 uint64_t offset, size; 310 int ret = 0; 311 312 first_bit = s->offset_within_region / vmem->block_size; 313 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 314 while (first_bit < vmem->bitmap_size) { 315 MemoryRegionSection tmp = *s; 316 317 offset = first_bit * vmem->block_size; 318 last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 319 first_bit + 1) - 1; 320 size = (last_bit - first_bit + 1) * vmem->block_size; 321 322 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 323 break; 324 } 325 ret = cb(&tmp, arg); 326 if (ret) { 327 break; 328 } 329 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 330 last_bit + 2); 331 } 332 return ret; 333 } 334 335 static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg) 336 { 337 RamDiscardListener *rdl = arg; 338 339 return rdl->notify_populate(rdl, s); 340 } 341 342 static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg) 343 { 344 RamDiscardListener *rdl = arg; 345 346 rdl->notify_discard(rdl, s); 347 return 0; 348 } 349 350 static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset, 351 uint64_t size) 352 { 353 RamDiscardListener *rdl; 354 355 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 356 MemoryRegionSection tmp = *rdl->section; 357 358 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 359 continue; 360 } 361 rdl->notify_discard(rdl, &tmp); 362 } 363 } 364 365 static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset, 366 uint64_t size) 367 { 368 RamDiscardListener *rdl, *rdl2; 369 int ret = 0; 370 371 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 372 MemoryRegionSection tmp = *rdl->section; 373 374 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 375 continue; 376 } 377 ret = rdl->notify_populate(rdl, &tmp); 378 if (ret) { 379 break; 380 } 381 } 382 383 if (ret) { 384 /* Notify all already-notified listeners. */ 385 QLIST_FOREACH(rdl2, &vmem->rdl_list, next) { 386 MemoryRegionSection tmp = *rdl2->section; 387 388 if (rdl2 == rdl) { 389 break; 390 } 391 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 392 continue; 393 } 394 rdl2->notify_discard(rdl2, &tmp); 395 } 396 } 397 return ret; 398 } 399 400 static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem) 401 { 402 RamDiscardListener *rdl; 403 404 if (!vmem->size) { 405 return; 406 } 407 408 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 409 if (rdl->double_discard_supported) { 410 rdl->notify_discard(rdl, rdl->section); 411 } else { 412 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 413 virtio_mem_notify_discard_cb); 414 } 415 } 416 } 417 418 static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem, 419 uint64_t start_gpa, uint64_t size) 420 { 421 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 422 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 423 unsigned long found_bit; 424 425 /* We fake a shorter bitmap to avoid searching too far. */ 426 found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit); 427 return found_bit > last_bit; 428 } 429 430 static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem, 431 uint64_t start_gpa, uint64_t size) 432 { 433 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 434 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 435 unsigned long found_bit; 436 437 /* We fake a shorter bitmap to avoid searching too far. */ 438 found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit); 439 return found_bit > last_bit; 440 } 441 442 static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa, 443 uint64_t size) 444 { 445 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 446 const unsigned long nbits = size / vmem->block_size; 447 448 bitmap_set(vmem->bitmap, bit, nbits); 449 } 450 451 static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa, 452 uint64_t size) 453 { 454 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 455 const unsigned long nbits = size / vmem->block_size; 456 457 bitmap_clear(vmem->bitmap, bit, nbits); 458 } 459 460 static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem, 461 struct virtio_mem_resp *resp) 462 { 463 VirtIODevice *vdev = VIRTIO_DEVICE(vmem); 464 VirtQueue *vq = vmem->vq; 465 466 trace_virtio_mem_send_response(le16_to_cpu(resp->type)); 467 iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp)); 468 469 virtqueue_push(vq, elem, sizeof(*resp)); 470 virtio_notify(vdev, vq); 471 } 472 473 static void virtio_mem_send_response_simple(VirtIOMEM *vmem, 474 VirtQueueElement *elem, 475 uint16_t type) 476 { 477 struct virtio_mem_resp resp = { 478 .type = cpu_to_le16(type), 479 }; 480 481 virtio_mem_send_response(vmem, elem, &resp); 482 } 483 484 static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa, 485 uint64_t size) 486 { 487 if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) { 488 return false; 489 } 490 if (gpa + size < gpa || !size) { 491 return false; 492 } 493 if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) { 494 return false; 495 } 496 if (gpa + size > vmem->addr + vmem->usable_region_size) { 497 return false; 498 } 499 return true; 500 } 501 502 static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx) 503 { 504 const uint64_t memslot_offset = idx * vmem->memslot_size; 505 506 assert(vmem->memslots); 507 508 /* 509 * Instead of enabling/disabling memslots, we add/remove them. This should 510 * make address space updates faster, because we don't have to loop over 511 * many disabled subregions. 512 */ 513 if (memory_region_is_mapped(&vmem->memslots[idx])) { 514 return; 515 } 516 memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]); 517 } 518 519 static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx) 520 { 521 assert(vmem->memslots); 522 523 if (!memory_region_is_mapped(&vmem->memslots[idx])) { 524 return; 525 } 526 memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]); 527 } 528 529 static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem, 530 uint64_t offset, uint64_t size) 531 { 532 const unsigned int start_idx = offset / vmem->memslot_size; 533 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 534 vmem->memslot_size; 535 unsigned int idx; 536 537 assert(vmem->dynamic_memslots); 538 539 /* Activate all involved memslots in a single transaction. */ 540 memory_region_transaction_begin(); 541 for (idx = start_idx; idx < end_idx; idx++) { 542 virtio_mem_activate_memslot(vmem, idx); 543 } 544 memory_region_transaction_commit(); 545 } 546 547 static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem, 548 uint64_t offset, 549 uint64_t size) 550 { 551 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 552 const unsigned int start_idx = offset / vmem->memslot_size; 553 