xref: /qemu/hw/timer/aspeed_timer.c (revision 70ce076fa6dff60585c229a4b641b13e64bf03cf)
1 /*
2  * ASPEED AST2400 Timer
3  *
4  * Andrew Jeffery <andrew@aj.id.au>
5  *
6  * Copyright (C) 2016 IBM Corp.
7  *
8  * This code is licensed under the GPL version 2 or later.  See
9  * the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/irq.h"
15 #include "hw/sysbus.h"
16 #include "hw/timer/aspeed_timer.h"
17 #include "migration/vmstate.h"
18 #include "qemu/bitops.h"
19 #include "qemu/timer.h"
20 #include "qemu/log.h"
21 #include "qemu/module.h"
22 #include "hw/qdev-properties.h"
23 #include "trace.h"
24 
25 #define TIMER_NR_REGS 4
26 
27 #define TIMER_CTRL_BITS 4
28 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
29 
30 #define TIMER_CLOCK_USE_EXT true
31 #define TIMER_CLOCK_EXT_HZ 1000000
32 #define TIMER_CLOCK_USE_APB false
33 
34 #define TIMER_REG_STATUS 0
35 #define TIMER_REG_RELOAD 1
36 #define TIMER_REG_MATCH_FIRST 2
37 #define TIMER_REG_MATCH_SECOND 3
38 
39 #define TIMER_FIRST_CAP_PULSE 4
40 
41 enum timer_ctrl_op {
42     op_enable = 0,
43     op_external_clock,
44     op_overflow_interrupt,
45     op_pulse_enable
46 };
47 
48 /*
49  * Minimum value of the reload register to filter out short period
50  * timers which have a noticeable impact in emulation. 5us should be
51  * enough, use 20us for "safety".
52  */
53 #define TIMER_MIN_NS (20 * SCALE_US)
54 
55 /**
56  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
57  * structs, as it's a waste of memory. The ptimer BH callback needs to know
58  * whether a specific AspeedTimer is enabled, but this information is held in
59  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
60  * arbitrary AspeedTimer to AspeedTimerCtrlState.
61  */
62 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
63 {
64     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
65     return container_of(timers, AspeedTimerCtrlState, timers);
66 }
67 
68 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
69 {
70     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
71 }
72 
73 static inline bool timer_enabled(AspeedTimer *t)
74 {
75     return timer_ctrl_status(t, op_enable);
76 }
77 
78 static inline bool timer_overflow_interrupt(AspeedTimer *t)
79 {
80     return timer_ctrl_status(t, op_overflow_interrupt);
81 }
82 
83 static inline bool timer_can_pulse(AspeedTimer *t)
84 {
85     return t->id >= TIMER_FIRST_CAP_PULSE;
86 }
87 
88 static inline bool timer_external_clock(AspeedTimer *t)
89 {
90     return timer_ctrl_status(t, op_external_clock);
91 }
92 
93 static inline uint32_t calculate_rate(struct AspeedTimer *t)
94 {
95     AspeedTimerCtrlState *s = timer_to_ctrl(t);
96 
97     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
98         aspeed_scu_get_apb_freq(s->scu);
99 }
100 
101 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
102 {
103     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
104     uint32_t rate = calculate_rate(t);
105     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
106 
107     return t->reload - MIN(t->reload, ticks);
108 }
109 
110 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
111 {
112     uint32_t rate = calculate_rate(t);
113     uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
114 
115     return  value < min_ticks ? min_ticks : value;
116 }
117 
118 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
119 {
120     uint64_t delta_ns;
121     uint64_t delta_ticks;
122 
123     delta_ticks = t->reload - MIN(t->reload, ticks);
124     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
125 
126     return t->start + delta_ns;
127 }
128 
129 static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
130 {
131     return t->match[i] < t->reload ? t->match[i] : 0;
132 }
133 
134 static uint64_t calculate_next(struct AspeedTimer *t)
135 {
136     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
137     uint64_t next;
138 
139     /*
140      * We don't know the relationship between the values in the match
141      * registers, so sort using MAX/MIN/zero. We sort in that order as
142      * the timer counts down to zero.
