xref: /qemu/hw/vfio/helpers.c (revision f07a5674cf97b8473e5d06d7b1df9b51e97d553f)
1 /*
2  * low level and IOMMU backend agnostic helpers used by VFIO devices,
3  * related to regions, interrupts, capabilities
4  *
5  * Copyright Red Hat, Inc. 2012
6  *
7  * Authors:
8  *  Alex Williamson <alex.williamson@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  * Based on qemu-kvm device-assignment:
14  *  Adapted for KVM by Qumranet.
15  *  Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
16  *  Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
17  *  Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
18  *  Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
19  *  Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
20  */
21 
22 #include "qemu/osdep.h"
23 #include <sys/ioctl.h>
24 
25 #include "hw/vfio/vfio-common.h"
26 #include "hw/vfio/pci.h"
27 #include "hw/hw.h"
28 #include "trace.h"
29 #include "qapi/error.h"
30 #include "qemu/error-report.h"
31 #include "qemu/units.h"
32 #include "monitor/monitor.h"
33 
34 /*
35  * Common VFIO interrupt disable
36  */
37 void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
38 {
39     struct vfio_irq_set irq_set = {
40         .argsz = sizeof(irq_set),
41         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
42         .index = index,
43         .start = 0,
44         .count = 0,
45     };
46 
47     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
48 }
49 
50 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
51 {
52     struct vfio_irq_set irq_set = {
53         .argsz = sizeof(irq_set),
54         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
55         .index = index,
56         .start = 0,
57         .count = 1,
58     };
59 
60     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
61 }
62 
63 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
64 {
65     struct vfio_irq_set irq_set = {
66         .argsz = sizeof(irq_set),
67         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
68         .index = index,
69         .start = 0,
70         .count = 1,
71     };
72 
73     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
74 }
75 
76 static inline const char *action_to_str(int action)
77 {
78     switch (action) {
79     case VFIO_IRQ_SET_ACTION_MASK:
80         return "MASK";
81     case VFIO_IRQ_SET_ACTION_UNMASK:
82         return "UNMASK";
83     case VFIO_IRQ_SET_ACTION_TRIGGER:
84         return "TRIGGER";
85     default:
86         return "UNKNOWN ACTION";
87     }
88 }
89 
90 static const char *index_to_str(VFIODevice *vbasedev, int index)
91 {
92     if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
93         return NULL;
94     }
95 
96     switch (index) {
97     case VFIO_PCI_INTX_IRQ_INDEX:
98         return "INTX";
99     case VFIO_PCI_MSI_IRQ_INDEX:
100         return "MSI";
101     case VFIO_PCI_MSIX_IRQ_INDEX:
102         return "MSIX";
103     case VFIO_PCI_ERR_IRQ_INDEX:
104         return "ERR";
105     case VFIO_PCI_REQ_IRQ_INDEX:
106         return "REQ";
107     default:
108         return NULL;
109     }
110 }
111 
112 bool vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
113                             int action, int fd, Error **errp)
114 {
115     ERRP_GUARD();
116     g_autofree struct vfio_irq_set *irq_set = NULL;
117     int argsz;
118     const char *name;
119     int32_t *pfd;
120 
121     argsz = sizeof(*irq_set) + sizeof(*pfd);
122 
123     irq_set = g_malloc0(argsz);
124     irq_set->argsz = argsz;
125     irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
126     irq_set->index = index;
127     irq_set->start = subindex;
128     irq_set->count = 1;
129     pfd = (int32_t *)&irq_set->data;
130     *pfd = fd;
131 
132     if (!ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
133         return true;
134     }
135 
136     error_setg_errno(errp, errno, "VFIO_DEVICE_SET_IRQS failure");
137 
138     name = index_to_str(vbasedev, index);
139     if (name) {
140         error_prepend(errp, "%s-%d: ", name, subindex);
141     } else {
142         error_prepend(errp, "index %d-%d: ", index, subindex);
143     }
144     error_prepend(errp,
145                   "Failed to %s %s eventfd signaling for interrupt ",
146                   fd < 0 ? "tear down" : "set up", action_to_str(action));
147     return false;
148 }
149 
150 /*
151  * IO Port/MMIO - Beware of the endians, VFIO is always little endian
152  */
153 void vfio_region_write(void *opaque, hwaddr addr,
