xref: /qemu/hw/vfio/pci-quirks.c (revision c958c51d2e9923d0eb14dfec46920f69bd793cb4)
1 /*
2  * device quirks for PCI devices
3  *
4  * Copyright Red Hat, Inc. 2012-2015
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu/error-report.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/range.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include "hw/nvram/fw_cfg.h"
20 #include "pci.h"
21 #include "trace.h"
22 
23 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
24 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
25 {
26     return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
27            (device == PCI_ANY_ID || device == vdev->device_id);
28 }
29 
30 static bool vfio_is_vga(VFIOPCIDevice *vdev)
31 {
32     PCIDevice *pdev = &vdev->pdev;
33     uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
34 
35     return class == PCI_CLASS_DISPLAY_VGA;
36 }
37 
38 /*
39  * List of device ids/vendor ids for which to disable
40  * option rom loading. This avoids the guest hangs during rom
41  * execution as noticed with the BCM 57810 card for lack of a
42  * more better way to handle such issues.
43  * The  user can still override by specifying a romfile or
44  * rombar=1.
45  * Please see https://bugs.launchpad.net/qemu/+bug/1284874
46  * for an analysis of the 57810 card hang. When adding
47  * a new vendor id/device id combination below, please also add
48  * your card/environment details and information that could
49  * help in debugging to the bug tracking this issue
50  */
51 static const struct {
52     uint32_t vendor;
53     uint32_t device;
54 } romblacklist[] = {
55     { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
56 };
57 
58 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
59 {
60     int i;
61 
62     for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
63         if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
64             trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
65                                              romblacklist[i].vendor,
66                                              romblacklist[i].device);
67             return true;
68         }
69     }
70     return false;
71 }
72 
73 /*
74  * Device specific region quirks (mostly backdoors to PCI config space)
75  */
76 
77 /*
78  * The generic window quirks operate on an address and data register,
79  * vfio_generic_window_address_quirk handles the address register and
80  * vfio_generic_window_data_quirk handles the data register.  These ops
81  * pass reads and writes through to hardware until a value matching the
82  * stored address match/mask is written.  When this occurs, the data
83  * register access emulated PCI config space for the device rather than
84  * passing through accesses.  This enables devices where PCI config space
85  * is accessible behind a window register to maintain the virtualization
86  * provided through vfio.
87  */
88 typedef struct VFIOConfigWindowMatch {
89     uint32_t match;
90     uint32_t mask;
91 } VFIOConfigWindowMatch;
92 
93 typedef struct VFIOConfigWindowQuirk {
94     struct VFIOPCIDevice *vdev;
95 
96     uint32_t address_val;
97 
98     uint32_t address_offset;
99     uint32_t data_offset;
100 
101     bool window_enabled;
102     uint8_t bar;
103 
104     MemoryRegion *addr_mem;
105     MemoryRegion *data_mem;
106 
107     uint32_t nr_matches;
108     VFIOConfigWindowMatch matches[];
109 } VFIOConfigWindowQuirk;
110 
111 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
112                                                        hwaddr addr,
113                                                        unsigned size)
114 {
115     VFIOConfigWindowQuirk *window = opaque;
116     VFIOPCIDevice *vdev = window->vdev;
117 
118     return vfio_region_read(&vdev->bars[window->bar].region,
119                             addr + window->address_offset, size);
120 }
121 
122 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
123                                                     uint64_t data,
124                                                     unsigned size)
125 {
126     VFIOConfigWindowQuirk *window = opaque;
127     VFIOPCIDevice *vdev = window->vdev;
128     int i;
129 
130     window->window_enabled = false;
131 
132     vfio_region_write(&vdev->bars[window->bar].region,
133                       addr + window->address_offset, data, size);
134 
135     for (i = 0; i < window->nr_matches; i++) {
136         if ((data & ~window->matches[i].mask) == window->matches[i].match) {
137             window->window_enabled = true;
138             window->address_val = data & window->matches[i].mask;
139             trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
140                                     memory_region_name(window->addr_mem), data);
141             break;
142         }
143     }
144 }
145 
146 static const MemoryRegionOps vfio_generic_window_address_quirk = {
147     .read = vfio_generic_window_quirk_address_read,
148     .write = vfio_generic_window_quirk_address_write,
149     .endianness = DEVICE_LITTLE_ENDIAN,
150 };
151 
152 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
153                                                     hwaddr addr, unsigned size)
154 {
155     VFIOConfigWindowQuirk *window = opaque;
156     VFIOPCIDevice *vdev = window->vdev;
157     uint64_t data;
158 
159     /* Always read data reg, discard if window enabled */
160     data = vfio_region_read(&vdev->bars[window->bar].region,
161                             addr + window->data_offset, size);
162 
163     if (window->window_enabled) {
164         data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
165         trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
166                                     memory_region_name(window->data_mem), data);
167     }
168 
169     return data;
170 }
171 
172 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
173                                                  uint64_t data, unsigned size)
174 {
175     VFIOConfigWindowQuirk *window = opaque;
176     VFIOPCIDevice *vdev = window->vdev;
177 
178     if (window->window_enabled) {
179         vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
180         trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
181                                     memory_region_name(window->data_mem), data);
182         return;
183     }
184 
185     vfio_region_write(&vdev->bars[window->bar].region,
186                       addr + window->data_offset, data, size);
187 }
188 
189 static const MemoryRegionOps vfio_generic_window_data_quirk = {
190     .read = vfio_generic_window_quirk_data_read,
191     .write = vfio_generic_window_quirk_data_write,
192     .endianness = DEVICE_LITTLE_ENDIAN,
193 };
194 
195 /*
196  * The generic mirror quirk handles devices which expose PCI config space
197  * through a region within a BAR.  When enabled, reads and writes are
198  * redirected through to emulated PCI config space.  XXX if PCI config space
199  * used memory regions, this could just be an alias.
200  */
201 typedef struct VFIOConfigMirrorQuirk {
202     struct VFIOPCIDevice *vdev;
203     uint32_t offset;
204     uint8_t bar;
205     MemoryRegion *mem;
206     uint8_t data[];
207 } VFIOConfigMirrorQuirk;
208 
209 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
210                                                hwaddr addr, unsigned size)
211 {
212     VFIOConfigMirrorQuirk *mirror = opaque;
213     VFIOPCIDevice *vdev = mirror->vdev;
214     uint64_t data;
215 
216     /* Read and discard in case the hardware cares */
217     (void)vfio_region_read(&vdev->bars[mirror->bar].region,
218                            addr + mirror->offset, size);
219 
220     data = vfio_pci_read_config(&vdev->pdev, addr, size);
221     trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
222                                          memory_region_name(mirror->mem),
223                                          addr, data);
224     return data;
225 }
226 
227 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
228                                             uint64_t data, unsigned size)
229 {
230     VFIOConfigMirrorQuirk *mirror = opaque;
231     VFIOPCIDevice *vdev = mirror->vdev;
232 
233     vfio_pci_write_config(&vdev->pdev, addr, data, size);
234     trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
235                                           memory_region_name(mirror->mem),
236                                           addr, data);
237 }
238 
239 static const MemoryRegionOps vfio_generic_mirror_quirk = {
240     .read = vfio_generic_quirk_mirror_read,
241     .write = vfio_generic_quirk_mirror_write,
242     .endianness = DEVICE_LITTLE_ENDIAN,
243 };
244 
245 /* Is range1 fully contained within range2?  */
246 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
247                                  uint64_t first2, uint64_t len2) {
248     return (first1 >= first2 && first1 + len1 <= first2 + len2);
249 }
250 
251 #define PCI_VENDOR_ID_ATI               0x1002
252 
253 /*
254  * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
255  * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
256  * BAR4 (older cards like the X550 used BAR1, but we don't care to support
257  * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
258  * I/O port BAR address.  Originally this was coded to return the virtual BAR
259  * address only if the physical register read returns the actual BAR address,
260  * but users have reported greater success if we return the virtual address
261  * unconditionally.
