1 /* 2 * Virtio MEM device 3 * 4 * Copyright (C) 2020 Red Hat, Inc. 5 * 6 * Authors: 7 * David Hildenbrand <david@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/iov.h" 15 #include "qemu/cutils.h" 16 #include "qemu/error-report.h" 17 #include "qemu/units.h" 18 #include "system/numa.h" 19 #include "system/system.h" 20 #include "system/reset.h" 21 #include "system/runstate.h" 22 #include "hw/virtio/virtio.h" 23 #include "hw/virtio/virtio-bus.h" 24 #include "hw/virtio/virtio-mem.h" 25 #include "qapi/error.h" 26 #include "qapi/visitor.h" 27 #include "exec/ram_addr.h" 28 #include "migration/misc.h" 29 #include "hw/boards.h" 30 #include "hw/qdev-properties.h" 31 #include CONFIG_DEVICES 32 #include "trace.h" 33 34 static const VMStateDescription vmstate_virtio_mem_device_early; 35 36 /* 37 * We only had legacy x86 guests that did not support 38 * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests. 39 */ 40 #if defined(TARGET_X86_64) || defined(TARGET_I386) 41 #define VIRTIO_MEM_HAS_LEGACY_GUESTS 42 #endif 43 44 /* 45 * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking 46 * bitmap small. 47 */ 48 #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB)) 49 50 static uint32_t virtio_mem_default_thp_size(void) 51 { 52 uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 53 54 #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__) 55 default_thp_size = 2 * MiB; 56 #elif defined(__aarch64__) 57 if (qemu_real_host_page_size() == 4 * KiB) { 58 default_thp_size = 2 * MiB; 59 } else if (qemu_real_host_page_size() == 16 * KiB) { 60 default_thp_size = 32 * MiB; 61 } else if (qemu_real_host_page_size() == 64 * KiB) { 62 default_thp_size = 512 * MiB; 63 } 64 #elif defined(__s390x__) 65 default_thp_size = 1 * MiB; 66 #endif 67 68 return default_thp_size; 69 } 70 71 /* 72 * The minimum memslot size depends on this setting ("sane default"), the 73 * device block size, and the memory backend page size. The last (or single) 74 * memslot might be smaller than this constant. 75 */ 76 #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB) 77 78 /* 79 * We want to have a reasonable default block size such that 80 * 1. We avoid splitting THPs when unplugging memory, which degrades 81 * performance. 82 * 2. We avoid placing THPs for plugged blocks that also cover unplugged 83 * blocks. 84 * 85 * The actual THP size might differ between Linux kernels, so we try to probe 86 * it. In the future (if we ever run into issues regarding 2.), we might want 87 * to disable THP in case we fail to properly probe the THP size, or if the 88 * block size is configured smaller than the THP size. 89 */ 90 static uint32_t thp_size; 91 92 #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size" 93 #define HPAGE_PATH "/sys/kernel/mm/transparent_hugepage/" 94 static uint32_t virtio_mem_thp_size(void) 95 { 96 gchar *content = NULL; 97 const char *endptr; 98 uint64_t tmp; 99 100 if (thp_size) { 101 return thp_size; 102 } 103 104 /* No THP -> no restrictions. */ 105 if (!g_file_test(HPAGE_PATH, G_FILE_TEST_EXISTS)) { 106 thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 107 return thp_size; 108 } 109 110 /* 111 * Try to probe the actual THP size, fallback to (sane but eventually 112 * incorrect) default sizes. 113 */ 114 if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) && 115 !qemu_strtou64(content, &endptr, 0, &tmp) && 116 (!endptr || *endptr == '\n')) { 117 /* Sanity-check the value and fallback to something reasonable. */ 118 if (!tmp || !is_power_of_2(tmp)) { 119 warn_report("Read unsupported THP size: %" PRIx64, tmp); 120 } else { 121 thp_size = tmp; 122 } 123 } 124 125 if (!thp_size) { 126 thp_size = virtio_mem_default_thp_size(); 127 warn_report("Could not detect THP size, falling back to %" PRIx64 128 " MiB.", thp_size / MiB); 129 } 130 131 g_free(content); 132 return thp_size; 133 } 134 135 static uint64_t virtio_mem_default_block_size(RAMBlock *rb) 136 { 137 const uint64_t page_size = qemu_ram_pagesize(rb); 138 139 /* We can have hugetlbfs with a page size smaller than the THP size. */ 140 if (page_size == qemu_real_host_page_size()) { 141 return MAX(page_size, virtio_mem_thp_size()); 142 } 143 return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE); 144 } 145 146 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 147 static bool virtio_mem_has_shared_zeropage(RAMBlock *rb) 148 { 149 /* 150 * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE 151 * anonymous RAM. In any other case, reading unplugged *can* populate a 152 * fresh page, consuming actual memory. 153 */ 154 return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 && 155 qemu_ram_pagesize(rb) == qemu_real_host_page_size(); 156 } 157 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 158 159 /* 160 * Size the usable region bigger than the requested size if possible. Esp. 161 * Linux guests will only add (aligned) memory blocks in case they fully 162 * fit into the usable region, but plug+online only a subset of the pages. 163 * The memory block size corresponds mostly to the section size. 164 * 165 * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and 166 * a section size of 512MB on arm64 (as long as the start address is properly 167 * aligned, similar to ordinary DIMMs). 168 * 169 * We can change this at any time and maybe even make it configurable if 170 * necessary (as the section size can change). But it's more likely that the 171 * section size will rather get smaller and not bigger over time. 172 */ 173 #if defined(TARGET_X86_64) || defined(TARGET_I386) || defined(TARGET_S390X) 174 #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB)) 175 #elif defined(TARGET_ARM) 176 #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB)) 177 #else 178 #error VIRTIO_MEM_USABLE_EXTENT not defined 179 #endif 180 181 static bool virtio_mem_is_busy(void) 182 { 183 /* 184 * Postcopy cannot handle concurrent discards and we don't want to migrate 185 * pages on-demand with stale content when plugging new blocks. 186 * 187 * For precopy, we don't want unplugged blocks in our migration stream, and 188 * when plugging new blocks, the page content might differ between source 189 * and destination (observable by the guest when not initializing pages 190 * after plugging them) until we're running on the destination (as we didn't 191 * migrate these blocks when they were unplugged). 192 */ 193 return migration_in_incoming_postcopy() || migration_is_running(); 194 } 195 196 typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg, 197 uint64_t offset, uint64_t size); 198 199 static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg, 200 virtio_mem_range_cb cb) 201 { 202 unsigned long first_zero_bit, last_zero_bit; 203 uint64_t offset, size; 204 int ret = 0; 205 206 first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size); 207 while (first_zero_bit < vmem->bitmap_size) { 208 offset = first_zero_bit * vmem->block_size; 209 last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 210 first_zero_bit + 1) - 1; 211 size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size; 212 213 ret = cb(vmem, arg, offset, size); 214 if (ret) { 215 break; 216 } 217 first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 218 last_zero_bit + 2); 219 } 220 return ret; 221 } 222 223 static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg, 224 virtio_mem_range_cb cb) 225 { 226 unsigned long first_bit, last_bit; 227 uint64_t offset, size; 228 int ret = 0; 229 230 first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size); 231 while (first_bit < vmem->bitmap_size) { 232 offset = first_bit * vmem->block_size; 233 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 234 first_bit + 1) - 1; 235 size = (last_bit - first_bit + 1) * vmem->block_size; 236 237 ret = cb(vmem, arg, offset, size); 238 if (ret) { 239 break; 240 } 241 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 242 last_bit + 2); 243 } 244 return ret; 245 } 246 247 /* 248 * Adjust the memory section to cover the intersection with the given range. 