xref: /qemu/hw/sd/sdhci.c (revision bf8ec38e17d27e7ebbfd31a3725a77209abe943d)
1 /*
2  * SD Association Host Standard Specification v2.0 controller emulation
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  * Mitsyanko Igor <i.mitsyanko@samsung.com>
6  * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
7  *
8  * Based on MMC controller for Samsung S5PC1xx-based board emulation
9  * by Alexey Merkulov and Vladimir Monakhov.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19  * See the GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/hw.h"
29 #include "sysemu/block-backend.h"
30 #include "sysemu/blockdev.h"
31 #include "sysemu/dma.h"
32 #include "qemu/timer.h"
33 #include "qemu/bitops.h"
34 #include "hw/sd/sdhci.h"
35 #include "sdhci-internal.h"
36 #include "qemu/log.h"
37 #include "qemu/cutils.h"
38 #include "trace.h"
39 
40 #define TYPE_SDHCI_BUS "sdhci-bus"
41 #define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
42 
43 #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
44 
45 /* Default SD/MMC host controller features information, which will be
46  * presented in CAPABILITIES register of generic SD host controller at reset.
47  *
48  * support:
49  * - 3.3v and 1.8v voltages
50  * - SDMA/ADMA1/ADMA2
51  * - high-speed
52  * max host controller R/W buffers size: 512B
53  * max clock frequency for SDclock: 52 MHz
54  * timeout clock frequency: 52 MHz
55  *
56  * does not support:
57  * - 3.0v voltage
58  * - 64-bit system bus
59  * - suspend/resume
60  */
61 #define SDHC_CAPAB_REG_DEFAULT 0x057834b4
62 
63 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
64 {
65     return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
66 }
67 
68 /* return true on error */
69 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
70                                          uint8_t freq, Error **errp)
71 {
72     switch (freq) {
73     case 0:
74     case 10 ... 63:
75         break;
76     default:
77         error_setg(errp, "SD %s clock frequency can have value"
78                    "in range 0-63 only", desc);
79         return true;
80     }
81     return false;
82 }
83 
84 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
85 {
86     uint64_t msk = s->capareg;
87     uint32_t val;
88     bool y;
89 
90     switch (s->sd_spec_version) {
91     case 2: /* default version */
92 
93     /* fallthrough */
94     case 1:
95         y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
96         msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
97 
98         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
99         trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
100         if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
101             return;
102         }
103         msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
104 
105         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
106         trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
107         if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
108             return;
109         }
110         msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
111 
112         val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
113         if (val >= 3) {
114             error_setg(errp, "block size can be 512, 1024 or 2048 only");
115             return;
116         }
117         trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
118         msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
119 
120         val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
121         trace_sdhci_capareg("high speed", val);
122         msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
123 
124         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
125         trace_sdhci_capareg("SDMA", val);
126         msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
127 
128         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
129         trace_sdhci_capareg("suspend/resume", val);
130         msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
131 
132         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
133         trace_sdhci_capareg("3.3v", val);
134         msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
135 
136         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
137         trace_sdhci_capareg("3.0v", val);
138         msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
139 
140         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
141         trace_sdhci_capareg("1.8v", val);
142         msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
143         break;
144 
145     default:
146         error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
147     }
148     if (msk) {
149         qemu_log_mask(LOG_UNIMP,
150                       "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
151     }
152 }
153 
154 static uint8_t sdhci_slotint(SDHCIState *s)
155 {
156     return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
157          ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
158          ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
159 }
160 
161 static inline void sdhci_update_irq(SDHCIState *s)
162 {
163     qemu_set_irq(s->irq, sdhci_slotint(s));
164 }
165 
166 static void sdhci_raise_insertion_irq(void *opaque)
167 {
168     SDHCIState *s = (SDHCIState *)opaque;
169 
170     if (s->norintsts & SDHC_NIS_REMOVE) {
171         timer_mod(s->insert_timer,
172                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
173     } else {
174         s->prnsts = 0x1ff0000;
175         if (s->norintstsen & SDHC_NISEN_INSERT) {
176             s->norintsts |= SDHC_NIS_INSERT;
177         }
178         sdhci_update_irq(s);
179     }
180 }
181 
182 static void sdhci_set_inserted(DeviceState *dev, bool level)
183 {
184     SDHCIState *s = (SDHCIState *)dev;
185 
186     trace_sdhci_set_inserted(level ? "insert" : "eject");
187     if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
188         /* Give target some time to notice card ejection */
189         timer_mod(s->insert_timer,
190                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
191     } else {
192         if (level) {
193             s->prnsts = 0x1ff0000;
194             if (s->norintstsen & SDHC_NISEN_INSERT) {
195                 s->norintsts |= SDHC_NIS_INSERT;
196             }
197         } else {
198             s->prnsts = 0x1fa0000;
199             s->pwrcon &= ~SDHC_POWER_ON;
200             s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
201             if (s->norintstsen & SDHC_NISEN_REMOVE) {
202                 s->norintsts |= SDHC_NIS_REMOVE;
203             }
204         }
205         sdhci_update_irq(s);
206     }
207 }
208 
209 static void sdhci_set_readonly(DeviceState *dev, bool level)
210 {
211     SDHCIState *s = (SDHCIState *)dev;
212 
213     if (level) {
214         s->prnsts &= ~SDHC_WRITE_PROTECT;
215     } else {
216         /* Write enabled */
217         s->prnsts |= SDHC_WRITE_PROTECT;
218     }
219 }
220 
221 static void sdhci_reset(SDHCIState *s)
222 {
223     DeviceState *dev = DEVICE(s);
224 
225     timer_del(s->insert_timer);
226     timer_del(s->transfer_timer);
227 
228     /* Set all registers to 0. Capabilities/Version registers are not cleared
229      * and assumed to always preserve their value, given to them during
230      * initialization */
231     memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
232 
233     /* Reset other state based on current card insertion/readonly status */
234     sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
235     sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
236 
237     s->data_count = 0;
238     s->stopped_state = sdhc_not_stopped;
239     s->pending_insert_state = false;
240 }
241 
242 static void sdhci_poweron_reset(DeviceState *dev)
243 {
244     /* QOM (ie power-on) reset. This is identical to reset
245      * commanded via device register apart from handling of the
246      * 'pending insert on powerup' quirk.