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 554 vmem->memslot_size; 555 unsigned int idx; 556 557 assert(vmem->dynamic_memslots); 558 559 /* Deactivate all memslots with unplugged blocks in a single transaction. */ 560 memory_region_transaction_begin(); 561 for (idx = start_idx; idx < end_idx; idx++) { 562 const uint64_t memslot_offset = idx * vmem->memslot_size; 563 uint64_t memslot_size = vmem->memslot_size; 564 565 /* The size of the last memslot might be smaller. */ 566 if (idx == vmem->nb_memslots - 1) { 567 memslot_size = region_size - memslot_offset; 568 } 569 570 /* 571 * Partially covered memslots might still have some blocks plugged and 572 * have to remain active if that's the case. 573 */ 574 if (offset > memslot_offset || 575 offset + size < memslot_offset + memslot_size) { 576 const uint64_t gpa = vmem->addr + memslot_offset; 577 578 if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) { 579 continue; 580 } 581 } 582 583 virtio_mem_deactivate_memslot(vmem, idx); 584 } 585 memory_region_transaction_commit(); 586 } 587 588 static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa, 589 uint64_t size, bool plug) 590 { 591 const uint64_t offset = start_gpa - vmem->addr; 592 RAMBlock *rb = vmem->memdev->mr.ram_block; 593 int ret = 0; 594 595 if (virtio_mem_is_busy()) { 596 return -EBUSY; 597 } 598 599 if (!plug) { 600 if (ram_block_discard_range(rb, offset, size)) { 601 return -EBUSY; 602 } 603 virtio_mem_notify_unplug(vmem, offset, size); 604 virtio_mem_set_range_unplugged(vmem, start_gpa, size); 605 /* Deactivate completely unplugged memslots after updating the state. */ 606 if (vmem->dynamic_memslots) { 607 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 608 } 609 return 0; 610 } 611 612 if (vmem->prealloc) { 613 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 614 int fd = memory_region_get_fd(&vmem->memdev->mr); 615 Error *local_err = NULL; 616 617 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 618 static bool warned; 619 620 /* 621 * Warn only once, we don't want to fill the log with these 622 * warnings. 623 */ 624 if (!warned) { 625 warn_report_err(local_err); 626 warned = true; 627 } else { 628 error_free(local_err); 629 } 630 ret = -EBUSY; 631 } 632 } 633 634 if (!ret) { 635 /* 636 * Activate before notifying and rollback in case of any errors. 637 * 638 * When activating a yet inactive memslot, memory notifiers will get 639 * notified about the added memory region and can register with the 640 * RamDiscardManager; this will traverse all plugged blocks and skip the 641 * blocks we are plugging here. The following notification will inform 642 * registered listeners about the blocks we're plugging. 643 */ 644 if (vmem->dynamic_memslots) { 645 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 646 } 647 ret = virtio_mem_notify_plug(vmem, offset, size); 648 if (ret && vmem->dynamic_memslots) { 649 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 650 } 651 } 652 if (ret) { 653 /* Could be preallocation or a notifier populated memory. */ 654 ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size); 655 return -EBUSY; 656 } 657 658 virtio_mem_set_range_plugged(vmem, start_gpa, size); 659 return 0; 660 } 661 662 static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa, 663 uint16_t nb_blocks, bool plug) 664 { 665 const uint64_t size = nb_blocks * vmem->block_size; 666 int ret; 667 668 if (!virtio_mem_valid_range(vmem, gpa, size)) { 669 return VIRTIO_MEM_RESP_ERROR; 670 } 671 672 if (plug && (vmem->size + size > vmem->requested_size)) { 673 return VIRTIO_MEM_RESP_NACK; 674 } 675 676 /* test if really all blocks are in the opposite state */ 677 if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) || 678 (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) { 679 return VIRTIO_MEM_RESP_ERROR; 680 } 681 682 ret = virtio_mem_set_block_state(vmem, gpa, size, plug); 683 if (ret) { 684 return VIRTIO_MEM_RESP_BUSY; 685 } 686 if (plug) { 687 vmem->size += size; 688 } else { 689 vmem->size -= size; 690 } 691 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 692 return VIRTIO_MEM_RESP_ACK; 693 } 694 695 static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 696 struct virtio_mem_req *req) 697 { 698 const uint64_t gpa = le64_to_cpu(req->u.plug.addr); 699 const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks); 700 uint16_t type; 701 702 trace_virtio_mem_plug_request(gpa, nb_blocks); 703 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true); 704 virtio_mem_send_response_simple(vmem, elem, type); 705 } 706 707 static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 708 struct virtio_mem_req *req) 709 { 710 const uint64_t gpa = le64_to_cpu(req->u.unplug.addr); 711 const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks); 712 uint16_t type; 713 714 trace_virtio_mem_unplug_request(gpa, nb_blocks); 715 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false); 716 virtio_mem_send_response_simple(vmem, elem, type); 717 } 718 719 static void virtio_mem_resize_usable_region(VirtIOMEM *vmem, 720 uint64_t requested_size, 721 bool can_shrink) 722 { 723 uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr), 724 requested_size + VIRTIO_MEM_USABLE_EXTENT); 725 726 /* The usable region size always has to be multiples of the block size. */ 727 newsize = QEMU_ALIGN_UP(newsize, vmem->block_size); 728 729 if (!requested_size) { 730 newsize = 0; 731 } 732 733 if (newsize < vmem->usable_region_size && !can_shrink) { 734 return; 735 } 736 737 trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize); 738 vmem->usable_region_size = newsize; 739 } 740 741 static int virtio_mem_unplug_all(VirtIOMEM *vmem) 742 { 743 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 744 RAMBlock *rb = vmem->memdev->mr.ram_block; 745 746 if (vmem->size) { 747 if (virtio_mem_is_busy()) { 748 return -EBUSY; 749 } 750 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 751 return -EBUSY; 752 } 753 virtio_mem_notify_unplug_all(vmem); 754 755 bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size); 756 vmem->size = 0; 757 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 758 759 /* Deactivate all memslots after updating the state. */ 760 if (vmem->dynamic_memslots) { 761 virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size); 762 } 763 } 764 765 trace_virtio_mem_unplugged_all(); 766 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 767 return 0; 768 } 769 770 static void virtio_mem_unplug_all_request(VirtIOMEM *vmem, 771 VirtQueueElement *elem) 772 { 773 trace_virtio_mem_unplug_all_request(); 774 if (virtio_mem_unplug_all(vmem)) { 775 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY); 776 } else { 777 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK); 778 } 779 } 780 781 static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem, 782 struct virtio_mem_req *req) 783 { 784 const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks); 785 const uint64_t gpa = le64_to_cpu(req->u.state.addr); 786 const uint64_t size = nb_blocks * vmem->block_size; 787 struct virtio_mem_resp resp = { 788 .