xref: /qemu/hw/usb/hcd-ehci.c (revision 287d55c6769c3a38e9083b103cb148fb38858b3a)
1 /*
2  * QEMU USB EHCI Emulation
3  *
4  * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5  *
6  * EHCI project was started by Mark Burkley, with contributions by
7  * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8  * Jan Kiszka and Vincent Palatin contributed bugfixes.
9  *
10  *
11  * This library is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2 of the License, or(at your option) any later version.
15  *
16  * This library is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32 
33 #define EHCI_DEBUG   0
34 
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40 
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR   (-99)
43 
44 #define MMIO_SIZE        0x1000
45 
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE       0x0000
48 #define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
49 #define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
50 #define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
51 #define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
52 #define EECP             HCCPARAMS + 1
53 #define HCSPPORTROUTE1   CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2   CAPREGBASE + 0x0010
55 
56 #define OPREGBASE        0x0020        // Operational Registers Base Address
57 
58 #define USBCMD           OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
60 #define USBCMD_HCRESET   (1 << 1)      // HC Reset
61 #define USBCMD_FLS       (3 << 2)      // Frame List Size
62 #define USBCMD_FLS_SH    2             // Frame List Size Shift
63 #define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
64 #define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
65 #define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
67 #define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
68 #define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
69 #define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
70 #define USBCMD_ITC_SH    16            // Int Threshold Control Shift
71 
72 #define USBSTS           OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK   0x0000003f
74 #define USBSTS_INT       (1 << 0)      // USB Interrupt
75 #define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
76 #define USBSTS_PCD       (1 << 2)      // Port Change Detect
77 #define USBSTS_FLR       (1 << 3)      // Frame List Rollover
78 #define USBSTS_HSE       (1 << 4)      // Host System Error
79 #define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
80 #define USBSTS_HALT      (1 << 12)     // HC Halted
81 #define USBSTS_REC       (1 << 13)     // Reclamation
82 #define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
83 #define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
84 
85 /*
86  *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
87  *  so no need to redefine here.
88  */
89 #define USBINTR              OPREGBASE + 0x0008
90 #define USBINTR_MASK         0x0000003f
91 
92 #define FRINDEX              OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT        OPREGBASE + 0x0010
94 #define PERIODICLISTBASE     OPREGBASE + 0x0014
95 #define ASYNCLISTADDR        OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK   0xffffffe0
97 
98 #define CONFIGFLAG           OPREGBASE + 0x0040
99 
100 #define PORTSC               (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN         PORTSC
102 #define PORTSC_END           (PORTSC + 4 * NB_PORTS)
103 /*
104  * Bits that are reserved or are read-only are masked out of values
105  * written to us by software
106  */
107 #define PORTSC_RO_MASK       0x007001c0
108 #define PORTSC_RWC_MASK      0x0000002a
109 #define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
110 #define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
112 #define PORTSC_PTC           (15 << 16)   // Port Test Control
113 #define PORTSC_PTC_SH        16           // Port Test Control shift
114 #define PORTSC_PIC           (3 << 14)    // Port Indicator Control
115 #define PORTSC_PIC_SH        14           // Port Indicator Control Shift
116 #define PORTSC_POWNER        (1 << 13)    // Port Owner
117 #define PORTSC_PPOWER        (1 << 12)    // Port Power
118 #define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
119 #define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
120 #define PORTSC_PRESET        (1 << 8)     // Port Reset
121 #define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
122 #define PORTSC_FPRES         (1 << 6)     // Force Port Resume
123 #define PORTSC_OCC           (1 << 5)     // Over Current Change
124 #define PORTSC_OCA           (1 << 4)     // Over Current Active
125 #define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
126 #define PORTSC_PED           (1 << 2)     // Port Enable/Disable
127 #define PORTSC_CSC           (1 << 1)     // Connect Status Change
128 #define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
129 
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
132 
133 #define NB_MAXINTRATE    8        // Max rate at which controller issues ints
134 #define NB_PORTS         6        // Number of downstream ports
135 #define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
136 #define MAX_QH           100      // Max allowable queue heads in a chain
137 
138 /*  Internal periodic / asynchronous schedule state machine states
139  */
140 typedef enum {
141     EST_INACTIVE = 1000,
142     EST_ACTIVE,
143     EST_EXECUTING,
144     EST_SLEEPING,
145     /*  The following states are internal to the state machine function
146     */
147     EST_WAITLISTHEAD,
148     EST_FETCHENTRY,
149     EST_FETCHQH,
150     EST_FETCHITD,
151     EST_FETCHSITD,
152     EST_ADVANCEQUEUE,
153     EST_FETCHQTD,
154     EST_EXECUTE,
155     EST_WRITEBACK,
156     EST_HORIZONTALQH
157 } EHCI_STATES;
158 
159 /* macros for accessing fields within next link pointer entry */
160 #define NLPTR_GET(x)             ((x) & 0xffffffe0)
161 #define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
162 #define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
163 
164 /* link pointer types */
165 #define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
166 #define NLPTR_TYPE_QH            1     // queue head
167 #define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
168 #define NLPTR_TYPE_FSTN          3     // frame span traversal node
169 
170 
171 /*  EHCI spec version 1.0 Section 3.3
172  */
173 typedef struct EHCIitd {
174     uint32_t next;
175 
176     uint32_t transact[8];
177 #define ITD_XACT_ACTIVE          (1 << 31)
178 #define ITD_XACT_DBERROR         (1 << 30)
179 #define ITD_XACT_BABBLE          (1 << 29)
180 #define ITD_XACT_XACTERR         (1 << 28)
181 #define ITD_XACT_LENGTH_MASK     0x0fff0000
182 #define ITD_XACT_LENGTH_SH       16
183 #define ITD_XACT_IOC             (1 << 15)
184 #define ITD_XACT_PGSEL_MASK      0x00007000
185 #define ITD_XACT_PGSEL_SH        12
186 #define ITD_XACT_OFFSET_MASK     0x00000fff
187 
188     uint32_t bufptr[7];
189 #define ITD_BUFPTR_MASK          0xfffff000
190 #define ITD_BUFPTR_SH            12
191 #define ITD_BUFPTR_EP_MASK       0x00000f00
192 #define ITD_BUFPTR_EP_SH         8
193 #define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
194 #define ITD_BUFPTR_DEVADDR_SH    0
195 #define ITD_BUFPTR_DIRECTION     (1 << 11)
196 #define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
197 #define ITD_BUFPTR_MAXPKT_SH     0
198 #define ITD_BUFPTR_MULT_MASK     0x00000003
199 #define ITD_BUFPTR_MULT_SH       0
200 } EHCIitd;
201 
202 /*  EHCI spec version 1.0 Section 3.4
203  */
204 typedef struct EHCIsitd {
205     uint32_t next;                  // Standard next link pointer
206     uint32_t epchar;
207 #define SITD_EPCHAR_IO              (1 << 31)
208 #define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
209 #define SITD_EPCHAR_PORTNUM_SH      24
210 #define SITD_EPCHAR_HUBADD_MASK     0x007f0000
211 #define SITD_EPCHAR_HUBADDR_SH      16
212 #define SITD_EPCHAR_EPNUM_MASK      0x00000f00
213 #define SITD_EPCHAR_EPNUM_SH        8
214 #define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
215 
216     uint32_t uframe;
217 #define SITD_UFRAME_CMASK_MASK      0x0000ff00
218 #define SITD_UFRAME_CMASK_SH        8
219 #define SITD_UFRAME_SMASK_MASK      0x000000ff
220 
221     uint32_t results;
222 #define SITD_RESULTS_IOC              (1 << 31)
223 #define SITD_RESULTS_PGSEL            (1 << 30)
224 #define SITD_RESULTS_TBYTES_MASK      0x03ff0000
225 #define SITD_RESULTS_TYBYTES_SH       16
226 #define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
227 #define SITD_RESULTS_CPROGMASK_SH     8
228 #define SITD_RESULTS_ACTIVE           (1 << 7)
229 #define SITD_RESULTS_ERR              (1 << 6)
230 #define SITD_RESULTS_DBERR            (1 << 5)
231 #define SITD_RESULTS_BABBLE           (1 << 4)
232 #define SITD_RESULTS_XACTERR          (1 << 3)
233 #define SITD_RESULTS_MISSEDUF         (1 << 2)
234 #define SITD_RESULTS_SPLITXSTATE      (1 << 1)
235 
236     uint32_t bufptr[2];
237 #define SITD_BUFPTR_MASK              0xfffff000