143      */
144 
145     next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
146     if (now < next) {
147         return next;
148     }
149 
150     next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
151     if (now < next) {
152         return next;
153     }
154 
155     next = calculate_time(t, 0);
156     if (now < next) {
157         return next;
158     }
159 
160     /* We've missed all deadlines, fire interrupt and try again */
161     timer_del(&t->timer);
162 
163     if (timer_overflow_interrupt(t)) {
164         AspeedTimerCtrlState *s = timer_to_ctrl(t);
165         t->level = !t->level;
166         s->irq_sts |= BIT(t->id);
167         qemu_set_irq(t->irq, t->level);
168     }
169 
170     next = MAX(calculate_match(t, 0), calculate_match(t, 1));
171     t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
172 
173     return calculate_time(t, next);
174 }
175 
176 static void aspeed_timer_mod(AspeedTimer *t)
177 {
178     uint64_t next = calculate_next(t);
179     if (next) {
180         timer_mod(&t->timer, next);
181     }
182 }
183 
184 static void aspeed_timer_expire(void *opaque)
185 {
186     AspeedTimer *t = opaque;
187     bool interrupt = false;
188     uint32_t ticks;
189 
190     if (!timer_enabled(t)) {
191         return;
192     }
193 
194     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
195 
196     if (!ticks) {
197         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
198     } else if (ticks <= MIN(t->match[0], t->match[1])) {
199         interrupt = true;
200     } else if (ticks <= MAX(t->match[0], t->match[1])) {
201         interrupt = true;
202     }
203 
204     if (interrupt) {
205         AspeedTimerCtrlState *s = timer_to_ctrl(t);
206         t->level = !t->level;
207         s->irq_sts |= BIT(t->id);
208         qemu_set_irq(t->irq, t->level);
209     }
210 
211     aspeed_timer_mod(t);
212 }
213 
214 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
215 {
216     uint64_t value;
217 
218     switch (reg) {
219     case TIMER_REG_STATUS:
220         if (timer_enabled(t)) {
221             value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
222         } else {
223             value = t->reload;
224         }
225         break;
226     case TIMER_REG_RELOAD:
227         value = t->reload;
228         break;
229     case TIMER_REG_MATCH_FIRST:
230     case TIMER_REG_MATCH_SECOND:
231         value = t->match[reg - 2];
232         break;
233     default:
234         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
235                       __func__, reg);
236         value = 0;
237         break;
238     }
239     return value;
240 }
241 
242 static uint64_t aspeed_timer_read_common(AspeedTimerCtrlState *s, hwaddr offset)
243 {
244     const int reg = (offset & 0xf) / 4;
245     uint64_t value;
246 
247     switch (offset) {
248     case 0x30: /* Control Register */
249         value = s->ctrl;
250         break;
251     case 0x00 ... 0x2c: /* Timers 1 - 4 */
252         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
253         break;
254     case 0x40 ... 0x8c: /* Timers 5 - 8 */
255         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
256         break;
257     default:
258         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
259                       __func__, offset);
260         value = 0;
261         break;
262     }
263     return value;
264 }
265 
266 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
267                                    uint32_t value)
268 {
269     AspeedTimer *t;
270     uint32_t old_reload;
271 
272     trace_aspeed_timer_set_value(timer, reg, value);
273     t = &s->timers[timer];
274     switch (reg) {
275     case TIMER_REG_RELOAD:
276         old_reload = t->reload;
277         t->reload = calculate_min_ticks(t, value);
278 
279         /*
280          * If the reload value was not previously set, or zero, and
281          * the current value is valid, try to start the timer if it is
282          * enabled.
283          */
284         if (old_reload || !t->reload) {
285             break;
286         }
287         /* fall through to re-enable */
288     case TIMER_REG_STATUS:
289         if (timer_enabled(t)) {
290             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
291             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
292             uint32_t rate = calculate_rate(t);
293 
294             if (delta >= 0) {
295                 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
296             } else {
297                 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
298             }
299             aspeed_timer_mod(t);
300         }
301         break;
302     case TIMER_REG_MATCH_FIRST:
303     case TIMER_REG_MATCH_SECOND:
304         t->match[reg - 2] = value;
305         if (timer_enabled(t)) {
306             aspeed_timer_mod(t);
307         }
308         break;
309     default:
310         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
311                       __func__, reg);
312         break;
313     }
314 }
315 
316 /*
317  * Control register operations are broken out into helpers that can be
318  * explicitly called on aspeed_timer_reset(), but also from
319  * aspeed_timer_ctrl_op().