262  */
263 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
264                                         hwaddr addr, unsigned size)
265 {
266     VFIOPCIDevice *vdev = opaque;
267     uint64_t data = vfio_pci_read_config(&vdev->pdev,
268                                          PCI_BASE_ADDRESS_4 + 1, size);
269 
270     trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
271 
272     return data;
273 }
274 
275 static const MemoryRegionOps vfio_ati_3c3_quirk = {
276     .read = vfio_ati_3c3_quirk_read,
277     .endianness = DEVICE_LITTLE_ENDIAN,
278 };
279 
280 static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
281 {
282     VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
283     QLIST_INIT(&quirk->ioeventfds);
284     quirk->mem = g_new0(MemoryRegion, nr_mem);
285     quirk->nr_mem = nr_mem;
286 
287     return quirk;
288 }
289 
290 static void vfio_ioeventfd_exit(VFIOIOEventFD *ioeventfd)
291 {
292     QLIST_REMOVE(ioeventfd, next);
293     memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
294                               true, ioeventfd->data, &ioeventfd->e);
295     qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), NULL, NULL, NULL);
296     event_notifier_cleanup(&ioeventfd->e);
297     trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
298                               (uint64_t)ioeventfd->addr, ioeventfd->size,
299                               ioeventfd->data);
300     g_free(ioeventfd);
301 }
302 
303 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
304 {
305     VFIOIOEventFD *ioeventfd, *tmp;
306 
307     QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
308         if (ioeventfd->dynamic) {
309             vfio_ioeventfd_exit(ioeventfd);
310         }
311     }
312 }
313 
314 static void vfio_ioeventfd_handler(void *opaque)
315 {
316     VFIOIOEventFD *ioeventfd = opaque;
317 
318     if (event_notifier_test_and_clear(&ioeventfd->e)) {
319         vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
320                           ioeventfd->data, ioeventfd->size);
321         trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
322                                      (uint64_t)ioeventfd->addr, ioeventfd->size,
323                                      ioeventfd->data);
324     }
325 }
326 
327 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
328                                           MemoryRegion *mr, hwaddr addr,
329                                           unsigned size, uint64_t data,
330                                           VFIORegion *region,
331                                           hwaddr region_addr, bool dynamic)
332 {
333     VFIOIOEventFD *ioeventfd;
334 
335     if (vdev->no_kvm_ioeventfd) {
336         return NULL;
337     }
338 
339     ioeventfd = g_malloc0(sizeof(*ioeventfd));
340 
341     if (event_notifier_init(&ioeventfd->e, 0)) {
342         g_free(ioeventfd);
343         return NULL;
344     }
345 
346     /*
347      * MemoryRegion and relative offset, plus additional ioeventfd setup
348      * parameters for configuring and later tearing down KVM ioeventfd.
349      */
350     ioeventfd->mr = mr;
351     ioeventfd->addr = addr;
352     ioeventfd->size = size;
353     ioeventfd->data = data;
354     ioeventfd->dynamic = dynamic;
355     /*
356      * VFIORegion and relative offset for implementing the userspace
357      * handler.  data & size fields shared for both uses.
358      */
359     ioeventfd->region = region;
360     ioeventfd->region_addr = region_addr;
361 
362     qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
363                         vfio_ioeventfd_handler, NULL, ioeventfd);
364     memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
365                               true, ioeventfd->data, &ioeventfd->e);
366     trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
367                               size, data);
368 
369     return ioeventfd;
370 }
371 
372 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
373 {
374     VFIOQuirk *quirk;
375 
376     /*
377      * As long as the BAR is >= 256 bytes it will be aligned such that the
378      * lower byte is always zero.  Filter out anything else, if it exists.
379      */
380     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
381         !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
382         return;
383     }
384 
385     quirk = vfio_quirk_alloc(1);
386 
387     memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
388                           "vfio-ati-3c3-quirk", 1);
389     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
390                                 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
391 
392     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
393                       quirk, next);
394 
395     trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
396 }
397 
398 /*
399  * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
400  * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
401  * the MMIO space directly, but a window to this space is provided through
402  * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
403  * data register.  When the address is programmed to a range of 0x4000-0x4fff
404  * PCI configuration space is available.  Experimentation seems to indicate
405  * that read-only may be provided by hardware.
406  */
407 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
408 {
409     VFIOQuirk *quirk;
410     VFIOConfigWindowQuirk *window;
411 
412     /* This windows doesn't seem to be used except by legacy VGA code */
413     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
414         !vdev->vga || nr != 4) {
415         return;
416     }
417 
418     quirk = vfio_quirk_alloc(2);
419     window = quirk->data = g_malloc0(sizeof(*window) +
420                                      sizeof(VFIOConfigWindowMatch));
421     window->vdev = vdev;
422     window->address_offset = 0;
423     window->data_offset = 4;
424     window->nr_matches = 1;
425     window->matches[0].match = 0x4000;
426     window->matches[0].mask = vdev->config_size - 1;
427     window->bar = nr;
428     window->addr_mem = &quirk->mem[0];
429     window->data_mem = &quirk->mem[1];
430 
431     memory_region_init_io(window->addr_mem, OBJECT(vdev),
432                           &vfio_generic_window_address_quirk, window,
433                           "vfio-ati-bar4-window-address-quirk", 4);
434     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
435                                         window->address_offset,
436                                         window->addr_mem, 1);
437 
438     memory_region_init_io(window->data_mem, OBJECT(vdev),
439                           &vfio_generic_window_data_quirk, window,
440                           "vfio-ati-bar4-window-data-quirk", 4);
441     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
442                                         window->data_offset,
443                                         window->data_mem, 1);
444 
445     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
446 
447     trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
448 }
449 
450 /*
451  * Trap the BAR2 MMIO mirror to config space as well.
452  */
453 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
454 {
455     VFIOQuirk *quirk;
456     VFIOConfigMirrorQuirk *mirror;
457 
458     /* Only enable on newer devices where BAR2 is 64bit */
459     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
460         !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
461         return;
462     }
463 
464     quirk = vfio_quirk_alloc(1);
465     mirror = quirk->data = g_malloc0(sizeof(*mirror));
466     mirror->mem = quirk->mem;
467     mirror->vdev = vdev;
468     mirror->offset = 0x4000;
469     mirror->bar = nr;
470 
471     memory_region_init_io(mirror->mem, OBJECT(vdev),
472                           &vfio_generic_mirror_quirk, mirror,
473                           "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
474     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
475                                         mirror->offset, mirror->mem, 1);
476 
477     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
478 
479     trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
480 }
481 
482 /*
483  * Older ATI/AMD cards like the X550 have a similar window to that above.
484  * I/O port BAR1 provides a window to a mirror of PCI config space located
485  * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
486  * note it for future reference.
487  */
488 
489 #define PCI_VENDOR_ID_NVIDIA                    0x10de
490 
491 /*
492  * Nvidia has several different methods to get to config space, the
493  * nouveu project has several of these documented here:
494  * https://github.com/pathscale/envytools/tree/master/hwdocs
495  *
496  * The first quirk is actually not documented in envytools and is found
497  * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
498  * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
499  * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
500  * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
501  * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
502  * is written for a write to 0x3d4.  The BAR0 offset is then accessible
503  * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
504  * that use the I/O port BAR5 window but it doesn't hurt to leave it.