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK), 789 }; 790 791 trace_virtio_mem_state_request(gpa, nb_blocks); 792 if (!virtio_mem_valid_range(vmem, gpa, size)) { 793 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR); 794 return; 795 } 796 797 if (virtio_mem_is_range_plugged(vmem, gpa, size)) { 798 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED); 799 } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) { 800 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED); 801 } else { 802 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED); 803 } 804 trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state)); 805 virtio_mem_send_response(vmem, elem, &resp); 806 } 807 808 static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq) 809 { 810 const int len = sizeof(struct virtio_mem_req); 811 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 812 VirtQueueElement *elem; 813 struct virtio_mem_req req; 814 uint16_t type; 815 816 while (true) { 817 elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); 818 if (!elem) { 819 return; 820 } 821 822 if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) { 823 virtio_error(vdev, "virtio-mem protocol violation: invalid request" 824 " size: %d", len); 825 virtqueue_detach_element(vq, elem, 0); 826 g_free(elem); 827 return; 828 } 829 830 if (iov_size(elem->in_sg, elem->in_num) < 831 sizeof(struct virtio_mem_resp)) { 832 virtio_error(vdev, "virtio-mem protocol violation: not enough space" 833 " for response: %zu", 834 iov_size(elem->in_sg, elem->in_num)); 835 virtqueue_detach_element(vq, elem, 0); 836 g_free(elem); 837 return; 838 } 839 840 type = le16_to_cpu(req.type); 841 switch (type) { 842 case VIRTIO_MEM_REQ_PLUG: 843 virtio_mem_plug_request(vmem, elem, &req); 844 break; 845 case VIRTIO_MEM_REQ_UNPLUG: 846 virtio_mem_unplug_request(vmem, elem, &req); 847 break; 848 case VIRTIO_MEM_REQ_UNPLUG_ALL: 849 virtio_mem_unplug_all_request(vmem, elem); 850 break; 851 case VIRTIO_MEM_REQ_STATE: 852 virtio_mem_state_request(vmem, elem, &req); 853 break; 854 default: 855 virtio_error(vdev, "virtio-mem protocol violation: unknown request" 856 " type: %d", type); 857 virtqueue_detach_element(vq, elem, 0); 858 g_free(elem); 859 return; 860 } 861 862 g_free(elem); 863 } 864 } 865 866 static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data) 867 { 868 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 869 struct virtio_mem_config *config = (void *) config_data; 870 871 config->block_size = cpu_to_le64(vmem->block_size); 872 config->node_id = cpu_to_le16(vmem->node); 873 config->requested_size = cpu_to_le64(vmem->requested_size); 874 config->plugged_size = cpu_to_le64(vmem->size); 875 config->addr = cpu_to_le64(vmem->addr); 876 config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr)); 877 config->usable_region_size = cpu_to_le64(vmem->usable_region_size); 878 } 879 880 static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features, 881 Error **errp) 882 { 883 MachineState *ms = MACHINE(qdev_get_machine()); 884 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 885 886 if (ms->numa_state && acpi_builtin()) { 887 virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM); 888 } 889 assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO); 890 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) { 891 virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE); 892 } 893 if (qemu_wakeup_suspend_enabled()) { 894 virtio_add_feature(&features, VIRTIO_MEM_F_PERSISTENT_SUSPEND); 895 } 896 return features; 897 } 898 899 static int virtio_mem_validate_features(VirtIODevice *vdev) 900 { 901 if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) && 902 !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) { 903 return -EFAULT; 904 } 905 return 0; 906 } 907 908 static void virtio_mem_prepare_mr(VirtIOMEM *vmem) 909 { 910 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 911 912 assert(!vmem->mr && vmem->dynamic_memslots); 913 vmem->mr = g_new0(MemoryRegion, 1); 914 memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem", 915 region_size); 916 vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr); 917 } 918 919 static void virtio_mem_prepare_memslots(VirtIOMEM *vmem) 920 { 921 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 922 unsigned int idx; 923 924 g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots); 925 vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots); 926 927 /* Initialize our memslots, but don't map them yet. */ 928 for (idx = 0; idx < vmem->nb_memslots; idx++) { 929 const uint64_t memslot_offset = idx * vmem->memslot_size; 930 uint64_t memslot_size = vmem->memslot_size; 931 char name[20]; 932 933 /* The size of the last memslot might be smaller. */ 934 if (idx == vmem->nb_memslots - 1) { 935 memslot_size = region_size - memslot_offset; 936 } 937 938 snprintf(name, sizeof(name), "memslot-%u", idx); 939 memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name, 940 &vmem->memdev->mr, memslot_offset, 941 memslot_size); 942 /* 943 * We want to be able to atomically and efficiently activate/deactivate 944 * individual memslots without affecting adjacent memslots in memory 945 * notifiers. 946 */ 947 memory_region_set_unmergeable(&vmem->memslots[idx], true); 948 } 949 } 950 951 static void virtio_mem_device_realize(DeviceState *dev, Error **errp) 952 { 953 MachineState *ms = MACHINE(qdev_get_machine()); 954 int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0; 955 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 956 VirtIOMEM *vmem = VIRTIO_MEM(dev); 957 uint64_t page_size; 958 RAMBlock *rb; 959 Object *obj; 960 int ret; 961 962 if (!vmem->memdev) { 963 error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP); 964 return; 965 } else if (host_memory_backend_is_mapped(vmem->memdev)) { 966 error_setg(errp, "'%s' property specifies a busy memdev: %s", 967 VIRTIO_MEM_MEMDEV_PROP, 968 object_get_canonical_path_component(OBJECT(vmem->memdev))); 969 return; 970 } else if (!memory_region_is_ram(&vmem->memdev->mr) || 971 memory_region_is_rom(&vmem->memdev->mr) || 972 !vmem->memdev->mr.ram_block) { 973 error_setg(errp, "'%s' property specifies an unsupported memdev", 974 