320  */
321 
322 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
323 {
324     trace_aspeed_timer_ctrl_enable(t->id, enable);
325     if (enable) {
326         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
327         aspeed_timer_mod(t);
328     } else {
329         timer_del(&t->timer);
330     }
331 }
332 
333 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
334 {
335     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
336 }
337 
338 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
339 {
340     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
341 }
342 
343 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
344 {
345     if (timer_can_pulse(t)) {
346         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
347     } else {
348         qemu_log_mask(LOG_GUEST_ERROR,
349                 "%s: Timer does not support pulse mode\n", __func__);
350     }
351 }
352 
353 /**
354  * Given the actions are fixed in number and completely described in helper
355  * functions, dispatch with a lookup table rather than manage control flow with
356  * a switch statement.
357  */
358 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
359     [op_enable] = aspeed_timer_ctrl_enable,
360     [op_external_clock] = aspeed_timer_ctrl_external_clock,
361     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
362     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
363 };
364 
365 /**
366  * Conditionally affect changes chosen by a timer's control bit.
367  *
368  * The aspeed_timer_ctrl_op() interface is convenient for the
369  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
370  * calculated for all operations, which cleans up the caller code. However the
371  * interface isn't convenient for the reset function where we want to enter a
372  * specific state without artificially constructing old and new values that
373  * will fall through the change guard (and motivates extracting the actions
374  * out to helper functions).
375  *
376  * @t: The timer to manipulate
377  * @op: The type of operation to be performed
378  * @old: The old state of the timer's control bits
379  * @new: The incoming state for the timer's control bits
380  */
381 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
382                                  uint8_t old, uint8_t new)
383 {
384     const uint8_t mask = BIT(op);
385     const bool enable = !!(new & mask);
386     const bool changed = ((old ^ new) & mask);
387     if (!changed) {
388         return;
389     }
390     ctrl_ops[op](t, enable);
391 }
392 
393 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
394 {
395     int i;
396     int shift;
397     uint8_t t_old, t_new;
398     AspeedTimer *t;
399     const uint8_t enable_mask = BIT(op_enable);
400 
401     /*
402      * Handle a dependency between the 'enable' and remaining three
403      * configuration bits - i.e. if more than one bit in the control set has
404      * changed, including the 'enable' bit, then we want either disable the
405      * timer and perform configuration, or perform configuration and then
406      * enable the timer
407      */
408     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
409         t = &s->timers[i];
410         shift = (i * TIMER_CTRL_BITS);
411         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
412         t_new = (reg >> shift) & TIMER_CTRL_MASK;
413 
414         /* If we are disabling, do so first */
415         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
416             aspeed_timer_ctrl_enable(t, false);
417         }
418         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
419         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
420         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
421         /* If we are enabling, do so last */
422         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
423             aspeed_timer_ctrl_enable(t, true);
424         }
425     }
426     s->ctrl = reg;
427 }
428 
429 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
430 {
431     trace_aspeed_timer_set_ctrl2(value);
432 }
433 
434 static void aspeed_timer_write_common(AspeedTimerCtrlState *s, hwaddr offset,
435                                       uint64_t value)
436 {
437     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
438     const int reg = (offset & 0xf) / 4;
439 
440     switch (offset) {
441     /* Control Registers */
442     case 0x30:
443         aspeed_timer_set_ctrl(s, tv);
444         break;
445     /* Timer Registers */
446     case 0x00 ... 0x2c:
447         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
448         break;
449     case 0x40 ... 0x8c:
450         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
451         break;
452     default:
453         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
454                       __func__, offset);
455         break;
456     }
457 }
458 
459 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
460 {
461     AspeedTimerCtrlState *s = ASPEED_TIMER(opaque);
462     return ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
463 }
464 