247      */
248     SDHCIState *s = (SDHCIState *)dev;
249 
250     sdhci_reset(s);
251 
252     if (s->pending_insert_quirk) {
253         s->pending_insert_state = true;
254     }
255 }
256 
257 static void sdhci_data_transfer(void *opaque);
258 
259 static void sdhci_send_command(SDHCIState *s)
260 {
261     SDRequest request;
262     uint8_t response[16];
263     int rlen;
264 
265     s->errintsts = 0;
266     s->acmd12errsts = 0;
267     request.cmd = s->cmdreg >> 8;
268     request.arg = s->argument;
269 
270     trace_sdhci_send_command(request.cmd, request.arg);
271     rlen = sdbus_do_command(&s->sdbus, &request, response);
272 
273     if (s->cmdreg & SDHC_CMD_RESPONSE) {
274         if (rlen == 4) {
275             s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
276                            (response[2] << 8)  |  response[3];
277             s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
278             trace_sdhci_response4(s->rspreg[0]);
279         } else if (rlen == 16) {
280             s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
281                            (response[13] << 8) |  response[14];
282             s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
283                            (response[9] << 8)  |  response[10];
284             s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
285                            (response[5] << 8)  |  response[6];
286             s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
287                             response[2];
288             trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
289                                    s->rspreg[1], s->rspreg[0]);
290         } else {
291             trace_sdhci_error("timeout waiting for command response");
292             if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
293                 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
294                 s->norintsts |= SDHC_NIS_ERR;
295             }
296         }
297 
298         if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
299             (s->norintstsen & SDHC_NISEN_TRSCMP) &&
300             (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
301             s->norintsts |= SDHC_NIS_TRSCMP;
302         }
303     }
304 
305     if (s->norintstsen & SDHC_NISEN_CMDCMP) {
306         s->norintsts |= SDHC_NIS_CMDCMP;
307     }
308 
309     sdhci_update_irq(s);
310 
311     if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
312         s->data_count = 0;
313         sdhci_data_transfer(s);
314     }
315 }
316 
317 static void sdhci_end_transfer(SDHCIState *s)
318 {
319     /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
320     if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
321         SDRequest request;
322         uint8_t response[16];
323 
324         request.cmd = 0x0C;
325         request.arg = 0;
326         trace_sdhci_end_transfer(request.cmd, request.arg);
327         sdbus_do_command(&s->sdbus, &request, response);
328         /* Auto CMD12 response goes to the upper Response register */
329         s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
330                 (response[2] << 8) | response[3];
331     }
332 
333     s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
334             SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
335             SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
336 
337     if (s->norintstsen & SDHC_NISEN_TRSCMP) {
338         s->norintsts |= SDHC_NIS_TRSCMP;
339     }
340 
341     sdhci_update_irq(s);
342 }
343 
344 /*
345  * Programmed i/o data transfer
346  */
347 #define BLOCK_SIZE_MASK (4 * K_BYTE - 1)
348 
349 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
350 static void sdhci_read_block_from_card(SDHCIState *s)
351 {
352     int index = 0;
353 
354     if ((s->trnmod & SDHC_TRNS_MULTI) &&
355             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
356         return;
357     }
358 
359     for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
360         s->fifo_buffer[index] = sdbus_read_data(&s->sdbus);
361     }
362 
363     /* New data now available for READ through Buffer Port Register */
364     s->prnsts |= SDHC_DATA_AVAILABLE;
365     if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
366         s->norintsts |= SDHC_NIS_RBUFRDY;
367     }
368 
369     /* Clear DAT line active status if that was the last block */
370     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
371             ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
372         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
373     }
374 
375     /* If stop at block gap request was set and it's not the last block of
376      * data - generate Block Event interrupt */
377     if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
378             s->blkcnt != 1)    {
379         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
380         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
381             s->norintsts |= SDHC_EIS_BLKGAP;
382         }
383     }
384 
385     sdhci_update_irq(s);
386 }
387 
388 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
389 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
390 {
391     uint32_t value = 0;
392     int i;
393 
394     /* first check that a valid data exists in host controller input buffer */
395     if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
396         trace_sdhci_error("read from empty buffer");
397         return 0;
398     }
399 
400     for (i = 0; i < size; i++) {
401         value |= s->fifo_buffer[s->data_count] << i * 8;
402         s->data_count++;
403         /* check if we've read all valid data (blksize bytes) from buffer */
404         if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
405             trace_sdhci_read_dataport(s->data_count);
406             s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
407             s->data_count = 0;  /* next buff read must start at position [0] */
408 
409             if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
410                 s->blkcnt--;
411             }
412 
413             /* if that was the last block of data */
414             if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
415                 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
416                  /* stop at gap request */
417                 (s->stopped_state == sdhc_gap_read &&