154                        uint64_t data, unsigned size)
155 {
156     VFIORegion *region = opaque;
157     VFIODevice *vbasedev = region->vbasedev;
158     union {
159         uint8_t byte;
160         uint16_t word;
161         uint32_t dword;
162         uint64_t qword;
163     } buf;
164 
165     switch (size) {
166     case 1:
167         buf.byte = data;
168         break;
169     case 2:
170         buf.word = cpu_to_le16(data);
171         break;
172     case 4:
173         buf.dword = cpu_to_le32(data);
174         break;
175     case 8:
176         buf.qword = cpu_to_le64(data);
177         break;
178     default:
179         hw_error("vfio: unsupported write size, %u bytes", size);
180         break;
181     }
182 
183     if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
184         error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
185                      ",%d) failed: %m",
186                      __func__, vbasedev->name, region->nr,
187                      addr, data, size);
188     }
189 
190     trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
191 
192     /*
193      * A read or write to a BAR always signals an INTx EOI.  This will
194      * do nothing if not pending (including not in INTx mode).  We assume
195      * that a BAR access is in response to an interrupt and that BAR
196      * accesses will service the interrupt.  Unfortunately, we don't know
197      * which access will service the interrupt, so we're potentially
198      * getting quite a few host interrupts per guest interrupt.
199      */
200     vbasedev->ops->vfio_eoi(vbasedev);
201 }
202 
203 uint64_t vfio_region_read(void *opaque,
204                           hwaddr addr, unsigned size)
205 {
206     VFIORegion *region = opaque;
207     VFIODevice *vbasedev = region->vbasedev;
208     union {
209         uint8_t byte;
210         uint16_t word;
211         uint32_t dword;
212         uint64_t qword;
213     } buf;
214     uint64_t data = 0;
215 
216     if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
217         error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
218                      __func__, vbasedev->name, region->nr,
219                      addr, size);
220         return (uint64_t)-1;
221     }
222     switch (size) {
223     case 1:
224         data = buf.byte;
225         break;
226     case 2:
227         data = le16_to_cpu(buf.word);
228         break;
229     case 4:
230         data = le32_to_cpu(buf.dword);
231         break;
232     case 8:
233         data = le64_to_cpu(buf.qword);
234         break;
235     default:
236         hw_error("vfio: unsupported read size, %u bytes", size);
237         break;
238     }
239 
240     trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
241 
242     /* Same as write above */
243     vbasedev->ops->vfio_eoi(vbasedev);
244 
245     return data;
246 }
247 
248 const MemoryRegionOps vfio_region_ops = {
249     .read = vfio_region_read,
250     .write = vfio_region_write,
251     .endianness = DEVICE_LITTLE_ENDIAN,
252     .valid = {
253         .min_access_size = 1,
254         .max_access_size = 8,
255     },
256     .impl = {
257         .min_access_size = 1,
258         .max_access_size = 8,
259     },
260 };
261 
262 int vfio_bitmap_alloc(VFIOBitmap *vbmap, hwaddr size)
263 {
264     vbmap->pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size();
265     vbmap->size = ROUND_UP(vbmap->pages, sizeof(__u64) * BITS_PER_BYTE) /
266                                          BITS_PER_BYTE;
267     vbmap->bitmap = g_try_malloc0(vbmap->size);
268     if (!vbmap->bitmap) {
269         return -ENOMEM;
270     }
271 
272     return 0;
273 }
274 
275 struct vfio_info_cap_header *
276 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
277 {
278     struct vfio_info_cap_header *hdr;
279 
280     for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
281         if (hdr->id == id) {
282             return hdr;
283         }
284     }
285 
286     return NULL;
287 }
288 
289 struct vfio_info_cap_header *
290 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
291 {
292     if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
293         return NULL;
294     }
295 
296     return vfio_get_cap((void *)info, info->cap_offset, id);
297 }
298 
299 struct vfio_info_cap_header *
300 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
301 {
302     if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
303         return NULL;
304     }