465 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
466                                unsigned size)
467 {
468     AspeedTimerCtrlState *s = ASPEED_TIMER(opaque);
469     ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
470 }
471 
472 static const MemoryRegionOps aspeed_timer_ops = {
473     .read = aspeed_timer_read,
474     .write = aspeed_timer_write,
475     .endianness = DEVICE_LITTLE_ENDIAN,
476     .valid.min_access_size = 4,
477     .valid.max_access_size = 4,
478     .valid.unaligned = false,
479 };
480 
481 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
482 {
483     uint64_t value;
484 
485     switch (offset) {
486     case 0x34:
487         value = s->ctrl2;
488         break;
489     case 0x38:
490     case 0x3C:
491         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
492                 __func__, offset);
493         value = 0;
494         break;
495     default:
496         value = aspeed_timer_read_common(s, offset);
497         break;
498     }
499     trace_aspeed_timer_read(offset, value);
500     return value;
501 }
502 
503 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
504                                     uint64_t value)
505 {
506     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
507 
508     switch (offset) {
509     case 0x34:
510         aspeed_timer_set_ctrl2(s, tv);
511         break;
512     case 0x38:
513     case 0x3C:
514         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
515                 __func__, offset);
516         break;
517     default:
518         aspeed_timer_write_common(s, offset, value);
519         break;
520     }
521 }
522 
523 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
524 {
525     uint64_t value;
526 
527     switch (offset) {
528     case 0x34:
529         value = s->ctrl2;
530         break;
531     case 0x38:
532         value = s->ctrl3 & BIT(0);
533         break;
534     case 0x3C:
535         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
536                 __func__, offset);
537         value = 0;
538         break;
539     default:
540         value = aspeed_timer_read_common(s, offset);
541         break;
542     }
543     trace_aspeed_timer_read(offset, value);
544     return value;
545 }
546 
547 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
548                                     uint64_t value)
549 {
550     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
551     uint8_t command;
552 
553     switch (offset) {
554     case 0x34:
555         aspeed_timer_set_ctrl2(s, tv);
556         break;
557     case 0x38:
558         command = (value >> 1) & 0xFF;
559         if (command == 0xAE) {
560             s->ctrl3 = 0x1;
561         } else if (command == 0xEA) {
562             s->ctrl3 = 0x0;
563         }
564         break;
565     case 0x3C:
566         if (s->ctrl3 & BIT(0)) {
567             aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
568         }
569         break;
570 
571     default:
572         aspeed_timer_write_common(s, offset, value);
573         break;
574     }
575 }
576 
577 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
578 {
579     uint64_t value;
580 
581     switch (offset) {
582     case 0x34:
583         value = s->irq_sts;
584         break;
585     case 0x38:
586     case 0x3C:
587         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
588                 __func__, offset);
589         value = 0;
590         break;
591     default:
592         value = aspeed_timer_read_common(s, offset);
593         break;
594     }
595     trace_aspeed_timer_read(offset, value);
596     return value;
597 }
598 
599 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
600                                     uint64_t value)
601 {
602     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
603 
604     switch (offset) {
605     case 0x34:
606         s->irq_sts &= ~tv;
607         break;
608     case 0x3C:
609         aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
610         break;
611     case 0x38:
612         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
613                 __func__, offset);
614         break;
615     default:
616         aspeed_timer_write_common(s, offset, value);
617         break;
618     }
619 }
620 
621 static void aspeed_2700_timer_set_ctrl(AspeedTimerCtrlState *s, int index,
622                                     uint32_t reg)
623 {
624     const uint8_t overflow_interrupt_mask = BIT(op_overflow_interrupt);
625     const uint8_t external_clock_mask = BIT(op_external_clock);
626     const uint8_t pulse_enable_mask = BIT(op_pulse_enable);
627     const uint8_t enable_mask = BIT(op_enable);
628     AspeedTimer *t;
629     uint8_t t_old;
630     uint8_t t_new;
631     int shift;
632 
633     /*
634      * Only 1 will set the specific bits to 1
635      * Handle a dependency between the 'enable' and remaining three
636      * configuration bits - i.e. if more than one bit in the control set has
637      * set, including the 'enable' bit, perform configuration and then
638      * enable the timer.
639      * Interrupt Status bit should not be set.