VIRTIO_MEM_MEMDEV_PROP); 975 return; 976 } else if (vmem->memdev->prealloc) { 977 error_setg(errp, "'%s' property specifies a memdev with preallocation" 978 " enabled: %s. Instead, specify 'prealloc=on' for the" 979 " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP, 980 object_get_canonical_path_component(OBJECT(vmem->memdev))); 981 return; 982 } 983 984 if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) || 985 (!nb_numa_nodes && vmem->node)) { 986 error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds" 987 "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP, 988 vmem->node, nb_numa_nodes ? nb_numa_nodes : 1); 989 return; 990 } 991 992 if (should_mlock(mlock_state)) { 993 error_setg(errp, "Incompatible with mlock"); 994 return; 995 } 996 997 rb = vmem->memdev->mr.ram_block; 998 page_size = qemu_ram_pagesize(rb); 999 1000 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1001 switch (vmem->unplugged_inaccessible) { 1002 case ON_OFF_AUTO_AUTO: 1003 if (virtio_mem_has_shared_zeropage(rb)) { 1004 vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF; 1005 } else { 1006 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1007 } 1008 break; 1009 case ON_OFF_AUTO_OFF: 1010 if (!virtio_mem_has_shared_zeropage(rb)) { 1011 warn_report("'%s' property set to 'off' with a memdev that does" 1012 " not support the shared zeropage.", 1013 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1014 } 1015 break; 1016 default: 1017 break; 1018 } 1019 #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1020 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1021 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1022 1023 if (vmem->dynamic_memslots && 1024 vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) { 1025 error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'", 1026 VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, 1027 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1028 return; 1029 } 1030 1031 /* 1032 * If the block size wasn't configured by the user, use a sane default. This 1033 * allows using hugetlbfs backends of any page size without manual 1034 * intervention. 1035 */ 1036 if (!vmem->block_size) { 1037 vmem->block_size = virtio_mem_default_block_size(rb); 1038 } 1039 1040 if (vmem->block_size < page_size) { 1041 error_setg(errp, "'%s' property has to be at least the page size (0x%" 1042 PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size); 1043 return; 1044 } else if (vmem->block_size < virtio_mem_default_block_size(rb)) { 1045 warn_report("'%s' property is smaller than the default block size (%" 1046 PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP, 1047 virtio_mem_default_block_size(rb) / MiB); 1048 } 1049 if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) { 1050 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1051 ")", VIRTIO_MEM_REQUESTED_SIZE_PROP, 1052 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1053 return; 1054 } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) { 1055 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1056 ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP, 1057 vmem->block_size); 1058 return; 1059 } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr), 1060 vmem->block_size)) { 1061 error_setg(errp, "'%s' property memdev size has to be multiples of" 1062 "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP, 1063 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1064 return; 1065 } 1066 1067 if (ram_block_coordinated_discard_require(true)) { 1068 error_setg(errp, "Discarding RAM is disabled"); 1069 return; 1070 } 1071 1072 /* 1073 * We don't know at this point whether shared RAM is migrated using 1074 * QEMU or migrated using the file content. "x-ignore-shared" will be 1075 * configured after realizing the device. So in case we have an 1076 * incoming migration, simply always skip the discard step. 1077 * 1078 * Otherwise, make sure that we start with a clean slate: either the 1079 * memory backend might get reused or the shared file might still have 1080 * memory allocated. 1081 */ 1082 if (!runstate_check(RUN_STATE_INMIGRATE)) { 1083 ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb)); 1084 if (ret) { 1085 error_setg_errno(errp, -ret, "Unexpected error discarding RAM"); 1086 ram_block_coordinated_discard_require(false); 1087 return; 1088 } 1089 } 1090 1091 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 1092 1093 vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) / 1094 vmem->block_size; 1095 vmem->bitmap = bitmap_new(vmem->bitmap_size); 1096 1097 virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config)); 1098 vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request); 1099 1100 /* 1101 * With "dynamic-memslots=off" (old behavior) we always map the whole 1102 * RAM memory region directly. 1103 */ 1104 if (vmem->dynamic_memslots) { 1105 if (!vmem->mr) { 1106 virtio_mem_prepare_mr(vmem); 1107 } 1108 if (vmem->nb_memslots <= 1) { 1109 vmem->nb_memslots = 1; 1110 vmem->memslot_size = memory_region_size(&vmem->memdev->mr); 1111 } 1112 if (!vmem->memslots) { 1113 virtio_mem_prepare_memslots(vmem); 1114 } 1115 } else { 1116 assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots); 1117 } 1118 1119 host_memory_backend_set_mapped(vmem->memdev, true); 1120 vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem)); 1121 if (vmem->early_migration) { 1122 vmstate_register_any(VMSTATE_IF(vmem), 1123 &vmstate_virtio_mem_device_early, vmem); 1124 } 1125 1126 /* 1127 * We only want to unplug all memory to start with a clean slate when 1128 * it is safe for the guest -- during system resets that call 1129 * qemu_devices_reset(). 1130 * 1131 * We'll filter out selected qemu_devices_reset() calls used for other 1132 * purposes, like resetting all devices during wakeup from suspend on 1133 * x86 based on the reset type passed to qemu_devices_reset(). 1134 * 1135 * Unplugging all memory during simple device resets can result in the VM 1136 * unexpectedly losing RAM, corrupting VM state. 1137 * 1138 * Simple device resets (or resets triggered by getting a parent device 1139 * reset) must not change the state of plugged memory blocks. Therefore, 1140 * we need a dedicated reset object that only gets called during 1141 * qemu_devices_reset(). 1142 */ 1143 obj = object_new(TYPE_VIRTIO_MEM_SYSTEM_RESET); 1144 vmem->system_reset = VIRTIO_MEM_SYSTEM_RESET(obj); 1145 vmem->system_reset->vmem = vmem; 1146 qemu_register_resettable(obj); 1147 1148 /* 1149 * Set ourselves as RamDiscardManager before the plug handler maps the 1150 * memory region and exposes it via an address space. 