305 
306     return vfio_get_cap((void *)info, info->cap_offset, id);
307 }
308 
309 static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
310                                           struct vfio_region_info *info)
311 {
312     struct vfio_info_cap_header *hdr;
313     struct vfio_region_info_cap_sparse_mmap *sparse;
314     int i, j;
315 
316     hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
317     if (!hdr) {
318         return -ENODEV;
319     }
320 
321     sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
322 
323     trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
324                                          region->nr, sparse->nr_areas);
325 
326     region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
327 
328     for (i = 0, j = 0; i < sparse->nr_areas; i++) {
329         if (sparse->areas[i].size) {
330             trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
331                                             sparse->areas[i].offset +
332                                             sparse->areas[i].size - 1);
333             region->mmaps[j].offset = sparse->areas[i].offset;
334             region->mmaps[j].size = sparse->areas[i].size;
335             j++;
336         }
337     }
338 
339     region->nr_mmaps = j;
340     region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
341 
342     return 0;
343 }
344 
345 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
346                       int index, const char *name)
347 {
348     g_autofree struct vfio_region_info *info = NULL;
349     int ret;
350 
351     ret = vfio_get_region_info(vbasedev, index, &info);
352     if (ret) {
353         return ret;
354     }
355 
356     region->vbasedev = vbasedev;
357     region->flags = info->flags;
358     region->size = info->size;
359     region->fd_offset = info->offset;
360     region->nr = index;
361 
362     if (region->size) {
363         region->mem = g_new0(MemoryRegion, 1);
364         memory_region_init_io(region->mem, obj, &vfio_region_ops,
365                               region, name, region->size);
366 
367         if (!vbasedev->no_mmap &&
368             region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
369 
370             ret = vfio_setup_region_sparse_mmaps(region, info);
371 
372             if (ret) {
373                 region->nr_mmaps = 1;
374                 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
375                 region->mmaps[0].offset = 0;
376                 region->mmaps[0].size = region->size;
377             }
378         }
379     }
380 
381     trace_vfio_region_setup(vbasedev->name, index, name,
382                             region->flags, region->fd_offset, region->size);
383     return 0;
384 }
385 
386 static void vfio_subregion_unmap(VFIORegion *region, int index)
387 {
388     trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
389                             region->mmaps[index].offset,
390                             region->mmaps[index].offset +
391                             region->mmaps[index].size - 1);
392     memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
393     munmap(region->mmaps[index].mmap, region->mmaps[index].size);
394     object_unparent(OBJECT(&region->mmaps[index].mem));
395     region->mmaps[index].mmap = NULL;
396 }
397 
398 int vfio_region_mmap(VFIORegion *region)
399 {
400     int i, ret, prot = 0;
401     char *name;
402 
403     if (!region->mem) {
404         return 0;
405     }
406 
407     prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
408     prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
409 
410     for (i = 0; i < region->nr_mmaps; i++) {
411         size_t align = MIN(1ULL << ctz64(region->mmaps[i].size), 1 * GiB);
412         void *map_base, *map_align;
413 
414         /*
415          * Align the mmap for more efficient mapping in the kernel.  Ideally
416          * we'd know the PMD and PUD mapping sizes to use as discrete alignment
417          * intervals, but we don't.  As of Linux v6.12, the largest PUD size
418          * supporting huge pfnmap is 1GiB (ARCH_SUPPORTS_PUD_PFNMAP is only set
419          * on x86_64).  Align by power-of-two size, capped at 1GiB.
420          *
421          * NB. qemu_memalign() and friends actually allocate memory, whereas
422          * the region size here can exceed host memory, therefore we manually
423          * create an oversized anonymous mapping and clean it up for alignment.