505  */
506 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
507 static const char *nv3d0_states[] = { "NONE", "SELECT",
508                                       "WINDOW", "READ", "WRITE" };
509 
510 typedef struct VFIONvidia3d0Quirk {
511     VFIOPCIDevice *vdev;
512     VFIONvidia3d0State state;
513     uint32_t offset;
514 } VFIONvidia3d0Quirk;
515 
516 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
517                                            hwaddr addr, unsigned size)
518 {
519     VFIONvidia3d0Quirk *quirk = opaque;
520     VFIOPCIDevice *vdev = quirk->vdev;
521 
522     quirk->state = NONE;
523 
524     return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
525                          addr + 0x14, size);
526 }
527 
528 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
529                                         uint64_t data, unsigned size)
530 {
531     VFIONvidia3d0Quirk *quirk = opaque;
532     VFIOPCIDevice *vdev = quirk->vdev;
533     VFIONvidia3d0State old_state = quirk->state;
534 
535     quirk->state = NONE;
536 
537     switch (data) {
538     case 0x338:
539         if (old_state == NONE) {
540             quirk->state = SELECT;
541             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
542                                               nv3d0_states[quirk->state]);
543         }
544         break;
545     case 0x538:
546         if (old_state == WINDOW) {
547             quirk->state = READ;
548             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
549                                               nv3d0_states[quirk->state]);
550         }
551         break;
552     case 0x738:
553         if (old_state == WINDOW) {
554             quirk->state = WRITE;
555             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
556                                               nv3d0_states[quirk->state]);
557         }
558         break;
559     }
560 
561     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
562                    addr + 0x14, data, size);
563 }
564 
565 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
566     .read = vfio_nvidia_3d4_quirk_read,
567     .write = vfio_nvidia_3d4_quirk_write,
568     .endianness = DEVICE_LITTLE_ENDIAN,
569 };
570 
571 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
572                                            hwaddr addr, unsigned size)
573 {
574     VFIONvidia3d0Quirk *quirk = opaque;
575     VFIOPCIDevice *vdev = quirk->vdev;
576     VFIONvidia3d0State old_state = quirk->state;
577     uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
578                                   addr + 0x10, size);
579 
580     quirk->state = NONE;
581 
582     if (old_state == READ &&
583         (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
584         uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
585 
586         data = vfio_pci_read_config(&vdev->pdev, offset, size);
587         trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
588                                          offset, size, data);
589     }
590 
591     return data;
592 }
593 
594 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
595                                         uint64_t data, unsigned size)
596 {
597     VFIONvidia3d0Quirk *quirk = opaque;
598     VFIOPCIDevice *vdev = quirk->vdev;
599     VFIONvidia3d0State old_state = quirk->state;
600 
601     quirk->state = NONE;
602 
603     if (old_state == SELECT) {
604         quirk->offset = (uint32_t)data;
605         quirk->state = WINDOW;
606         trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
607                                           nv3d0_states[quirk->state]);
608     } else if (old_state == WRITE) {
609         if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
610             uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
611 
612             vfio_pci_write_config(&vdev->pdev, offset, data, size);
613             trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
614                                               offset, data, size);
615             return;
616         }
617     }
618 
619     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
620                    addr + 0x10, data, size);
621 }
622 
623 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
624     .read = vfio_nvidia_3d0_quirk_read,
625     .write = vfio_nvidia_3d0_quirk_write,
626     .endianness = DEVICE_LITTLE_ENDIAN,
627 };
628 
629 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
630 {
631     VFIOQuirk *quirk;
632     VFIONvidia3d0Quirk *data;
633 
634     if (vdev->no_geforce_quirks ||
635         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
636         !vdev->bars[1].region.size) {
637         return;
638     }
639 
640     quirk = vfio_quirk_alloc(2);
641     quirk->data = data = g_malloc0(sizeof(*data));
642     data->vdev = vdev;
643 
644     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
645                           data, "vfio-nvidia-3d4-quirk", 2);
646     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
647                                 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
648 
649     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
650                           data, "vfio-nvidia-3d0-quirk", 2);
651     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
652                                 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
653 
654     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
655                       quirk, next);
656 
657     trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
658 }
659 
660 /*
661  * The second quirk is documented in envytools.  The I/O port BAR5 is just
662  * a set of address/data ports to the MMIO BARs.  The BAR we care about is
663  * again BAR0.  This backdoor is apparently a bit newer than the one above
664  * so we need to not only trap 256 bytes @0x1800, but all of PCI config
665  * space, including extended space is available at the 4k @0x88000.
666  */
667 typedef struct VFIONvidiaBAR5Quirk {
668     uint32_t master;
669     uint32_t enable;
670     MemoryRegion *addr_mem;
671     MemoryRegion *data_mem;
672     bool enabled;
673     VFIOConfigWindowQuirk window; /* last for match data */
674 } VFIONvidiaBAR5Quirk;
675 
676 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
677 {
678     VFIOPCIDevice *vdev = bar5->window.vdev;
679 
680     if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
681         return;
682     }
683 
684     bar5->enabled = !bar5->enabled;
685     trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
686                                        bar5->enabled ?  "Enable" : "Disable");
687     memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
688     memory_region_set_enabled(bar5->data_mem, bar5->enabled);
689 }
690 
691 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
692                                                    hwaddr addr, unsigned size)
693 {
694     VFIONvidiaBAR5Quirk *bar5 = opaque;
695     VFIOPCIDevice *vdev = bar5->window.vdev;
696 
697     return vfio_region_read(&vdev->bars[5].region, addr, size);
698 }
699 
700 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
701                                                 uint64_t data, unsigned size)
702 {
703     VFIONvidiaBAR5Quirk *bar5 = opaque;
704     VFIOPCIDevice *vdev = bar5->window.vdev;
705 
706     vfio_region_write(&vdev->bars[5].region, addr, data, size);
707 
708     bar5->master = data;
709     vfio_nvidia_bar5_enable(bar5);
710 }
711 
712 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
713     .read = vfio_nvidia_bar5_quirk_master_read,
714     .write = vfio_nvidia_bar5_quirk_master_write,
715     .endianness = DEVICE_LITTLE_ENDIAN,
716 };
717 
718 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
719                                                    hwaddr addr, unsigned size)
720 {
721     VFIONvidiaBAR5Quirk *bar5 = opaque;
722     VFIOPCIDevice *vdev = bar5->window.vdev;
723 
724     return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
725 }
726 
727 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
728                                                 uint64_t data, unsigned size)
729 {
730     VFIONvidiaBAR5Quirk *bar5 = opaque;
731     VFIOPCIDevice *vdev = bar5->window.vdev;
732 
733     vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
734 
735     bar5->enable = data;
736     vfio_nvidia_bar5_enable(bar5);
737 }
738 
739 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
740     .read = vfio_nvidia_bar5_quirk_enable_read,
741     .write = vfio_nvidia_bar5_quirk_enable_write,
742     .endianness = DEVICE_LITTLE_ENDIAN,
743 };
744 
745 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
746 {
747     VFIOQuirk *quirk;
748     VFIONvidiaBAR5Quirk *bar5;
749     VFIOConfigWindowQuirk *window;
750 
751     if (vdev->no_geforce_quirks ||
752         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
753         !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
754         return;
755     }
756 
757     quirk = vfio_quirk_alloc(4);
758     bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
759                                    (sizeof(VFIOConfigWindowMatch) * 2));
760     window = &bar5->window;
761 
762     window->vdev = vdev;
763     window->address_offset = 0x8;
764     window->data_offset = 0xc;
765     window->nr_matches = 2;
766     window->matches[0].match = 0x1800;
767     window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
768     window->matches[1].match = 0x88000;
769     window->matches[1].mask = vdev->config_size - 1;
770     window->bar = nr;
771     window->addr_mem = bar5->addr_mem = &quirk->mem[0];
772     window->data_mem = bar5->data_mem = &quirk->mem[1];
773 
774     memory_region_init_io(window->addr_mem, OBJECT(vdev),
775                           &vfio_generic_window_address_quirk, window,
776                           "vfio-nvidia-bar5-window-address-quirk", 4);
777     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
778                                         window->address_offset,
779                                         window->addr_mem, 1);
780     memory_region_set_enabled(window->addr_mem, false);
781 
782     memory_region_init_io(window->data_mem, OBJECT(vdev),
783                           &vfio_generic_window_data_quirk, window,
784                           "vfio-nvidia-bar5-window-data-quirk", 4);
785     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
786                                         window->data_offset,
787                                         window->data_mem, 1);
788     memory_region_set_enabled(window->data_mem, false);
789 
790     memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
791                           &vfio_nvidia_bar5_quirk_master, bar5,
792                           "vfio-nvidia-bar5-master-quirk", 4);
793     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
794                                         0, &quirk->mem[2], 1);
795 
796     memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
797                           &vfio_nvidia_bar5_quirk_enable, bar5,
798                           "vfio-nvidia-bar5-enable-quirk", 4);
799     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
800                                         4, &quirk->mem[3], 1);
801 
802     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
803 
804     trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
805 }
806 
807 typedef struct LastDataSet {
808     VFIOQuirk *quirk;
809     hwaddr addr;
810     uint64_t data;
811     unsigned size;
812     int hits;
813     int added;
814 } LastDataSet;
815 
816 #define MAX_DYN_IOEVENTFD 10
817 #define HITS_FOR_IOEVENTFD 10
818 
819 /*
820  * Finally, BAR0 itself.  We want to redirect any accesses to either
821  * 0x1800 or 0x88000 through the PCI config space access functions.