249 * 250 * Returns false if the intersection is empty, otherwise returns true. 251 */ 252 static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s, 253 uint64_t offset, uint64_t size) 254 { 255 uint64_t start = MAX(s->offset_within_region, offset); 256 uint64_t end = MIN(s->offset_within_region + int128_get64(s->size), 257 offset + size); 258 259 if (end <= start) { 260 return false; 261 } 262 263 s->offset_within_address_space += start - s->offset_within_region; 264 s->offset_within_region = start; 265 s->size = int128_make64(end - start); 266 return true; 267 } 268 269 typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg); 270 271 static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem, 272 MemoryRegionSection *s, 273 void *arg, 274 virtio_mem_section_cb cb) 275 { 276 unsigned long first_bit, last_bit; 277 uint64_t offset, size; 278 int ret = 0; 279 280 first_bit = s->offset_within_region / vmem->block_size; 281 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 282 while (first_bit < vmem->bitmap_size) { 283 MemoryRegionSection tmp = *s; 284 285 offset = first_bit * vmem->block_size; 286 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 287 first_bit + 1) - 1; 288 size = (last_bit - first_bit + 1) * vmem->block_size; 289 290 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 291 break; 292 } 293 ret = cb(&tmp, arg); 294 if (ret) { 295 break; 296 } 297 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 298 last_bit + 2); 299 } 300 return ret; 301 } 302 303 static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem, 304 MemoryRegionSection *s, 305 void *arg, 306 virtio_mem_section_cb cb) 307 { 308 unsigned long first_bit, last_bit; 309 uint64_t offset, size; 310 int ret = 0; 311 312 first_bit = s->offset_within_region / vmem->block_size; 313 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 314 while (first_bit < vmem->bitmap_size) { 315 MemoryRegionSection tmp = *s; 316 317 offset = first_bit * vmem->block_size; 318 last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 319 first_bit + 1) - 1; 320 size = (last_bit - first_bit + 1) * vmem->block_size; 321 322 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 323 break; 324 } 325 ret = cb(&tmp, arg); 326 if (ret) { 327 break; 328 } 329 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 330 last_bit + 2); 331 } 332 return ret; 333 } 334 335 static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg) 336 { 337 RamDiscardListener *rdl = arg; 338 339 return rdl->notify_populate(rdl, s); 340 } 341 342 static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg) 343 { 344 RamDiscardListener *rdl = arg; 345 346 rdl->notify_discard(rdl, s); 347 return 0; 348 } 349 350 static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset, 351 uint64_t size) 352 { 353 RamDiscardListener *rdl; 354 355 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 356 MemoryRegionSection tmp = *rdl->section; 357 358 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 359 continue; 360 } 361 rdl->notify_discard(rdl, &tmp); 362 } 363 } 364 365 static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset, 366 uint64_t size) 367 { 368 RamDiscardListener *rdl, *rdl2; 369 int ret = 0; 370 371 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 372 MemoryRegionSection tmp = *rdl->section; 373 374 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 375 continue; 376 } 377 ret = rdl->notify_populate(rdl, &tmp); 378 if (ret) { 379 break; 380 } 381 } 382 383 if (ret) { 384 /* Notify all already-notified listeners. */ 385 QLIST_FOREACH(rdl2, &vmem->rdl_list, next) { 386 MemoryRegionSection tmp = *rdl2->section; 387 388 if (rdl2 == rdl) { 389 break; 390 } 391 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 392 continue; 393 } 394 rdl2->notify_discard(rdl2, &tmp); 395 } 396 } 397 return ret; 398 } 399 400 static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem) 401 { 402 RamDiscardListener *rdl; 403 404 if (!vmem->size) { 405 return; 406 } 407 408 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 409 if (rdl->double_discard_supported) { 410 rdl->notify_discard(rdl, rdl->section); 411 } else { 412 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 413 virtio_mem_notify_discard_cb); 414 } 415 } 416 } 417 418 static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem, 419 uint64_t start_gpa, uint64_t size) 420 { 421 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 422 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 423 unsigned long found_bit; 424 425 /* We fake a shorter bitmap to avoid searching too far. */ 426 found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit); 427 return found_bit > last_bit; 428 } 429 430 static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem, 431 uint64_t start_gpa, uint64_t size) 432 { 433 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 434 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 435 unsigned long found_bit; 436 437 /* We fake a shorter bitmap to avoid searching too far. */ 438 found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit); 439 return found_bit > last_bit; 440 } 441 442 static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa, 443 uint64_t size) 444 { 445 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 446 const unsigned long nbits = size / vmem->block_size; 447 448 bitmap_set(vmem->bitmap, bit, nbits); 449 } 450 451 static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa, 452 uint64_t size) 453 { 454 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 455 const unsigned long nbits = size / vmem->block_size; 456 457 bitmap_clear(vmem->bitmap, bit, nbits); 458 } 459 460 static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem, 461 struct virtio_mem_resp *resp) 462 { 463 VirtIODevice *vdev = VIRTIO_DEVICE(vmem); 464 VirtQueue *vq = vmem->vq; 465 466 trace_virtio_mem_send_response(le16_to_cpu(resp->type)); 467 iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp)); 468 469 virtqueue_push(vq, elem, sizeof(*resp)); 470 virtio_notify(vdev, vq); 471 } 472 473 static void virtio_mem_send_response_simple(VirtIOMEM *vmem, 474 VirtQueueElement *elem, 475 uint16_t type) 476 { 477 struct virtio_mem_resp resp = { 478 .type = cpu_to_le16(type), 479 }; 480 481 virtio_mem_send_response(vmem, elem, &resp); 482 } 483 484 static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa, 485 uint64_t size) 486 { 487 if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) { 488 return false; 489 } 490 if (gpa + size < gpa || !size) { 491 return false; 492 } 493 if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) { 494 return false; 495 } 496 if (gpa + size > vmem->addr + vmem->usable_region_size) { 497 return false; 498 } 499 return true; 500 } 501 502 static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx) 503 { 504 const uint64_t memslot_offset = idx * vmem->memslot_size; 505 506 assert(vmem->memslots); 507 508 /* 509 * Instead of enabling/disabling memslots, we add/remove them. This should 510 * make address space updates faster, because we don't have to loop over 511 * many disabled subregions. 