424          */
425         map_base = mmap(0, region->mmaps[i].size + align, PROT_NONE,
426                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
427         if (map_base == MAP_FAILED) {
428             ret = -errno;
429             goto no_mmap;
430         }
431 
432         map_align = (void *)ROUND_UP((uintptr_t)map_base, (uintptr_t)align);
433         munmap(map_base, map_align - map_base);
434         munmap(map_align + region->mmaps[i].size,
435                align - (map_align - map_base));
436 
437         region->mmaps[i].mmap = mmap(map_align, region->mmaps[i].size, prot,
438                                      MAP_SHARED | MAP_FIXED,
439                                      region->vbasedev->fd,
440                                      region->fd_offset +
441                                      region->mmaps[i].offset);
442         if (region->mmaps[i].mmap == MAP_FAILED) {
443             ret = -errno;
444             goto no_mmap;
445         }
446 
447         name = g_strdup_printf("%s mmaps[%d]",
448                                memory_region_name(region->mem), i);
449         memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
450                                           memory_region_owner(region->mem),
451                                           name, region->mmaps[i].size,
452                                           region->mmaps[i].mmap);
453         g_free(name);
454         memory_region_add_subregion(region->mem, region->mmaps[i].offset,
455                                     &region->mmaps[i].mem);
456 
457         trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
458                                region->mmaps[i].offset,
459                                region->mmaps[i].offset +
460                                region->mmaps[i].size - 1);
461     }
462 
463     return 0;
464 
465 no_mmap:
466     trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
467                                  region->fd_offset + region->mmaps[i].offset,
468                                  region->fd_offset + region->mmaps[i].offset +
469                                  region->mmaps[i].size - 1, ret);
470 
471     region->mmaps[i].mmap = NULL;
472 
473     for (i--; i >= 0; i--) {
474         vfio_subregion_unmap(region, i);
475     }
476 
477     return ret;
478 }
479 
480 void vfio_region_unmap(VFIORegion *region)
481 {
482     int i;
483 
484     if (!region->mem) {
485         return;
486     }
487 
488     for (i = 0; i < region->nr_mmaps; i++) {
489         if (region->mmaps[i].mmap) {
490             vfio_subregion_unmap(region, i);
491         }
492     }
493 }
494 
495 void vfio_region_exit(VFIORegion *region)
496 {
497     int i;
498 
499     if (!region->mem) {
500         return;
501     }
502 
503     for (i = 0; i < region->nr_mmaps; i++) {
504         if (region->mmaps[i].mmap) {
505             memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
506         }
507     }
508 
509     trace_vfio_region_exit(region->vbasedev->name, region->nr);
510 }
511 
512 void vfio_region_finalize(VFIORegion *region)
513 {
514     int i;
515 
516     if (!region->mem) {
517         return;
518     }
519 
520     for (i = 0; i < region->nr_mmaps; i++) {
521         if (region->mmaps[i].mmap) {
522             munmap(region->mmaps[i].mmap, region->mmaps[i].size);
523             object_unparent(OBJECT(&region->mmaps[i].mem));
524         }
525     }
526 
527     object_unparent(OBJECT(region->mem));
528 
529     g_free(region->mem);
530     g_free(region->mmaps);
531 
532     trace_vfio_region_finalize(region->vbasedev->name, region->nr);
533 
534     region->mem = NULL;
535     region->mmaps = NULL;
536     region->nr_mmaps = 0;
537     region->size = 0;
538     region->flags = 0;
539     region->nr = 0;
540 }
541 
542 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
543 {
544     int i;
545 
546     if (!region->mem) {
547         return;
548     }
549 
550     for (i = 0; i < region->nr_mmaps; i++) {
551         if (region->mmaps[i].mmap) {
552             memory_region_set_enabled(&region->mmaps[i].mem, enabled);
553         }
554     }
555 
556     trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
557                                         enabled);
558 }
559 
560 int vfio_get_region_info(VFIODevice *vbasedev, int index,
561                          struct vfio_region_info **info)
562 {
563     size_t argsz = sizeof(struct vfio_region_info);
564 
565     *info = g_malloc0(argsz);
566 
567     (*info)->index = index;
568 retry:
569     (*info)->argsz = argsz;
570 
571     if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
572         g_free(*info);
573         *info = NULL;
574         return -errno;
575     }
576 
