xref: /qemu/hw/timer/imx_gpt.c (revision ffd5a60e9b67e14f7bac7ea29300ea46a944e508)
1 /*
2  * IMX GPT Timer
3  *
4  * Copyright (c) 2008 OK Labs
5  * Copyright (c) 2011 NICTA Pty Ltd
6  * Originally written by Hans Jiang
7  * Updated by Peter Chubb
8  * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
9  *
10  * This code is licensed under GPL version 2 or later.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "hw/irq.h"
17 #include "hw/timer/imx_gpt.h"
18 #include "migration/vmstate.h"
19 #include "qemu/module.h"
20 #include "qemu/log.h"
21 #include "trace.h"
22 
23 static const char *imx_gpt_reg_name(uint32_t reg)
24 {
25     switch (reg) {
26     case 0:
27         return "CR";
28     case 1:
29         return "PR";
30     case 2:
31         return "SR";
32     case 3:
33         return "IR";
34     case 4:
35         return "OCR1";
36     case 5:
37         return "OCR2";
38     case 6:
39         return "OCR3";
40     case 7:
41         return "ICR1";
42     case 8:
43         return "ICR2";
44     case 9:
45         return "CNT";
46     default:
47         return "[?]";
48     }
49 }
50 
51 static const VMStateDescription vmstate_imx_timer_gpt = {
52     .name = TYPE_IMX_GPT,
53     .version_id = 3,
54     .minimum_version_id = 3,
55     .fields = (const VMStateField[]) {
56         VMSTATE_UINT32(cr, IMXGPTState),
57         VMSTATE_UINT32(pr, IMXGPTState),
58         VMSTATE_UINT32(sr, IMXGPTState),
59         VMSTATE_UINT32(ir, IMXGPTState),
60         VMSTATE_UINT32(ocr1, IMXGPTState),
61         VMSTATE_UINT32(ocr2, IMXGPTState),
62         VMSTATE_UINT32(ocr3, IMXGPTState),
63         VMSTATE_UINT32(icr1, IMXGPTState),
64         VMSTATE_UINT32(icr2, IMXGPTState),
65         VMSTATE_UINT32(cnt, IMXGPTState),
66         VMSTATE_UINT32(next_timeout, IMXGPTState),
67         VMSTATE_UINT32(next_int, IMXGPTState),
68         VMSTATE_UINT32(freq, IMXGPTState),
69         VMSTATE_PTIMER(timer, IMXGPTState),
70         VMSTATE_END_OF_LIST()
71     }
72 };
73 
74 static const IMXClk imx25_gpt_clocks[] = {
75     CLK_NONE,      /* 000 No clock source */
76     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
77     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
78     CLK_NONE,      /* 011 not defined */
79     CLK_32k,       /* 100 ipg_clk_32k */
80     CLK_32k,       /* 101 ipg_clk_32k */
81     CLK_32k,       /* 110 ipg_clk_32k */
82     CLK_32k,       /* 111 ipg_clk_32k */
83 };
84 
85 static const IMXClk imx31_gpt_clocks[] = {
86     CLK_NONE,      /* 000 No clock source */
87     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
88     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
89     CLK_NONE,      /* 011 not defined */
90     CLK_32k,       /* 100 ipg_clk_32k */
91     CLK_NONE,      /* 101 not defined */
92     CLK_NONE,      /* 110 not defined */
93     CLK_NONE,      /* 111 not defined */
94 };
95 
96 static const IMXClk imx6_gpt_clocks[] = {
97     CLK_NONE,      /* 000 No clock source */
98     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
99     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
100     CLK_EXT,       /* 011 External clock */
101     CLK_32k,       /* 100 ipg_clk_32k */
102     CLK_HIGH_DIV,  /* 101 reference clock / 8 */
103     CLK_NONE,      /* 110 not defined */
104     CLK_HIGH,      /* 111 reference clock */
105 };
106 
107 static const IMXClk imx6ul_gpt_clocks[] = {
108     CLK_NONE,      /* 000 No clock source */
109     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
110     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
111     CLK_EXT,       /* 011 External clock */
112     CLK_32k,       /* 100 ipg_clk_32k */
113     CLK_NONE,      /* 101 not defined */
114     CLK_NONE,      /* 110 not defined */
115     CLK_NONE,      /* 111 not defined */
116 };
117 
118 static const IMXClk imx7_gpt_clocks[] = {
119     CLK_NONE,      /* 000 No clock source */
120     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
121     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
122     CLK_EXT,       /* 011 External clock */
123     CLK_32k,       /* 100 ipg_clk_32k */