238 #define SITD_BUFPTR_CURROFF_MASK      0x00000fff
239 #define SITD_BUFPTR_TPOS_MASK         0x00000018
240 #define SITD_BUFPTR_TPOS_SH           3
241 #define SITD_BUFPTR_TCNT_MASK         0x00000007
242 
243     uint32_t backptr;                 // Standard next link pointer
244 } EHCIsitd;
245 
246 /*  EHCI spec version 1.0 Section 3.5
247  */
248 typedef struct EHCIqtd {
249     uint32_t next;                    // Standard next link pointer
250     uint32_t altnext;                 // Standard next link pointer
251     uint32_t token;
252 #define QTD_TOKEN_DTOGGLE             (1 << 31)
253 #define QTD_TOKEN_TBYTES_MASK         0x7fff0000
254 #define QTD_TOKEN_TBYTES_SH           16
255 #define QTD_TOKEN_IOC                 (1 << 15)
256 #define QTD_TOKEN_CPAGE_MASK          0x00007000
257 #define QTD_TOKEN_CPAGE_SH            12
258 #define QTD_TOKEN_CERR_MASK           0x00000c00
259 #define QTD_TOKEN_CERR_SH             10
260 #define QTD_TOKEN_PID_MASK            0x00000300
261 #define QTD_TOKEN_PID_SH              8
262 #define QTD_TOKEN_ACTIVE              (1 << 7)
263 #define QTD_TOKEN_HALT                (1 << 6)
264 #define QTD_TOKEN_DBERR               (1 << 5)
265 #define QTD_TOKEN_BABBLE              (1 << 4)
266 #define QTD_TOKEN_XACTERR             (1 << 3)
267 #define QTD_TOKEN_MISSEDUF            (1 << 2)
268 #define QTD_TOKEN_SPLITXSTATE         (1 << 1)
269 #define QTD_TOKEN_PING                (1 << 0)
270 
271     uint32_t bufptr[5];               // Standard buffer pointer
272 #define QTD_BUFPTR_MASK               0xfffff000
273 #define QTD_BUFPTR_SH                 12
274 } EHCIqtd;
275 
276 /*  EHCI spec version 1.0 Section 3.6
277  */
278 typedef struct EHCIqh {
279     uint32_t next;                    // Standard next link pointer
280 
281     /* endpoint characteristics */
282     uint32_t epchar;
283 #define QH_EPCHAR_RL_MASK             0xf0000000
284 #define QH_EPCHAR_RL_SH               28
285 #define QH_EPCHAR_C                   (1 << 27)
286 #define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287 #define QH_EPCHAR_MPLEN_SH            16
288 #define QH_EPCHAR_H                   (1 << 15)
289 #define QH_EPCHAR_DTC                 (1 << 14)
290 #define QH_EPCHAR_EPS_MASK            0x00003000
291 #define QH_EPCHAR_EPS_SH              12
292 #define EHCI_QH_EPS_FULL              0
293 #define EHCI_QH_EPS_LOW               1
294 #define EHCI_QH_EPS_HIGH              2
295 #define EHCI_QH_EPS_RESERVED          3
296 
297 #define QH_EPCHAR_EP_MASK             0x00000f00
298 #define QH_EPCHAR_EP_SH               8
299 #define QH_EPCHAR_I                   (1 << 7)
300 #define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301 #define QH_EPCHAR_DEVADDR_SH          0
302 
303     /* endpoint capabilities */
304     uint32_t epcap;
305 #define QH_EPCAP_MULT_MASK            0xc0000000
306 #define QH_EPCAP_MULT_SH              30
307 #define QH_EPCAP_PORTNUM_MASK         0x3f800000
308 #define QH_EPCAP_PORTNUM_SH           23
309 #define QH_EPCAP_HUBADDR_MASK         0x007f0000
310 #define QH_EPCAP_HUBADDR_SH           16
311 #define QH_EPCAP_CMASK_MASK           0x0000ff00
312 #define QH_EPCAP_CMASK_SH             8
313 #define QH_EPCAP_SMASK_MASK           0x000000ff
314 #define QH_EPCAP_SMASK_SH             0
315 
316     uint32_t current_qtd;             // Standard next link pointer
317     uint32_t next_qtd;                // Standard next link pointer
318     uint32_t altnext_qtd;
319 #define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320 #define QH_ALTNEXT_NAKCNT_SH          1
321 
322     uint32_t token;                   // Same as QTD token
323     uint32_t bufptr[5];               // Standard buffer pointer
324 #define BUFPTR_CPROGMASK_MASK         0x000000ff
325 #define BUFPTR_FRAMETAG_MASK          0x0000001f
326 #define BUFPTR_SBYTES_MASK            0x00000fe0
327 #define BUFPTR_SBYTES_SH              5
328 } EHCIqh;
329 
330 /*  EHCI spec version 1.0 Section 3.7
331  */
332 typedef struct EHCIfstn {
333     uint32_t next;                    // Standard next link pointer
334     uint32_t backptr;                 // Standard next link pointer
335 } EHCIfstn;
336 
337 typedef struct EHCIQueue EHCIQueue;
338 typedef struct EHCIState EHCIState;
339 
340 enum async_state {
341     EHCI_ASYNC_NONE = 0,
342     EHCI_ASYNC_INFLIGHT,
343     EHCI_ASYNC_FINISHED,
344 };
345 
346 struct EHCIQueue {
347     EHCIState *ehci;
348     QTAILQ_ENTRY(EHCIQueue) next;
349     uint32_t seen;
350     uint64_t ts;
351 
352     /* cached data from guest - needs to be flushed
353      * when guest removes an entry (doorbell, handshake sequence)
354      */
355     EHCIqh qh;             // copy of current QH (being worked on)
356     uint32_t qhaddr;       // address QH read from
357     EHCIqtd qtd;           // copy of current QTD (being worked on)
358     uint32_t qtdaddr;      // address QTD read from
359 
360     USBPacket packet;
361     QEMUSGList sgl;
362     int pid;
363     uint32_t tbytes;
364     enum async_state async;
365     int usb_status;
366 };
367 
368 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
369 
370 struct EHCIState {
371     PCIDevice dev;
372     USBBus bus;
373     qemu_irq irq;
374     MemoryRegion mem;
375     int companion_count;
376 
377     /* properties */
378     uint32_t freq;
379     uint32_t maxframes;
380 
381     /*
382      *  EHCI spec version 1.0 Section 2.3
383      *  Host Controller Operational Registers
384      */
385     union {
386         uint8_t mmio[MMIO_SIZE];
387         struct {
388             uint8_t cap[OPREGBASE];
389             uint32_t usbcmd;
390             uint32_t usbsts;
391             uint32_t usbintr;
392             uint32_t frindex;
393             uint32_t ctrldssegment;
394             uint32_t periodiclistbase;
395             uint32_t asynclistaddr;
396             uint32_t notused[9];
397             uint32_t configflag;
398             uint32_t portsc[NB_PORTS];
399         };
400     };
401 
402     /*
403      *  Internal states, shadow registers, etc
404      */
405     QEMUTimer *frame_timer;
406     int attach_poll_counter;
407     int astate;                        // Current state in asynchronous schedule
408     int pstate;                        // Current state in periodic schedule
409     USBPort ports[NB_PORTS];
410     USBPort *companion_ports[NB_PORTS];
411     uint32_t usbsts_pending;
412     EHCIQueueHead aqueues;
413     EHCIQueueHead pqueues;
414 
415     uint32_t a_fetch_addr;   // which address to look at next
416     uint32_t p_fetch_addr;   // which address to look at next
417 
418     USBPacket ipacket;
419     QEMUSGList isgl;
420 
421     uint64_t last_run_ns;
422 };
423 
424 #define SET_LAST_RUN_CLOCK(s) \
425     (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
426 
427 /* nifty macros from Arnon's EHCI version  */
428 #define get_field(data, field) \
429     (((data) & field##_MASK) >> field##_SH)
430 
431 #define set_field(data, newval, field) do { \
432     uint32_t val = *data; \
433     val &= ~ field##_MASK; \
434     val |= ((newval) << field##_SH) & field##_MASK; \
435     *data = val; \
436     } while(0)
437 
438 static const char *ehci_state_names[] = {
439     [EST_INACTIVE]     = "INACTIVE",
440     [EST_ACTIVE]       = "ACTIVE",
441     [EST_EXECUTING]    = "EXECUTING",
442     [EST_SLEEPING]     = "SLEEPING",
443     [EST_WAITLISTHEAD] = "WAITLISTHEAD",
444     [EST_FETCHENTRY]   = "FETCH ENTRY",
445     [EST_FETCHQH]      = "FETCH QH",
446     [EST_FETCHITD]     = "FETCH ITD",
447     [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
448     [EST_FETCHQTD]     = "FETCH QTD",
449     [EST_EXECUTE]      = "EXECUTE",
450     [EST_WRITEBACK]    = "WRITEBACK",
451     [EST_HORIZONTALQH] = "HORIZONTALQH",
452 };
453 
454 static const char *ehci_mmio_names[] = {
455     [CAPLENGTH]         = "CAPLENGTH",
456     [HCIVERSION]        = "HCIVERSION",
457     [HCSPARAMS]         = "HCSPARAMS",
458     [HCCPARAMS]         = "HCCPARAMS",
459     [USBCMD]            = "USBCMD",
460     [USBSTS]            = "USBSTS",
461     [USBINTR]           = "USBINTR",
462     [FRINDEX]           = "FRINDEX",
463     [PERIODICLISTBASE]  = "P-LIST BASE",
464     [ASYNCLISTADDR]     = "A-LIST ADDR",
465     [PORTSC_BEGIN]      = "PORTSC #0",
466     [PORTSC_BEGIN + 4]  = "PORTSC #1",
467     [PORTSC_BEGIN + 8]  = "PORTSC #2",
468     [PORTSC_BEGIN + 12] = "PORTSC #3",
469     [PORTSC_BEGIN + 16] = "PORTSC #4",
470     [PORTSC_BEGIN + 20] = "PORTSC #5",
471     [CONFIGFLAG]        = "CONFIGFLAG",
472 };
473 
474 static const char *nr2str(const char **n, size_t len, uint32_t nr)
475 {
476     if (nr < len && n[nr] != NULL) {
477         return n[nr];
478     } else {
479         return "unknown";
480     }
481 }
482 
483 static const char *state2str(uint32_t state)
484 {
485     return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
486 }
487 
488 static const char *addr2str(target_phys_addr_t addr)
489 {
490     return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