640      */
641 
642      t = &s->timers[index];
643      shift = index * TIMER_CTRL_BITS;
644 
645      t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
646      t_new = reg & TIMER_CTRL_MASK;
647 
648     if (!(t_old & external_clock_mask) &&
649         (t_new & external_clock_mask)) {
650         aspeed_timer_ctrl_external_clock(t, true);
651         s->ctrl = deposit32(s->ctrl, shift + op_external_clock, 1, 1);
652     }
653 
654     if (!(t_old & overflow_interrupt_mask) &&
655         (t_new & overflow_interrupt_mask)) {
656         aspeed_timer_ctrl_overflow_interrupt(t, true);
657         s->ctrl = deposit32(s->ctrl, shift + op_overflow_interrupt, 1, 1);
658     }
659 
660 
661     if (!(t_old & pulse_enable_mask) &&
662         (t_new & pulse_enable_mask)) {
663         aspeed_timer_ctrl_pulse_enable(t, true);
664         s->ctrl = deposit32(s->ctrl, shift + op_pulse_enable, 1, 1);
665     }
666 
667     /* If we are enabling, do so last */
668     if (!(t_old & enable_mask) &&
669         (t_new & enable_mask)) {
670         aspeed_timer_ctrl_enable(t, true);
671         s->ctrl = deposit32(s->ctrl, shift + op_enable, 1, 1);
672     }
673 }
674 
675 static void aspeed_2700_timer_clear_ctrl(AspeedTimerCtrlState *s, int index,
676                                     uint32_t reg)
677 {
678     const uint8_t overflow_interrupt_mask = BIT(op_overflow_interrupt);
679     const uint8_t external_clock_mask = BIT(op_external_clock);
680     const uint8_t pulse_enable_mask = BIT(op_pulse_enable);
681     const uint8_t enable_mask = BIT(op_enable);
682     AspeedTimer *t;
683     uint8_t t_old;
684     uint8_t t_new;
685     int shift;
686 
687     /*
688      * Only 1 will clear the specific bits to 0
689      * Handle a dependency between the 'enable' and remaining three
690      * configuration bits - i.e. if more than one bit in the control set has
691      * clear, including the 'enable' bit, then disable the timer and perform
692      * configuration
693      */
694 
695      t = &s->timers[index];
696      shift = index * TIMER_CTRL_BITS;
697 
698      t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
699      t_new = reg & TIMER_CTRL_MASK;
700 
701     /* If we are disabling, do so first */
702     if ((t_old & enable_mask) &&
703         (t_new & enable_mask)) {
704         aspeed_timer_ctrl_enable(t, false);
705         s->ctrl = deposit32(s->ctrl, shift + op_enable, 1, 0);
706     }
707 
708     if ((t_old & external_clock_mask) &&
709         (t_new & external_clock_mask)) {
710         aspeed_timer_ctrl_external_clock(t, false);
711         s->ctrl = deposit32(s->ctrl, shift + op_external_clock, 1, 0);
712     }
713 
714     if ((t_old & overflow_interrupt_mask) &&
715         (t_new & overflow_interrupt_mask)) {
716         aspeed_timer_ctrl_overflow_interrupt(t, false);
717         s->ctrl = deposit32(s->ctrl, shift + op_overflow_interrupt, 1, 0);
718     }
719 
720     if ((t_old & pulse_enable_mask) &&
721         (t_new & pulse_enable_mask)) {
722         aspeed_timer_ctrl_pulse_enable(t, false);
723         s->ctrl = deposit32(s->ctrl, shift + op_pulse_enable, 1, 0);
724     }
725 
726     /* Clear interrupt status */
727     if (reg & 0x10000) {
728         s->irq_sts = deposit32(s->irq_sts, index, 1, 0);
729     }
730 }
731 
732 static uint64_t aspeed_2700_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
733 {
734     uint32_t timer_offset = offset & 0x3f;
735     int timer_index = offset >> 6;
736     uint64_t value = 0;
737 
738     if (timer_index >= ASPEED_TIMER_NR_TIMERS) {
739         qemu_log_mask(LOG_GUEST_ERROR,
740                       "%s: offset 0x%" PRIx64 " out of bounds\n",
741                       __func__, offset);
742         return 0;
743     }
744 
745     switch (timer_offset) {
746     /*
747      * Counter Status
748      * Counter Reload
749      * Counter First Matching
750      * Counter Second Matching
751      */
752     case 0x00 ... 0x0C:
753         value = aspeed_timer_get_value(&s->timers[timer_index],
754                                        timer_offset >> 2);
755         break;
756     /* Counter Control and Interrupt Status */
757     case 0x10:
758         value = deposit64(value, 0, 4,
759                           extract32(s->ctrl, timer_index * 4, 4));