512 */ 513 if (memory_region_is_mapped(&vmem->memslots[idx])) { 514 return; 515 } 516 memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]); 517 } 518 519 static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx) 520 { 521 assert(vmem->memslots); 522 523 if (!memory_region_is_mapped(&vmem->memslots[idx])) { 524 return; 525 } 526 memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]); 527 } 528 529 static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem, 530 uint64_t offset, uint64_t size) 531 { 532 const unsigned int start_idx = offset / vmem->memslot_size; 533 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 534 vmem->memslot_size; 535 unsigned int idx; 536 537 assert(vmem->dynamic_memslots); 538 539 /* Activate all involved memslots in a single transaction. */ 540 memory_region_transaction_begin(); 541 for (idx = start_idx; idx < end_idx; idx++) { 542 virtio_mem_activate_memslot(vmem, idx); 543 } 544 memory_region_transaction_commit(); 545 } 546 547 static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem, 548 uint64_t offset, 549 uint64_t size) 550 { 551 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 552 const unsigned int start_idx = offset / vmem->memslot_size; 553 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 554 vmem->memslot_size; 555 unsigned int idx; 556 557 assert(vmem->dynamic_memslots); 558 559 /* Deactivate all memslots with unplugged blocks in a single transaction. */ 560 memory_region_transaction_begin(); 561 for (idx = start_idx; idx < end_idx; idx++) { 562 const uint64_t memslot_offset = idx * vmem->memslot_size; 563 uint64_t memslot_size = vmem->memslot_size; 564 565 /* The size of the last memslot might be smaller. */ 566 if (idx == vmem->nb_memslots - 1) { 567 memslot_size = region_size - memslot_offset; 568 } 569 570 /* 571 * Partially covered memslots might still have some blocks plugged and 572 * have to remain active if that's the case. 573 */ 574 if (offset > memslot_offset || 575 offset + size < memslot_offset + memslot_size) { 576 const uint64_t gpa = vmem->addr + memslot_offset; 577 578 if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) { 579 continue; 580 } 581 } 582 583 virtio_mem_deactivate_memslot(vmem, idx); 584 } 585 memory_region_transaction_commit(); 586 } 587 588 static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa, 589 uint64_t size, bool plug) 590 { 591 const uint64_t offset = start_gpa - vmem->addr; 592 RAMBlock *rb = vmem->memdev->mr.ram_block; 593 int ret = 0; 594 595 if (virtio_mem_is_busy()) { 596 return -EBUSY; 597 } 598 599 if (!plug) { 600 if (ram_block_discard_range(rb, offset, size)) { 601 return -EBUSY; 602 } 603 virtio_mem_notify_unplug(vmem, offset, size); 604 virtio_mem_set_range_unplugged(vmem, start_gpa, size); 605 /* Deactivate completely unplugged memslots after updating the state. */ 606 if (vmem->dynamic_memslots) { 607 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 608 } 609 return 0; 610 } 611 612 if (vmem->prealloc) { 613 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 614 int fd = memory_region_get_fd(&vmem->memdev->mr); 615 Error *local_err = NULL; 616 617 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 618 static bool warned; 619 620 /* 621 * Warn only once, we don't want to fill the log with these 622 * warnings. 623 */ 624 if (!warned) { 625 warn_report_err(local_err); 626 warned = true; 627 } else { 628 error_free(local_err); 629 } 630 ret = -EBUSY; 631 } 632 } 633 634 if (!ret) { 635 /* 636 * Activate before notifying and rollback in case of any errors. 637 * 638 * When activating a yet inactive memslot, memory notifiers will get 639 * notified about the added memory region and can register with the 640 * RamDiscardManager; this will traverse all plugged blocks and skip the 641 * blocks we are plugging here. The following notification will inform 642 * registered listeners about the blocks we're plugging. 643 */ 644 if (vmem->dynamic_memslots) { 645 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 646 } 647 ret = virtio_mem_notify_plug(vmem, offset, size); 648 if (ret && vmem->dynamic_memslots) { 649 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 650 } 651 } 652 if (ret) { 653 /* Could be preallocation or a notifier populated memory. */ 654 ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size); 655 return -EBUSY; 656 } 657 658 virtio_mem_set_range_plugged(vmem, start_gpa, size); 659 return 0; 660 } 661 662 static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa, 663 uint16_t nb_blocks, bool plug) 664 { 665 const uint64_t size = nb_blocks * vmem->block_size; 666 int ret; 667 668 if (!virtio_mem_valid_range(vmem, gpa, size)) { 669 return VIRTIO_MEM_RESP_ERROR; 670 } 671 672 if (plug && (vmem->size + size > vmem->requested_size)) { 673 return VIRTIO_MEM_RESP_NACK; 674 } 675 676 /* test if really all blocks are in the opposite state */ 677 if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) || 678 (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) { 679 return VIRTIO_MEM_RESP_ERROR; 680 } 681 682 ret = virtio_mem_set_block_state(vmem, gpa, size, plug); 683 if (ret) { 684 return VIRTIO_MEM_RESP_BUSY; 685 } 686 if (plug) { 687 vmem->size += size; 688 } else { 689 vmem->size -= size; 690 } 691 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 692 return VIRTIO_MEM_RESP_ACK; 693 } 694 695 static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 696 struct virtio_mem_req *req) 697 { 698 const uint64_t gpa = le64_to_cpu(req->u.plug.addr); 699 const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks); 700 uint16_t type; 701 702 trace_virtio_mem_plug_request(gpa, nb_blocks); 703 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true); 704 virtio_mem_send_response_simple(vmem, elem, type); 705 } 706 707 static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 708 struct virtio_mem_req *req) 709 { 710 const uint64_t gpa = le64_to_cpu(req->u.unplug.addr); 711 const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks); 712 uint16_t type; 713 714 trace_virtio_mem_unplug_request(gpa, nb_blocks); 715 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false); 716 virtio_mem_send_response_simple(vmem, elem, type); 717 } 718 719 static void virtio_mem_resize_usable_region(VirtIOMEM *vmem, 720 uint64_t requested_size, 721 bool can_shrink) 722 { 723 uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr), 724 requested_size + VIRTIO_MEM_USABLE_EXTENT); 725 726 /* The usable region size always has to be multiples of the block size. */ 727 newsize = QEMU_ALIGN_UP(newsize, vmem->block_size); 728 729 if (!requested_size) { 730 newsize = 0; 731 } 732 733 if (newsize < vmem->usable_region_size && !can_shrink) { 734 return; 735 } 736 737 trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize); 738 vmem->usable_region_size = newsize; 739 } 740 741 static int virtio_mem_unplug_all(VirtIOMEM *vmem) 742 { 743 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 744 RAMBlock *rb = vmem->memdev->mr.ram_block; 745 746 if (vmem->size) { 747 if (virtio_mem_is_busy()) { 748 return -EBUSY; 749 } 750 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 751 return -EBUSY; 752 } 753 virtio_mem_notify_unplug_all(vmem); 754 755 bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size); 756 vmem->size = 0; 757 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 758 759 /* Deactivate all memslots after updating the state. */ 760 if (vmem->dynamic_memslots) { 761 virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size); 762 } 763 } 764 765 trace_virtio_mem_unplugged_all(); 766 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 767 return 0; 768 } 769 770 static void virtio_mem_unplug_all_request(VirtIOMEM *vmem, 771 VirtQueueElement *elem) 772 { 773 trace_virtio_mem_unplug_all_request(); 774 if (virtio_mem_unplug_all(vmem)) { 775 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY); 776 } else { 777 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK); 778 } 779 } 780 781 static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem, 782 struct virtio_mem_req *req) 783 { 784 const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks); 785 const uint64_t gpa = le64_to_cpu(req->u.state.addr); 786 const uint64_t size = nb_blocks * vmem->block_size; 787 struct virtio_mem_resp resp = { 788 .