491 }
492 
493 static void ehci_trace_usbsts(uint32_t mask, int state)
494 {
495     /* interrupts */
496     if (mask & USBSTS_INT) {
497         trace_usb_ehci_usbsts("INT", state);
498     }
499     if (mask & USBSTS_ERRINT) {
500         trace_usb_ehci_usbsts("ERRINT", state);
501     }
502     if (mask & USBSTS_PCD) {
503         trace_usb_ehci_usbsts("PCD", state);
504     }
505     if (mask & USBSTS_FLR) {
506         trace_usb_ehci_usbsts("FLR", state);
507     }
508     if (mask & USBSTS_HSE) {
509         trace_usb_ehci_usbsts("HSE", state);
510     }
511     if (mask & USBSTS_IAA) {
512         trace_usb_ehci_usbsts("IAA", state);
513     }
514 
515     /* status */
516     if (mask & USBSTS_HALT) {
517         trace_usb_ehci_usbsts("HALT", state);
518     }
519     if (mask & USBSTS_REC) {
520         trace_usb_ehci_usbsts("REC", state);
521     }
522     if (mask & USBSTS_PSS) {
523         trace_usb_ehci_usbsts("PSS", state);
524     }
525     if (mask & USBSTS_ASS) {
526         trace_usb_ehci_usbsts("ASS", state);
527     }
528 }
529 
530 static inline void ehci_set_usbsts(EHCIState *s, int mask)
531 {
532     if ((s->usbsts & mask) == mask) {
533         return;
534     }
535     ehci_trace_usbsts(mask, 1);
536     s->usbsts |= mask;
537 }
538 
539 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
540 {
541     if ((s->usbsts & mask) == 0) {
542         return;
543     }
544     ehci_trace_usbsts(mask, 0);
545     s->usbsts &= ~mask;
546 }
547 
548 static inline void ehci_set_interrupt(EHCIState *s, int intr)
549 {
550     int level = 0;
551 
552     // TODO honour interrupt threshold requests
553 
554     ehci_set_usbsts(s, intr);
555 
556     if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
557         level = 1;
558     }
559 
560     qemu_set_irq(s->irq, level);
561 }
562 
563 static inline void ehci_record_interrupt(EHCIState *s, int intr)
564 {
565     s->usbsts_pending |= intr;
566 }
567 
568 static inline void ehci_commit_interrupt(EHCIState *s)
569 {
570     if (!s->usbsts_pending) {
571         return;
572     }
573     ehci_set_interrupt(s, s->usbsts_pending);
574     s->usbsts_pending = 0;
575 }
576 
577 static void ehci_set_state(EHCIState *s, int async, int state)
578 {
579     if (async) {
580         trace_usb_ehci_state("async", state2str(state));
581         s->astate = state;
582     } else {
583         trace_usb_ehci_state("periodic", state2str(state));
584         s->pstate = state;
585     }
586 }
587 
588 static int ehci_get_state(EHCIState *s, int async)
589 {
590     return async ? s->astate : s->pstate;
591 }
592 
593 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
594 {
595     if (async) {
596         s->a_fetch_addr = addr;
597     } else {
598         s->p_fetch_addr = addr;
599     }
600 }
601 
602 static int ehci_get_fetch_addr(EHCIState *s, int async)
603 {
604     return async ? s->a_fetch_addr : s->p_fetch_addr;
605 }
606 
607 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
608 {
609     /* need three here due to argument count limits */
610     trace_usb_ehci_qh_ptrs(q, addr, qh->next,
611                            qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
612     trace_usb_ehci_qh_fields(addr,
613                              get_field(qh->epchar, QH_EPCHAR_RL),
614                              get_field(qh->epchar, QH_EPCHAR_MPLEN),
615                              get_field(qh->epchar, QH_EPCHAR_EPS),
616                              get_field(qh->epchar, QH_EPCHAR_EP),
617                              get_field(qh->epchar, QH_EPCHAR_DEVADDR));
618     trace_usb_ehci_qh_bits(addr,
619                            (bool)(qh->epchar & QH_EPCHAR_C),
620                            (bool)(qh->epchar & QH_EPCHAR_H),
621                            (bool)(qh->epchar & QH_EPCHAR_DTC),
622                            (bool)(qh->epchar & QH_EPCHAR_I));
623 }
624 
625 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
626 {
627     /* need three here due to argument count limits */
628     trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
629     trace_usb_ehci_qtd_fields(addr,
630                               get_field(qtd->token, QTD_TOKEN_TBYTES),
631                               get_field(qtd->token, QTD_TOKEN_CPAGE),
632                               get_field(qtd->token, QTD_TOKEN_CERR),
633                               get_field(qtd->token, QTD_TOKEN_PID));
634     trace_usb_ehci_qtd_bits(addr,
635                             (bool)(qtd->token & QTD_TOKEN_IOC),
636                             (bool)(qtd->token & QTD_TOKEN_ACTIVE),
637                             (bool)(qtd->token & QTD_TOKEN_HALT),
638                             (bool)(qtd->token & QTD_TOKEN_BABBLE),
639                             (bool)(qtd->token & QTD_TOKEN_XACTERR));
640 }
641 
642 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
643 {
644     trace_usb_ehci_itd(addr, itd->next,
645                        get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
646                        get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
647                        get_field(itd->bufptr[0], ITD_BUFPTR_EP),
648                        get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
649 }
650 
651 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
652                             EHCIsitd *sitd)
653 {
654     trace_usb_ehci_sitd(addr, sitd->next,
655                         (bool)(sitd->results & SITD_RESULTS_ACTIVE));
656 }
657 
658 /* queue management */
659 
660 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
661 {
662     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
663     EHCIQueue *q;
664 
665     q = g_malloc0(sizeof(*q));
666     q->ehci = ehci;
667     usb_packet_init(&q->packet);
668     QTAILQ_INSERT_HEAD(head, q, next);
669     trace_usb_ehci_queue_action(q, "alloc");
670     return q;
671 }
672 
673 static void ehci_free_queue(EHCIQueue *q, int async)
674 {
675     EHCIQueueHead *head = async ? &q->ehci->aqueues : &q->ehci->pqueues;
676     trace_usb_ehci_queue_action(q, "free");
677     if (q->async == EHCI_ASYNC_INFLIGHT) {
678         usb_cancel_packet(&q->packet);
679     }
680     QTAILQ_REMOVE(head, q, next);
681     g_free(q);
682 }
683 
684 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
685                                         int async)
686 {
687     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
688     EHCIQueue *q;
689 
690     QTAILQ_FOREACH(q, head, next) {
691         if (addr == q->qhaddr) {
692             return q;
693         }
694     }
695     return NULL;
696 }
697 
698 static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
699 {
700     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
701     EHCIQueue *q, *tmp;
702 
703     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
704         if (q->seen) {
705             q->seen = 0;
706             q->ts = ehci->last_run_ns;
707             continue;
708         }
709         if (!flush && ehci->last_run_ns < q->ts + 250000000) {
710             /* allow 0.25 sec idle */
711             continue;
712         }
713         ehci_free_queue(q, async);
714     }
715 }
716 
717 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
718 {
719     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
720     EHCIQueue *q, *tmp;
721 
722     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
723         if (!usb_packet_is_inflight(&q->packet) ||
724             q->packet.ep->dev != dev) {
725             continue;
726         }
727         ehci_free_queue(q, async);
728     }
729 }
730 
731 static void ehci_queues_rip_all(EHCIState *ehci, int async)
732 {
733     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
734     EHCIQueue *q, *tmp;
735 
736     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
737         ehci_free_queue(q, async);
738     }
739 }
740 
741 /* Attach or detach a device on root hub */
742 
743 static void ehci_attach(USBPort *port)
744 {
745     EHCIState *s = port->opaque;
746     uint32_t *portsc = &s->portsc[port->index];
747 
748     trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
749 
750     if (*portsc & PORTSC_POWNER) {
751         USBPort *companion = s->companion_ports[port->index];
752         companion->dev = port->dev;
753         companion->ops->attach(companion);
754         return;
755     }
756 
757     *portsc |= PORTSC_CONNECT;
758     *portsc |= PORTSC_CSC;
759 
760     ehci_set_interrupt(s, USBSTS_PCD);
761 }
762 
763 static void ehci_detach(USBPort *port)
764 {
765     EHCIState *s = port->opaque;
766     uint32_t *portsc = &s->portsc[port->index];
767 
768     trace_usb_ehci_port_detach(port->index);
769 
770     if (*portsc & PORTSC_POWNER) {
771         USBPort *companion = s->companion_ports[port->index];
772         companion->ops->detach(companion);
773         companion->dev = NULL;
774         /*
775          * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
776          * the port ownership is returned immediately to the EHCI controller."