418                  !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
419                 sdhci_end_transfer(s);
420             } else { /* if there are more data, read next block from card */
421                 sdhci_read_block_from_card(s);
422             }
423             break;
424         }
425     }
426 
427     return value;
428 }
429 
430 /* Write data from host controller FIFO to card */
431 static void sdhci_write_block_to_card(SDHCIState *s)
432 {
433     int index = 0;
434 
435     if (s->prnsts & SDHC_SPACE_AVAILABLE) {
436         if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
437             s->norintsts |= SDHC_NIS_WBUFRDY;
438         }
439         sdhci_update_irq(s);
440         return;
441     }
442 
443     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
444         if (s->blkcnt == 0) {
445             return;
446         } else {
447             s->blkcnt--;
448         }
449     }
450 
451     for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
452         sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
453     }
454 
455     /* Next data can be written through BUFFER DATORT register */
456     s->prnsts |= SDHC_SPACE_AVAILABLE;
457 
458     /* Finish transfer if that was the last block of data */
459     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
460             ((s->trnmod & SDHC_TRNS_MULTI) &&
461             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
462         sdhci_end_transfer(s);
463     } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
464         s->norintsts |= SDHC_NIS_WBUFRDY;
465     }
466 
467     /* Generate Block Gap Event if requested and if not the last block */
468     if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
469             s->blkcnt > 0) {
470         s->prnsts &= ~SDHC_DOING_WRITE;
471         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
472             s->norintsts |= SDHC_EIS_BLKGAP;
473         }
474         sdhci_end_transfer(s);
475     }
476 
477     sdhci_update_irq(s);
478 }
479 
480 /* Write @size bytes of @value data to host controller @s Buffer Data Port
481  * register */
482 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
483 {
484     unsigned i;
485 
486     /* Check that there is free space left in a buffer */
487     if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
488         trace_sdhci_error("Can't write to data buffer: buffer full");
489         return;
490     }
491 
492     for (i = 0; i < size; i++) {
493         s->fifo_buffer[s->data_count] = value & 0xFF;
494         s->data_count++;
495         value >>= 8;
496         if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
497             trace_sdhci_write_dataport(s->data_count);
498             s->data_count = 0;
499             s->prnsts &= ~SDHC_SPACE_AVAILABLE;
500             if (s->prnsts & SDHC_DOING_WRITE) {
501                 sdhci_write_block_to_card(s);
502             }
503         }
504     }
505 }
506 
507 /*
508  * Single DMA data transfer
509  */
510 
511 /* Multi block SDMA transfer */
512 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
513 {
514     bool page_aligned = false;
515     unsigned int n, begin;
516     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
517     uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
518     uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
519 
520     if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
521         qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
522         return;
523     }
524 
525     /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
526      * possible stop at page boundary if initial address is not page aligned,
527      * allow them to work properly */
528     if ((s->sdmasysad % boundary_chk) == 0) {
529         page_aligned = true;
530     }
531 
532     if (s->trnmod & SDHC_TRNS_READ) {
533         s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
534                 SDHC_DAT_LINE_ACTIVE;
535         while (s->blkcnt) {
536             if (s->data_count == 0) {
537                 for (n = 0; n < block_size; n++) {
538                     s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
539                 }
540             }
541             begin = s->data_count;
542             if (((boundary_count + begin) < block_size) && page_aligned) {
543                 s->data_count = boundary_count + begin;
544                 boundary_count = 0;
545              } else {
546                 s->data_count = block_size;
547                 boundary_count -= block_size - begin;
548                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
549                     s->blkcnt--;
550                 }
551             }
552             dma_memory_write(s->dma_as, s->sdmasysad,
553                              &s->fifo_buffer[begin], s->data_count - begin);
554             s->sdmasysad += s->data_count - begin;
555             if (s->data_count == block_size) {
556                 s->data_count = 0;
557             }
558             if (page_aligned && boundary_count == 0) {
559                 break;
560             }
561         }
562     } else {
563         s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
564                 SDHC_DAT_LINE_ACTIVE;
565         while (s->blkcnt) {
566             begin = s->data_count;
567             if (((boundary_count + begin) < block_size) && page_aligned) {
568                 s->data_count = boundary_count + begin;
569                 boundary_count = 0;
570              } else {
571                 s->data_count = block_size;
572                 boundary_count -= block_size - begin;
573             }
574             dma_memory_read(s->dma_as, s->sdmasysad,
575                             &s->fifo_buffer[begin], s->data_count - begin);
576             s->sdmasysad += s->data_count - begin;
577             if (s->data_count == block_size) {
578                 for (n = 0; n < block_size; n++) {
579                     sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
580                 }
581                 s->data_count = 0;
582                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
583                     s->blkcnt--;
584                 }
585             }
586             if (page_aligned && boundary_count == 0) {
587                 break;
588             }
589         }
590     }
591 
592     if (s->blkcnt == 0) {
593         sdhci_end_transfer(s);
594     } else {