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK), 789 }; 790 791 trace_virtio_mem_state_request(gpa, nb_blocks); 792 if (!virtio_mem_valid_range(vmem, gpa, size)) { 793 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR); 794 return; 795 } 796 797 if (virtio_mem_is_range_plugged(vmem, gpa, size)) { 798 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED); 799 } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) { 800 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED); 801 } else { 802 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED); 803 } 804 trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state)); 805 virtio_mem_send_response(vmem, elem, &resp); 806 } 807 808 static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq) 809 { 810 const int len = sizeof(struct virtio_mem_req); 811 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 812 VirtQueueElement *elem; 813 struct virtio_mem_req req; 814 uint16_t type; 815 816 while (true) { 817 elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); 818 if (!elem) { 819 return; 820 } 821 822 if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) { 823 virtio_error(vdev, "virtio-mem protocol violation: invalid request" 824 " size: %d", len); 825 virtqueue_detach_element(vq, elem, 0); 826 g_free(elem); 827 return; 828 } 829 830 if (iov_size(elem->in_sg, elem->in_num) < 831 sizeof(struct virtio_mem_resp)) { 832 virtio_error(vdev, "virtio-mem protocol violation: not enough space" 833 " for response: %zu", 834 iov_size(elem->in_sg, elem->in_num)); 835 virtqueue_detach_element(vq, elem, 0); 836 g_free(elem); 837 return; 838 } 839 840 type = le16_to_cpu(req.type); 841 switch (type) { 842 case VIRTIO_MEM_REQ_PLUG: 843 virtio_mem_plug_request(vmem, elem, &req); 844 break; 845 case VIRTIO_MEM_REQ_UNPLUG: 846 virtio_mem_unplug_request(vmem, elem, &req); 847 break; 848 case VIRTIO_MEM_REQ_UNPLUG_ALL: 849 virtio_mem_unplug_all_request(vmem, elem); 850 break; 851 case VIRTIO_MEM_REQ_STATE: 852 virtio_mem_state_request(vmem, elem, &req); 853 break; 854 default: 855 virtio_error(vdev, "virtio-mem protocol violation: unknown request" 856 " type: %d", type); 857 virtqueue_detach_element(vq, elem, 0); 858 g_free(elem); 859 return; 860 } 861 862 g_free(elem); 863 } 864 } 865 866 static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data) 867 { 868 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 869 struct virtio_mem_config *config = (void *) config_data; 870 871 config->block_size = cpu_to_le64(vmem->block_size); 872 config->node_id = cpu_to_le16(vmem->node); 873 config->requested_size = cpu_to_le64(vmem->requested_size); 874 config->plugged_size = cpu_to_le64(vmem->size); 875 config->addr = cpu_to_le64(vmem->addr); 876 config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr)); 877 config->usable_region_size = cpu_to_le64(vmem->usable_region_size); 878 } 879 880 static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features, 881 Error **errp) 882 { 883 MachineState *ms = MACHINE(qdev_get_machine()); 884 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 885 886 if (ms->numa_state) { 887 #if defined(CONFIG_ACPI) 888 virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM); 889 #endif 890 } 891 assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO); 892 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) { 893 virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE); 894 } 895 if (qemu_wakeup_suspend_enabled()) { 896 virtio_add_feature(&features, VIRTIO_MEM_F_PERSISTENT_SUSPEND); 897 } 898 return features; 899 } 900 901 static int virtio_mem_validate_features(VirtIODevice *vdev) 902 { 903 if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) && 904 !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) { 905 return -EFAULT; 906 } 907 return 0; 908 } 909 910 static void virtio_mem_prepare_mr(VirtIOMEM *vmem) 911 { 912 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 913 914 assert(!vmem->mr && vmem->dynamic_memslots); 915 vmem->mr = g_new0(MemoryRegion, 1); 916 memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem", 917 region_size); 918 vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr); 919 } 920 921 static void virtio_mem_prepare_memslots(VirtIOMEM *vmem) 922 { 923 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 924 unsigned int idx; 925 926 g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots); 927 vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots); 928 929 /* Initialize our memslots, but don't map them yet. */ 930 for (idx = 0; idx < vmem->nb_memslots; idx++) { 931 const uint64_t memslot_offset = idx * vmem->memslot_size; 932 uint64_t memslot_size = vmem->memslot_size; 933 char name[20]; 934 935 /* The size of the last memslot might be smaller. */ 936 if (idx == vmem->nb_memslots - 1) { 937 memslot_size = region_size - memslot_offset; 938 } 939 940 snprintf(name, sizeof(name), "memslot-%u", idx); 941 memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name, 942 &vmem->memdev->mr, memslot_offset, 943 memslot_size); 944 /* 945 * We want to be able to atomically and efficiently activate/deactivate 946 * individual memslots without affecting adjacent memslots in memory 947 * notifiers. 948 */ 949 memory_region_set_unmergeable(&vmem->memslots[idx], true); 950 } 951 } 952 953 static void virtio_mem_device_realize(DeviceState *dev, Error **errp) 954 { 955 MachineState *ms = MACHINE(qdev_get_machine()); 956 int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0; 957 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 958 VirtIOMEM *vmem = VIRTIO_MEM(dev); 959 uint64_t page_size; 960 RAMBlock *rb; 961 Object *obj; 962 int ret; 963 964 if (!vmem->memdev) { 965 error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP); 966 return; 967 } else if (host_memory_backend_is_mapped(vmem->memdev)) { 968 error_setg(errp, "'%s' property specifies a busy memdev: %s", 969 VIRTIO_MEM_MEMDEV_PROP, 970 object_get_canonical_path_component(OBJECT(vmem->memdev))); 971 return; 972 } else if (!memory_region_is_ram(&vmem->memdev->mr) || 973 memory_region_is_rom(&vmem->memdev->mr) || 974 !vmem->memdev->mr.ram_block) { 975 error_setg(errp, "'%s' property specifies an unsupported memdev", 976 VIRTIO_MEM_MEMDEV_PROP); 977 return; 978 } else if (vmem->memdev->prealloc) { 979 error_setg(errp, "'%s' property specifies a memdev with preallocation" 980 " enabled: %s. Instead, specify 'prealloc=on' for the" 981 " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP, 982 object_get_canonical_path_component(OBJECT(vmem->memdev))); 983 return; 984 } 985 986 if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) || 987 (!nb_numa_nodes && vmem->node)) { 988 error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds" 989 "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP, 990 vmem->node, nb_numa_nodes ? nb_numa_nodes : 1); 991 return; 992 } 993 994 if (enable_mlock) { 995 error_setg(errp, "Incompatible with mlock"); 996 return; 997 } 998 999 rb = vmem->memdev->mr.ram_block; 1000 page_size = qemu_ram_pagesize(rb); 1001 1002 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1003 switch (vmem->unplugged_inaccessible) { 1004 case ON_OFF_AUTO_AUTO: 1005 if (virtio_mem_has_shared_zeropage(rb)) { 1006 vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF; 1007 } else { 1008 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1009 } 1010 break; 1011 case ON_OFF_AUTO_OFF: 1012 if (!virtio_mem_has_shared_zeropage(rb)) { 1013 warn_report("'%s' property set to 'off' with a memdev that does" 1014 " not support the shared zeropage.", 1015 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1016 } 1017 break; 1018 default: 1019 break; 1020 } 1021 #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1022 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1023 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1024 1025 if (vmem->dynamic_memslots && 1026 vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) { 1027 error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'", 1028 VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, 1029 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1030 return; 1031 } 1032 1033 /* 1034 * If the block size wasn't configured by the user, use a sane default. This 1035 * allows using hugetlbfs backends of any page size without manual 1036 * intervention. 