xref: /qemu/hw/ssi/imx_spi.c (revision 9c431a43a62255402a6bbe9a01b0464e73b30fe4)
1 /*
2  * IMX SPI Controller
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "hw/irq.h"
13 #include "hw/ssi/imx_spi.h"
14 #include "migration/vmstate.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
17 
18 #ifndef DEBUG_IMX_SPI
19 #define DEBUG_IMX_SPI 0
20 #endif
21 
22 #define DPRINTF(fmt, args...) \
23     do { \
24         if (DEBUG_IMX_SPI) { \
25             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
26                                              __func__, ##args); \
27         } \
28     } while (0)
29 
30 static const char *imx_spi_reg_name(uint32_t reg)
31 {
32     static char unknown[20];
33 
34     switch (reg) {
35     case ECSPI_RXDATA:
36         return  "ECSPI_RXDATA";
37     case ECSPI_TXDATA:
38         return  "ECSPI_TXDATA";
39     case ECSPI_CONREG:
40         return  "ECSPI_CONREG";
41     case ECSPI_CONFIGREG:
42         return  "ECSPI_CONFIGREG";
43     case ECSPI_INTREG:
44         return  "ECSPI_INTREG";
45     case ECSPI_DMAREG:
46         return  "ECSPI_DMAREG";
47     case ECSPI_STATREG:
48         return  "ECSPI_STATREG";
49     case ECSPI_PERIODREG:
50         return  "ECSPI_PERIODREG";
51     case ECSPI_TESTREG:
52         return  "ECSPI_TESTREG";
53     case ECSPI_MSGDATA:
54         return  "ECSPI_MSGDATA";
55     default:
56         sprintf(unknown, "%u ?", reg);
57         return unknown;
58     }
59 }
60 
61 static const VMStateDescription vmstate_imx_spi = {
62     .name = TYPE_IMX_SPI,
63     .version_id = 1,
64     .minimum_version_id = 1,
65     .fields = (VMStateField[]) {
66         VMSTATE_FIFO32(tx_fifo, IMXSPIState),
67         VMSTATE_FIFO32(rx_fifo, IMXSPIState),
68         VMSTATE_INT16(burst_length, IMXSPIState),
69         VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
70         VMSTATE_END_OF_LIST()
71     },
72 };
73 
74 static void imx_spi_txfifo_reset(IMXSPIState *s)
75 {
76     fifo32_reset(&s->tx_fifo);
77     s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
78     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
79 }
80 
81 static void imx_spi_rxfifo_reset(IMXSPIState *s)
82 {
83     fifo32_reset(&s->rx_fifo);
84     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
85     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
86     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
87 }
88 
89 static void imx_spi_update_irq(IMXSPIState *s)
90 {
91     int level;
92 
93     if (fifo32_is_empty(&s->rx_fifo)) {
94         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
95     } else {
96         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
97     }
98 
99     if (fifo32_is_full(&s->rx_fifo)) {
100         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
101     } else {
102         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
103     }
104 
105     if (fifo32_is_empty(&s->tx_fifo)) {
106         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
107     } else {
108         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
109     }
110 
111     if (fifo32_is_full(&s->tx_fifo)) {
112         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
113     } else {
114         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
115     }
116 
117     level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
118 
119     qemu_set_irq(s->irq, level);
120 
121     DPRINTF("IRQ level is %d\n", level);
122 }
123 
124 static uint8_t imx_spi_selected_channel(IMXSPIState *s)
125 {
126     return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
127 }
128 
129 static uint32_t imx_spi_burst_length(IMXSPIState *s)
130 {
131     return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
132 }
133 
134 static bool imx_spi_is_enabled(IMXSPIState *s)
135 {
136     return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
137 }
138 
139 static bool imx_spi_channel_is_master(IMXSPIState *s)
140 {
141     uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
142 
143     return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
144 }
145 
146 static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
147 {
148     uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
149 
150     return imx_spi_channel_is_master(s) &&
151            !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
152            ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
153 }
154 
155 static void imx_spi_flush_txfifo(IMXSPIState *s)
156 {
157     uint32_t tx;
158     uint32_t rx;
159 
160     DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
161             fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
162 
163     while (!fifo32_is_empty(&s->tx_fifo)) {
164         int tx_burst = 0;
165         int index = 0;
166 
167         if (s->burst_length <= 0) {
168             s->burst_length = imx_spi_burst_length(s);
169 
170             DPRINTF("Burst length = %d\n", s->burst_length);
171 
172             if (imx_spi_is_multiple_master_burst(s)) {