777          */
778         *portsc &= ~PORTSC_POWNER;
779         return;
780     }
781 
782     ehci_queues_rip_device(s, port->dev, 0);
783     ehci_queues_rip_device(s, port->dev, 1);
784 
785     *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
786     *portsc |= PORTSC_CSC;
787 
788     ehci_set_interrupt(s, USBSTS_PCD);
789 }
790 
791 static void ehci_child_detach(USBPort *port, USBDevice *child)
792 {
793     EHCIState *s = port->opaque;
794     uint32_t portsc = s->portsc[port->index];
795 
796     if (portsc & PORTSC_POWNER) {
797         USBPort *companion = s->companion_ports[port->index];
798         companion->ops->child_detach(companion, child);
799         return;
800     }
801 
802     ehci_queues_rip_device(s, child, 0);
803     ehci_queues_rip_device(s, child, 1);
804 }
805 
806 static void ehci_wakeup(USBPort *port)
807 {
808     EHCIState *s = port->opaque;
809     uint32_t portsc = s->portsc[port->index];
810 
811     if (portsc & PORTSC_POWNER) {
812         USBPort *companion = s->companion_ports[port->index];
813         if (companion->ops->wakeup) {
814             companion->ops->wakeup(companion);
815         }
816     }
817 }
818 
819 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
820                                    uint32_t portcount, uint32_t firstport)
821 {
822     EHCIState *s = container_of(bus, EHCIState, bus);
823     uint32_t i;
824 
825     if (firstport + portcount > NB_PORTS) {
826         qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
827                       "firstport on masterbus");
828         error_printf_unless_qmp(
829             "firstport value of %u makes companion take ports %u - %u, which "
830             "is outside of the valid range of 0 - %u\n", firstport, firstport,
831             firstport + portcount - 1, NB_PORTS - 1);
832         return -1;
833     }
834 
835     for (i = 0; i < portcount; i++) {
836         if (s->companion_ports[firstport + i]) {
837             qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
838                           "an USB masterbus");
839             error_printf_unless_qmp(
840                 "port %u on masterbus %s already has a companion assigned\n",
841                 firstport + i, bus->qbus.name);
842             return -1;
843         }
844     }
845 
846     for (i = 0; i < portcount; i++) {
847         s->companion_ports[firstport + i] = ports[i];
848         s->ports[firstport + i].speedmask |=
849             USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
850         /* Ensure devs attached before the initial reset go to the companion */
851         s->portsc[firstport + i] = PORTSC_POWNER;
852     }
853 
854     s->companion_count++;
855     s->mmio[0x05] = (s->companion_count << 4) | portcount;
856 
857     return 0;
858 }
859 
860 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
861 {
862     USBDevice *dev;
863     USBPort *port;
864     int i;
865 
866     for (i = 0; i < NB_PORTS; i++) {
867         port = &ehci->ports[i];
868         if (!(ehci->portsc[i] & PORTSC_PED)) {
869             DPRINTF("Port %d not enabled\n", i);
870             continue;
871         }
872         dev = usb_find_device(port, addr);
873         if (dev != NULL) {
874             return dev;
875         }
876     }
877     return NULL;
878 }
879 
880 /* 4.1 host controller initialization */
881 static void ehci_reset(void *opaque)
882 {
883     EHCIState *s = opaque;
884     int i;
885     USBDevice *devs[NB_PORTS];
886 
887     trace_usb_ehci_reset();
888 
889     /*
890      * Do the detach before touching portsc, so that it correctly gets send to
891      * us or to our companion based on PORTSC_POWNER before the reset.
892      */
893     for(i = 0; i < NB_PORTS; i++) {
894         devs[i] = s->ports[i].dev;
895         if (devs[i] && devs[i]->attached) {
896             usb_detach(&s->ports[i]);
897         }
898     }
899 
900     memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
901 
902     s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
903     s->usbsts = USBSTS_HALT;
904 
905     s->astate = EST_INACTIVE;
906     s->pstate = EST_INACTIVE;
907     s->attach_poll_counter = 0;
908 
909     for(i = 0; i < NB_PORTS; i++) {
910         if (s->companion_ports[i]) {
911             s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
912         } else {
913             s->portsc[i] = PORTSC_PPOWER;
914         }
915         if (devs[i] && devs[i]->attached) {
916             usb_attach(&s->ports[i]);
917             usb_device_reset(devs[i]);
918         }
919     }
920     ehci_queues_rip_all(s, 0);
921     ehci_queues_rip_all(s, 1);
922     qemu_del_timer(s->frame_timer);
923 }
924 
925 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
926 {
927     EHCIState *s = ptr;
928     uint32_t val;
929 
930     val = s->mmio[addr];
931 
932     return val;
933 }
934 
935 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
936 {
937     EHCIState *s = ptr;
938     uint32_t val;
939 
940     val = s->mmio[addr] | (s->mmio[addr+1] << 8);
941 
942     return val;
943 }
944 
945 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
946 {
947     EHCIState *s = ptr;
948     uint32_t val;
949 
950     val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
951           (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
952 
953     trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
954     return val;
955 }
956 
957 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
958 {
959     fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
960     exit(1);
961 }
962 
963 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
964 {
965     fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
966     exit(1);
967 }
968 
969 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
970 {
971     USBDevice *dev = s->ports[port].dev;
972     uint32_t *portsc = &s->portsc[port];
973     uint32_t orig;
974 
975     if (s->companion_ports[port] == NULL)
976         return;
977 
978     owner = owner & PORTSC_POWNER;
979     orig  = *portsc & PORTSC_POWNER;
980 
981     if (!(owner ^ orig)) {
982         return;
983     }
984 
985     if (dev && dev->attached) {
986         usb_detach(&s->ports[port]);
987     }
988 
989     *portsc &= ~PORTSC_POWNER;
990     *portsc |= owner;
991 
992     if (dev && dev->attached) {
993         usb_attach(&s->ports[port]);
994     }
995 }
996 
997 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
998 {
999     uint32_t *portsc = &s->portsc[port];
1000     USBDevice *dev = s->ports[port].dev;
1001 
1002     /* Clear rwc bits */
1003     *portsc &= ~(val & PORTSC_RWC_MASK);
1004     /* The guest may clear, but not set the PED bit */
1005     *portsc &= val | ~PORTSC_PED;
1006     /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1007     handle_port_owner_write(s, port, val);
1008     /* And finally apply RO_MASK */
1009     val &= PORTSC_RO_MASK;
1010 
1011     if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1012         trace_usb_ehci_port_reset(port, 1);
1013     }
1014 
1015     if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1016         trace_usb_ehci_port_reset(port, 0);
1017         if (dev && dev->attached) {
1018             usb_port_reset(&s->ports[port]);
1019             *portsc &= ~PORTSC_CSC;
1020         }
1021 
1022         /*
1023          *  Table 2.16 Set the enable bit(and enable bit change) to indicate
1024          *  to SW that this port has a high speed device attached
1025          */
1026         if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1027             val |= PORTSC_PED;
1028         }
1029     }
1030 
1031     *portsc &= ~PORTSC_RO_MASK;
1032     *portsc |= val;
1033 }
1034 
1035 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1036 {
1037     EHCIState *s = ptr;
1038     uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1039     uint32_t old = *mmio;
1040     int i;
1041 
1042     trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1043 
1044     /* Only aligned reads are allowed on OHCI */
1045     if (addr & 3) {
1046         fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1047                 TARGET_FMT_plx "\n", addr);
1048         return;
1049     }
1050 
1051     if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1052         handle_port_status_write(s, (addr-PORTSC)/4, val);
1053         trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1054         return;
1055     }
1056 
1057     if (addr < OPREGBASE) {
1058         fprintf(stderr, "usb-ehci: write attempt to read-only register"
1059                 TARGET_FMT_plx "\n", addr);
1060         return;
1061     }
1062 
1063 
1064     /* Do any register specific pre-write processing here.  */
1065     switch(addr) {
1066     case USBCMD:
1067         if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1068             qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1069             SET_LAST_RUN_CLOCK(s);
1070             ehci_clear_usbsts(s, USBSTS_HALT);
1071         }
1072 
1073         if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1074             qemu_del_timer(s->frame_timer);
1075             ehci_queues_rip_all(s, 0);
1076             ehci_queues_rip_all(s, 1);
1077             ehci_set_usbsts(s, USBSTS_HALT);
1078         }
1079 
1080         if (val & USBCMD_HCRESET) {
1081             ehci_reset(s);
1082             val = s->usbcmd;
1083         }
1084 
1085         /* not supporting dynamic frame list size at the moment */
1086         if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1087             fprintf(stderr, "attempt to set frame list size -- value %d\n",
1088                     val & USBCMD_FLS);
1089             val &= ~USBCMD_FLS;
1090         }
1091         break;
1092 
1093     case USBSTS:
1094         val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
1095         ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
1096         val = s->usbsts;
1097         ehci_set_interrupt(s, 0);
1098         break;
1099 
1100     case USBINTR:
1101         val &= USBINTR_MASK;
1102         break;
1103 
1104     case FRINDEX:
1105         val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1106         break;
1107 
1108     case CONFIGFLAG:
1109         val &= 0x1;
1110         if (val) {
1111             for(i = 0; i < NB_PORTS; i++)
1112                 handle_port_owner_write(s, i, 0);
1113         }
1114         break;
1115 
1116     case PERIODICLISTBASE:
1117         if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1118             fprintf(stderr,
1119               "ehci: PERIODIC list base register set while periodic schedule\n"
1120               "      is enabled and HC is enabled\n");
1121         }
1122         break;
1123 
1124     case ASYNCLISTADDR:
1125         if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1126             fprintf(stderr,
1127               "ehci: ASYNC list address register set while async schedule\n"
1128               "      is enabled and HC is enabled\n");
1129         }
1130         break;
1131     }
1132 
1133     *mmio = val;
1134     trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1135 }
1136 
1137 
1138 // TODO : Put in common header file, duplication from usb-ohci.c