1151 */ 1152 memory_region_set_ram_discard_manager(&vmem->memdev->mr, 1153 RAM_DISCARD_MANAGER(vmem)); 1154 } 1155 1156 static void virtio_mem_device_unrealize(DeviceState *dev) 1157 { 1158 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 1159 VirtIOMEM *vmem = VIRTIO_MEM(dev); 1160 1161 /* 1162 * The unplug handler unmapped the memory region, it cannot be 1163 * found via an address space anymore. Unset ourselves. 1164 */ 1165 memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL); 1166 1167 qemu_unregister_resettable(OBJECT(vmem->system_reset)); 1168 object_unref(OBJECT(vmem->system_reset)); 1169 1170 if (vmem->early_migration) { 1171 vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early, 1172 vmem); 1173 } 1174 vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem)); 1175 host_memory_backend_set_mapped(vmem->memdev, false); 1176 virtio_del_queue(vdev, 0); 1177 virtio_cleanup(vdev); 1178 g_free(vmem->bitmap); 1179 ram_block_coordinated_discard_require(false); 1180 } 1181 1182 static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg, 1183 uint64_t offset, uint64_t size) 1184 { 1185 RAMBlock *rb = vmem->memdev->mr.ram_block; 1186 1187 return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0; 1188 } 1189 1190 static int virtio_mem_restore_unplugged(VirtIOMEM *vmem) 1191 { 1192 /* Make sure all memory is really discarded after migration. */ 1193 return virtio_mem_for_each_unplugged_range(vmem, NULL, 1194 virtio_mem_discard_range_cb); 1195 } 1196 1197 static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg, 1198 uint64_t offset, uint64_t size) 1199 { 1200 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 1201 return 0; 1202 } 1203 1204 static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem) 1205 { 1206 RamDiscardListener *rdl; 1207 int ret; 1208 1209 /* 1210 * We restored the bitmap and updated the requested size; activate all 1211 * memslots (so listeners register) before notifying about plugged blocks. 1212 */ 1213 if (vmem->dynamic_memslots) { 1214 /* 1215 * We don't expect any active memslots at this point to deactivate: no 1216 * memory was plugged on the migration destination. 1217 */ 1218 virtio_mem_for_each_plugged_range(vmem, NULL, 1219 virtio_mem_activate_memslot_range_cb); 1220 } 1221 1222 /* 1223 * We started out with all memory discarded and our memory region is mapped 1224 * into an address space. Replay, now that we updated the bitmap. 1225 */ 1226 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 1227 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1228 virtio_mem_notify_populate_cb); 1229 if (ret) { 1230 return ret; 1231 } 1232 } 1233 return 0; 1234 } 1235 1236 static int virtio_mem_post_load(void *opaque, int version_id) 1237 { 1238 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1239 int ret; 1240 1241 if (!vmem->early_migration) { 1242 ret = virtio_mem_post_load_bitmap(vmem); 1243 if (ret) { 1244 return ret; 1245 } 1246 } 1247 1248 /* 1249 * If shared RAM is migrated using the file content and not using QEMU, 1250 * don't mess with preallocation and postcopy. 1251 */ 1252 if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) { 1253 return 0; 1254 } 1255 1256 if (vmem->prealloc && !vmem->early_migration) { 1257 warn_report("Proper preallocation with migration requires a newer QEMU machine"); 1258 } 1259 1260 if (migration_in_incoming_postcopy()) { 1261 return 0; 1262 } 1263 1264 return virtio_mem_restore_unplugged(vmem); 1265 } 1266 1267 static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg, 1268 uint64_t offset, uint64_t size) 1269 { 1270 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 1271 int fd = memory_region_get_fd(&vmem->memdev->mr); 1272 Error *local_err = NULL; 1273 1274 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 1275 error_report_err(local_err); 1276 return -ENOMEM; 1277 } 1278 return 0; 1279 } 1280 1281 static int virtio_mem_post_load_early(void *opaque, int version_id) 1282 { 1283 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1284 RAMBlock *rb = vmem->memdev->mr.ram_block; 1285 int ret; 1286 1287 if (!vmem->prealloc) { 1288 goto post_load_bitmap; 1289 } 1290 1291 /* 1292 * If shared RAM is migrated using the file content and not using QEMU, 1293 * don't mess with preallocation and postcopy. 1294 */ 1295 if (migrate_ram_is_ignored(rb)) { 1296 goto post_load_bitmap; 1297 } 1298 1299 /* 1300 * We restored the bitmap and verified that the basic properties 1301 * match on source and destination, so we can go ahead and preallocate 1302 * memory for all plugged memory blocks, before actual RAM migration starts 1303 * touching this memory. 1304 */ 1305 ret = virtio_mem_for_each_plugged_range(vmem, NULL, 1306 virtio_mem_prealloc_range_cb); 1307 if (ret) { 1308 return ret; 1309 } 1310 1311 /* 1312 * This is tricky: postcopy wants to start with a clean slate. On 1313 * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily 1314 * preallocated) RAM such that postcopy will work as expected later. 1315 * 1316 * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual 1317 * RAM migration. So let's discard all memory again. This looks like an 1318 * expensive NOP, but actually serves a purpose: we made sure that we 1319 * were able to allocate all required backend memory once. We cannot 1320 * guarantee that the backend memory we will free will remain free 1321 * until we need it during postcopy, but at least we can catch the 1322 * obvious setup issues this way. 1323 */ 1324 if (migration_incoming_postcopy_advised()) { 1325 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 1326 return -EBUSY; 1327 } 1328 } 1329 1330 post_load_bitmap: 1331 /* Finally, update any other state to be consistent with the new bitmap. */ 1332 return virtio_mem_post_load_bitmap(vmem); 1333 } 1334 1335 typedef struct VirtIOMEMMigSanityChecks { 1336 VirtIOMEM *parent; 1337 uint64_t addr; 1338 uint64_t region_size; 1339 uint64_t block_size; 1340 uint32_t node; 1341 } VirtIOMEMMigSanityChecks; 1342 1343 static int virtio_mem_mig_sanity_checks_pre_save(void *opaque) 1344 { 1345 VirtIOMEMMigSanityChecks *tmp = opaque; 1346 VirtIOMEM *vmem = tmp->parent; 1347 1348 tmp->addr = vmem->addr; 1349 tmp->region_size = memory_region_size(&vmem->memdev->mr); 1350 tmp->block_size = vmem->block_size; 1351 tmp->node = vmem->node; 1352 return 0; 1353 } 1354 1355 static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id) 1356 { 1357 VirtIOMEMMigSanityChecks *tmp = opaque; 1358 VirtIOMEM *vmem = tmp->parent; 1359 const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr); 1360 1361 if (tmp->addr != vmem->addr) { 1362 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1363 VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr); 1364 return -EINVAL; 1365 } 1366 /* 1367 * Note: Preparation for resizable memory regions. The maximum size 1368 * of the memory region must not change during migration. 