595         if (s->norintstsen & SDHC_NISEN_DMA) {
596             s->norintsts |= SDHC_NIS_DMA;
597         }
598         sdhci_update_irq(s);
599     }
600 }
601 
602 /* single block SDMA transfer */
603 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
604 {
605     int n;
606     uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
607 
608     if (s->trnmod & SDHC_TRNS_READ) {
609         for (n = 0; n < datacnt; n++) {
610             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
611         }
612         dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
613     } else {
614         dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
615         for (n = 0; n < datacnt; n++) {
616             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
617         }
618     }
619     s->blkcnt--;
620 
621     sdhci_end_transfer(s);
622 }
623 
624 typedef struct ADMADescr {
625     hwaddr addr;
626     uint16_t length;
627     uint8_t attr;
628     uint8_t incr;
629 } ADMADescr;
630 
631 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
632 {
633     uint32_t adma1 = 0;
634     uint64_t adma2 = 0;
635     hwaddr entry_addr = (hwaddr)s->admasysaddr;
636     switch (SDHC_DMA_TYPE(s->hostctl)) {
637     case SDHC_CTRL_ADMA2_32:
638         dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
639                         sizeof(adma2));
640         adma2 = le64_to_cpu(adma2);
641         /* The spec does not specify endianness of descriptor table.
642          * We currently assume that it is LE.
643          */
644         dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
645         dscr->length = (uint16_t)extract64(adma2, 16, 16);
646         dscr->attr = (uint8_t)extract64(adma2, 0, 7);
647         dscr->incr = 8;
648         break;
649     case SDHC_CTRL_ADMA1_32:
650         dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
651                         sizeof(adma1));
652         adma1 = le32_to_cpu(adma1);
653         dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
654         dscr->attr = (uint8_t)extract32(adma1, 0, 7);
655         dscr->incr = 4;
656         if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
657             dscr->length = (uint16_t)extract32(adma1, 12, 16);
658         } else {
659             dscr->length = 4096;
660         }
661         break;
662     case SDHC_CTRL_ADMA2_64:
663         dma_memory_read(s->dma_as, entry_addr,
664                         (uint8_t *)(&dscr->attr), 1);
665         dma_memory_read(s->dma_as, entry_addr + 2,
666                         (uint8_t *)(&dscr->length), 2);
667         dscr->length = le16_to_cpu(dscr->length);
668         dma_memory_read(s->dma_as, entry_addr + 4,
669                         (uint8_t *)(&dscr->addr), 8);
670         dscr->attr = le64_to_cpu(dscr->attr);
671         dscr->attr &= 0xfffffff8;
672         dscr->incr = 12;
673         break;
674     }
675 }
676 
677 /* Advanced DMA data transfer */
678 
679 static void sdhci_do_adma(SDHCIState *s)
680 {
681     unsigned int n, begin, length;
682     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
683     ADMADescr dscr = {};
684     int i;
685 
686     for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
687         s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
688 
689         get_adma_description(s, &dscr);
690         trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
691 
692         if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
693             /* Indicate that error occurred in ST_FDS state */
694             s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
695             s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
696 
697             /* Generate ADMA error interrupt */
698             if (s->errintstsen & SDHC_EISEN_ADMAERR) {
699                 s->errintsts |= SDHC_EIS_ADMAERR;
700                 s->norintsts |= SDHC_NIS_ERR;
701             }
702 
703             sdhci_update_irq(s);
704             return;
705         }
706 
707         length = dscr.length ? dscr.length : 65536;
708 
709         switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
710         case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
711 
712             if (s->trnmod & SDHC_TRNS_READ) {
713                 while (length) {
714                     if (s->data_count == 0) {
715                         for (n = 0; n < block_size; n++) {
716                             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
717                         }
718                     }
719                     begin = s->data_count;
720                     if ((length + begin) < block_size) {
721                         s->data_count = length + begin;
722                         length = 0;
723                      } else {
724                         s->data_count = block_size;
725                         length -= block_size - begin;
726                     }
727                     dma_memory_write(s->dma_as, dscr.addr,
728                                      &s->fifo_buffer[begin],
729                                      s->data_count - begin);
730                     dscr.addr += s->data_count - begin;
731                     if (s->data_count == block_size) {
732                         s->data_count = 0;
733                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
734                             s->blkcnt--;
735                             if (s->blkcnt == 0) {
736                                 break;
737                             }
738                         }
739                     }
740                 }
741             } else {
742                 while (length) {
743                     begin = s->data_count;
744                     if ((length + begin) < block_size) {
745                         s->data_count = length + begin;
746                         length = 0;
747                      } else {
748                         s->data_count = block_size;
749                         length -= block_size - begin;
750                     }
751                     dma_memory_read(s->dma_as, dscr.addr,
752                                     &s->fifo_buffer[begin],
753                                     s->data_count - begin);
754                     dscr.addr += s->data_count - begin;
755                     if (s->data_count == block_size) {
756                         for (n = 0; n < block_size; n++) {