1037 */ 1038 if (!vmem->block_size) { 1039 vmem->block_size = virtio_mem_default_block_size(rb); 1040 } 1041 1042 if (vmem->block_size < page_size) { 1043 error_setg(errp, "'%s' property has to be at least the page size (0x%" 1044 PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size); 1045 return; 1046 } else if (vmem->block_size < virtio_mem_default_block_size(rb)) { 1047 warn_report("'%s' property is smaller than the default block size (%" 1048 PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP, 1049 virtio_mem_default_block_size(rb) / MiB); 1050 } 1051 if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) { 1052 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1053 ")", VIRTIO_MEM_REQUESTED_SIZE_PROP, 1054 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1055 return; 1056 } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) { 1057 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1058 ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP, 1059 vmem->block_size); 1060 return; 1061 } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr), 1062 vmem->block_size)) { 1063 error_setg(errp, "'%s' property memdev size has to be multiples of" 1064 "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP, 1065 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1066 return; 1067 } 1068 1069 if (ram_block_coordinated_discard_require(true)) { 1070 error_setg(errp, "Discarding RAM is disabled"); 1071 return; 1072 } 1073 1074 /* 1075 * We don't know at this point whether shared RAM is migrated using 1076 * QEMU or migrated using the file content. "x-ignore-shared" will be 1077 * configured after realizing the device. So in case we have an 1078 * incoming migration, simply always skip the discard step. 1079 * 1080 * Otherwise, make sure that we start with a clean slate: either the 1081 * memory backend might get reused or the shared file might still have 1082 * memory allocated. 1083 */ 1084 if (!runstate_check(RUN_STATE_INMIGRATE)) { 1085 ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb)); 1086 if (ret) { 1087 error_setg_errno(errp, -ret, "Unexpected error discarding RAM"); 1088 ram_block_coordinated_discard_require(false); 1089 return; 1090 } 1091 } 1092 1093 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 1094 1095 vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) / 1096 vmem->block_size; 1097 vmem->bitmap = bitmap_new(vmem->bitmap_size); 1098 1099 virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config)); 1100 vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request); 1101 1102 /* 1103 * With "dynamic-memslots=off" (old behavior) we always map the whole 1104 * RAM memory region directly. 1105 */ 1106 if (vmem->dynamic_memslots) { 1107 if (!vmem->mr) { 1108 virtio_mem_prepare_mr(vmem); 1109 } 1110 if (vmem->nb_memslots <= 1) { 1111 vmem->nb_memslots = 1; 1112 vmem->memslot_size = memory_region_size(&vmem->memdev->mr); 1113 } 1114 if (!vmem->memslots) { 1115 virtio_mem_prepare_memslots(vmem); 1116 } 1117 } else { 1118 assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots); 1119 } 1120 1121 host_memory_backend_set_mapped(vmem->memdev, true); 1122 vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem)); 1123 if (vmem->early_migration) { 1124 vmstate_register_any(VMSTATE_IF(vmem), 1125 &vmstate_virtio_mem_device_early, vmem); 1126 } 1127 1128 /* 1129 * We only want to unplug all memory to start with a clean slate when 1130 * it is safe for the guest -- during system resets that call 1131 * qemu_devices_reset(). 1132 * 1133 * We'll filter out selected qemu_devices_reset() calls used for other 1134 * purposes, like resetting all devices during wakeup from suspend on 1135 * x86 based on the reset type passed to qemu_devices_reset(). 1136 * 1137 * Unplugging all memory during simple device resets can result in the VM 1138 * unexpectedly losing RAM, corrupting VM state. 1139 * 1140 * Simple device resets (or resets triggered by getting a parent device 1141 * reset) must not change the state of plugged memory blocks. Therefore, 1142 * we need a dedicated reset object that only gets called during 1143 * qemu_devices_reset(). 1144 */ 1145 obj = object_new(TYPE_VIRTIO_MEM_SYSTEM_RESET); 1146 vmem->system_reset = VIRTIO_MEM_SYSTEM_RESET(obj); 1147 vmem->system_reset->vmem = vmem; 1148 qemu_register_resettable(obj); 1149 1150 /* 1151 * Set ourselves as RamDiscardManager before the plug handler maps the 1152 * memory region and exposes it via an address space. 1153 */ 1154 memory_region_set_ram_discard_manager(&vmem->memdev->mr, 1155 RAM_DISCARD_MANAGER(vmem)); 1156 } 1157 1158 static void virtio_mem_device_unrealize(DeviceState *dev) 1159 { 1160 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 1161 VirtIOMEM *vmem = VIRTIO_MEM(dev); 1162 1163 /* 1164 * The unplug handler unmapped the memory region, it cannot be 1165 * found via an address space anymore. Unset ourselves. 1166 */ 1167 memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL); 1168 1169 qemu_unregister_resettable(OBJECT(vmem->system_reset)); 1170 object_unref(OBJECT(vmem->system_reset)); 1171 1172 if (vmem->early_migration) { 1173 vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early, 1174 vmem); 1175 } 1176 vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem)); 1177 host_memory_backend_set_mapped(vmem->memdev, false); 1178 virtio_del_queue(vdev, 0); 1179 virtio_cleanup(vdev); 1180 g_free(vmem->bitmap); 1181 ram_block_coordinated_discard_require(false); 1182 } 1183 1184 static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg, 1185 uint64_t offset, uint64_t size) 1186 { 1187 RAMBlock *rb = vmem->memdev->mr.ram_block; 1188 1189 return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0; 1190 } 1191 1192 static int virtio_mem_restore_unplugged(VirtIOMEM *vmem) 1193 { 1194 /* Make sure all memory is really discarded after migration. */ 1195 return virtio_mem_for_each_unplugged_range(vmem, NULL, 1196 virtio_mem_discard_range_cb); 1197 } 1198 1199 static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg, 1200 uint64_t offset, uint64_t size) 1201 { 1202 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 1203 return 0; 1204 } 1205 1206 static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem) 1207 { 1208 RamDiscardListener *rdl; 1209 int ret; 1210 1211 /* 1212 * We restored the bitmap and updated the requested size; activate all 1213 * memslots (so listeners register) before notifying about plugged blocks. 1214 */ 1215 if (vmem->dynamic_memslots) { 1216 /* 1217 * We don't expect any active memslots at this point to deactivate: no 1218 * memory was plugged on the migration destination. 1219 */ 1220 virtio_mem_for_each_plugged_range(vmem, NULL, 1221 virtio_mem_activate_memslot_range_cb); 1222 } 1223 1224 /* 1225 * We started out with all memory discarded and our memory region is mapped 1226 * into an address space. Replay, now that we updated the bitmap. 1227 */ 1228 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 1229 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1230 virtio_mem_notify_populate_cb); 1231 if (ret) { 1232 return ret; 1233 } 1234 } 1235 return 0; 1236 } 1237 1238 static int virtio_mem_post_load(void *opaque, int version_id) 1239 { 1240 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1241 int ret; 1242 1243 if (!vmem->early_migration) { 1244 ret = virtio_mem_post_load_bitmap(vmem); 1245 if (ret) { 1246 return ret; 1247 } 1248 } 1249 1250 /* 1251 * If shared RAM is migrated using the file content and not using QEMU, 1252 * don't mess with preallocation and postcopy. 