1369 */ 1370 if (tmp->region_size != new_region_size) { 1371 error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%" 1372 PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size, 1373 new_region_size); 1374 return -EINVAL; 1375 } 1376 if (tmp->block_size != vmem->block_size) { 1377 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1378 VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size, 1379 vmem->block_size); 1380 return -EINVAL; 1381 } 1382 if (tmp->node != vmem->node) { 1383 error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32, 1384 VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node); 1385 return -EINVAL; 1386 } 1387 return 0; 1388 } 1389 1390 static const VMStateDescription vmstate_virtio_mem_sanity_checks = { 1391 .name = "virtio-mem-device/sanity-checks", 1392 .pre_save = virtio_mem_mig_sanity_checks_pre_save, 1393 .post_load = virtio_mem_mig_sanity_checks_post_load, 1394 .fields = (const VMStateField[]) { 1395 VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks), 1396 VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks), 1397 VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks), 1398 VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks), 1399 VMSTATE_END_OF_LIST(), 1400 }, 1401 }; 1402 1403 static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id) 1404 { 1405 const VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1406 1407 /* With early migration, these fields were already migrated. */ 1408 return !vmem->early_migration; 1409 } 1410 1411 static const VMStateDescription vmstate_virtio_mem_device = { 1412 .name = "virtio-mem-device", 1413 .minimum_version_id = 1, 1414 .version_id = 1, 1415 .priority = MIG_PRI_VIRTIO_MEM, 1416 .post_load = virtio_mem_post_load, 1417 .fields = (const VMStateField[]) { 1418 VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists, 1419 VirtIOMEMMigSanityChecks, 1420 vmstate_virtio_mem_sanity_checks), 1421 VMSTATE_UINT64(usable_region_size, VirtIOMEM), 1422 VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists), 1423 VMSTATE_UINT64(requested_size, VirtIOMEM), 1424 VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists, 1425 0, bitmap_size), 1426 VMSTATE_END_OF_LIST() 1427 }, 1428 }; 1429 1430 /* 1431 * Transfer properties that are immutable while migration is active early, 1432 * such that we have have this information around before migrating any RAM 1433 * content. 1434 * 1435 * Note that virtio_mem_is_busy() makes sure these properties can no longer 1436 * change on the migration source until migration completed. 1437 * 1438 * With QEMU compat machines, we transmit these properties later, via 1439 * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists(). 1440 */ 1441 static const VMStateDescription vmstate_virtio_mem_device_early = { 1442 .name = "virtio-mem-device-early", 1443 .minimum_version_id = 1, 1444 .version_id = 1, 1445 .early_setup = true, 1446 .post_load = virtio_mem_post_load_early, 1447 .fields = (const VMStateField[]) { 1448 VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks, 1449 vmstate_virtio_mem_sanity_checks), 1450 VMSTATE_UINT64(size, VirtIOMEM), 1451 VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size), 1452 VMSTATE_END_OF_LIST() 1453 }, 1454 }; 1455 1456 static const VMStateDescription vmstate_virtio_mem = { 1457 .name = "virtio-mem", 1458 .minimum_version_id = 1, 1459 .version_id = 1, 1460 .fields = (const VMStateField[]) { 1461 VMSTATE_VIRTIO_DEVICE, 1462 VMSTATE_END_OF_LIST() 1463 }, 1464 }; 1465 1466 static void virtio_mem_fill_device_info(const VirtIOMEM *vmem, 1467 VirtioMEMDeviceInfo *vi) 1468 { 1469 vi->memaddr = vmem->addr; 1470 vi->node = vmem->node; 1471 vi->requested_size = vmem->requested_size; 1472 vi->size = vmem->size; 1473 vi->max_size = memory_region_size(&vmem->memdev->mr); 1474 vi->block_size = vmem->block_size; 1475 vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev)); 1476 } 1477 1478 static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp) 1479 { 1480 if (!vmem->memdev) { 1481 error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP); 1482 return NULL; 1483 } else if (vmem->dynamic_memslots) { 1484 if (!vmem->mr) { 1485 virtio_mem_prepare_mr(vmem); 1486 } 1487 return vmem->mr; 1488 } 1489 1490 return &vmem->memdev->mr; 1491 } 1492 1493 static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit) 1494 { 1495 uint64_t region_size, memslot_size, min_memslot_size; 1496 unsigned int memslots; 1497 RAMBlock *rb; 1498 1499 if (!vmem->dynamic_memslots) { 1500 return; 1501 } 1502 1503 /* We're called exactly once, before realizing the device. */ 1504 assert(!vmem->nb_memslots); 1505 1506 /* If realizing the device will fail, just assume a single memslot. */ 1507 if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) { 1508 vmem->nb_memslots = 1; 1509 return; 1510 } 1511 1512 rb = vmem->memdev->mr.ram_block; 1513 region_size = memory_region_size(&vmem->memdev->mr); 1514 1515 /* 1516 * Determine the default block size now, to determine the minimum memslot 1517 * size. We want the minimum slot size to be at least the device block size. 1518 */ 1519 if (!vmem->block_size) { 1520 vmem->block_size = virtio_mem_default_block_size(rb); 1521 } 1522 /* If realizing the device will fail, just assume a single memslot. */ 1523 if (vmem->block_size < qemu_ram_pagesize(rb) || 1524 !QEMU_IS_ALIGNED(region_size, vmem->block_size)) { 1525 vmem->nb_memslots = 1; 1526 return; 1527 } 1528 1529 /* 1530 * All memslots except the last one have a reasonable minimum size, and 1531 * and all memslot sizes are aligned to the device block size. 1532 */ 1533 memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size); 1534 min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE); 1535 memslot_size = MAX(memslot_size, min_memslot_size); 1536 1537 memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size; 1538 if (memslots != 1) { 1539 vmem->memslot_size = memslot_size; 1540 } 1541 vmem->nb_memslots = memslots; 1542 } 1543 1544 static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem) 1545 { 1546 if (!vmem->dynamic_memslots) { 1547 /* Exactly one static RAM memory region. */ 1548 return 1; 1549 } 1550 1551 /* We're called after instructed to make a decision. */ 1552 g_assert(vmem->nb_memslots); 1553 return vmem->nb_memslots; 1554 } 1555 1556 static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem, 1557 Notifier *notifier) 1558 { 1559 