173                 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
174             }
175         }
176 
177         tx = fifo32_pop(&s->tx_fifo);
178 
179         DPRINTF("data tx:0x%08x\n", tx);
180 
181         tx_burst = MIN(s->burst_length, 32);
182 
183         rx = 0;
184 
185         while (tx_burst > 0) {
186             uint8_t byte = tx & 0xff;
187 
188             DPRINTF("writing 0x%02x\n", (uint32_t)byte);
189 
190             /* We need to write one byte at a time */
191             byte = ssi_transfer(s->bus, byte);
192 
193             DPRINTF("0x%02x read\n", (uint32_t)byte);
194 
195             tx = tx >> 8;
196             rx |= (byte << (index * 8));
197 
198             /* Remove 8 bits from the actual burst */
199             tx_burst -= 8;
200             s->burst_length -= 8;
201             index++;
202         }
203 
204         DPRINTF("data rx:0x%08x\n", rx);
205 
206         if (fifo32_is_full(&s->rx_fifo)) {
207             s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
208         } else {
209             fifo32_push(&s->rx_fifo, rx);
210         }
211 
212         if (s->burst_length <= 0) {
213             if (!imx_spi_is_multiple_master_burst(s)) {
214                 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
215                 break;
216             }
217         }
218     }
219 
220     if (fifo32_is_empty(&s->tx_fifo)) {
221         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
222         s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
223     }
224 
225     /* TODO: We should also use TDR and RDR bits */
226 
227     DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
228             fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
229 }
230 
231 static void imx_spi_reset(DeviceState *dev)
232 {
233     IMXSPIState *s = IMX_SPI(dev);
234 
235     DPRINTF("\n");
236 
237     memset(s->regs, 0, sizeof(s->regs));
238 
239     s->regs[ECSPI_STATREG] = 0x00000003;
240 
241     imx_spi_rxfifo_reset(s);
242     imx_spi_txfifo_reset(s);
243 
244     s->burst_length = 0;
245 }
246 
247 static void imx_spi_soft_reset(IMXSPIState *s)
248 {
249     imx_spi_reset(DEVICE(s));
250 
251     imx_spi_update_irq(s);
252 }
253 
254 static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
255 {
256     uint32_t value = 0;
257     IMXSPIState *s = opaque;
258     uint32_t index = offset >> 2;
259 
260     if (index >=  ECSPI_MAX) {
261         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
262                       HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
263         return 0;
264     }
265 
266     switch (index) {
267     case ECSPI_RXDATA:
268         if (!imx_spi_is_enabled(s)) {
269             value = 0;
270         } else if (fifo32_is_empty(&s->rx_fifo)) {
271             /* value is undefined */
272             value = 0xdeadbeef;
273         } else {
274             /* read from the RX FIFO */
275             value = fifo32_pop(&s->rx_fifo);
276         }
277 
278         break;
279     case ECSPI_TXDATA:
280         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n",
281                       TYPE_IMX_SPI, __func__);
282 
283         /* Reading from TXDATA gives 0 */
284 
285         break;
286     case ECSPI_MSGDATA:
287         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n",
288                       TYPE_IMX_SPI, __func__);
289 
290         /* Reading from MSGDATA gives 0 */
291 
292         break;
293     default:
294         value = s->regs[index];
295         break;
296     }
297 
298     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
299 
300     imx_spi_update_irq(s);
301 
302     return (uint64_t)value;
303 }
304 
305 static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
306                            unsigned size)
307 {
308     IMXSPIState *s = opaque;
309     uint32_t index = offset >> 2;
310     uint32_t change_mask;
311 
312     if (index >=  ECSPI_MAX) {
313         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
314                       HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
315         return;
316     }
317 
318     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
319             (uint32_t)value);
320 
321     change_mask = s->regs[index] ^ value;
322 
323     switch (index) {
324     case ECSPI_RXDATA:
325         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
326                       TYPE_IMX_SPI, __func__);
327         break;
328     case ECSPI_TXDATA:
329         if (!imx_spi_is_enabled(s)) {
330             /* Ignore writes if device is disabled */
331             break;
332         } else if (fifo32_is_full(&s->tx_fifo)) {
333             /* Ignore writes if queue is full */
334             break;
335         }
336 
337         fifo32_push(&s->tx_fifo, (uint32_t)value);
338 
339         if (imx_spi_channel_is_master(s) &&
340             (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
341             /*
342              * Start emitting if current channel is master and SMC bit is
343              * set.