822  */
823 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
824                                            uint64_t data, unsigned size)
825 {
826     VFIOConfigMirrorQuirk *mirror = opaque;
827     VFIOPCIDevice *vdev = mirror->vdev;
828     PCIDevice *pdev = &vdev->pdev;
829     LastDataSet *last = (LastDataSet *)&mirror->data;
830 
831     vfio_generic_quirk_mirror_write(opaque, addr, data, size);
832 
833     /*
834      * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
835      * MSI capability ID register.  Both the ID and next register are
836      * read-only, so we allow writes covering either of those to real hw.
837      */
838     if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
839         vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
840         vfio_region_write(&vdev->bars[mirror->bar].region,
841                           addr + mirror->offset, data, size);
842         trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
843     }
844 
845     /*
846      * Automatically add an ioeventfd to handle any repeated write with the
847      * same data and size above the standard PCI config space header.  This is
848      * primarily expected to accelerate the MSI-ACK behavior, such as noted
849      * above.  Current hardware/drivers should trigger an ioeventfd at config
850      * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
851      *
852      * The criteria of 10 successive hits is arbitrary but reliably adds the
853      * MSI-ACK region.  Note that as some writes are bypassed via the ioeventfd,
854      * the remaining ones have a greater chance of being seen successively.
855      * To avoid the pathological case of burning up all of QEMU's open file
856      * handles, arbitrarily limit this algorithm from adding no more than 10
857      * ioeventfds, print an error if we would have added an 11th, and then
858      * stop counting.
859      */
860     if (!vdev->no_kvm_ioeventfd &&
861         addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
862         if (addr != last->addr || data != last->data || size != last->size) {
863             last->addr = addr;
864             last->data = data;
865             last->size = size;
866             last->hits = 1;
867         } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
868             if (last->added < MAX_DYN_IOEVENTFD) {
869                 VFIOIOEventFD *ioeventfd;
870                 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
871                                         data, &vdev->bars[mirror->bar].region,
872                                         mirror->offset + addr, true);
873                 if (ioeventfd) {
874                     VFIOQuirk *quirk = last->quirk;
875 
876                     QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
877                     last->added++;
878                 }
879             } else {
880                 last->added++;
881                 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
882                             "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
883                             "size %u", vdev->vbasedev.name, addr, data, size);
884             }
885         }
886     }
887 }
888 
889 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
890     .read = vfio_generic_quirk_mirror_read,
891     .write = vfio_nvidia_quirk_mirror_write,
892     .endianness = DEVICE_LITTLE_ENDIAN,
893 };
894 
895 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
896 {
897     VFIOConfigMirrorQuirk *mirror = quirk->data;
898     LastDataSet *last = (LastDataSet *)&mirror->data;
899 
900     last->addr = last->data = last->size = last->hits = last->added = 0;
901 
902     vfio_drop_dynamic_eventfds(vdev, quirk);
903 }
904 
905 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
906 {
907     VFIOQuirk *quirk;
908     VFIOConfigMirrorQuirk *mirror;
909     LastDataSet *last;
910 
911     if (vdev->no_geforce_quirks ||
912         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
913         !vfio_is_vga(vdev) || nr != 0) {
914         return;
915     }
916 
917     quirk = vfio_quirk_alloc(1);
918     quirk->reset = vfio_nvidia_bar0_quirk_reset;
919     mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
920     mirror->mem = quirk->mem;
921     mirror->vdev = vdev;
922     mirror->offset = 0x88000;
923     mirror->bar = nr;
924     last = (LastDataSet *)&mirror->data;
925     last->quirk = quirk;
926 
927     memory_region_init_io(mirror->mem, OBJECT(vdev),
928                           &vfio_nvidia_mirror_quirk, mirror,
929                           "vfio-nvidia-bar0-88000-mirror-quirk",
930                           vdev->config_size);
931     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
932                                         mirror->offset, mirror->mem, 1);
933 
934     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
935 
936     /* The 0x1800 offset mirror only seems to get used by legacy VGA */
937     if (vdev->vga) {
938         quirk = vfio_quirk_alloc(1);
939         quirk->reset = vfio_nvidia_bar0_quirk_reset;
940         mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
941         mirror->mem = quirk->mem;
942         mirror->vdev = vdev;
943         mirror->offset = 0x1800;
944         mirror->bar = nr;
945         last = (LastDataSet *)&mirror->data;
946         last->quirk = quirk;
947 
948         memory_region_init_io(mirror->mem, OBJECT(vdev),
949                               &vfio_nvidia_mirror_quirk, mirror,
950                               "vfio-nvidia-bar0-1800-mirror-quirk",
951                               PCI_CONFIG_SPACE_SIZE);
952         memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
953                                             mirror->offset, mirror->mem, 1);
954 
955         QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
956     }
957 
958     trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
959 }
960 
961 /*
962  * TODO - Some Nvidia devices provide config access to their companion HDA
963  * device and even to their parent bridge via these config space mirrors.
964  * Add quirks for those regions.
965  */
966 
967 #define PCI_VENDOR_ID_REALTEK 0x10ec
968 
969 /*
970  * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
971  * offset 0x70 there is a dword data register, offset 0x74 is a dword address
972  * register.  According to the Linux r8169 driver, the MSI-X table is addressed
973  * when the "type" portion of the address register is set to 0x1.  This appears
974  * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
975  * "address latched" indicator.  Bits 12:15 are a mask field, which we can
976  * ignore because the MSI-X table should always be accessed as a dword (full
977  * mask).  Bits 0:11 is offset within the type.