1139 
1140 /* Get an array of dwords from main memory */
1141 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1142                              uint32_t *buf, int num)
1143 {
1144     int i;
1145 
1146     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1147         pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1148         *buf = le32_to_cpu(*buf);
1149     }
1150 
1151     return 1;
1152 }
1153 
1154 /* Put an array of dwords in to main memory */
1155 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1156                              uint32_t *buf, int num)
1157 {
1158     int i;
1159 
1160     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1161         uint32_t tmp = cpu_to_le32(*buf);
1162         pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1163     }
1164 
1165     return 1;
1166 }
1167 
1168 // 4.10.2
1169 
1170 static int ehci_qh_do_overlay(EHCIQueue *q)
1171 {
1172     int i;
1173     int dtoggle;
1174     int ping;
1175     int eps;
1176     int reload;
1177 
1178     // remember values in fields to preserve in qh after overlay
1179 
1180     dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1181     ping    = q->qh.token & QTD_TOKEN_PING;
1182 
1183     q->qh.current_qtd = q->qtdaddr;
1184     q->qh.next_qtd    = q->qtd.next;
1185     q->qh.altnext_qtd = q->qtd.altnext;
1186     q->qh.token       = q->qtd.token;
1187 
1188 
1189     eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1190     if (eps == EHCI_QH_EPS_HIGH) {
1191         q->qh.token &= ~QTD_TOKEN_PING;
1192         q->qh.token |= ping;
1193     }
1194 
1195     reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1196     set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1197 
1198     for (i = 0; i < 5; i++) {
1199         q->qh.bufptr[i] = q->qtd.bufptr[i];
1200     }
1201 
1202     if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1203         // preserve QH DT bit
1204         q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1205         q->qh.token |= dtoggle;
1206     }
1207 
1208     q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1209     q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1210 
1211     put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1212                sizeof(EHCIqh) >> 2);
1213 
1214     return 0;
1215 }
1216 
1217 static int ehci_init_transfer(EHCIQueue *q)
1218 {
1219     uint32_t cpage, offset, bytes, plen;
1220     dma_addr_t page;
1221 
1222     cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1223     bytes  = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1224     offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1225     pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
1226 
1227     while (bytes > 0) {
1228         if (cpage > 4) {
1229             fprintf(stderr, "cpage out of range (%d)\n", cpage);
1230             return USB_RET_PROCERR;
1231         }
1232 
1233         page  = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1234         page += offset;
1235         plen  = bytes;
1236         if (plen > 4096 - offset) {
1237             plen = 4096 - offset;
1238             offset = 0;
1239             cpage++;
1240         }
1241 
1242         qemu_sglist_add(&q->sgl, page, plen);
1243         bytes -= plen;
1244     }
1245     return 0;
1246 }
1247 
1248 static void ehci_finish_transfer(EHCIQueue *q, int status)
1249 {
1250     uint32_t cpage, offset;
1251 
1252     qemu_sglist_destroy(&q->sgl);
1253 
1254     if (status > 0) {
1255         /* update cpage & offset */
1256         cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1257         offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1258 
1259         offset += status;
1260         cpage  += offset >> QTD_BUFPTR_SH;
1261         offset &= ~QTD_BUFPTR_MASK;
1262 
1263         set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1264         q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1265         q->qh.bufptr[0] |= offset;
1266     }
1267 }
1268 
1269 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1270 {
1271     EHCIQueue *q;
1272     EHCIState *s = port->opaque;
1273     uint32_t portsc = s->portsc[port->index];
1274 
1275     if (portsc & PORTSC_POWNER) {
1276         USBPort *companion = s->companion_ports[port->index];
1277         companion->ops->complete(companion, packet);
1278         return;
1279     }
1280 
1281     q = container_of(packet, EHCIQueue, packet);
1282     trace_usb_ehci_queue_action(q, "wakeup");
1283     assert(q->async == EHCI_ASYNC_INFLIGHT);
1284     q->async = EHCI_ASYNC_FINISHED;
1285     q->usb_status = packet->result;
1286 }
1287 
1288 static void ehci_execute_complete(EHCIQueue *q)
1289 {
1290     assert(q->async != EHCI_ASYNC_INFLIGHT);
1291     q->async = EHCI_ASYNC_NONE;
1292 
1293     DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1294             q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1295 
1296     if (q->usb_status < 0) {
1297         switch(q->usb_status) {
1298         case USB_RET_IOERROR:
1299         case USB_RET_NODEV:
1300             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1301             set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1302             ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1303             break;
1304         case USB_RET_STALL:
1305             q->qh.token |= QTD_TOKEN_HALT;
1306             ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1307             break;
1308         case USB_RET_NAK:
1309             set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1310             return; /* We're not done yet with this transaction */
1311         case USB_RET_BABBLE:
1312             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1313             ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1314             break;
1315         default:
1316             /* should not be triggerable */
1317             fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1318             assert(0);
1319             break;
1320         }
1321     } else if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1322         q->usb_status = USB_RET_BABBLE;
1323         q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1324         ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1325     } else {
1326         // TODO check 4.12 for splits
1327 
1328         if (q->tbytes && q->pid == USB_TOKEN_IN) {
1329             q->tbytes -= q->usb_status;
1330         } else {
1331             q->tbytes = 0;
1332         }
1333 
1334         DPRINTF("updating tbytes to %d\n", q->tbytes);
1335         set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1336     }
1337     ehci_finish_transfer(q, q->usb_status);
1338     usb_packet_unmap(&q->packet);
1339 
1340     q->qh.token ^= QTD_TOKEN_DTOGGLE;
1341     q->qh.token &= ~QTD_TOKEN_ACTIVE;
1342 
1343     if (q->qh.token & QTD_TOKEN_IOC) {
1344         ehci_record_interrupt(q->ehci, USBSTS_INT);
1345     }
1346 }
1347 
1348 // 4.10.3
1349 
1350 static int ehci_execute(EHCIQueue *q)
1351 {
1352     USBDevice *dev;
1353     USBEndpoint *ep;
1354     int ret;
1355     int endp;
1356     int devadr;
1357 
1358     if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1359         fprintf(stderr, "Attempting to execute inactive QH\n");
1360         return USB_RET_PROCERR;
1361     }
1362 
1363     q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1364     if (q->tbytes > BUFF_SIZE) {
1365         fprintf(stderr, "Request for more bytes than allowed\n");
1366         return USB_RET_PROCERR;
1367     }
1368 
1369     q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1370     switch(q->pid) {
1371         case 0: q->pid = USB_TOKEN_OUT; break;
1372         case 1: q->pid = USB_TOKEN_IN; break;
1373         case 2: q->pid = USB_TOKEN_SETUP; break;
1374         default: fprintf(stderr, "bad token\n"); break;
1375     }
1376 
1377     if (ehci_init_transfer(q) != 0) {
1378         return USB_RET_PROCERR;
1379     }
1380 
1381     endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1382     devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1383 
1384     /* TODO: associating device with ehci port */
1385     dev = ehci_find_device(q->ehci, devadr);
1386     ep = usb_ep_get(dev, q->pid, endp);
1387 
1388     usb_packet_setup(&q->packet, q->pid, ep);
1389     usb_packet_map(&q->packet, &q->sgl);
1390 
1391     ret = usb_handle_packet(dev, &q->packet);
1392     DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1393             "(total %d) endp %x ret %d\n",
1394             q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1395             q->packet.iov.size, q->tbytes, endp, ret);
1396 
1397     if (ret > BUFF_SIZE) {
1398         fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1399         return USB_RET_PROCERR;
1400     }
1401 
1402     return ret;
1403 }
1404 
1405 /*  4.7.2
1406  */
1407 
1408 static int ehci_process_itd(EHCIState *ehci,
1409                             EHCIitd *itd)
1410 {
1411     USBDevice *dev;
1412     USBEndpoint *ep;
1413     int ret;
1414     uint32_t i, len, pid, dir, devaddr, endp;
1415     uint32_t pg, off, ptr1, ptr2, max, mult;
1416 
1417     dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1418     devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1419     endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1420     max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1421     mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1422 
1423     for(i = 0; i < 8; i++) {
1424         if (itd->transact[i] & ITD_XACT_ACTIVE) {
1425             pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1426             off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1427             ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1428             ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1429             len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1430 
1431             if (len > max * mult) {
1432                 len = max * mult;
1433             }
1434 
1435             if (len > BUFF_SIZE) {
1436                 return USB_RET_PROCERR;
1437             }
1438 
1439             pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1440             if (off + len > 4096) {
1441                 /* transfer crosses page border */
1442                 uint32_t len2 = off + len - 4096;
1443                 uint32_t len1 = len - len2;
1444                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1445                 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1446             } else {
1447                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1448             }
1449 
1450             pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1451 
1452             dev = ehci_find_device(ehci, devaddr);
1453             ep = usb_ep_get(dev, pid, endp);
1454             if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1455                 usb_packet_setup(&ehci->ipacket, pid, ep);
1456                 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1457                 ret = usb_handle_packet(dev, &ehci->ipacket);
1458                 assert(ret != USB_RET_ASYNC);
1459                 usb_packet_unmap(&ehci->ipacket);