1253 */ 1254 if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) { 1255 return 0; 1256 } 1257 1258 if (vmem->prealloc && !vmem->early_migration) { 1259 warn_report("Proper preallocation with migration requires a newer QEMU machine"); 1260 } 1261 1262 if (migration_in_incoming_postcopy()) { 1263 return 0; 1264 } 1265 1266 return virtio_mem_restore_unplugged(vmem); 1267 } 1268 1269 static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg, 1270 uint64_t offset, uint64_t size) 1271 { 1272 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 1273 int fd = memory_region_get_fd(&vmem->memdev->mr); 1274 Error *local_err = NULL; 1275 1276 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 1277 error_report_err(local_err); 1278 return -ENOMEM; 1279 } 1280 return 0; 1281 } 1282 1283 static int virtio_mem_post_load_early(void *opaque, int version_id) 1284 { 1285 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1286 RAMBlock *rb = vmem->memdev->mr.ram_block; 1287 int ret; 1288 1289 if (!vmem->prealloc) { 1290 goto post_load_bitmap; 1291 } 1292 1293 /* 1294 * If shared RAM is migrated using the file content and not using QEMU, 1295 * don't mess with preallocation and postcopy. 1296 */ 1297 if (migrate_ram_is_ignored(rb)) { 1298 goto post_load_bitmap; 1299 } 1300 1301 /* 1302 * We restored the bitmap and verified that the basic properties 1303 * match on source and destination, so we can go ahead and preallocate 1304 * memory for all plugged memory blocks, before actual RAM migration starts 1305 * touching this memory. 1306 */ 1307 ret = virtio_mem_for_each_plugged_range(vmem, NULL, 1308 virtio_mem_prealloc_range_cb); 1309 if (ret) { 1310 return ret; 1311 } 1312 1313 /* 1314 * This is tricky: postcopy wants to start with a clean slate. On 1315 * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily 1316 * preallocated) RAM such that postcopy will work as expected later. 1317 * 1318 * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual 1319 * RAM migration. So let's discard all memory again. This looks like an 1320 * expensive NOP, but actually serves a purpose: we made sure that we 1321 * were able to allocate all required backend memory once. We cannot 1322 * guarantee that the backend memory we will free will remain free 1323 * until we need it during postcopy, but at least we can catch the 1324 * obvious setup issues this way. 1325 */ 1326 if (migration_incoming_postcopy_advised()) { 1327 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 1328 return -EBUSY; 1329 } 1330 } 1331 1332 post_load_bitmap: 1333 /* Finally, update any other state to be consistent with the new bitmap. */ 1334 return virtio_mem_post_load_bitmap(vmem); 1335 } 1336 1337 typedef struct VirtIOMEMMigSanityChecks { 1338 VirtIOMEM *parent; 1339 uint64_t addr; 1340 uint64_t region_size; 1341 uint64_t block_size; 1342 uint32_t node; 1343 } VirtIOMEMMigSanityChecks; 1344 1345 static int virtio_mem_mig_sanity_checks_pre_save(void *opaque) 1346 { 1347 VirtIOMEMMigSanityChecks *tmp = opaque; 1348 VirtIOMEM *vmem = tmp->parent; 1349 1350 tmp->addr = vmem->addr; 1351 tmp->region_size = memory_region_size(&vmem->memdev->mr); 1352 tmp->block_size = vmem->block_size; 1353 tmp->node = vmem->node; 1354 return 0; 1355 } 1356 1357 static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id) 1358 { 1359 VirtIOMEMMigSanityChecks *tmp = opaque; 1360 VirtIOMEM *vmem = tmp->parent; 1361 const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr); 1362 1363 if (tmp->addr != vmem->addr) { 1364 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1365 VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr); 1366 return -EINVAL; 1367 } 1368 /* 1369 * Note: Preparation for resizable memory regions. The maximum size 1370 * of the memory region must not change during migration. 1371 */ 1372 if (tmp->region_size != new_region_size) { 1373 error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%" 1374 PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size, 1375 new_region_size); 1376 return -EINVAL; 1377 } 1378 if (tmp->block_size != vmem->block_size) { 1379 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1380 VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size, 1381 vmem->block_size); 1382 return -EINVAL; 1383 } 1384 if (tmp->node != vmem->node) { 1385 error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32, 1386 VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node); 1387 return -EINVAL; 1388 } 1389 return 0; 1390 } 1391 1392 static const VMStateDescription vmstate_virtio_mem_sanity_checks = { 1393 .name = "virtio-mem-device/sanity-checks", 1394 .pre_save = virtio_mem_mig_sanity_checks_pre_save, 1395 .post_load = virtio_mem_mig_sanity_checks_post_load, 1396 .fields = (const VMStateField[]) { 1397 VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks), 1398 VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks), 1399 VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks), 1400 VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks), 1401 VMSTATE_END_OF_LIST(), 1402 }, 1403 }; 1404 1405 static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id) 1406 { 1407 const VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1408 1409 /* With early migration, these fields were already migrated. */ 1410 return !vmem->early_migration; 1411 } 1412 1413 static const VMStateDescription vmstate_virtio_mem_device = { 1414 .name = "virtio-mem-device", 1415 .minimum_version_id = 1, 1416 .version_id = 1, 1417 .priority = MIG_PRI_VIRTIO_MEM, 1418 .post_load = virtio_mem_post_load, 1419 .fields = (const VMStateField[]) { 1420 VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists, 1421 VirtIOMEMMigSanityChecks, 1422 vmstate_virtio_mem_sanity_checks), 1423 VMSTATE_UINT64(usable_region_size, VirtIOMEM), 1424 VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists), 1425 VMSTATE_UINT64(requested_size, VirtIOMEM), 1426 VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists, 1427 0, bitmap_size), 1428 VMSTATE_END_OF_LIST() 1429 }, 1430 }; 1431 1432 /* 1433 * Transfer properties that are immutable while migration is active early, 1434 * such that we have have this information around before migrating any RAM 1435 * content. 1436 * 1437 * Note that virtio_mem_is_busy() makes sure these properties can no longer 1438 * change on the migration source until migration completed. 1439 * 1440 * With QEMU compat machines, we transmit these properties later, via 1441 * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists(). 1442 */ 1443 static const VMStateDescription vmstate_virtio_mem_device_early = { 1444 .name = "virtio-mem-device-early", 1445 .minimum_version_id = 1, 1446 .version_id = 1, 1447 .early_setup = true, 1448 .post_load = virtio_mem_post_load_early, 1449 .fields = (const VMStateField[]) { 1450 VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks, 1451 vmstate_virtio_mem_sanity_checks), 1452 VMSTATE_UINT64(size, VirtIOMEM), 1453 VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size), 1454 VMSTATE_END_OF_LIST() 1455 }, 1456 }; 1457 1458 static const VMStateDescription vmstate_virtio_mem = { 1459 .name = "virtio-mem", 1460 .minimum_version_id = 1, 1461 .version_id = 1, 1462 .fields = (const VMStateField[]) { 1463 VMSTATE_VIRTIO_DEVICE, 1464 VMSTATE_END_OF_LIST() 1465 }, 1466 }; 1467 1468 static void virtio_mem_fill_device_info(const VirtIOMEM *vmem, 1469 VirtioMEMDeviceInfo *vi) 1470 { 1471 vi->memaddr = vmem->addr; 1472 vi->node = vmem->node; 1473 vi->requested_size = vmem->requested_size; 1474 vi->size = vmem->size; 1475 vi->max_size = memory_region_size(&vmem->memdev->mr); 1476 vi->block_size = vmem->block_size; 1477 vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev)); 1478 } 1479 1480 static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp) 