344              */
345             imx_spi_flush_txfifo(s);
346         }
347 
348         break;
349     case ECSPI_STATREG:
350         /* the RO and TC bits are write-one-to-clear */
351         value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
352         s->regs[ECSPI_STATREG] &= ~value;
353 
354         break;
355     case ECSPI_CONREG:
356         s->regs[ECSPI_CONREG] = value;
357 
358         if (!imx_spi_is_enabled(s)) {
359             /* device is disabled, so this is a soft reset */
360             imx_spi_soft_reset(s);
361 
362             return;
363         }
364 
365         if (imx_spi_channel_is_master(s)) {
366             int i;
367 
368             /* We are in master mode */
369 
370             for (i = 0; i < ECSPI_NUM_CS; i++) {
371                 qemu_set_irq(s->cs_lines[i],
372                              i == imx_spi_selected_channel(s) ? 0 : 1);
373             }
374 
375             if ((value & change_mask & ECSPI_CONREG_SMC) &&
376                 !fifo32_is_empty(&s->tx_fifo)) {
377                 /* SMC bit is set and TX FIFO has some slots filled in */
378                 imx_spi_flush_txfifo(s);
379             } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
380                 !(value & ECSPI_CONREG_SMC)) {
381                 /* This is a request to start emitting */
382                 imx_spi_flush_txfifo(s);
383             }
384         }
385 
386         break;
387     case ECSPI_MSGDATA:
388         /* it is not clear from the spec what MSGDATA is for */
389         /* Anyway it is not used by Linux driver */
390         /* So for now we just ignore it */
391         qemu_log_mask(LOG_UNIMP,
392                       "[%s]%s: Trying to write to MSGDATA, ignoring\n",
393                       TYPE_IMX_SPI, __func__);
394         break;
395     default:
396         s->regs[index] = value;
397 
398         break;
399     }
400 
401     imx_spi_update_irq(s);
402 }
403 
404 static const struct MemoryRegionOps imx_spi_ops = {
405     .read = imx_spi_read,
406     .write = imx_spi_write,
407     .endianness = DEVICE_NATIVE_ENDIAN,
408     .valid = {
409         /*
410          * Our device would not work correctly if the guest was doing
411          * unaligned access. This might not be a limitation on the real
412          * device but in practice there is no reason for a guest to access
413          * this device unaligned.
414          */
415         .min_access_size = 4,
416         .max_access_size = 4,
417         .unaligned = false,
418     },
419 };
420 
421 static void imx_spi_realize(DeviceState *dev, Error **errp)
422 {
423     IMXSPIState *s = IMX_SPI(dev);
424     int i;
425 
426     s->bus = ssi_create_bus(dev, "spi");
427 
428     memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
429                           TYPE_IMX_SPI, 0x1000);
430     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
431     sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
432 
433     for (i = 0; i < ECSPI_NUM_CS; ++i) {
434         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
435     }
436 
437     fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
438     fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
439 }
440 
441 static void imx_spi_class_init(ObjectClass *klass, void *data)
442 {
443     DeviceClass *dc = DEVICE_CLASS(klass);
444 
445     dc->realize = imx_spi_realize;
446     dc->vmsd = &vmstate_imx_spi;
447     dc->reset = imx_spi_reset;
448     dc->desc = "i.MX SPI Controller";
449 }
450 
451 static const TypeInfo imx_spi_info = {
452     .name          = TYPE_IMX_SPI,
453     .parent        = TYPE_SYS_BUS_DEVICE,
454     .instance_size = sizeof(IMXSPIState),
455     .class_init    = imx_spi_class_init,
456 };
457 
458 static void imx_spi_register_types(void)
459 {
460     type_register_static(&imx_spi_info);
461 }
462 
463 type_init(imx_spi_register_types)
464