757                             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
758                         }
759                         s->data_count = 0;
760                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
761                             s->blkcnt--;
762                             if (s->blkcnt == 0) {
763                                 break;
764                             }
765                         }
766                     }
767                 }
768             }
769             s->admasysaddr += dscr.incr;
770             break;
771         case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
772             s->admasysaddr = dscr.addr;
773             trace_sdhci_adma("link", s->admasysaddr);
774             break;
775         default:
776             s->admasysaddr += dscr.incr;
777             break;
778         }
779 
780         if (dscr.attr & SDHC_ADMA_ATTR_INT) {
781             trace_sdhci_adma("interrupt", s->admasysaddr);
782             if (s->norintstsen & SDHC_NISEN_DMA) {
783                 s->norintsts |= SDHC_NIS_DMA;
784             }
785 
786             sdhci_update_irq(s);
787         }
788 
789         /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
790         if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
791                     (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
792             trace_sdhci_adma_transfer_completed();
793             if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
794                 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
795                 s->blkcnt != 0)) {
796                 trace_sdhci_error("SD/MMC host ADMA length mismatch");
797                 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
798                         SDHC_ADMAERR_STATE_ST_TFR;
799                 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
800                     trace_sdhci_error("Set ADMA error flag");
801                     s->errintsts |= SDHC_EIS_ADMAERR;
802                     s->norintsts |= SDHC_NIS_ERR;
803                 }
804 
805                 sdhci_update_irq(s);
806             }
807             sdhci_end_transfer(s);
808             return;
809         }
810 
811     }
812 
813     /* we have unfinished business - reschedule to continue ADMA */
814     timer_mod(s->transfer_timer,
815                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
816 }
817 
818 /* Perform data transfer according to controller configuration */
819 
820 static void sdhci_data_transfer(void *opaque)
821 {
822     SDHCIState *s = (SDHCIState *)opaque;
823 
824     if (s->trnmod & SDHC_TRNS_DMA) {
825         switch (SDHC_DMA_TYPE(s->hostctl)) {
826         case SDHC_CTRL_SDMA:
827             if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
828                 sdhci_sdma_transfer_single_block(s);
829             } else {
830                 sdhci_sdma_transfer_multi_blocks(s);
831             }
832 
833             break;
834         case SDHC_CTRL_ADMA1_32:
835             if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
836                 trace_sdhci_error("ADMA1 not supported");
837                 break;
838             }
839 
840             sdhci_do_adma(s);
841             break;
842         case SDHC_CTRL_ADMA2_32:
843             if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
844                 trace_sdhci_error("ADMA2 not supported");
845                 break;
846             }
847 
848             sdhci_do_adma(s);
849             break;
850         case SDHC_CTRL_ADMA2_64:
851             if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
852                     !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
853                 trace_sdhci_error("64 bit ADMA not supported");
854                 break;
855             }
856 
857             sdhci_do_adma(s);
858             break;
859         default:
860             trace_sdhci_error("Unsupported DMA type");
861             break;
862         }
863     } else {
864         if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
865             s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
866                     SDHC_DAT_LINE_ACTIVE;
867             sdhci_read_block_from_card(s);
868         } else {
869             s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
870                     SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
871             sdhci_write_block_to_card(s);
872         }
873     }
874 }
875 
876 static bool sdhci_can_issue_command(SDHCIState *s)
877 {
878     if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
879         (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
880         ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
881         ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
882         !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
883         return false;
884     }
885 
886     return true;
887 }
888 
889 /* The Buffer Data Port register must be accessed in sequential and
890  * continuous manner */
891 static inline bool
892 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
893 {
894     if ((s->data_count & 0x3) != byte_num) {
895         trace_sdhci_error("Non-sequential access to Buffer Data Port register"
896                           "is prohibited\n");
897         return false;
898     }
899     return true;
900 }
901 
902 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
903 {
904     SDHCIState *s = (SDHCIState *)opaque;
905     uint32_t ret = 0;
906 
907     switch (offset & ~0x3) {
908     case SDHC_SYSAD:
909         ret = s->sdmasysad;
910         break;
911     case SDHC_BLKSIZE:
912         ret = s->blksize | (s->blkcnt << 16);
913         break;
914     case SDHC_ARGUMENT:
915         ret = s->argument;
916         break;
917     case SDHC_TRNMOD:
918         ret = s->trnmod | (s->cmdreg << 16);
919         break;
920     case SDHC_RSPREG0 ... SDHC_RSPREG3:
921         ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
922         break;
923     case  SDHC_BDATA:
924         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
925             ret = sdhci_read_dataport(s, size);
926             trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
927             return ret;
928         }
929         break;
930     case SDHC_PRNSTS:
931         ret = s->prnsts;
932         break;
933     case SDHC_HOSTCTL:
934         ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