1481 { 1482 if (!vmem->memdev) { 1483 error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP); 1484 return NULL; 1485 } else if (vmem->dynamic_memslots) { 1486 if (!vmem->mr) { 1487 virtio_mem_prepare_mr(vmem); 1488 } 1489 return vmem->mr; 1490 } 1491 1492 return &vmem->memdev->mr; 1493 } 1494 1495 static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit) 1496 { 1497 uint64_t region_size, memslot_size, min_memslot_size; 1498 unsigned int memslots; 1499 RAMBlock *rb; 1500 1501 if (!vmem->dynamic_memslots) { 1502 return; 1503 } 1504 1505 /* We're called exactly once, before realizing the device. */ 1506 assert(!vmem->nb_memslots); 1507 1508 /* If realizing the device will fail, just assume a single memslot. */ 1509 if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) { 1510 vmem->nb_memslots = 1; 1511 return; 1512 } 1513 1514 rb = vmem->memdev->mr.ram_block; 1515 region_size = memory_region_size(&vmem->memdev->mr); 1516 1517 /* 1518 * Determine the default block size now, to determine the minimum memslot 1519 * size. We want the minimum slot size to be at least the device block size. 1520 */ 1521 if (!vmem->block_size) { 1522 vmem->block_size = virtio_mem_default_block_size(rb); 1523 } 1524 /* If realizing the device will fail, just assume a single memslot. */ 1525 if (vmem->block_size < qemu_ram_pagesize(rb) || 1526 !QEMU_IS_ALIGNED(region_size, vmem->block_size)) { 1527 vmem->nb_memslots = 1; 1528 return; 1529 } 1530 1531 /* 1532 * All memslots except the last one have a reasonable minimum size, and 1533 * and all memslot sizes are aligned to the device block size. 1534 */ 1535 memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size); 1536 min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE); 1537 memslot_size = MAX(memslot_size, min_memslot_size); 1538 1539 memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size; 1540 if (memslots != 1) { 1541 vmem->memslot_size = memslot_size; 1542 } 1543 vmem->nb_memslots = memslots; 1544 } 1545 1546 static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem) 1547 { 1548 if (!vmem->dynamic_memslots) { 1549 /* Exactly one static RAM memory region. */ 1550 return 1; 1551 } 1552 1553 /* We're called after instructed to make a decision. */ 1554 g_assert(vmem->nb_memslots); 1555 return vmem->nb_memslots; 1556 } 1557 1558 static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem, 1559 Notifier *notifier) 1560 { 1561 notifier_list_add(&vmem->size_change_notifiers, notifier); 1562 } 1563 1564 static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem, 1565 Notifier *notifier) 1566 { 1567 notifier_remove(notifier); 1568 } 1569 1570 static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name, 1571 void *opaque, Error **errp) 1572 { 1573 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1574 uint64_t value = vmem->size; 1575 1576 visit_type_size(v, name, &value, errp); 1577 } 1578 1579 static void virtio_mem_get_requested_size(Object *obj, Visitor *v, 1580 const char *name, void *opaque, 1581 Error **errp) 1582 { 1583 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1584 uint64_t value = vmem->requested_size; 1585 1586 visit_type_size(v, name, &value, errp); 1587 } 1588 1589 static void virtio_mem_set_requested_size(Object *obj, Visitor *v, 1590 const char *name, void *opaque, 1591 Error **errp) 1592 { 1593 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1594 uint64_t value; 1595 1596 if (!visit_type_size(v, name, &value, errp)) { 1597 return; 1598 } 1599 1600 /* 1601 * The block size and memory backend are not fixed until the device was 1602 * realized. realize() will verify these properties then. 1603 */ 1604 if (DEVICE(obj)->realized) { 1605 if (!QEMU_IS_ALIGNED(value, vmem->block_size)) { 1606 error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64 1607 ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP, 1608 vmem->block_size); 1609 return; 1610 } else if (value > memory_region_size(&vmem->memdev->mr)) { 1611 error_setg(errp, "'%s' cannot exceed the memory backend size" 1612 "(0x%" PRIx64 ")", name, 1613 memory_region_size(&vmem->memdev->mr)); 1614 return; 1615 } 1616 1617 if (value != vmem->requested_size) { 1618 virtio_mem_resize_usable_region(vmem, value, false); 1619 vmem->requested_size = value; 1620 } 1621 /* 1622 * Trigger a config update so the guest gets notified. We trigger 1623 * even if the size didn't change (especially helpful for debugging). 1624 */ 1625 virtio_notify_config(VIRTIO_DEVICE(vmem)); 1626 } else { 1627 vmem->requested_size = value; 1628 } 1629 } 1630 1631 static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name, 1632 void *opaque, Error **errp) 1633 { 1634 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1635 uint64_t value = vmem->block_size; 1636 1637 /* 1638 * If not configured by the user (and we're not realized yet), use the 1639 * default block size we would use with the current memory backend. 1640 */ 1641 if (!value) { 1642 if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) { 1643 value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block); 1644 } else { 1645 value = virtio_mem_thp_size(); 1646 } 1647 } 1648 1649 visit_type_size(v, name, &value, errp); 1650 } 1651 1652 static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name, 1653 void *opaque, Error **errp) 1654 { 1655 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1656 uint64_t value; 1657 1658 if (DEVICE(obj)->realized) { 1659 error_setg(errp, "'%s' cannot be changed", name); 1660 return; 1661 } 1662 1663 if (!visit_type_size(v, name, &value, errp)) { 1664 return; 1665 } 1666 1667 if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) { 1668 error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name, 1669 VIRTIO_MEM_MIN_BLOCK_SIZE); 1670 return; 1671 } else if (!is_power_of_2(value)) { 1672 error_setg(errp, "'%s' property has to be a power of two", name); 1673 return; 1674 } 1675 vmem->block_size = value; 1676 } 1677 1678 static void virtio_mem_instance_init(Object *obj) 1679 { 1680 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1681 1682 notifier_list_init(&vmem->size_change_notifiers); 1683 QLIST_INIT(&vmem->rdl_list); 1684 1685 object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size, 1686 NULL, NULL, NULL); 1687 object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size", 1688 virtio_mem_get_requested_size, 1689 virtio_mem_set_requested_size, NULL, NULL); 1690 object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size", 1691 virtio_mem_get_block_size, virtio_mem_set_block_size, 1692 NULL, NULL); 1693 } 1694 1695 static void virtio_mem_instance_finalize(Object *obj) 1696 { 1697 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1698 1699 /* 1700 * Note: the core already dropped the references on all memory regions 1701 * (it's passed as the owner to memory_region_init_*()) and finalized 1702 * these objects. We can simply free the memory. 