760         value = deposit64(value, 16, 1,
761                           extract32(s->irq_sts, timer_index, 1));
762         break;
763     default:
764         qemu_log_mask(LOG_GUEST_ERROR, "%s: no getter for offset 0x%"
765                      PRIx64"\n", __func__, offset);
766         value = 0;
767         break;
768     }
769     trace_aspeed_timer_read(offset, value);
770     return value;
771 }
772 
773 static void aspeed_2700_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
774                                     uint64_t value)
775 {
776     const uint32_t timer_value = (uint32_t)(value & 0xFFFFFFFF);
777     uint32_t timer_offset = offset & 0x3f;
778     int timer_index = offset >> 6;
779 
780     if (timer_index >= ASPEED_TIMER_NR_TIMERS) {
781         qemu_log_mask(LOG_GUEST_ERROR,
782                       "%s: offset 0x%" PRIx64 " out of bounds\n",
783                       __func__, offset);
784     }
785 
786     switch (timer_offset) {
787     /*
788      * Counter Status
789      * Counter Reload
790      * Counter First Matching
791      * Counter Second Matching
792      */
793     case 0x00 ... 0x0C:
794         aspeed_timer_set_value(s, timer_index, timer_offset >> 2,
795                                timer_value);
796         break;
797     /* Counter Control Set and Interrupt Status */
798     case 0x10:
799         aspeed_2700_timer_set_ctrl(s, timer_index, timer_value);
800         break;
801     /* Counter Control Clear and Interrupr Status */
802     case 0x14:
803         aspeed_2700_timer_clear_ctrl(s, timer_index, timer_value);
804         break;
805     default:
806         qemu_log_mask(LOG_GUEST_ERROR, "%s: no setter for offset 0x%"
807                       PRIx64"\n", __func__, offset);
808         break;
809     }
810 }
811 
812 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
813 {
814     AspeedTimer *t = &s->timers[id];
815 
816     t->id = id;
817     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
818 }
819 
820 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
821 {
822     int i;
823     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
824     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
825 
826     assert(s->scu);
827 
828     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
829         aspeed_init_one_timer(s, i);
830         sysbus_init_irq(sbd, &s->timers[i].irq);
831     }
832     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
833                           TYPE_ASPEED_TIMER, 0x1000);
834     sysbus_init_mmio(sbd, &s->iomem);
835 }
836 
837 static void aspeed_timer_reset(DeviceState *dev)
838 {
839     int i;
840     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
841 
842     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
843         AspeedTimer *t = &s->timers[i];
844         /*
845          * Explicitly call helpers to avoid any conditional behaviour through
846          * aspeed_timer_set_ctrl().
847          */
848         aspeed_timer_ctrl_enable(t, false);
849         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
850         aspeed_timer_ctrl_overflow_interrupt(t, false);
851         aspeed_timer_ctrl_pulse_enable(t, false);
852         t->level = 0;
853         t->reload = 0;
854         t->match[0] = 0;
855         t->match[1] = 0;
856     }
857     s->ctrl = 0;
858     s->ctrl2 = 0;
859     s->ctrl3 = 0;
860     s->irq_sts = 0;
861 }
862 
863 static const VMStateDescription vmstate_aspeed_timer = {
864     .name = "aspeed.timer",
865     .version_id = 2,
866     .minimum_version_id = 2,
867     .fields = (const VMStateField[]) {
868         VMSTATE_UINT8(id, AspeedTimer),
869         VMSTATE_INT32(level, AspeedTimer),
870         VMSTATE_TIMER(timer, AspeedTimer),
871         VMSTATE_UINT32(reload, AspeedTimer),
872         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
873         VMSTATE_END_OF_LIST()
874     }
875 };
876 
877 static const VMStateDescription vmstate_aspeed_timer_state = {
878     .name = "aspeed.timerctrl",
879     .version_id = 2,
880     .minimum_version_id = 2,
881     .fields = (const VMStateField[]) {
882         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
883         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