978  *
979  * Example trace:
980  *
981  * Read from MSI-X table offset 0
982  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
983  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
984  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
985  *
986  * Write 0xfee00000 to MSI-X table offset 0
987  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
988  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
989  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
990  */
991 typedef struct VFIOrtl8168Quirk {
992     VFIOPCIDevice *vdev;
993     uint32_t addr;
994     uint32_t data;
995     bool enabled;
996 } VFIOrtl8168Quirk;
997 
998 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
999                                                 hwaddr addr, unsigned size)
1000 {
1001     VFIOrtl8168Quirk *rtl = opaque;
1002     VFIOPCIDevice *vdev = rtl->vdev;
1003     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1004 
1005     if (rtl->enabled) {
1006         data = rtl->addr ^ 0x80000000U; /* latch/complete */
1007         trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1008     }
1009 
1010     return data;
1011 }
1012 
1013 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1014                                              uint64_t data, unsigned size)
1015 {
1016     VFIOrtl8168Quirk *rtl = opaque;
1017     VFIOPCIDevice *vdev = rtl->vdev;
1018 
1019     rtl->enabled = false;
1020 
1021     if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1022         rtl->enabled = true;
1023         rtl->addr = (uint32_t)data;
1024 
1025         if (data & 0x80000000U) { /* Do write */
1026             if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1027                 hwaddr offset = data & 0xfff;
1028                 uint64_t val = rtl->data;
1029 
1030                 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1031                                                     (uint16_t)offset, val);
1032 
1033                 /* Write to the proper guest MSI-X table instead */
1034                 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1035                                              offset, val, size,
1036                                              MEMTXATTRS_UNSPECIFIED);
1037             }
1038             return; /* Do not write guest MSI-X data to hardware */
1039         }
1040     }
1041 
1042     vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1043 }
1044 
1045 static const MemoryRegionOps vfio_rtl_address_quirk = {
1046     .read = vfio_rtl8168_quirk_address_read,
1047     .write = vfio_rtl8168_quirk_address_write,
1048     .valid = {
1049         .min_access_size = 4,
1050         .max_access_size = 4,
1051         .unaligned = false,
1052     },
1053     .endianness = DEVICE_LITTLE_ENDIAN,
1054 };
1055 
1056 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1057                                              hwaddr addr, unsigned size)
1058 {
1059     VFIOrtl8168Quirk *rtl = opaque;
1060     VFIOPCIDevice *vdev = rtl->vdev;
1061     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1062 
1063     if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1064         hwaddr offset = rtl->addr & 0xfff;
1065         memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1066                                     &data, size, MEMTXATTRS_UNSPECIFIED);
1067         trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1068     }
1069 
1070     return data;
1071 }
1072 
1073 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1074                                           uint64_t data, unsigned size)
1075 {
1076     VFIOrtl8168Quirk *rtl = opaque;
1077     VFIOPCIDevice *vdev = rtl->vdev;
1078 
1079     rtl->data = (uint32_t)data;
1080 
1081     vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1082 }
1083 
1084 static const MemoryRegionOps vfio_rtl_data_quirk = {
1085     .read = vfio_rtl8168_quirk_data_read,
1086     .write = vfio_rtl8168_quirk_data_write,
1087     .valid = {
1088         .min_access_size = 4,
1089         .max_access_size = 4,
1090         .unaligned = false,
1091     },
1092     .endianness = DEVICE_LITTLE_ENDIAN,
1093 };
1094 
1095 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1096 {
1097     VFIOQuirk *quirk;
1098     VFIOrtl8168Quirk *rtl;
1099 
1100     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1101         return;
1102     }
1103 
1104     quirk = vfio_quirk_alloc(2);
1105     quirk->data = rtl = g_malloc0(sizeof(*rtl));
1106     rtl->vdev = vdev;
1107 
1108     memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1109                           &vfio_rtl_address_quirk, rtl,
1110                           "vfio-rtl8168-window-address-quirk", 4);
1111     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1112                                         0x74, &quirk->mem[0], 1);
1113 
1114     memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1115                           &vfio_rtl_data_quirk, rtl,
1116                           "vfio-rtl8168-window-data-quirk", 4);
1117     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1118                                         0x70, &quirk->mem[1], 1);
1119 
1120     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1121 
1122     trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1123 }
1124 
1125 /*
1126  * Intel IGD support
1127  *
1128  * Obviously IGD is not a discrete device, this is evidenced not only by it
1129  * being integrated into the CPU, but by the various chipset and BIOS
1130  * dependencies that it brings along with it.  Intel is trying to move away
1131  * from this and Broadwell and newer devices can run in what Intel calls
1132  * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
1133  * more is required beyond assigning the IGD device to a VM.  There are
1134  * however support limitations to this mode.  It only supports IGD as a
1135  * secondary graphics device in the VM and it doesn't officially support any
1136  * physical outputs.
1137  *
1138  * The code here attempts to enable what we'll call legacy mode assignment,
1139  * IGD retains most of the capabilities we expect for it to have on bare
1140  * metal.  To enable this mode, the IGD device must be assigned to the VM
1141  * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1142  * support, we must have VM BIOS support for reserving and populating some
1143  * of the required tables, and we need to tweak the chipset with revisions
1144  * and IDs and an LPC/ISA bridge device.  The intention is to make all of
1145  * this happen automatically by installing the device at the correct VM PCI
1146  * bus address.  If any of the conditions are not met, we cross our fingers
1147  * and hope the user knows better.
1148  *
1149  * NB - It is possible to enable physical outputs in UPT mode by supplying
1150  * an OpRegion table.  We don't do this by default because the guest driver
1151  * behaves differently if an OpRegion is provided and no monitor is attached
1152  * vs no OpRegion and a monitor being attached or not.  Effectively, if a
1153  * headless setup is desired, the OpRegion gets in the way of that.
1154  */
1155 
1156 /*
1157  * This presumes the device is already known to be an Intel VGA device, so we
1158  * take liberties in which device ID bits match which generation.  This should
1159  * not be taken as an indication that all the devices are supported, or even
1160  * supportable, some of them don't even support VT-d.
1161  * See linux:include/drm/i915_pciids.h for IDs.
1162  */
1163 static int igd_gen(VFIOPCIDevice *vdev)
1164 {
1165     if ((vdev->device_id & 0xfff) == 0xa84) {
1166         return 8; /* Broxton */
1167     }
1168 
1169     switch (vdev->device_id & 0xff00) {
1170     /* Old, untested, unavailable, unknown */
1171     case 0x0000:
1172     case 0x2500:
1173     case 0x2700:
1174     case 0x2900:
1175     case 0x2a00:
1176     case 0x2e00:
1177     case 0x3500:
1178     case 0xa000:
1179         return -1;
1180     /* SandyBridge, IvyBridge, ValleyView, Haswell */
1181     case 0x0100:
1182     case 0x0400:
1183     case 0x0a00:
1184     case 0x0c00:
1185     case 0x0d00:
1186     case 0x0f00:
1187         return 6;
1188     /* BroadWell, CherryView, SkyLake, KabyLake */
1189     case 0x1600:
1190     case 0x1900:
1191     case 0x2200:
1192     case 0x5900:
1193         return 8;
1194     }
1195 
1196     return 8; /* Assume newer is compatible */
1197 }
1198 
1199 typedef struct VFIOIGDQuirk {
1200     struct VFIOPCIDevice *vdev;
1201     uint32_t index;
1202     uint32_t bdsm;
1203 } VFIOIGDQuirk;
1204 
1205 #define IGD_GMCH 0x50 /* Graphics Control Register */
1206 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1207 #define IGD_ASLS 0xfc /* ASL Storage Register */
1208 
1209 /*
1210  * The OpRegion includes the Video BIOS Table, which seems important for
1211  * telling the driver what sort of outputs it has.  Without this, the device
1212  * may work in the guest, but we may not get output.  This also requires BIOS
1213  * support to reserve and populate a section of guest memory sufficient for
1214  * the table and to write the base address of that memory to the ASLS register
1215  * of the IGD device.
1216  */
1217 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1218                                struct vfio_region_info *info, Error **errp)
1219 {
1220     int ret;
1221 
1222     vdev->igd_opregion = g_malloc0(info->size);
1223     ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1224                 info->size, info->offset);
1225     if (ret != info->size) {
1226         error_setg(errp, "failed to read IGD OpRegion");
1227         g_free(vdev->igd_opregion);
1228         vdev->igd_opregion = NULL;
1229         return -EINVAL;
1230     }
1231 
1232     /*
1233      * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1234      * allocate 32bit reserved memory for, copy these contents into, and write
1235      * the reserved memory base address to the device ASLS register at 0xFC.
1236      * Alignment of this reserved region seems flexible, but using a 4k page
1237      * alignment seems to work well.  This interface assumes a single IGD
1238      * device, which may be at VM address 00:02.0 in legacy mode or another
1239      * address in UPT mode.
1240      *
1241      * NB, there may be future use cases discovered where the VM should have
1242      * direct interaction with the host OpRegion, in which case the write to
1243      * the ASLS register would trigger MemoryRegion setup to enable that.
1244      */
1245     fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1246                     vdev->igd_opregion, info->size);
1247 
1248     trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1249 
1250     pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1251     pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1252     pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1253 
1254     return 0;
1255 }
1256 
1257 /*
1258  * The rather short list of registers that we copy from the host devices.
1259  * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1260  * host bridge values may or may not be needed depending on the guest OS.
1261  * Since we're only munging revision and subsystem values on the host bridge,
1262  * we don't require our own device.  The LPC/ISA bridge needs to be our very
1263  * own though.