577     if ((*info)->argsz > argsz) {
578         argsz = (*info)->argsz;
579         *info = g_realloc(*info, argsz);
580 
581         goto retry;
582     }
583 
584     return 0;
585 }
586 
587 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
588                              uint32_t subtype, struct vfio_region_info **info)
589 {
590     int i;
591 
592     for (i = 0; i < vbasedev->num_regions; i++) {
593         struct vfio_info_cap_header *hdr;
594         struct vfio_region_info_cap_type *cap_type;
595 
596         if (vfio_get_region_info(vbasedev, i, info)) {
597             continue;
598         }
599 
600         hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
601         if (!hdr) {
602             g_free(*info);
603             continue;
604         }
605 
606         cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
607 
608         trace_vfio_get_dev_region(vbasedev->name, i,
609                                   cap_type->type, cap_type->subtype);
610 
611         if (cap_type->type == type && cap_type->subtype == subtype) {
612             return 0;
613         }
614 
615         g_free(*info);
616     }
617 
618     *info = NULL;
619     return -ENODEV;
620 }
621 
622 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
623 {
624     g_autofree struct vfio_region_info *info = NULL;
625     bool ret = false;
626 
627     if (!vfio_get_region_info(vbasedev, region, &info)) {
628         if (vfio_get_region_info_cap(info, cap_type)) {
629             ret = true;
630         }
631     }
632 
633     return ret;
634 }
635 
636 bool vfio_device_get_name(VFIODevice *vbasedev, Error **errp)
637 {
638     ERRP_GUARD();
639     struct stat st;
640 
641     if (vbasedev->fd < 0) {
642         if (stat(vbasedev->sysfsdev, &st) < 0) {
643             error_setg_errno(errp, errno, "no such host device");
644             error_prepend(errp, VFIO_MSG_PREFIX, vbasedev->sysfsdev);
645             return false;
646         }
647         /* User may specify a name, e.g: VFIO platform device */
648         if (!vbasedev->name) {
649             vbasedev->name = g_path_get_basename(vbasedev->sysfsdev);
650         }
651     } else {
652         if (!vbasedev->iommufd) {
653             error_setg(errp, "Use FD passing only with iommufd backend");
654             return false;
655         }
656         /*
657          * Give a name with fd so any function printing out vbasedev->name
658          * will not break.
659          */
660         if (!vbasedev->name) {
661             vbasedev->name = g_strdup_printf("VFIO_FD%d", vbasedev->fd);
662         }
663     }
664 
665     return true;
666 }
667 
668 void vfio_device_set_fd(VFIODevice *vbasedev, const char *str, Error **errp)
669 {
670     ERRP_GUARD();
671     int fd = monitor_fd_param(monitor_cur(), str, errp);
672 
673     if (fd < 0) {
674         error_prepend(errp, "Could not parse remote object fd %s:", str);
675         return;
676     }
677     vbasedev->fd = fd;
678 }
679 
680 void vfio_device_init(VFIODevice *vbasedev, int type, VFIODeviceOps *ops,
681                       DeviceState *dev, bool ram_discard)
682 {
683     vbasedev->type = type;
684     vbasedev->ops = ops;
685     vbasedev->dev = dev;
686     vbasedev->fd = -1;
687 
688     vbasedev->ram_block_discard_allowed = ram_discard;
689 }
690 
691 int vfio_device_get_aw_bits(VFIODevice *vdev)
692 {
693     /*
694      * iova_ranges is a sorted list. For old kernels that support
695      * VFIO but not support query of iova ranges, iova_ranges is NULL,
696      * in this case HOST_IOMMU_DEVICE_CAP_AW_BITS_MAX(64) is returned.
697      */
698     GList *l = g_list_last(vdev->bcontainer->iova_ranges);
699 
700     if (l) {
701         Range *range = l->data;
702         return range_get_last_bit(range) + 1;
703     }
704 
705     return HOST_IOMMU_DEVICE_CAP_AW_BITS_MAX;
706 }
707 
708 bool vfio_device_is_mdev(VFIODevice *vbasedev)
709 {
710     g_autofree char *subsys = NULL;
711     g_autofree char *tmp = NULL;
712 
713     if (!vbasedev->sysfsdev) {
714         return false;
715     }
716 
717     tmp = g_strdup_printf("%s/subsystem", vbasedev->sysfsdev);
718     subsys = realpath(tmp, NULL);
719     return subsys && (strcmp(subsys, "/sys/bus/mdev") == 0);
720 }
721 
722 bool vfio_device_hiod_realize(VFIODevice *vbasedev, Error **errp)
723 {
724     HostIOMMUDevice *hiod = vbasedev->hiod;
725 
726     if (!hiod) {
727         return true;
728     }
729 
730     return HOST_IOMMU_DEVICE_GET_CLASS(hiod)->realize(hiod, vbasedev, errp);
731 }
732 
733 VFIODevice *vfio_get_vfio_device(Object *obj)
734 {
735     if (object_dynamic_cast(obj, TYPE_VFIO_PCI)) {
736         return &VFIO_PCI(obj)->vbasedev;
737     } else {
738         return NULL;
739     }
740 }
741