notifier_list_add(&vmem->size_change_notifiers, notifier); 1560 } 1561 1562 static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem, 1563 Notifier *notifier) 1564 { 1565 notifier_remove(notifier); 1566 } 1567 1568 static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name, 1569 void *opaque, Error **errp) 1570 { 1571 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1572 uint64_t value = vmem->size; 1573 1574 visit_type_size(v, name, &value, errp); 1575 } 1576 1577 static void virtio_mem_get_requested_size(Object *obj, Visitor *v, 1578 const char *name, void *opaque, 1579 Error **errp) 1580 { 1581 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1582 uint64_t value = vmem->requested_size; 1583 1584 visit_type_size(v, name, &value, errp); 1585 } 1586 1587 static void virtio_mem_set_requested_size(Object *obj, Visitor *v, 1588 const char *name, void *opaque, 1589 Error **errp) 1590 { 1591 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1592 uint64_t value; 1593 1594 if (!visit_type_size(v, name, &value, errp)) { 1595 return; 1596 } 1597 1598 /* 1599 * The block size and memory backend are not fixed until the device was 1600 * realized. realize() will verify these properties then. 1601 */ 1602 if (DEVICE(obj)->realized) { 1603 if (!QEMU_IS_ALIGNED(value, vmem->block_size)) { 1604 error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64 1605 ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP, 1606 vmem->block_size); 1607 return; 1608 } else if (value > memory_region_size(&vmem->memdev->mr)) { 1609 error_setg(errp, "'%s' cannot exceed the memory backend size" 1610 "(0x%" PRIx64 ")", name, 1611 memory_region_size(&vmem->memdev->mr)); 1612 return; 1613 } 1614 1615 if (value != vmem->requested_size) { 1616 virtio_mem_resize_usable_region(vmem, value, false); 1617 vmem->requested_size = value; 1618 } 1619 /* 1620 * Trigger a config update so the guest gets notified. We trigger 1621 * even if the size didn't change (especially helpful for debugging). 1622 */ 1623 virtio_notify_config(VIRTIO_DEVICE(vmem)); 1624 } else { 1625 vmem->requested_size = value; 1626 } 1627 } 1628 1629 static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name, 1630 void *opaque, Error **errp) 1631 { 1632 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1633 uint64_t value = vmem->block_size; 1634 1635 /* 1636 * If not configured by the user (and we're not realized yet), use the 1637 * default block size we would use with the current memory backend. 1638 */ 1639 if (!value) { 1640 if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) { 1641 value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block); 1642 } else { 1643 value = virtio_mem_thp_size(); 1644 } 1645 } 1646 1647 visit_type_size(v, name, &value, errp); 1648 } 1649 1650 static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name, 1651 void *opaque, Error **errp) 1652 { 1653 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1654 uint64_t value; 1655 1656 if (DEVICE(obj)->realized) { 1657 error_setg(errp, "'%s' cannot be changed", name); 1658 return; 1659 } 1660 1661 if (!visit_type_size(v, name, &value, errp)) { 1662 return; 1663 } 1664 1665 if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) { 1666 error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name, 1667 VIRTIO_MEM_MIN_BLOCK_SIZE); 1668 return; 1669 } else if (!is_power_of_2(value)) { 1670 error_setg(errp, "'%s' property has to be a power of two", name); 1671 return; 1672 } 1673 vmem->block_size = value; 1674 } 1675 1676 static void virtio_mem_instance_init(Object *obj) 1677 { 1678 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1679 1680 notifier_list_init(&vmem->size_change_notifiers); 1681 QLIST_INIT(&vmem->rdl_list); 1682 1683 object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size, 1684 NULL, NULL, NULL); 1685 object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size", 1686 virtio_mem_get_requested_size, 1687 virtio_mem_set_requested_size, NULL, NULL); 1688 object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size", 1689 virtio_mem_get_block_size, virtio_mem_set_block_size, 1690 NULL, NULL); 1691 } 1692 1693 static void virtio_mem_instance_finalize(Object *obj) 1694 { 1695 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1696 1697 /* 1698 * Note: the core already dropped the references on all memory regions 1699 * (it's passed as the owner to memory_region_init_*()) and finalized 1700 * these objects. We can simply free the memory. 1701 */ 1702 g_free(vmem->memslots); 1703 vmem->memslots = NULL; 1704 g_free(vmem->mr); 1705 vmem->mr = NULL; 1706 } 1707 1708 static const Property virtio_mem_properties[] = { 1709 DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0), 1710 DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0), 1711 DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false), 1712 DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev, 1713 TYPE_MEMORY_BACKEND, HostMemoryBackend *), 1714 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1715 DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM, 1716 unplugged_inaccessible, ON_OFF_AUTO_ON), 1717 #endif 1718 DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM, 1719 early_migration, true), 1720 DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM, 1721 dynamic_memslots, false), 1722 }; 1723 1724 static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm, 1725 const MemoryRegion *mr) 1726 { 1727 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1728 1729 g_assert(mr == &vmem->memdev->mr); 1730 return vmem->block_size; 1731 } 1732 1733 static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm, 1734 const MemoryRegionSection *s) 1735 { 1736 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1737 uint64_t start_gpa = vmem->addr + s->offset_within_region; 1738 uint64_t end_gpa = start_gpa + int128_get64(s->size); 1739 1740 g_assert(s->mr == &vmem->memdev->mr); 1741 1742 start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size); 1743 end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size); 1744 1745 if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) { 1746 return false; 1747 } 1748 1749 return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa); 1750 } 1751 1752 struct VirtIOMEMReplayData { 1753 void *fn; 1754 void *opaque; 1755 }; 1756 1757 static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg) 1758 { 1759 struct VirtIOMEMReplayData *data = arg; 1760 1761 return ((ReplayRamPopulate)data->fn)(s, data->opaque); 1762 } 1763 1764 static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm, 1765 MemoryRegionSection *s, 1766 ReplayRamPopulate