1264  */
1265 typedef struct {
1266     uint8_t offset;
1267     uint8_t len;
1268 } IGDHostInfo;
1269 
1270 static const IGDHostInfo igd_host_bridge_infos[] = {
1271     {PCI_REVISION_ID,         2},
1272     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1273     {PCI_SUBSYSTEM_ID,        2},
1274 };
1275 
1276 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1277     {PCI_VENDOR_ID,           2},
1278     {PCI_DEVICE_ID,           2},
1279     {PCI_REVISION_ID,         2},
1280     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1281     {PCI_SUBSYSTEM_ID,        2},
1282 };
1283 
1284 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1285                              struct vfio_region_info *info,
1286                              const IGDHostInfo *list, int len)
1287 {
1288     int i, ret;
1289 
1290     for (i = 0; i < len; i++) {
1291         ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1292                     list[i].len, info->offset + list[i].offset);
1293         if (ret != list[i].len) {
1294             error_report("IGD copy failed: %m");
1295             return -errno;
1296         }
1297     }
1298 
1299     return 0;
1300 }
1301 
1302 /*
1303  * Stuff a few values into the host bridge.
1304  */
1305 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1306                                   struct vfio_region_info *info)
1307 {
1308     PCIBus *bus;
1309     PCIDevice *host_bridge;
1310     int ret;
1311 
1312     bus = pci_device_root_bus(&vdev->pdev);
1313     host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1314 
1315     if (!host_bridge) {
1316         error_report("Can't find host bridge");
1317         return -ENODEV;
1318     }
1319 
1320     ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1321                             ARRAY_SIZE(igd_host_bridge_infos));
1322     if (!ret) {
1323         trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1324     }
1325 
1326     return ret;
1327 }
1328 
1329 /*
1330  * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1331  * arbitrary values into just any bridge, so we must create our own.  We try
1332  * to handle if the user has created it for us, which they might want to do
1333  * to enable multifunction so we don't occupy the whole PCI slot.
1334  */
1335 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1336 {
1337     if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1338         error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1339     }
1340 }
1341 
1342 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1343 {
1344     DeviceClass *dc = DEVICE_CLASS(klass);
1345     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1346 
1347     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1348     dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1349     dc->hotpluggable = false;
1350     k->realize = vfio_pci_igd_lpc_bridge_realize;
1351     k->class_id = PCI_CLASS_BRIDGE_ISA;
1352 }
1353 
1354 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1355     .name = "vfio-pci-igd-lpc-bridge",
1356     .parent = TYPE_PCI_DEVICE,
1357     .class_init = vfio_pci_igd_lpc_bridge_class_init,
1358     .interfaces = (InterfaceInfo[]) {
1359         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1360         { },
1361     },
1362 };
1363 
1364 static void vfio_pci_igd_register_types(void)
1365 {
1366     type_register_static(&vfio_pci_igd_lpc_bridge_info);
1367 }
1368 
1369 type_init(vfio_pci_igd_register_types)
1370 
1371 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1372                                  struct vfio_region_info *info)
1373 {
1374     PCIDevice *lpc_bridge;
1375     int ret;
1376 
1377     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1378                                  0, PCI_DEVFN(0x1f, 0));
1379     if (!lpc_bridge) {
1380         lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1381                                  PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1382     }
1383 
1384     ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1385                             ARRAY_SIZE(igd_lpc_bridge_infos));
1386     if (!ret) {
1387         trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1388     }
1389 
1390     return ret;
1391 }
1392 
1393 /*
1394  * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1395  * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1396  * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1397  * for programming the GTT.
1398  *
1399  * See linux:include/drm/i915_drm.h for shift and mask values.
1400  */
1401 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1402 {
1403     uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1404     int ggms, gen = igd_gen(vdev);
1405 
1406     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1407     ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1408     if (gen > 6) {
1409         ggms = 1 << ggms;
1410     }
1411 
1412     ggms *= 1024 * 1024;
1413 
1414     return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8);
1415 }
1416 
1417 /*
1418  * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1419  * Somehow the host stolen memory range is used for this, but how the ROM gets
1420  * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1421  * reprograms the GTT through the IOBAR where we can trap it and transpose the
1422  * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1423  * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1424  * IOBAR address and data registers to detect a write sequence targeting the
1425  * GTTADR.  This code is developed by observed behavior and doesn't have a
1426  * direct spec reference, unfortunately.
1427  */
1428 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1429                                          hwaddr addr, unsigned size)
1430 {
1431     VFIOIGDQuirk *igd = opaque;
1432     VFIOPCIDevice *vdev = igd->vdev;
1433 
1434     igd->index = ~0;
1435 
1436     return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1437 }
1438 
1439 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1440                                       uint64_t data, unsigned size)
1441 {
1442     VFIOIGDQuirk *igd = opaque;
1443     VFIOPCIDevice *vdev = igd->vdev;
1444     uint64_t val = data;
1445     int gen = igd_gen(vdev);
1446 
1447     /*
1448      * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1449      * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1450      * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1451      * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1452      * to a 4k page, which we translate to a page from the VM allocated region,
1453      * pointed to by the BDSM register.  If this is not set, we fail.
1454      *
1455      * We trap writes to the full configured GTT size, but we typically only
1456      * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1457      * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1458      * write of that last entry does work, but is hopefully unnecessary since
1459      * we clear the previous GTT on initialization.
1460      */
1461     if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1462         if (gen < 8 || (igd->index % 8 == 1)) {
1463             uint32_t base;
1464 
1465             base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1466             if (!base) {
1467                 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1468                          "BIOS reserved stolen memory.  Unsupported BIOS?");
1469             }
1470 
1471             val = data - igd->bdsm + base;
1472         } else {
1473             val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1474         }
1475 
1476         trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1477                                       igd->index, data, val);
1478     }
1479 
1480     vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1481 
1482     igd->index = ~0;
1483 }
1484 
1485 static const MemoryRegionOps vfio_igd_data_quirk = {
1486     .read = vfio_igd_quirk_data_read,
1487     .write = vfio_igd_quirk_data_write,
1488     .endianness = DEVICE_LITTLE_ENDIAN,
1489 };
1490 
1491 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1492                                           hwaddr addr, unsigned size)
1493 {
1494     VFIOIGDQuirk *igd = opaque;
1495     VFIOPCIDevice *vdev = igd->vdev;
1496 
1497     igd->index = ~0;
1498 
1499     return vfio_region_read(&vdev->bars[4].region, addr, size);
1500 }
1501 
1502 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1503                                        uint64_t data, unsigned size)
1504 {
1505     VFIOIGDQuirk *igd = opaque;
1506     VFIOPCIDevice *vdev = igd->vdev;
1507 
1508     igd->index = data;
1509 
1510     vfio_region_write(&vdev->bars[4].region, addr, data, size);
1511 }
1512 
1513 static const MemoryRegionOps vfio_igd_index_quirk = {
1514     .read = vfio_igd_quirk_index_read,
1515     .write = vfio_igd_quirk_index_write,
1516     .endianness = DEVICE_LITTLE_ENDIAN,
1517 };
1518 
1519 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1520 {
1521     struct vfio_region_info *rom = NULL, *opregion = NULL,
1522                             *host = NULL, *lpc = NULL;
1523     VFIOQuirk *quirk;
1524     VFIOIGDQuirk *igd;
1525     PCIDevice *lpc_bridge;
1526     int i, ret, ggms_mb, gms_mb = 0, gen;
1527     uint64_t *bdsm_size;
1528     uint32_t gmch;
1529     uint16_t cmd_orig, cmd;
1530     Error *err = NULL;
1531 
1532     /*
1533      * This must be an Intel VGA device at address 00:02.0 for us to even
1534      * consider enabling legacy mode.  The vBIOS has dependencies on the
1535      * PCI bus address.
1536      */
1537     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1538         !vfio_is_vga(vdev) || nr != 4 ||
1539         &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1540                                        0, PCI_DEVFN(0x2, 0))) {
1541         return;
1542     }
1543 
1544     /*
1545      * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1546      * can stuff host values into, so if there's already one there and it's not
1547      * one we can hack on, legacy mode is no-go.  Sorry Q35.
1548      */
1549     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1550                                  0, PCI_DEVFN(0x1f, 0));
1551     if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1552                                            "vfio-pci-igd-lpc-bridge")) {
1553         error_report("IGD device %s cannot support legacy mode due to existing "
1554                      "devices at address 1f.0", vdev->vbasedev.name);
1555         return;
1556     }
1557 
1558     /*
1559      * IGD is not a standard, they like to change their specs often.  We
1560      * only attempt to support back to SandBridge and we hope that newer
1561      * devices maintain compatibility with generation 8.