935               (s->wakcon << 24);
936         break;
937     case SDHC_CLKCON:
938         ret = s->clkcon | (s->timeoutcon << 16);
939         break;
940     case SDHC_NORINTSTS:
941         ret = s->norintsts | (s->errintsts << 16);
942         break;
943     case SDHC_NORINTSTSEN:
944         ret = s->norintstsen | (s->errintstsen << 16);
945         break;
946     case SDHC_NORINTSIGEN:
947         ret = s->norintsigen | (s->errintsigen << 16);
948         break;
949     case SDHC_ACMD12ERRSTS:
950         ret = s->acmd12errsts;
951         break;
952     case SDHC_CAPAB:
953         ret = (uint32_t)s->capareg;
954         break;
955     case SDHC_CAPAB + 4:
956         ret = (uint32_t)(s->capareg >> 32);
957         break;
958     case SDHC_MAXCURR:
959         ret = (uint32_t)s->maxcurr;
960         break;
961     case SDHC_MAXCURR + 4:
962         ret = (uint32_t)(s->maxcurr >> 32);
963         break;
964     case SDHC_ADMAERR:
965         ret =  s->admaerr;
966         break;
967     case SDHC_ADMASYSADDR:
968         ret = (uint32_t)s->admasysaddr;
969         break;
970     case SDHC_ADMASYSADDR + 4:
971         ret = (uint32_t)(s->admasysaddr >> 32);
972         break;
973     case SDHC_SLOT_INT_STATUS:
974         ret = (s->version << 16) | sdhci_slotint(s);
975         break;
976     default:
977         qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
978                       "not implemented\n", size, offset);
979         break;
980     }
981 
982     ret >>= (offset & 0x3) * 8;
983     ret &= (1ULL << (size * 8)) - 1;
984     trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
985     return ret;
986 }
987 
988 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
989 {
990     if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
991         return;
992     }
993     s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
994 
995     if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
996             (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
997         if (s->stopped_state == sdhc_gap_read) {
998             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
999             sdhci_read_block_from_card(s);
1000         } else {
1001             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1002             sdhci_write_block_to_card(s);
1003         }
1004         s->stopped_state = sdhc_not_stopped;
1005     } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1006         if (s->prnsts & SDHC_DOING_READ) {
1007             s->stopped_state = sdhc_gap_read;
1008         } else if (s->prnsts & SDHC_DOING_WRITE) {
1009             s->stopped_state = sdhc_gap_write;
1010         }
1011     }
1012 }
1013 
1014 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1015 {
1016     switch (value) {
1017     case SDHC_RESET_ALL:
1018         sdhci_reset(s);
1019         break;
1020     case SDHC_RESET_CMD:
1021         s->prnsts &= ~SDHC_CMD_INHIBIT;
1022         s->norintsts &= ~SDHC_NIS_CMDCMP;
1023         break;
1024     case SDHC_RESET_DATA:
1025         s->data_count = 0;
1026         s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1027                 SDHC_DOING_READ | SDHC_DOING_WRITE |
1028                 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1029         s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1030         s->stopped_state = sdhc_not_stopped;
1031         s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1032                 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1033         break;
1034     }
1035 }
1036 
1037 static void
1038 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1039 {
1040     SDHCIState *s = (SDHCIState *)opaque;
1041     unsigned shift =  8 * (offset & 0x3);
1042     uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1043     uint32_t value = val;
1044     value <<= shift;
1045 
1046     switch (offset & ~0x3) {
1047     case SDHC_SYSAD:
1048         s->sdmasysad = (s->sdmasysad & mask) | value;
1049         MASKED_WRITE(s->sdmasysad, mask, value);
1050         /* Writing to last byte of sdmasysad might trigger transfer */
1051         if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1052                 s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1053             if (s->trnmod & SDHC_TRNS_MULTI) {
1054                 sdhci_sdma_transfer_multi_blocks(s);
1055             } else {
1056                 sdhci_sdma_transfer_single_block(s);
1057             }
1058         }
1059         break;
1060     case SDHC_BLKSIZE:
1061         if (!TRANSFERRING_DATA(s->prnsts)) {
1062             MASKED_WRITE(s->blksize, mask, value);
1063             MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1064         }
1065 
1066         /* Limit block size to the maximum buffer size */
1067         if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1068             qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1069                           "the maximum buffer 0x%x", __func__, s->blksize,
1070                           s->buf_maxsz);
1071 
1072             s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1073         }
1074 
1075         break;
1076     case SDHC_ARGUMENT:
1077         MASKED_WRITE(s->argument, mask, value);
1078         break;
1079     case SDHC_TRNMOD:
1080         /* DMA can be enabled only if it is supported as indicated by
1081          * capabilities register */
1082         if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1083             value &= ~SDHC_TRNS_DMA;
1084         }
1085         MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1086         MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1087 
1088         /* Writing to the upper byte of CMDREG triggers SD command generation */
1089         if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1090             break;
1091         }
1092 
1093         sdhci_send_command(s);
1094         break;
1095     case  SDHC_BDATA:
1096         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1097             sdhci_write_dataport(s, value >> shift, size);
1098         }
1099         break;
1100     case SDHC_HOSTCTL:
1101         if (!(mask & 0xFF0000)) {
1102             sdhci_blkgap_write(s, value >> 16);
1103         }
1104         MASKED_WRITE(s->hostctl, mask, value);