replay_fn, 1767 void *opaque) 1768 { 1769 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1770 struct VirtIOMEMReplayData data = { 1771 .fn = replay_fn, 1772 .opaque = opaque, 1773 }; 1774 1775 g_assert(s->mr == &vmem->memdev->mr); 1776 return virtio_mem_for_each_plugged_section(vmem, s, &data, 1777 virtio_mem_rdm_replay_populated_cb); 1778 } 1779 1780 static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s, 1781 void *arg) 1782 { 1783 struct VirtIOMEMReplayData *data = arg; 1784 1785 ((ReplayRamDiscard)data->fn)(s, data->opaque); 1786 return 0; 1787 } 1788 1789 static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm, 1790 MemoryRegionSection *s, 1791 ReplayRamDiscard replay_fn, 1792 void *opaque) 1793 { 1794 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1795 struct VirtIOMEMReplayData data = { 1796 .fn = replay_fn, 1797 .opaque = opaque, 1798 }; 1799 1800 g_assert(s->mr == &vmem->memdev->mr); 1801 virtio_mem_for_each_unplugged_section(vmem, s, &data, 1802 virtio_mem_rdm_replay_discarded_cb); 1803 } 1804 1805 static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm, 1806 RamDiscardListener *rdl, 1807 MemoryRegionSection *s) 1808 { 1809 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1810 int ret; 1811 1812 g_assert(s->mr == &vmem->memdev->mr); 1813 rdl->section = memory_region_section_new_copy(s); 1814 1815 QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next); 1816 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1817 virtio_mem_notify_populate_cb); 1818 if (ret) { 1819 error_report("%s: Replaying plugged ranges failed: %s", __func__, 1820 strerror(-ret)); 1821 } 1822 } 1823 1824 static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm, 1825 RamDiscardListener *rdl) 1826 { 1827 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1828 1829 g_assert(rdl->section->mr == &vmem->memdev->mr); 1830 if (vmem->size) { 1831 if (rdl->double_discard_supported) { 1832 rdl->notify_discard(rdl, rdl->section); 1833 } else { 1834 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1835 virtio_mem_notify_discard_cb); 1836 } 1837 } 1838 1839 memory_region_section_free_copy(rdl->section); 1840 rdl->section = NULL; 1841 QLIST_REMOVE(rdl, next); 1842 } 1843 1844 static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp) 1845 { 1846 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) { 1847 /* 1848 * We could allow it with a usable region size of 0, but let's just 1849 * not care about that legacy setting. 1850 */ 1851 error_setg(errp, "virtio-mem device cannot get unplugged while" 1852 " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'"); 1853 return; 1854 } 1855 1856 if (vmem->size) { 1857 error_setg(errp, "virtio-mem device cannot get unplugged while some" 1858 " of its memory is still plugged"); 1859 return; 1860 } 1861 if (vmem->requested_size) { 1862 error_setg(errp, "virtio-mem device cannot get unplugged while" 1863 " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'"); 1864 return; 1865 } 1866 } 1867 1868 static void virtio_mem_class_init(ObjectClass *klass, const void *data) 1869 { 1870 DeviceClass *dc = DEVICE_CLASS(klass); 1871 VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); 1872 VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass); 1873 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass); 1874 1875 device_class_set_props(dc, virtio_mem_properties); 1876 dc->vmsd = &vmstate_virtio_mem; 1877 1878 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 1879 vdc->realize = virtio_mem_device_realize; 1880 vdc->unrealize = virtio_mem_device_unrealize; 1881 vdc->get_config = virtio_mem_get_config; 1882 vdc->get_features = virtio_mem_get_features; 1883 vdc->validate_features = virtio_mem_validate_features; 1884 vdc->vmsd = &vmstate_virtio_mem_device; 1885 1886 vmc->fill_device_info = virtio_mem_fill_device_info; 1887 vmc->get_memory_region = virtio_mem_get_memory_region; 1888 vmc->decide_memslots = virtio_mem_decide_memslots; 1889 vmc->get_memslots = virtio_mem_get_memslots; 1890 vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier; 1891 vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier; 1892 vmc->unplug_request_check = virtio_mem_unplug_request_check; 1893 1894 rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity; 1895 rdmc->is_populated = virtio_mem_rdm_is_populated; 1896 rdmc->replay_populated = virtio_mem_rdm_replay_populated; 1897 rdmc->replay_discarded = virtio_mem_rdm_replay_discarded; 1898 rdmc->register_listener = virtio_mem_rdm_register_listener; 1899 rdmc->unregister_listener = virtio_mem_rdm_unregister_listener; 1900 } 1901 1902 static const TypeInfo virtio_mem_info = { 1903 .name = TYPE_VIRTIO_MEM, 1904 .parent = TYPE_VIRTIO_DEVICE, 1905 .instance_size = sizeof(VirtIOMEM), 1906 .instance_init = virtio_mem_instance_init, 1907 .instance_finalize = virtio_mem_instance_finalize, 1908 .class_init = virtio_mem_class_init, 1909 .class_size = sizeof(VirtIOMEMClass), 1910 .interfaces = (const InterfaceInfo[]) { 1911 { TYPE_RAM_DISCARD_MANAGER }, 1912 { } 1913 }, 1914 }; 1915 1916 static void virtio_register_types(void) 1917 { 1918 type_register_static(&virtio_mem_info); 1919 } 1920 1921 type_init(virtio_register_types) 1922 1923 OBJECT_DEFINE_SIMPLE_TYPE_WITH_INTERFACES(VirtioMemSystemReset, virtio_mem_system_reset, VIRTIO_MEM_SYSTEM_RESET, OBJECT, { TYPE_RESETTABLE_INTERFACE }, { }) 1924 1925 static void virtio_mem_system_reset_init(Object *obj) 1926 { 1927 } 1928 1929 static void virtio_mem_system_reset_finalize(Object *obj) 1930 { 1931 } 1932 1933 static ResettableState *virtio_mem_system_reset_get_state(Object *obj) 1934 { 1935 VirtioMemSystemReset *vmem_reset = VIRTIO_MEM_SYSTEM_RESET(obj); 1936 1937 return &vmem_reset->reset_state; 1938 } 1939 1940 static void virtio_mem_system_reset_hold(Object *obj, ResetType type) 1941 { 1942 VirtioMemSystemReset *vmem_reset = VIRTIO_MEM_SYSTEM_RESET(obj); 1943 VirtIOMEM *vmem = vmem_reset->vmem; 1944 1945 /* 1946 * When waking up from standby/suspend-to-ram, do not unplug any memory. 1947 */ 1948 if (type == RESET_TYPE_WAKEUP) { 1949 return; 1950 } 1951 1952 /* 1953 * During usual resets, we will unplug all memory and shrink the usable 1954 * region size. This is, however, not possible in all scenarios. Then, 1955 * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL). 1956 */ 1957 virtio_mem_unplug_all(vmem); 1958 } 1959 1960 static void virtio_mem_system_reset_class_init(ObjectClass *klass, 1961 const void *data) 1962 { 1963 ResettableClass *rc = RESETTABLE_CLASS(klass); 1964 1965 rc->get_state = virtio_mem_system_reset_get_state; 1966 rc->phases.hold = virtio_mem_system_reset_hold; 1967 } 1968