884         VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
885         VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
886         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
887                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
888                              AspeedTimer),
889         VMSTATE_END_OF_LIST()
890     }
891 };
892 
893 static const Property aspeed_timer_properties[] = {
894     DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
895                      AspeedSCUState *),
896 };
897 
898 static void timer_class_init(ObjectClass *klass, void *data)
899 {
900     DeviceClass *dc = DEVICE_CLASS(klass);
901 
902     dc->realize = aspeed_timer_realize;
903     device_class_set_legacy_reset(dc, aspeed_timer_reset);
904     dc->desc = "ASPEED Timer";
905     dc->vmsd = &vmstate_aspeed_timer_state;
906     device_class_set_props(dc, aspeed_timer_properties);
907 }
908 
909 static const TypeInfo aspeed_timer_info = {
910     .name = TYPE_ASPEED_TIMER,
911     .parent = TYPE_SYS_BUS_DEVICE,
912     .instance_size = sizeof(AspeedTimerCtrlState),
913     .class_init = timer_class_init,
914     .class_size = sizeof(AspeedTimerClass),
915     .abstract   = true,
916 };
917 
918 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
919 {
920     DeviceClass *dc = DEVICE_CLASS(klass);
921     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
922 
923     dc->desc = "ASPEED 2400 Timer";
924     awc->read = aspeed_2400_timer_read;
925     awc->write = aspeed_2400_timer_write;
926 }
927 
928 static const TypeInfo aspeed_2400_timer_info = {
929     .name = TYPE_ASPEED_2400_TIMER,
930     .parent = TYPE_ASPEED_TIMER,
931     .class_init = aspeed_2400_timer_class_init,
932 };
933 
934 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
935 {
936     DeviceClass *dc = DEVICE_CLASS(klass);
937     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
938 
939     dc->desc = "ASPEED 2500 Timer";
940     awc->read = aspeed_2500_timer_read;
941     awc->write = aspeed_2500_timer_write;
942 }
943 
944 static const TypeInfo aspeed_2500_timer_info = {
945     .name = TYPE_ASPEED_2500_TIMER,
946     .parent = TYPE_ASPEED_TIMER,
947     .class_init = aspeed_2500_timer_class_init,
948 };
949 
950 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
951 {
952     DeviceClass *dc = DEVICE_CLASS(klass);
953     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
954 
955     dc->desc = "ASPEED 2600 Timer";
956     awc->read = aspeed_2600_timer_read;
957     awc->write = aspeed_2600_timer_write;
958 }
959 
960 static const TypeInfo aspeed_2600_timer_info = {
961     .name = TYPE_ASPEED_2600_TIMER,
962     .parent = TYPE_ASPEED_TIMER,
963     .class_init = aspeed_2600_timer_class_init,
964 };
965 
966 static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data)
967 {
968     DeviceClass *dc = DEVICE_CLASS(klass);
969     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
970 
971     dc->desc = "ASPEED 1030 Timer";
972     awc->read = aspeed_2600_timer_read;
973     awc->write = aspeed_2600_timer_write;
974 }
975 
976 static const TypeInfo aspeed_1030_timer_info = {
977     .name = TYPE_ASPEED_1030_TIMER,
978     .parent = TYPE_ASPEED_TIMER,
979     .class_init = aspeed_1030_timer_class_init,
980 };
981 
982 static void aspeed_2700_timer_class_init(ObjectClass *klass, void *data)
983 {
984     DeviceClass *dc = DEVICE_CLASS(klass);
985     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
986 
987     dc->desc = "ASPEED 2700 Timer";
988     awc->read = aspeed_2700_timer_read;
989     awc->write = aspeed_2700_timer_write;
990 }
991 
992 static const TypeInfo aspeed_2700_timer_info = {
993     .name = TYPE_ASPEED_2700_TIMER,
994     .parent = TYPE_ASPEED_TIMER,
995     .class_init = aspeed_2700_timer_class_init,
996 };
997 
998 static void aspeed_timer_register_types(void)
999 {
1000     type_register_static(&aspeed_timer_info);
1001     type_register_static(&aspeed_2400_timer_info);
1002     type_register_static(&aspeed_2500_timer_info);
1003     type_register_static(&aspeed_2600_timer_info);
1004     type_register_static(&aspeed_1030_timer_info);
1005     type_register_static(&aspeed_2700_timer_info);
1006 }
1007 
1008 type_init(aspeed_timer_register_types)
1009