1703 */ 1704 g_free(vmem->memslots); 1705 vmem->memslots = NULL; 1706 g_free(vmem->mr); 1707 vmem->mr = NULL; 1708 } 1709 1710 static const Property virtio_mem_properties[] = { 1711 DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0), 1712 DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0), 1713 DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false), 1714 DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev, 1715 TYPE_MEMORY_BACKEND, HostMemoryBackend *), 1716 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1717 DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM, 1718 unplugged_inaccessible, ON_OFF_AUTO_ON), 1719 #endif 1720 DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM, 1721 early_migration, true), 1722 DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM, 1723 dynamic_memslots, false), 1724 }; 1725 1726 static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm, 1727 const MemoryRegion *mr) 1728 { 1729 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1730 1731 g_assert(mr == &vmem->memdev->mr); 1732 return vmem->block_size; 1733 } 1734 1735 static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm, 1736 const MemoryRegionSection *s) 1737 { 1738 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1739 uint64_t start_gpa = vmem->addr + s->offset_within_region; 1740 uint64_t end_gpa = start_gpa + int128_get64(s->size); 1741 1742 g_assert(s->mr == &vmem->memdev->mr); 1743 1744 start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size); 1745 end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size); 1746 1747 if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) { 1748 return false; 1749 } 1750 1751 return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa); 1752 } 1753 1754 struct VirtIOMEMReplayData { 1755 void *fn; 1756 void *opaque; 1757 }; 1758 1759 static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg) 1760 { 1761 struct VirtIOMEMReplayData *data = arg; 1762 1763 return ((ReplayRamPopulate)data->fn)(s, data->opaque); 1764 } 1765 1766 static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm, 1767 MemoryRegionSection *s, 1768 ReplayRamPopulate replay_fn, 1769 void *opaque) 1770 { 1771 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1772 struct VirtIOMEMReplayData data = { 1773 .fn = replay_fn, 1774 .opaque = opaque, 1775 }; 1776 1777 g_assert(s->mr == &vmem->memdev->mr); 1778 return virtio_mem_for_each_plugged_section(vmem, s, &data, 1779 virtio_mem_rdm_replay_populated_cb); 1780 } 1781 1782 static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s, 1783 void *arg) 1784 { 1785 struct VirtIOMEMReplayData *data = arg; 1786 1787 ((ReplayRamDiscard)data->fn)(s, data->opaque); 1788 return 0; 1789 } 1790 1791 static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm, 1792 MemoryRegionSection *s, 1793 ReplayRamDiscard replay_fn, 1794 void *opaque) 1795 { 1796 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1797 struct VirtIOMEMReplayData data = { 1798 .fn = replay_fn, 1799 .opaque = opaque, 1800 }; 1801 1802 g_assert(s->mr == &vmem->memdev->mr); 1803 virtio_mem_for_each_unplugged_section(vmem, s, &data, 1804 virtio_mem_rdm_replay_discarded_cb); 1805 } 1806 1807 static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm, 1808 RamDiscardListener *rdl, 1809 MemoryRegionSection *s) 1810 { 1811 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1812 int ret; 1813 1814 g_assert(s->mr == &vmem->memdev->mr); 1815 rdl->section = memory_region_section_new_copy(s); 1816 1817 QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next); 1818 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1819 virtio_mem_notify_populate_cb); 1820 if (ret) { 1821 error_report("%s: Replaying plugged ranges failed: %s", __func__, 1822 strerror(-ret)); 1823 } 1824 } 1825 1826 static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm, 1827 RamDiscardListener *rdl) 1828 { 1829 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1830 1831 g_assert(rdl->section->mr == &vmem->memdev->mr); 1832 if (vmem->size) { 1833 if (rdl->double_discard_supported) { 1834 rdl->notify_discard(rdl, rdl->section); 1835 } else { 1836 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1837 virtio_mem_notify_discard_cb); 1838 } 1839 } 1840 1841 memory_region_section_free_copy(rdl->section); 1842 rdl->section = NULL; 1843 QLIST_REMOVE(rdl, next); 1844 } 1845 1846 static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp) 1847 { 1848 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) { 1849 /* 1850 * We could allow it with a usable region size of 0, but let's just 1851 * not care about that legacy setting. 1852 */ 1853 error_setg(errp, "virtio-mem device cannot get unplugged while" 1854 " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'"); 1855 return; 1856 } 1857 1858 if (vmem->size) { 1859 error_setg(errp, "virtio-mem device cannot get unplugged while some" 1860 " of its memory is still plugged"); 1861 return; 1862 } 1863 if (vmem->requested_size) { 1864 error_setg(errp, "virtio-mem device cannot get unplugged while" 1865 " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'"); 1866 return; 1867 } 1868 } 1869 1870 static void virtio_mem_class_init(ObjectClass *klass, void *data) 1871 { 1872 DeviceClass *dc = DEVICE_CLASS(klass); 1873 VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); 1874 VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass); 1875 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass); 1876 1877 device_class_set_props(dc, virtio_mem_properties); 1878 dc->vmsd = &vmstate_virtio_mem; 1879 1880 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 1881 vdc->realize = virtio_mem_device_realize; 1882 vdc->unrealize = virtio_mem_device_unrealize; 1883 vdc->get_config = virtio_mem_get_config; 1884 vdc->get_features = virtio_mem_get_features; 1885 vdc->validate_features = virtio_mem_validate_features; 1886 vdc->vmsd = &vmstate_virtio_mem_device; 1887 1888 vmc->fill_device_info = virtio_mem_fill_device_info; 1889 vmc->get_memory_region = virtio_mem_get_memory_region; 1890 vmc->decide_memslots = virtio_mem_decide_memslots; 1891 vmc->get_memslots = virtio_mem_get_memslots; 1892 vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier; 1893 vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier; 1894 vmc->unplug_request_check = virtio_mem_unplug_request_check; 1895 1896 rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity; 1897 rdmc->is_populated = virtio_mem_rdm_is_populated; 1898 rdmc->replay_populated = virtio_mem_rdm_replay_populated; 1899 rdmc->replay_discarded = virtio_mem_rdm_replay_discarded; 1900 rdmc->register_listener = virtio_mem_rdm_register_listener; 1901 rdmc->unregister_listener = virtio_mem_rdm_unregister_listener; 1902 } 1903 1904 static const TypeInfo virtio_mem_info = { 1905 .name = TYPE_VIRTIO_MEM, 1906 .parent = TYPE_VIRTIO_DEVICE, 1907 .instance_size = sizeof(VirtIOMEM), 1908 .instance_init = virtio_mem_instance_init, 1909 .instance_finalize = virtio_mem_instance_finalize, 1910 .class_init = virtio_mem_class_init, 1911 .class_size = sizeof(VirtIOMEMClass), 1912 .interfaces = (InterfaceInfo[]) { 1913 { TYPE_RAM_DISCARD_MANAGER }, 1914 { } 1915 }, 1916 }; 1917 1918 static void virtio_register_types(void) 1919 { 1920 type_register_static(&virtio_mem_info); 1921 } 1922 1923 type_init(virtio_register_types) 1924 1925 OBJECT_DEFINE_SIMPLE_TYPE_WITH_INTERFACES(VirtioMemSystemReset, virtio_mem_system_reset, VIRTIO_MEM_SYSTEM_RESET, OBJECT, { TYPE_RESETTABLE_INTERFACE }, { }) 1926 1927 static void virtio_mem_system_reset_init(Object *obj) 1928 { 1929 } 1930 1931 static void virtio_mem_system_reset_finalize(Object *obj) 1932 { 1933 } 1934 1935 static ResettableState *virtio_mem_system_reset_get_state(Object *obj) 1936 { 1937 VirtioMemSystemReset *vmem_reset = VIRTIO_MEM_SYSTEM_RESET(obj); 1938 1939 return &vmem_reset->reset_state; 1940 } 1941 1942 static void virtio_mem_system_reset_hold(Object *obj, ResetType type) 1943 { 1944 VirtioMemSystemReset *vmem_reset = VIRTIO_MEM_SYSTEM_RESET(obj); 1945 VirtIOMEM *vmem = vmem_reset->vmem; 1946 1947 /* 1948 * When waking up from standby/suspend-to-ram, do not unplug any memory. 1949 */ 1950 if (type == RESET_TYPE_WAKEUP) { 1951 return; 1952 } 1953 1954 /* 1955 * During usual resets, we will unplug all memory and shrink the usable 1956 * region size. This is, however, not possible in all scenarios. Then, 1957 * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL). 1958 */ 1959 virtio_mem_unplug_all(vmem); 1960 } 1961 1962 static void virtio_mem_system_reset_class_init(ObjectClass *klass, void *data) 1963 { 1964 ResettableClass *rc = RESETTABLE_CLASS(klass); 1965 1966 rc->get_state = virtio_mem_system_reset_get_state; 1967 rc->phases.hold = virtio_mem_system_reset_hold; 1968 } 1969