1562      */
1563     gen = igd_gen(vdev);
1564     if (gen != 6 && gen != 8) {
1565         error_report("IGD device %s is unsupported in legacy mode, "
1566                      "try SandyBridge or newer", vdev->vbasedev.name);
1567         return;
1568     }
1569 
1570     /*
1571      * Most of what we're doing here is to enable the ROM to run, so if
1572      * there's no ROM, there's no point in setting up this quirk.
1573      * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1574      */
1575     ret = vfio_get_region_info(&vdev->vbasedev,
1576                                VFIO_PCI_ROM_REGION_INDEX, &rom);
1577     if ((ret || !rom->size) && !vdev->pdev.romfile) {
1578         error_report("IGD device %s has no ROM, legacy mode disabled",
1579                      vdev->vbasedev.name);
1580         goto out;
1581     }
1582 
1583     /*
1584      * Ignore the hotplug corner case, mark the ROM failed, we can't
1585      * create the devices we need for legacy mode in the hotplug scenario.
1586      */
1587     if (vdev->pdev.qdev.hotplugged) {
1588         error_report("IGD device %s hotplugged, ROM disabled, "
1589                      "legacy mode disabled", vdev->vbasedev.name);
1590         vdev->rom_read_failed = true;
1591         goto out;
1592     }
1593 
1594     /*
1595      * Check whether we have all the vfio device specific regions to
1596      * support legacy mode (added in Linux v4.6).  If not, bail.
1597      */
1598     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1599                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1600                         VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1601     if (ret) {
1602         error_report("IGD device %s does not support OpRegion access,"
1603                      "legacy mode disabled", vdev->vbasedev.name);
1604         goto out;
1605     }
1606 
1607     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1608                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1609                         VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1610     if (ret) {
1611         error_report("IGD device %s does not support host bridge access,"
1612                      "legacy mode disabled", vdev->vbasedev.name);
1613         goto out;
1614     }
1615 
1616     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1617                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1618                         VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1619     if (ret) {
1620         error_report("IGD device %s does not support LPC bridge access,"
1621                      "legacy mode disabled", vdev->vbasedev.name);
1622         goto out;
1623     }
1624 
1625     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1626 
1627     /*
1628      * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1629      * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1630      * but also no point in us enabling VGA if disabled in hardware.
1631      */
1632     if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1633         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1634         error_report("IGD device %s failed to enable VGA access, "
1635                      "legacy mode disabled", vdev->vbasedev.name);
1636         goto out;
1637     }
1638 
1639     /* Create our LPC/ISA bridge */
1640     ret = vfio_pci_igd_lpc_init(vdev, lpc);
1641     if (ret) {
1642         error_report("IGD device %s failed to create LPC bridge, "
1643                      "legacy mode disabled", vdev->vbasedev.name);
1644         goto out;
1645     }
1646 
1647     /* Stuff some host values into the VM PCI host bridge */
1648     ret = vfio_pci_igd_host_init(vdev, host);
1649     if (ret) {
1650         error_report("IGD device %s failed to modify host bridge, "
1651                      "legacy mode disabled", vdev->vbasedev.name);
1652         goto out;
1653     }
1654 
1655     /* Setup OpRegion access */
1656     ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1657     if (ret) {
1658         error_append_hint(&err, "IGD legacy mode disabled\n");
1659         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1660         goto out;
1661     }
1662 
1663     /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1664     quirk = vfio_quirk_alloc(2);
1665     igd = quirk->data = g_malloc0(sizeof(*igd));
1666     igd->vdev = vdev;
1667     igd->index = ~0;
1668     igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1669     igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */
1670 
1671     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1672                           igd, "vfio-igd-index-quirk", 4);
1673     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1674                                         0, &quirk->mem[0], 1);
1675 
1676     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1677                           igd, "vfio-igd-data-quirk", 4);
1678     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1679                                         4, &quirk->mem[1], 1);
1680 
1681     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1682 
1683     /* Determine the size of stolen memory needed for GTT */
1684     ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1685     if (gen > 6) {
1686         ggms_mb = 1 << ggms_mb;
1687     }
1688 
1689     /*
1690      * Assume we have no GMS memory, but allow it to be overrided by device
1691      * option (experimental).  The spec doesn't actually allow zero GMS when
1692      * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1693      * so let's not waste VM memory for it.
1694      */
1695     gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1696 
1697     if (vdev->igd_gms) {
1698         if (vdev->igd_gms <= 0x10) {
1699             gms_mb = vdev->igd_gms * 32;
1700             gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1701         } else {
1702             error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1703             vdev->igd_gms = 0;
1704         }
1705     }
1706 
1707     /*
1708      * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1709      * must allocate a 1MB aligned reserved memory region below 4GB with
1710      * the requested size (in bytes) for use by the Intel PCI class VGA
1711      * device at VM address 00:02.0.  The base address of this reserved
1712      * memory region must be written to the device BDSM regsiter at PCI
1713      * config offset 0x5C.
1714      */
1715     bdsm_size = g_malloc(sizeof(*bdsm_size));
1716     *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024);
1717     fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1718                     bdsm_size, sizeof(*bdsm_size));
1719 
1720     /* GMCH is read-only, emulated */
1721     pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1722     pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1723     pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1724 
1725     /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1726     pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1727     pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1728     pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1729 
1730     /*
1731      * This IOBAR gives us access to GTTADR, which allows us to write to
1732      * the GTT itself.  So let's go ahead and write zero to all the GTT
1733      * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1734      * before talking to the device.
1735      */
1736     if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1737               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1738         error_report("IGD device %s - failed to read PCI command register",
1739                      vdev->vbasedev.name);
1740     }
1741 
1742     cmd = cmd_orig | PCI_COMMAND_IO;
1743 
1744     if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1745                vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1746         error_report("IGD device %s - failed to write PCI command register",
1747                      vdev->vbasedev.name);
1748     }
1749 
1750     for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1751         vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1752         vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1753     }
1754 
1755     if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1756                vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1757         error_report("IGD device %s - failed to restore PCI command register",
1758                      vdev->vbasedev.name);
1759     }
1760 
1761     trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1762 
1763 out:
1764     g_free(rom);
1765     g_free(opregion);
1766     g_free(host);
1767     g_free(lpc);
1768 }
1769 
1770 /*
1771  * Common quirk probe entry points.