124     CLK_HIGH,      /* 101 reference clock */
125     CLK_NONE,      /* 110 not defined */
126     CLK_NONE,      /* 111 not defined */
127 };
128 
129 static const IMXClk imx8mp_gpt_clocks[] = {
130     CLK_NONE,      /* 000 No clock source */
131     CLK_IPG,       /* 001 ipg_clk, 532MHz */
132     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
133     CLK_EXT,       /* 011 External clock */
134     CLK_32k,       /* 100 ipg_clk_32k */
135     CLK_HIGH,      /* 101 ipg_clk_16M */
136     CLK_NONE,      /* 110 not defined */
137     CLK_NONE,      /* 111 not defined */
138 };
139 
140 /* Must be called from within ptimer_transaction_begin/commit block */
141 static void imx_gpt_set_freq(IMXGPTState *s)
142 {
143     uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3);
144 
145     s->freq = imx_ccm_get_clock_frequency(s->ccm,
146                                           s->clocks[clksrc]) / (1 + s->pr);
147 
148     trace_imx_gpt_set_freq(clksrc, s->freq);
149 
150     if (s->freq) {
151         ptimer_set_freq(s->timer, s->freq);
152     }
153 }
154 
155 static void imx_gpt_update_int(IMXGPTState *s)
156 {
157     if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) {
158         qemu_irq_raise(s->irq);
159     } else {
160         qemu_irq_lower(s->irq);
161     }
162 }
163 
164 static uint32_t imx_gpt_update_count(IMXGPTState *s)
165 {
166     s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer);
167 
168     return s->cnt;
169 }
170 
171 static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg,
172                                           uint32_t timeout)
173 {
174     if ((count < reg) && (timeout > reg)) {
175         timeout = reg;
176     }
177 
178     return timeout;
179 }
180 
181 /* Must be called from within ptimer_transaction_begin/commit block */
182 static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event)
183 {
184     uint32_t timeout = GPT_TIMER_MAX;
185     uint32_t count;
186     long long limit;
187 
188     if (!(s->cr & GPT_CR_EN)) {
189         /* if not enabled just return */
190         return;
191     }
192 
193     /* update the count */
194     count = imx_gpt_update_count(s);
195 
196     if (event) {
197         /*
198          * This is an event (the ptimer reached 0 and stopped), and the
199          * timer counter is now equal to s->next_timeout.
200          */
201         if (!(s->cr & GPT_CR_FRR) && (count == s->ocr1)) {
202             /* We are in restart mode and we crossed the compare channel 1
203              * value. We need to reset the counter to 0.
204              */
205             count = s->cnt = s->next_timeout = 0;
206         } else if (count == GPT_TIMER_MAX) {
207             /* We reached GPT_TIMER_MAX so we need to rollover */
208             count = s->cnt = s->next_timeout = 0;
209         }
210     }
211 
212     /* now, find the next timeout related to count */
213 
214     if (s->ir & GPT_IR_OF1IE) {
215         timeout = imx_gpt_find_limit(count, s->ocr1, timeout);
216     }
217     if (s->ir & GPT_IR_OF2IE) {
218         timeout = imx_gpt_find_limit(count, s->ocr2, timeout);
219     }
220     if (s->ir & GPT_IR_OF3IE) {
221         timeout = imx_gpt_find_limit(count, s->ocr3, timeout);
222     }
223 
224     /* find the next set of interrupts to raise for next timer event */
225 
226     s->next_int = 0;
227     if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) {
228         s->next_int |= GPT_SR_OF1;
229     }
230     if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) {
231         s->next_int |= GPT_SR_OF2;
232     }
233     if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) {
234         s->next_int |= GPT_SR_OF3;
235     }
236     if ((s->ir & GPT_IR_ROVIE) && (timeout == GPT_TIMER_MAX)) {
237         s->next_int |= GPT_SR_ROV;
238     }
239 
240     /* the new range to count down from */
241     limit = timeout - imx_gpt_update_count(s);
242 
243     if (limit < 0) {
244         /*
245          * if we reach here, then QEMU is running too slow and we pass the
246          * timeout limit while computing it. Let's deliver the interrupt
247          * and compute a new limit.