1460             } else {
1461                 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1462                 ret = USB_RET_NAK;
1463             }
1464             qemu_sglist_destroy(&ehci->isgl);
1465 
1466             if (ret < 0) {
1467                 switch (ret) {
1468                 default:
1469                     fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1470                     /* Fall through */
1471                 case USB_RET_IOERROR:
1472                 case USB_RET_NODEV:
1473                     /* 3.3.2: XACTERR is only allowed on IN transactions */
1474                     if (dir) {
1475                         itd->transact[i] |= ITD_XACT_XACTERR;
1476                         ehci_record_interrupt(ehci, USBSTS_ERRINT);
1477                     }
1478                     break;
1479                 case USB_RET_BABBLE:
1480                     itd->transact[i] |= ITD_XACT_BABBLE;
1481                     ehci_record_interrupt(ehci, USBSTS_ERRINT);
1482                     break;
1483                 case USB_RET_NAK:
1484                     /* no data for us, so do a zero-length transfer */
1485                     ret = 0;
1486                     break;
1487                 }
1488             }
1489             if (ret >= 0) {
1490                 if (!dir) {
1491                     /* OUT */
1492                     set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1493                 } else {
1494                     /* IN */
1495                     set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1496                 }
1497             }
1498             if (itd->transact[i] & ITD_XACT_IOC) {
1499                 ehci_record_interrupt(ehci, USBSTS_INT);
1500             }
1501             itd->transact[i] &= ~ITD_XACT_ACTIVE;
1502         }
1503     }
1504     return 0;
1505 }
1506 
1507 /*  This state is the entry point for asynchronous schedule
1508  *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1509  */
1510 static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1511 {
1512     EHCIqh qh;
1513     int i = 0;
1514     int again = 0;
1515     uint32_t entry = ehci->asynclistaddr;
1516 
1517     /* set reclamation flag at start event (4.8.6) */
1518     if (async) {
1519         ehci_set_usbsts(ehci, USBSTS_REC);
1520     }
1521 
1522     ehci_queues_rip_unused(ehci, async, 0);
1523 
1524     /*  Find the head of the list (4.9.1.1) */
1525     for(i = 0; i < MAX_QH; i++) {
1526         get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1527                    sizeof(EHCIqh) >> 2);
1528         ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1529 
1530         if (qh.epchar & QH_EPCHAR_H) {
1531             if (async) {
1532                 entry |= (NLPTR_TYPE_QH << 1);
1533             }
1534 
1535             ehci_set_fetch_addr(ehci, async, entry);
1536             ehci_set_state(ehci, async, EST_FETCHENTRY);
1537             again = 1;
1538             goto out;
1539         }
1540 
1541         entry = qh.next;
1542         if (entry == ehci->asynclistaddr) {
1543             break;
1544         }
1545     }
1546 
1547     /* no head found for list. */
1548 
1549     ehci_set_state(ehci, async, EST_ACTIVE);
1550 
1551 out:
1552     return again;
1553 }
1554 
1555 
1556 /*  This state is the entry point for periodic schedule processing as
1557  *  well as being a continuation state for async processing.
1558  */
1559 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1560 {
1561     int again = 0;
1562     uint32_t entry = ehci_get_fetch_addr(ehci, async);
1563 
1564     if (NLPTR_TBIT(entry)) {
1565         ehci_set_state(ehci, async, EST_ACTIVE);
1566         goto out;
1567     }
1568 
1569     /* section 4.8, only QH in async schedule */
1570     if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1571         fprintf(stderr, "non queue head request in async schedule\n");
1572         return -1;
1573     }
1574 
1575     switch (NLPTR_TYPE_GET(entry)) {
1576     case NLPTR_TYPE_QH:
1577         ehci_set_state(ehci, async, EST_FETCHQH);
1578         again = 1;
1579         break;
1580 
1581     case NLPTR_TYPE_ITD:
1582         ehci_set_state(ehci, async, EST_FETCHITD);
1583         again = 1;
1584         break;
1585 
1586     case NLPTR_TYPE_STITD:
1587         ehci_set_state(ehci, async, EST_FETCHSITD);
1588         again = 1;
1589         break;
1590 
1591     default:
1592         /* TODO: handle FSTN type */
1593         fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1594                 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1595         return -1;
1596     }
1597 
1598 out:
1599     return again;
1600 }
1601 
1602 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1603 {
1604     uint32_t entry;
1605     EHCIQueue *q;
1606 
1607     entry = ehci_get_fetch_addr(ehci, async);
1608     q = ehci_find_queue_by_qh(ehci, entry, async);
1609     if (NULL == q) {
1610         q = ehci_alloc_queue(ehci, async);
1611     }
1612     q->qhaddr = entry;
1613     q->seen++;
1614 
1615     if (q->seen > 1) {
1616         /* we are going in circles -- stop processing */
1617         ehci_set_state(ehci, async, EST_ACTIVE);
1618         q = NULL;
1619         goto out;
1620     }
1621 
1622     get_dwords(ehci, NLPTR_GET(q->qhaddr),
1623                (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1624     ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1625 
1626     if (q->async == EHCI_ASYNC_INFLIGHT) {
1627         /* I/O still in progress -- skip queue */
1628         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1629         goto out;
1630     }
1631     if (q->async == EHCI_ASYNC_FINISHED) {
1632         /* I/O finished -- continue processing queue */
1633         trace_usb_ehci_queue_action(q, "resume");
1634         ehci_set_state(ehci, async, EST_EXECUTING);
1635         goto out;
1636     }
1637 
1638     if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1639 
1640         /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1641         if (ehci->usbsts & USBSTS_REC) {
1642             ehci_clear_usbsts(ehci, USBSTS_REC);
1643         } else {
1644             DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1645                        " - done processing\n", q->qhaddr);
1646             ehci_set_state(ehci, async, EST_ACTIVE);
1647             q = NULL;
1648             goto out;
1649         }
1650     }
1651 
1652 #if EHCI_DEBUG
1653     if (q->qhaddr != q->qh.next) {
1654     DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1655                q->qhaddr,
1656                q->qh.epchar & QH_EPCHAR_H,
1657                q->qh.token & QTD_TOKEN_HALT,
1658                q->qh.token & QTD_TOKEN_ACTIVE,
1659                q->qh.next);
1660     }
1661 #endif
1662 
1663     if (q->qh.token & QTD_TOKEN_HALT) {
1664         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1665 
1666     } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1667                (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1668         q->qtdaddr = q->qh.current_qtd;
1669         ehci_set_state(ehci, async, EST_FETCHQTD);
1670 
1671     } else {
1672         /*  EHCI spec version 1.0 Section 4.10.2 */
1673         ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1674     }
1675 
1676 out:
1677     return q;
1678 }
1679 
1680 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1681 {
1682     uint32_t entry;
1683     EHCIitd itd;
1684 
1685     assert(!async);
1686     entry = ehci_get_fetch_addr(ehci, async);
1687 
1688     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1689                sizeof(EHCIitd) >> 2);
1690     ehci_trace_itd(ehci, entry, &itd);
1691 
1692     if (ehci_process_itd(ehci, &itd) != 0) {
1693         return -1;
1694     }
1695 
1696     put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1697                sizeof(EHCIitd) >> 2);
1698     ehci_set_fetch_addr(ehci, async, itd.next);
1699     ehci_set_state(ehci, async, EST_FETCHENTRY);
1700 
1701     return 1;
1702 }
1703 
1704 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1705 {
1706     uint32_t entry;
1707     EHCIsitd sitd;
1708 
1709     assert(!async);
1710     entry = ehci_get_fetch_addr(ehci, async);
1711 
1712     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1713                sizeof(EHCIsitd) >> 2);
1714     ehci_trace_sitd(ehci, entry, &sitd);
1715 
1716     if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1717         /* siTD is not active, nothing to do */;
1718     } else {
1719         /* TODO: split transfers are not implemented */
1720         fprintf(stderr, "WARNING: Skipping active siTD\n");
1721     }
1722 
1723     ehci_set_fetch_addr(ehci, async, sitd.next);
1724     ehci_set_state(ehci, async, EST_FETCHENTRY);
1725     return 1;
1726 }
1727 
1728 /* Section 4.10.2 - paragraph 3 */
1729 static int ehci_state_advqueue(EHCIQueue *q, int async)
1730 {
1731 #if 0
1732     /* TO-DO: 4.10.2 - paragraph 2
1733      * if I-bit is set to 1 and QH is not active
1734      * go to horizontal QH
1735      */
1736     if (I-bit set) {
1737         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1738         goto out;
1739     }
1740 #endif
1741 
1742     /*
1743      * want data and alt-next qTD is valid
1744      */
1745     if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1746         (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1747         q->qtdaddr = q->qh.altnext_qtd;
1748         ehci_set_state(q->ehci, async, EST_FETCHQTD);
1749 
1750     /*
1751      *  next qTD is valid
1752      */
1753     } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1754         q->qtdaddr = q->qh.next_qtd;
1755         ehci_set_state(q->ehci, async, EST_FETCHQTD);
1756 
1757     /*
1758      *  no valid qTD, try next QH
1759      */
1760     } else {
1761         ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1762     }
1763 
1764     return 1;
1765 }
1766 
1767 /* Section 4.10.2 - paragraph 4 */
1768 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1769 {
1770     int again = 0;
1771 
1772     get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
1773                sizeof(EHCIqtd) >> 2);
1774     ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1775 
1776     if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1777         ehci_set_state(q->ehci, async, EST_EXECUTE);
1778         again = 1;
1779     } else {
1780         ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1781         again = 1;
1782     }
1783 
1784     return again;
1785 }
1786 
1787 static int ehci_state_horizqh(EHCIQueue *q, int async)
1788 {
1789     int again = 0;
1790 
1791     if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1792         ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1793         ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1794         again = 1;
1795     } else {
1796         ehci_set_state(q->ehci, async, EST_ACTIVE);
1797     }
1798 
1799     return again;
1800 }
1801 
1802 /*
1803  *  Write the qh back to guest physical memory.  This step isn't
1804  *  in the EHCI spec but we need to do it since we don't share
1805  *  physical memory with our guest VM.