1772  */
1773 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1774 {
1775     vfio_vga_probe_ati_3c3_quirk(vdev);
1776     vfio_vga_probe_nvidia_3d0_quirk(vdev);
1777 }
1778 
1779 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1780 {
1781     VFIOQuirk *quirk;
1782     int i, j;
1783 
1784     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1785         QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1786             for (j = 0; j < quirk->nr_mem; j++) {
1787                 memory_region_del_subregion(&vdev->vga->region[i].mem,
1788                                             &quirk->mem[j]);
1789             }
1790         }
1791     }
1792 }
1793 
1794 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1795 {
1796     int i, j;
1797 
1798     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1799         while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1800             VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1801             QLIST_REMOVE(quirk, next);
1802             for (j = 0; j < quirk->nr_mem; j++) {
1803                 object_unparent(OBJECT(&quirk->mem[j]));
1804             }
1805             g_free(quirk->mem);
1806             g_free(quirk->data);
1807             g_free(quirk);
1808         }
1809     }
1810 }
1811 
1812 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1813 {
1814     vfio_probe_ati_bar4_quirk(vdev, nr);
1815     vfio_probe_ati_bar2_quirk(vdev, nr);
1816     vfio_probe_nvidia_bar5_quirk(vdev, nr);
1817     vfio_probe_nvidia_bar0_quirk(vdev, nr);
1818     vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1819     vfio_probe_igd_bar4_quirk(vdev, nr);
1820 }
1821 
1822 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1823 {
1824     VFIOBAR *bar = &vdev->bars[nr];
1825     VFIOQuirk *quirk;
1826     int i;
1827 
1828     QLIST_FOREACH(quirk, &bar->quirks, next) {
1829         while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1830             vfio_ioeventfd_exit(QLIST_FIRST(&quirk->ioeventfds));
1831         }
1832 
1833         for (i = 0; i < quirk->nr_mem; i++) {
1834             memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1835         }
1836     }
1837 }
1838 
1839 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1840 {
1841     VFIOBAR *bar = &vdev->bars[nr];
1842     int i;
1843 
1844     while (!QLIST_EMPTY(&bar->quirks)) {
1845         VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1846         QLIST_REMOVE(quirk, next);
1847         for (i = 0; i < quirk->nr_mem; i++) {
1848             object_unparent(OBJECT(&quirk->mem[i]));
1849         }
1850         g_free(quirk->mem);
1851         g_free(quirk->data);
1852         g_free(quirk);
1853     }
1854 }
1855 
1856 /*
1857  * Reset quirks
1858  */
1859 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1860 {
1861     int i;
1862 
1863     for (i = 0; i < PCI_ROM_SLOT; i++) {
1864         VFIOQuirk *quirk;
1865         VFIOBAR *bar = &vdev->bars[i];
1866 
1867         QLIST_FOREACH(quirk, &bar->quirks, next) {
1868             if (quirk->reset) {
1869                 quirk->reset(vdev, quirk);
1870             }
1871         }
1872     }
1873 }
1874 
1875 /*
1876  * AMD Radeon PCI config reset, based on Linux:
1877  *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1878  *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1879  *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1880  *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1881  * IDs: include/drm/drm_pciids.h
1882  * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1883  *
1884  * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1885  * hardware that should be fixed on future ASICs.  The symptom of this is that
1886  * once the accerlated driver loads, Windows guests will bsod on subsequent
1887  * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1888  * work around this, we do an AMD specific PCI config reset, followed by an SMC
1889  * reset.  The PCI config reset only works if SMC firmware is running, so we
1890  * have a dependency on the state of the device as to whether this reset will
1891  * be effective.  There are still cases where we won't be able to kick the
1892  * device into working, but this greatly improves the usability overall.  The
1893  * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1894  * poking is largely ASIC specific.
1895  */
1896 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1897 {
1898     uint32_t clk, pc_c;
1899 
1900     /*
1901      * Registers 200h and 204h are index and data registers for accessing
1902      * indirect configuration registers within the device.
1903      */
1904     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1905     clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1906     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1907     pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1908 
1909     return (!(clk & 1) && (0x20100 <= pc_c));
1910 }
1911 
1912 /*
1913  * The scope of a config reset is controlled by a mode bit in the misc register
1914  * and a fuse, exposed as a bit in another register.  The fuse is the default
1915  * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1916  * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1917  * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1918  * to flip the value of the bit in the misc register.
1919  */
1920 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1921 {
1922     uint32_t misc, fuse;
1923     bool a, b;
1924 
1925     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1926     fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1927     b = fuse & 64;
1928 
1929     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1930     misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1931     a = misc & 2;
1932 
1933     if (a == b) {
1934         vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1935         vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1936     }
1937 }
1938 
1939 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1940 {
1941     PCIDevice *pdev = &vdev->pdev;
1942     int i, ret = 0;
1943     uint32_t data;
1944 
1945     /* Defer to a kernel implemented reset */
1946     if (vdev->vbasedev.reset_works) {
1947         trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1948         return -ENODEV;
1949     }
1950 
1951     /* Enable only memory BAR access */
1952     vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1953 
1954     /* Reset only works if SMC firmware is loaded and running */
1955     if (!vfio_radeon_smc_is_running(vdev)) {
1956         ret = -EINVAL;
1957         trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1958         goto out;
1959     }
1960 
1961     /* Make sure only the GFX function is reset */
1962     vfio_radeon_set_gfx_only_reset(vdev);
1963 
1964     /* AMD PCI config reset */
1965     vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
1966     usleep(100);
1967 
1968     /* Read back the memory size to make sure we're out of reset */
1969     for (i = 0; i < 100000; i++) {
1970         if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
1971             goto reset_smc;
1972         }
1973         usleep(1);
1974     }
1975 
1976     trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
1977 
1978 reset_smc:
1979     /* Reset SMC */
1980     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
1981     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1982     data |= 1;
1983     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1984 
1985     /* Disable SMC clock */
1986     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1987     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1988     data |= 1;
1989     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1990 
1991     trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
1992 
1993 out:
1994     /* Restore PCI command register */
1995     vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
1996 
1997     return ret;
1998 }
1999 
2000 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2001 {
2002     switch (vdev->vendor_id) {
2003     case 0x1002:
2004         switch (vdev->device_id) {
2005         /* Bonaire */
2006         case 0x6649: /* Bonaire [FirePro W5100] */
2007         case 0x6650:
2008         case 0x6651:
2009         case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2010         case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2011         case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2012         /* Hawaii */
2013         case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2014         case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2015         case 0x67A2:
2016         case 0x67A8:
2017         case 0x67A9:
2018         case 0x67AA:
2019         case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2020         case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2021         case 0x67B8:
2022         case 0x67B9:
2023         case 0x67BA:
2024         case 0x67BE:
2025             vdev->resetfn = vfio_radeon_reset;
2026             trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2027             break;
2028         }
2029         break;
2030     }
2031 }
2032 
2033 /*
2034  * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2035  * devices as a member of a clique.  Devices within the same clique ID
2036  * are capable of direct P2P.  It's the user's responsibility that this
2037  * is correct.  The spec says that this may reside at any unused config
2038  * offset, but reserves and recommends hypervisors place this at C8h.
2039  * The spec also states that the hypervisor should place this capability
2040  * at the end of the capability list, thus next is defined as 0h.
2041  *
2042  * +----------------+----------------+----------------+----------------+
2043  * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
2044  * +----------------+----------------+----------------+----------------+
2045  * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
2046  * +---------------------------------+---------------------------------+
2047  *
2048  * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2049  */
2050 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2051                                        const char *name, void *opaque,
2052                                        Error **errp)
2053 {
2054     DeviceState *dev = DEVICE(obj);
2055     Property *prop = opaque;
2056     uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2057 
2058     visit_type_uint8(v, name, ptr, errp);
2059 }
2060 
2061 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2062                                        const char *name, void *opaque,
2063                                        Error **errp)
2064 {
2065     DeviceState *dev = DEVICE(obj);
2066     Property *prop = opaque;
2067     uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2068     Error *local_err = NULL;
2069 
2070     if (dev->realized) {
2071         qdev_prop_set_after_realize(dev, name, errp);
2072         return;
2073     }
2074 
2075     visit_type_uint8(v, name, &value, &local_err);
2076     if (local_err) {
2077         error_propagate(errp, local_err);
2078         return;
2079     }
2080 
2081     if (value & ~0xF) {
2082         error_setg(errp, "Property %s: valid range 0-15", name);
2083         return;
2084     }
2085 
2086     *ptr = value;
2087 }
2088 
2089 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2090     .name = "uint4",
2091     .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2092     .get = get_nv_gpudirect_clique_id,
2093     .set = set_nv_gpudirect_clique_id,
2094 };
2095 
2096 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2097 {
2098     PCIDevice *pdev = &vdev->pdev;
2099     int ret, pos = 0xC8;
2100 
2101     if (vdev->nv_gpudirect_clique == 0xFF) {
2102         return 0;
2103     }
2104 
2105     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2106         error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2107         return -EINVAL;
2108     }
2109 
2110     if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2111         PCI_BASE_CLASS_DISPLAY) {
2112         error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2113         return -EINVAL;
2114     }
2115 
2116     ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2117     if (ret < 0) {
2118         error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2119         return ret;
2120     }
2121 
2122     memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2123     pos += PCI_CAP_FLAGS;
2124     pci_set_byte(pdev->config + pos++, 8);
2125     pci_set_byte(pdev->config + pos++, 'P');
2126     pci_set_byte(pdev->config + pos++, '2');
2127     pci_set_byte(pdev->config + pos++, 'P');
2128     pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2129     pci_set_byte(pdev->config + pos, 0);
2130 
2131     return 0;
2132 }
2133 
2134 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2135 {
2136     int ret;
2137 
2138     ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2139     if (ret) {
2140         return ret;
2141     }
2142 
2143     return 0;
2144 }
2145