248          */
249         s->sr |= s->next_int;
250 
251         imx_gpt_compute_next_timeout(s, event);
252 
253         imx_gpt_update_int(s);
254     } else {
255         /* New timeout value */
256         s->next_timeout = timeout;
257 
258         /* reset the limit to the computed range */
259         ptimer_set_limit(s->timer, limit, 1);
260     }
261 }
262 
263 static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size)
264 {
265     IMXGPTState *s = IMX_GPT(opaque);
266     uint32_t reg_value = 0;
267 
268     switch (offset >> 2) {
269     case 0: /* Control Register */
270         reg_value = s->cr;
271         break;
272 
273     case 1: /* prescaler */
274         reg_value = s->pr;
275         break;
276 
277     case 2: /* Status Register */
278         reg_value = s->sr;
279         break;
280 
281     case 3: /* Interrupt Register */
282         reg_value = s->ir;
283         break;
284 
285     case 4: /* Output Compare Register 1 */
286         reg_value = s->ocr1;
287         break;
288 
289     case 5: /* Output Compare Register 2 */
290         reg_value = s->ocr2;
291         break;
292 
293     case 6: /* Output Compare Register 3 */
294         reg_value = s->ocr3;
295         break;
296 
297     case 7: /* input Capture Register 1 */
298         qemu_log_mask(LOG_UNIMP, "[%s]%s: icr1 feature is not implemented\n",
299                       TYPE_IMX_GPT, __func__);
300         reg_value = s->icr1;
301         break;
302 
303     case 8: /* input Capture Register 2 */
304         qemu_log_mask(LOG_UNIMP, "[%s]%s: icr2 feature is not implemented\n",
305                       TYPE_IMX_GPT, __func__);
306         reg_value = s->icr2;
307         break;
308 
309     case 9: /* cnt */
310         imx_gpt_update_count(s);
311         reg_value = s->cnt;
312         break;
313 
314     default:
315         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
316                       HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
317         break;
318     }
319 
320     trace_imx_gpt_read(imx_gpt_reg_name(offset >> 2), reg_value);
321 
322     return reg_value;
323 }
324 
325 
326 static void imx_gpt_reset_common(IMXGPTState *s, bool is_soft_reset)
327 {
328     ptimer_transaction_begin(s->timer);
329     /* stop timer */
330     ptimer_stop(s->timer);
331 
332     /* Soft reset and hard reset differ only in their handling of the CR
333      * register -- soft reset preserves the values of some bits there.
334      */
335     if (is_soft_reset) {
336         /* Clear all CR bits except those that are preserved by soft reset. */
337         s->cr &= GPT_CR_EN | GPT_CR_ENMOD | GPT_CR_STOPEN | GPT_CR_DOZEN |
338             GPT_CR_WAITEN | GPT_CR_DBGEN |
339             (GPT_CR_CLKSRC_MASK << GPT_CR_CLKSRC_SHIFT);
340     } else {
341         s->cr = 0;
342     }
343     s->sr = 0;
344     s->pr = 0;
345     s->ir = 0;
346     s->cnt = 0;
347     s->ocr1 = GPT_TIMER_MAX;
348     s->ocr2 = GPT_TIMER_MAX;
349     s->ocr3 = GPT_TIMER_MAX;
350     s->icr1 = 0;
351     s->icr2 = 0;
352 
353     s->next_timeout = GPT_TIMER_MAX;
354     s->next_int = 0;
355 
356     /* compute new freq */
357     imx_gpt_set_freq(s);
358 
359     /* reset the limit to GPT_TIMER_MAX */
360     ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
361 
362     /* if the timer is still enabled, restart it */
363     if (s->freq && (s->cr & GPT_CR_EN)) {
364         ptimer_run(s->timer, 1);
365     }
366     ptimer_transaction_commit(s->timer);
367 }
368 
369 static void imx_gpt_soft_reset(DeviceState *dev)
370 {
371     IMXGPTState *s = IMX_GPT(dev);