1806  *
1807  *  The first three dwords are read-only for the EHCI, so skip them
1808  *  when writing back the qh.
1809  */
1810 static void ehci_flush_qh(EHCIQueue *q)
1811 {
1812     uint32_t *qh = (uint32_t *) &q->qh;
1813     uint32_t dwords = sizeof(EHCIqh) >> 2;
1814     uint32_t addr = NLPTR_GET(q->qhaddr);
1815 
1816     put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1817 }
1818 
1819 static int ehci_state_execute(EHCIQueue *q, int async)
1820 {
1821     int again = 0;
1822 
1823     if (ehci_qh_do_overlay(q) != 0) {
1824         return -1;
1825     }
1826 
1827     // TODO verify enough time remains in the uframe as in 4.4.1.1
1828     // TODO write back ptr to async list when done or out of time
1829     // TODO Windows does not seem to ever set the MULT field
1830 
1831     if (!async) {
1832         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1833         if (!transactCtr) {
1834             ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1835             again = 1;
1836             goto out;
1837         }
1838     }
1839 
1840     if (async) {
1841         ehci_set_usbsts(q->ehci, USBSTS_REC);
1842     }
1843 
1844     q->usb_status = ehci_execute(q);
1845     if (q->usb_status == USB_RET_PROCERR) {
1846         again = -1;
1847         goto out;
1848     }
1849     if (q->usb_status == USB_RET_ASYNC) {
1850         ehci_flush_qh(q);
1851         trace_usb_ehci_queue_action(q, "suspend");
1852         q->async = EHCI_ASYNC_INFLIGHT;
1853         ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1854         again = 1;
1855         goto out;
1856     }
1857 
1858     ehci_set_state(q->ehci, async, EST_EXECUTING);
1859     again = 1;
1860 
1861 out:
1862     return again;
1863 }
1864 
1865 static int ehci_state_executing(EHCIQueue *q, int async)
1866 {
1867     int again = 0;
1868 
1869     ehci_execute_complete(q);
1870     if (q->usb_status == USB_RET_ASYNC) {
1871         goto out;
1872     }
1873     if (q->usb_status == USB_RET_PROCERR) {
1874         again = -1;
1875         goto out;
1876     }
1877 
1878     // 4.10.3
1879     if (!async) {
1880         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1881         transactCtr--;
1882         set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1883         // 4.10.3, bottom of page 82, should exit this state when transaction
1884         // counter decrements to 0
1885     }
1886 
1887     /* 4.10.5 */
1888     if (q->usb_status == USB_RET_NAK) {
1889         ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1890     } else {
1891         ehci_set_state(q->ehci, async, EST_WRITEBACK);
1892     }
1893 
1894     again = 1;
1895 
1896 out:
1897     ehci_flush_qh(q);
1898     return again;
1899 }
1900 
1901 
1902 static int ehci_state_writeback(EHCIQueue *q, int async)
1903 {
1904     int again = 0;
1905 
1906     /*  Write back the QTD from the QH area */
1907     ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1908     put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
1909                sizeof(EHCIqtd) >> 2);
1910 
1911     /*
1912      * EHCI specs say go horizontal here.
1913      *
1914      * We can also advance the queue here for performance reasons.  We
1915      * need to take care to only take that shortcut in case we've
1916      * processed the qtd just written back without errors, i.e. halt
1917      * bit is clear.
1918      */
1919     if (q->qh.token & QTD_TOKEN_HALT) {
1920         ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1921         again = 1;
1922     } else {
1923         ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1924         again = 1;
1925     }
1926     return again;
1927 }
1928 
1929 /*
1930  * This is the state machine that is common to both async and periodic
1931  */
1932 
1933 static void ehci_advance_state(EHCIState *ehci,
1934                                int async)
1935 {
1936     EHCIQueue *q = NULL;
1937     int again;
1938 
1939     do {
1940         switch(ehci_get_state(ehci, async)) {
1941         case EST_WAITLISTHEAD:
1942             again = ehci_state_waitlisthead(ehci, async);
1943             break;
1944 
1945         case EST_FETCHENTRY:
1946             again = ehci_state_fetchentry(ehci, async);
1947             break;
1948 
1949         case EST_FETCHQH:
1950             q = ehci_state_fetchqh(ehci, async);
1951             again = q ? 1 : 0;
1952             break;
1953 
1954         case EST_FETCHITD:
1955             again = ehci_state_fetchitd(ehci, async);
1956             break;
1957 
1958         case EST_FETCHSITD:
1959             again = ehci_state_fetchsitd(ehci, async);
1960             break;
1961 
1962         case EST_ADVANCEQUEUE:
1963             again = ehci_state_advqueue(q, async);
1964             break;
1965 
1966         case EST_FETCHQTD:
1967             again = ehci_state_fetchqtd(q, async);
1968             break;
1969 
1970         case EST_HORIZONTALQH:
1971             again = ehci_state_horizqh(q, async);
1972             break;
1973 
1974         case EST_EXECUTE:
1975             again = ehci_state_execute(q, async);
1976             break;
1977 
1978         case EST_EXECUTING:
1979             assert(q != NULL);
1980             again = ehci_state_executing(q, async);
1981             break;
1982 
1983         case EST_WRITEBACK:
1984             assert(q != NULL);
1985             again = ehci_state_writeback(q, async);
1986             break;
1987 
1988         default:
1989             fprintf(stderr, "Bad state!\n");
1990             again = -1;
1991             assert(0);
1992             break;
1993         }
1994 
1995         if (again < 0) {
1996             fprintf(stderr, "processing error - resetting ehci HC\n");
1997             ehci_reset(ehci);
1998             again = 0;
1999         }
2000     }
2001     while (again);
2002 
2003     ehci_commit_interrupt(ehci);
2004 }
2005 
2006 static void ehci_advance_async_state(EHCIState *ehci)
2007 {
2008     const int async = 1;
2009 
2010     switch(ehci_get_state(ehci, async)) {
2011     case EST_INACTIVE:
2012         if (!(ehci->usbcmd & USBCMD_ASE)) {
2013             break;
2014         }
2015         ehci_set_usbsts(ehci, USBSTS_ASS);
2016         ehci_set_state(ehci, async, EST_ACTIVE);
2017         // No break, fall through to ACTIVE
2018 
2019     case EST_ACTIVE:
2020         if ( !(ehci->usbcmd & USBCMD_ASE)) {
2021             ehci_queues_rip_all(ehci, async);
2022             ehci_clear_usbsts(ehci, USBSTS_ASS);
2023             ehci_set_state(ehci, async, EST_INACTIVE);
2024             break;
2025         }
2026 
2027         /* make sure guest has acknowledged the doorbell interrupt */
2028         /* TO-DO: is this really needed? */
2029         if (ehci->usbsts & USBSTS_IAA) {
2030             DPRINTF("IAA status bit still set.\n");
2031             break;
2032         }
2033 
2034         /* check that address register has been set */
2035         if (ehci->asynclistaddr == 0) {
2036             break;
2037         }
2038 
2039         ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2040         ehci_advance_state(ehci, async);
2041 
2042         /* If the doorbell is set, the guest wants to make a change to the
2043          * schedule. The host controller needs to release cached data.