1105         MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1106         MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1107         if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1108                 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1109             s->pwrcon &= ~SDHC_POWER_ON;
1110         }
1111         break;
1112     case SDHC_CLKCON:
1113         if (!(mask & 0xFF000000)) {
1114             sdhci_reset_write(s, value >> 24);
1115         }
1116         MASKED_WRITE(s->clkcon, mask, value);
1117         MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1118         if (s->clkcon & SDHC_CLOCK_INT_EN) {
1119             s->clkcon |= SDHC_CLOCK_INT_STABLE;
1120         } else {
1121             s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1122         }
1123         break;
1124     case SDHC_NORINTSTS:
1125         if (s->norintstsen & SDHC_NISEN_CARDINT) {
1126             value &= ~SDHC_NIS_CARDINT;
1127         }
1128         s->norintsts &= mask | ~value;
1129         s->errintsts &= (mask >> 16) | ~(value >> 16);
1130         if (s->errintsts) {
1131             s->norintsts |= SDHC_NIS_ERR;
1132         } else {
1133             s->norintsts &= ~SDHC_NIS_ERR;
1134         }
1135         sdhci_update_irq(s);
1136         break;
1137     case SDHC_NORINTSTSEN:
1138         MASKED_WRITE(s->norintstsen, mask, value);
1139         MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1140         s->norintsts &= s->norintstsen;
1141         s->errintsts &= s->errintstsen;
1142         if (s->errintsts) {
1143             s->norintsts |= SDHC_NIS_ERR;
1144         } else {
1145             s->norintsts &= ~SDHC_NIS_ERR;
1146         }
1147         /* Quirk for Raspberry Pi: pending card insert interrupt
1148          * appears when first enabled after power on */
1149         if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1150             assert(s->pending_insert_quirk);
1151             s->norintsts |= SDHC_NIS_INSERT;
1152             s->pending_insert_state = false;
1153         }
1154         sdhci_update_irq(s);
1155         break;
1156     case SDHC_NORINTSIGEN:
1157         MASKED_WRITE(s->norintsigen, mask, value);
1158         MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1159         sdhci_update_irq(s);
1160         break;
1161     case SDHC_ADMAERR:
1162         MASKED_WRITE(s->admaerr, mask, value);
1163         break;
1164     case SDHC_ADMASYSADDR:
1165         s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1166                 (uint64_t)mask)) | (uint64_t)value;
1167         break;
1168     case SDHC_ADMASYSADDR + 4:
1169         s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1170                 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1171         break;
1172     case SDHC_FEAER:
1173         s->acmd12errsts |= value;
1174         s->errintsts |= (value >> 16) & s->errintstsen;
1175         if (s->acmd12errsts) {
1176             s->errintsts |= SDHC_EIS_CMD12ERR;
1177         }
1178         if (s->errintsts) {
1179             s->norintsts |= SDHC_NIS_ERR;
1180         }
1181         sdhci_update_irq(s);
1182         break;
1183     case SDHC_ACMD12ERRSTS:
1184         MASKED_WRITE(s->acmd12errsts, mask, value);
1185         break;
1186 
1187     case SDHC_CAPAB:
1188     case SDHC_CAPAB + 4:
1189     case SDHC_MAXCURR:
1190     case SDHC_MAXCURR + 4:
1191         qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1192                       " <- 0x%08x read-only\n", size, offset, value >> shift);
1193         break;
1194 
1195     default:
1196         qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1197                       "not implemented\n", size, offset, value >> shift);
1198         break;
1199     }
1200     trace_sdhci_access("wr", size << 3, offset, "<-",
1201                        value >> shift, value >> shift);
1202 }
1203 
1204 static const MemoryRegionOps sdhci_mmio_ops = {
1205     .read = sdhci_read,
1206     .write = sdhci_write,
1207     .valid = {
1208         .min_access_size = 1,
1209         .max_access_size = 4,
1210         .unaligned = false
1211     },
1212     .endianness = DEVICE_LITTLE_ENDIAN,
1213 };
1214 
1215 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1216 {
1217     Error *local_err = NULL;
1218 
1219     if (s->sd_spec_version != 2) {
1220         error_setg(errp, "Only Spec v2 is supported");
1221         return;
1222     }
1223     s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1224 
1225     sdhci_check_capareg(s, &local_err);
1226     if (local_err) {
1227         error_propagate(errp, local_err);
1228         return;
1229     }
1230 }
1231 
1232 /* --- qdev common --- */
1233 
1234 #define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1235     DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
1236     \
1237     /* Capabilities registers provide information on supported
1238      * features of this specific host controller implementation */ \
1239     DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
1240     DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1241 
1242 static void sdhci_initfn(SDHCIState *s)
1243 {
1244     qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1245                         TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1246 
1247     s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1248     s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1249 
1250     s->io_ops = &sdhci_mmio_ops;
1251 }
1252 
1253 static void sdhci_uninitfn(SDHCIState *s)
1254 {
1255     timer_del(s->insert_timer);
1256     timer_free(s->insert_timer);
1257     timer_del(s->transfer_timer);
1258     timer_free(s->transfer_timer);
1259 
1260     g_free(s->fifo_buffer);
1261     s->fifo_buffer = NULL;
1262 }
1263 
1264 static void sdhci_common_realize(SDHCIState *s, Error **errp)
1265 {
1266     Error *local_err = NULL;
1267 
1268     sdhci_init_readonly_registers(s, &local_err);
1269     if (local_err) {
1270         error_propagate(errp, local_err);
1271         return;
1272     }
1273     s->buf_maxsz = sdhci_get_fifolen(s);
1274     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1275 
1276     memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1277                           SDHC_REGISTERS_MAP_SIZE);
1278 }
1279 
1280 static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
1281 {
1282     /* This function is expected to be called only once for each class:
1283      * - SysBus:    via DeviceClass->unrealize(),
1284      * - PCI:       via PCIDeviceClass->exit().