372     imx_gpt_reset_common(s, true);
373 }
374 
375 static void imx_gpt_reset(DeviceState *dev)
376 {
377     IMXGPTState *s = IMX_GPT(dev);
378     imx_gpt_reset_common(s, false);
379 }
380 
381 static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value,
382                           unsigned size)
383 {
384     IMXGPTState *s = IMX_GPT(opaque);
385     uint32_t oldreg;
386 
387     trace_imx_gpt_write(imx_gpt_reg_name(offset >> 2), (uint32_t)value);
388 
389     switch (offset >> 2) {
390     case 0:
391         oldreg = s->cr;
392         s->cr = value & ~0x7c14;
393         if (s->cr & GPT_CR_SWR) { /* force reset */
394             /* handle the reset */
395             imx_gpt_soft_reset(DEVICE(s));
396         } else {
397             /* set our freq, as the source might have changed */
398             ptimer_transaction_begin(s->timer);
399             imx_gpt_set_freq(s);
400 
401             if ((oldreg ^ s->cr) & GPT_CR_EN) {
402                 if (s->cr & GPT_CR_EN) {
403                     if (s->cr & GPT_CR_ENMOD) {
404                         s->next_timeout = GPT_TIMER_MAX;
405                         ptimer_set_count(s->timer, GPT_TIMER_MAX);
406                         imx_gpt_compute_next_timeout(s, false);
407                     }
408                     ptimer_run(s->timer, 1);
409                 } else {
410                     /* stop timer */
411                     ptimer_stop(s->timer);
412                 }
413             }
414             ptimer_transaction_commit(s->timer);
415         }
416         break;
417 
418     case 1: /* Prescaler */
419         s->pr = value & 0xfff;
420         ptimer_transaction_begin(s->timer);
421         imx_gpt_set_freq(s);
422         ptimer_transaction_commit(s->timer);
423         break;
424 
425     case 2: /* SR */
426         s->sr &= ~(value & 0x3f);
427         imx_gpt_update_int(s);
428         break;
429 
430     case 3: /* IR -- interrupt register */
431         s->ir = value & 0x3f;
432         imx_gpt_update_int(s);
433 
434         ptimer_transaction_begin(s->timer);
435         imx_gpt_compute_next_timeout(s, false);
436         ptimer_transaction_commit(s->timer);
437 
438         break;
439 
440     case 4: /* OCR1 -- output compare register */
441         s->ocr1 = value;
442 
443         ptimer_transaction_begin(s->timer);
444         /* In non-freerun mode, reset count when this register is written */
445         if (!(s->cr & GPT_CR_FRR)) {
446             s->next_timeout = GPT_TIMER_MAX;
447             ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
448         }
449 
450         /* compute the new timeout */
451         imx_gpt_compute_next_timeout(s, false);
452         ptimer_transaction_commit(s->timer);
453 
454         break;
455 
456     case 5: /* OCR2 -- output compare register */
457         s->ocr2 = value;
458 
459         /* compute the new timeout */
460         ptimer_transaction_begin(s->timer);
461         imx_gpt_compute_next_timeout(s, false);
462         ptimer_transaction_commit(s->timer);
463 
464         break;
465 
466     case 6: /* OCR3 -- output compare register */
467         s->ocr3 = value;
468 
469         /* compute the new timeout */
470         ptimer_transaction_begin(s->timer);
471         imx_gpt_compute_next_timeout(s, false);
472         ptimer_transaction_commit(s->timer);
473 
474         break;
475 
476     default:
477         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
478                       HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
479         break;
480     }
481 }
482 
483 static void imx_gpt_timeout(void *opaque)