2044          * (section 4.8.2)
2045          */
2046         if (ehci->usbcmd & USBCMD_IAAD) {
2047             /* Remove all unseen qhs from the async qhs queue */
2048             ehci_queues_rip_unused(ehci, async, 1);
2049             DPRINTF("ASYNC: doorbell request acknowledged\n");
2050             ehci->usbcmd &= ~USBCMD_IAAD;
2051             ehci_set_interrupt(ehci, USBSTS_IAA);
2052         }
2053         break;
2054 
2055     default:
2056         /* this should only be due to a developer mistake */
2057         fprintf(stderr, "ehci: Bad asynchronous state %d. "
2058                 "Resetting to active\n", ehci->astate);
2059         assert(0);
2060     }
2061 }
2062 
2063 static void ehci_advance_periodic_state(EHCIState *ehci)
2064 {
2065     uint32_t entry;
2066     uint32_t list;
2067     const int async = 0;
2068 
2069     // 4.6
2070 
2071     switch(ehci_get_state(ehci, async)) {
2072     case EST_INACTIVE:
2073         if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2074             ehci_set_usbsts(ehci, USBSTS_PSS);
2075             ehci_set_state(ehci, async, EST_ACTIVE);
2076             // No break, fall through to ACTIVE
2077         } else
2078             break;
2079 
2080     case EST_ACTIVE:
2081         if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2082             ehci_queues_rip_all(ehci, async);
2083             ehci_clear_usbsts(ehci, USBSTS_PSS);
2084             ehci_set_state(ehci, async, EST_INACTIVE);
2085             break;
2086         }
2087 
2088         list = ehci->periodiclistbase & 0xfffff000;
2089         /* check that register has been set */
2090         if (list == 0) {
2091             break;
2092         }
2093         list |= ((ehci->frindex & 0x1ff8) >> 1);
2094 
2095         pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2096         entry = le32_to_cpu(entry);
2097 
2098         DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2099                 ehci->frindex / 8, list, entry);
2100         ehci_set_fetch_addr(ehci, async,entry);
2101         ehci_set_state(ehci, async, EST_FETCHENTRY);
2102         ehci_advance_state(ehci, async);
2103         ehci_queues_rip_unused(ehci, async, 0);
2104         break;
2105 
2106     default:
2107         /* this should only be due to a developer mistake */
2108         fprintf(stderr, "ehci: Bad periodic state %d. "
2109                 "Resetting to active\n", ehci->pstate);
2110         assert(0);
2111     }
2112 }
2113 
2114 static void ehci_frame_timer(void *opaque)
2115 {
2116     EHCIState *ehci = opaque;
2117     int64_t expire_time, t_now;
2118     uint64_t ns_elapsed;
2119     int frames;
2120     int i;
2121     int skipped_frames = 0;
2122 
2123     t_now = qemu_get_clock_ns(vm_clock);
2124     expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2125 
2126     ns_elapsed = t_now - ehci->last_run_ns;
2127     frames = ns_elapsed / FRAME_TIMER_NS;
2128 
2129     for (i = 0; i < frames; i++) {
2130         if ( !(ehci->usbsts & USBSTS_HALT)) {
2131             ehci->frindex += 8;
2132 
2133             if (ehci->frindex == 0x00002000) {
2134                 ehci_set_interrupt(ehci, USBSTS_FLR);
2135             }
2136 
2137             if (ehci->frindex == 0x00004000) {
2138                 ehci_set_interrupt(ehci, USBSTS_FLR);
2139                 ehci->frindex = 0;
2140             }
2141         }
2142 
2143         if (frames - i > ehci->maxframes) {
2144             skipped_frames++;
2145         } else {
2146             ehci_advance_periodic_state(ehci);
2147         }
2148 
2149         ehci->last_run_ns += FRAME_TIMER_NS;
2150     }
2151 
2152 #if 0
2153     if (skipped_frames) {
2154         DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2155     }
2156 #endif
2157 
2158     /*  Async is not inside loop since it executes everything it can once
2159      *  called
2160      */
2161     ehci_advance_async_state(ehci);
2162 
2163     qemu_mod_timer(ehci->frame_timer, expire_time);
2164 }
2165 
2166 
2167 static const MemoryRegionOps ehci_mem_ops = {
2168     .old_mmio = {
2169         .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2170         .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2171     },
2172     .endianness = DEVICE_LITTLE_ENDIAN,
2173 };
2174 
2175 static int usb_ehci_initfn(PCIDevice *dev);
2176 
2177 static USBPortOps ehci_port_ops = {
2178     .attach = ehci_attach,
2179     .detach = ehci_detach,
2180     .child_detach = ehci_child_detach,
2181     .wakeup = ehci_wakeup,
2182     .complete = ehci_async_complete_packet,
2183 };
2184 
2185 static USBBusOps ehci_bus_ops = {
2186     .register_companion = ehci_register_companion,
2187 };
2188 
2189 static const VMStateDescription vmstate_ehci = {
2190     .name = "ehci",
2191     .unmigratable = 1,
2192 };
2193 
2194 static Property ehci_properties[] = {
2195     DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2196     DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2197     DEFINE_PROP_END_OF_LIST(),
2198 };
2199 
2200 static void ehci_class_init(ObjectClass *klass, void *data)
2201 {
2202     DeviceClass *dc = DEVICE_CLASS(klass);
2203     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2204 
2205     k->init = usb_ehci_initfn;
2206     k->vendor_id = PCI_VENDOR_ID_INTEL;
2207     k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2208     k->revision = 0x10;
2209     k->class_id = PCI_CLASS_SERIAL_USB;
2210     dc->vmsd = &vmstate_ehci;
2211     dc->props = ehci_properties;
2212 }
2213 
2214 static TypeInfo ehci_info = {
2215     .name          = "usb-ehci",
2216     .parent        = TYPE_PCI_DEVICE,
2217     .instance_size = sizeof(EHCIState),
2218     .class_init    = ehci_class_init,
2219 };
2220 
2221 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2222 {
2223     DeviceClass *dc = DEVICE_CLASS(klass);
2224     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2225 
2226     k->init = usb_ehci_initfn;
2227     k->vendor_id = PCI_VENDOR_ID_INTEL;
2228     k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2229     k->revision = 0x03;
2230     k->class_id = PCI_CLASS_SERIAL_USB;
2231     dc->vmsd = &vmstate_ehci;
2232     dc->props = ehci_properties;
2233 }
2234 
2235 static TypeInfo ich9_ehci_info = {
2236     .name          = "ich9-usb-ehci1",
2237     .parent        = TYPE_PCI_DEVICE,
2238     .instance_size = sizeof(EHCIState),
2239     .class_init    = ich9_ehci_class_init,
2240 };
2241 
2242 static int usb_ehci_initfn(PCIDevice *dev)
2243 {
2244     EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2245     uint8_t *pci_conf = s->dev.config;
2246     int i;
2247 
2248     pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2249 
2250     /* capabilities pointer */
2251     pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2252     //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2253 
2254     pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2255     pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2256     pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2257 
2258     // pci_conf[0x50] = 0x01; // power management caps
2259 
2260     pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2261     pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2262     pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2263 
2264     pci_conf[0x64] = 0x00;
2265     pci_conf[0x65] = 0x00;
2266     pci_conf[0x66] = 0x00;
2267     pci_conf[0x67] = 0x00;
2268     pci_conf[0x68] = 0x01;
2269     pci_conf[0x69] = 0x00;
2270     pci_conf[0x6a] = 0x00;
2271     pci_conf[0x6b] = 0x00;  // USBLEGSUP
2272     pci_conf[0x6c] = 0x00;
2273     pci_conf[0x6d] = 0x00;
2274     pci_conf[0x6e] = 0x00;
2275     pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2276 
2277     // 2.2 host controller interface version
2278     s->mmio[0x00] = (uint8_t) OPREGBASE;
2279     s->mmio[0x01] = 0x00;
2280     s->mmio[0x02] = 0x00;
2281     s->mmio[0x03] = 0x01;        // HC version
2282     s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2283     s->mmio[0x05] = 0x00;        // No companion ports at present
2284     s->mmio[0x06] = 0x00;
2285     s->mmio[0x07] = 0x00;
2286     s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2287     s->mmio[0x09] = 0x68;        // EECP
2288     s->mmio[0x0a] = 0x00;
2289     s->mmio[0x0b] = 0x00;
2290 
2291     s->irq = s->dev.irq[3];
2292 
2293     usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2294     for(i = 0; i < NB_PORTS; i++) {
2295         usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2296                           USB_SPEED_MASK_HIGH);
2297         s->ports[i].dev = 0;
2298     }
2299 
2300     s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2301     QTAILQ_INIT(&s->aqueues);
2302     QTAILQ_INIT(&s->pqueues);
2303 
2304     qemu_register_reset(ehci_reset, s);
2305 
2306     memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2307     pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2308 
2309     return 0;
2310 }
2311 
2312 static void ehci_register_types(void)
2313 {
2314     type_register_static(&ehci_info);
2315     type_register_static(&ich9_ehci_info);
2316 }
2317 
2318 type_init(ehci_register_types)
2319 
2320 /*
2321  * vim: expandtab ts=4
2322  */
2323