484 {
485     IMXGPTState *s = IMX_GPT(opaque);
486 
487     trace_imx_gpt_timeout();
488 
489     s->sr |= s->next_int;
490     s->next_int = 0;
491 
492     imx_gpt_compute_next_timeout(s, true);
493 
494     imx_gpt_update_int(s);
495 
496     if (s->freq && (s->cr & GPT_CR_EN)) {
497         ptimer_run(s->timer, 1);
498     }
499 }
500 
501 static const MemoryRegionOps imx_gpt_ops = {
502     .read = imx_gpt_read,
503     .write = imx_gpt_write,
504     .endianness = DEVICE_NATIVE_ENDIAN,
505 };
506 
507 
508 static void imx_gpt_realize(DeviceState *dev, Error **errp)
509 {
510     IMXGPTState *s = IMX_GPT(dev);
511     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
512 
513     sysbus_init_irq(sbd, &s->irq);
514     memory_region_init_io(&s->iomem, OBJECT(s), &imx_gpt_ops, s, TYPE_IMX_GPT,
515                           0x00001000);
516     sysbus_init_mmio(sbd, &s->iomem);
517 
518     s->timer = ptimer_init(imx_gpt_timeout, s, PTIMER_POLICY_LEGACY);
519 }
520 
521 static void imx_gpt_class_init(ObjectClass *klass, const void *data)
522 {
523     DeviceClass *dc = DEVICE_CLASS(klass);
524 
525     dc->realize = imx_gpt_realize;
526     device_class_set_legacy_reset(dc, imx_gpt_reset);
527     dc->vmsd = &vmstate_imx_timer_gpt;
528     dc->desc = "i.MX general timer";
529 }
530 
531 static void imx25_gpt_init(Object *obj)
532 {
533     IMXGPTState *s = IMX_GPT(obj);
534 
535     s->clocks = imx25_gpt_clocks;
536 }
537 
538 static void imx31_gpt_init(Object *obj)
539 {
540     IMXGPTState *s = IMX_GPT(obj);
541 
542     s->clocks = imx31_gpt_clocks;
543 }
544 
545 static void imx6_gpt_init(Object *obj)
546 {
547     IMXGPTState *s = IMX_GPT(obj);
548 
549     s->clocks = imx6_gpt_clocks;
550 }
551 
552 static void imx6ul_gpt_init(Object *obj)
553 {
554     IMXGPTState *s = IMX_GPT(obj);
555 
556     s->clocks = imx6ul_gpt_clocks;
557 }
558 
559 static void imx7_gpt_init(Object *obj)
560 {
561     IMXGPTState *s = IMX_GPT(obj);
562 
563     s->clocks = imx7_gpt_clocks;
564 }
565 
566 static void imx8mp_gpt_init(Object *obj)
567 {
568     IMXGPTState *s = IMX_GPT(obj);
569 
570     s->clocks = imx8mp_gpt_clocks;
571 }
572 
573 static const TypeInfo imx25_gpt_info = {
574     .name = TYPE_IMX25_GPT,
575     .parent = TYPE_SYS_BUS_DEVICE,
576     .instance_size = sizeof(IMXGPTState),
577     .instance_init = imx25_gpt_init,
578     .class_init = imx_gpt_class_init,
579 };
580 
581 static const TypeInfo imx31_gpt_info = {
582     .name = TYPE_IMX31_GPT,
583     .parent = TYPE_IMX25_GPT,
584     .instance_init = imx31_gpt_init,
585 };
586 
587 static const TypeInfo imx6_gpt_info = {
588     .name = TYPE_IMX6_GPT,
589     .parent = TYPE_IMX25_GPT,
590     .instance_init = imx6_gpt_init,
591 };
592 
593 static const TypeInfo imx6ul_gpt_info = {
594     .name = TYPE_IMX6UL_GPT,
595     .parent = TYPE_IMX25_GPT,
596     .instance_init = imx6ul_gpt_init,
597 };
598 
599 static const TypeInfo imx7_gpt_info = {
600     .name = TYPE_IMX7_GPT,
601     .parent = TYPE_IMX25_GPT,
602     .instance_init = imx7_gpt_init,
603 };
604 
605 static const TypeInfo imx8mp_gpt_info = {
606     .name = TYPE_IMX8MP_GPT,
607     .parent = TYPE_IMX25_GPT,
608     .instance_init = imx8mp_gpt_init,
609 };
610 
611 static void imx_gpt_register_types(void)
612 {
613     type_register_static(&imx25_gpt_info);
614     type_register_static(&imx31_gpt_info);
615     type_register_static(&imx6_gpt_info);
616     type_register_static(&imx6ul_gpt_info);
617     type_register_static(&imx7_gpt_info);
618     type_register_static(&imx8mp_gpt_info);
619 }
620 
621 type_init(imx_gpt_register_types)
622