1285      * However to avoid double-free and/or use-after-free we still nullify
1286      * this variable (better safe than sorry!). */
1287     g_free(s->fifo_buffer);
1288     s->fifo_buffer = NULL;
1289 }
1290 
1291 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1292 {
1293     SDHCIState *s = opaque;
1294 
1295     return s->pending_insert_state;
1296 }
1297 
1298 static const VMStateDescription sdhci_pending_insert_vmstate = {
1299     .name = "sdhci/pending-insert",
1300     .version_id = 1,
1301     .minimum_version_id = 1,
1302     .needed = sdhci_pending_insert_vmstate_needed,
1303     .fields = (VMStateField[]) {
1304         VMSTATE_BOOL(pending_insert_state, SDHCIState),
1305         VMSTATE_END_OF_LIST()
1306     },
1307 };
1308 
1309 const VMStateDescription sdhci_vmstate = {
1310     .name = "sdhci",
1311     .version_id = 1,
1312     .minimum_version_id = 1,
1313     .fields = (VMStateField[]) {
1314         VMSTATE_UINT32(sdmasysad, SDHCIState),
1315         VMSTATE_UINT16(blksize, SDHCIState),
1316         VMSTATE_UINT16(blkcnt, SDHCIState),
1317         VMSTATE_UINT32(argument, SDHCIState),
1318         VMSTATE_UINT16(trnmod, SDHCIState),
1319         VMSTATE_UINT16(cmdreg, SDHCIState),
1320         VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1321         VMSTATE_UINT32(prnsts, SDHCIState),
1322         VMSTATE_UINT8(hostctl, SDHCIState),
1323         VMSTATE_UINT8(pwrcon, SDHCIState),
1324         VMSTATE_UINT8(blkgap, SDHCIState),
1325         VMSTATE_UINT8(wakcon, SDHCIState),
1326         VMSTATE_UINT16(clkcon, SDHCIState),
1327         VMSTATE_UINT8(timeoutcon, SDHCIState),
1328         VMSTATE_UINT8(admaerr, SDHCIState),
1329         VMSTATE_UINT16(norintsts, SDHCIState),
1330         VMSTATE_UINT16(errintsts, SDHCIState),
1331         VMSTATE_UINT16(norintstsen, SDHCIState),
1332         VMSTATE_UINT16(errintstsen, SDHCIState),
1333         VMSTATE_UINT16(norintsigen, SDHCIState),
1334         VMSTATE_UINT16(errintsigen, SDHCIState),
1335         VMSTATE_UINT16(acmd12errsts, SDHCIState),
1336         VMSTATE_UINT16(data_count, SDHCIState),
1337         VMSTATE_UINT64(admasysaddr, SDHCIState),
1338         VMSTATE_UINT8(stopped_state, SDHCIState),
1339         VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1340         VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1341         VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1342         VMSTATE_END_OF_LIST()
1343     },
1344     .subsections = (const VMStateDescription*[]) {
1345         &sdhci_pending_insert_vmstate,
1346         NULL
1347     },
1348 };
1349 
1350 static void sdhci_common_class_init(ObjectClass *klass, void *data)
1351 {
1352     DeviceClass *dc = DEVICE_CLASS(klass);
1353 
1354     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1355     dc->vmsd = &sdhci_vmstate;
1356     dc->reset = sdhci_poweron_reset;
1357 }
1358 
1359 /* --- qdev PCI --- */
1360 
1361 static Property sdhci_pci_properties[] = {
1362     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1363     DEFINE_PROP_END_OF_LIST(),
1364 };
1365 
1366 static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1367 {
1368     SDHCIState *s = PCI_SDHCI(dev);
1369     Error *local_err = NULL;
1370 
1371     sdhci_initfn(s);
1372     sdhci_common_realize(s, errp);
1373     if (local_err) {
1374         error_propagate(errp, local_err);
1375         return;
1376     }
1377 
1378     dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1379     dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1380     s->irq = pci_allocate_irq(dev);
1381     s->dma_as = pci_get_address_space(dev);
1382     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1383 }
1384 
1385 static void sdhci_pci_exit(PCIDevice *dev)
1386 {
1387     SDHCIState *s = PCI_SDHCI(dev);
1388 
1389     sdhci_common_unrealize(s, &error_abort);
1390     sdhci_uninitfn(s);
1391 }
1392 
1393 static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1394 {
1395     DeviceClass *dc = DEVICE_CLASS(klass);
1396     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1397 
1398     k->realize = sdhci_pci_realize;
1399     k->exit = sdhci_pci_exit;
1400     k->vendor_id = PCI_VENDOR_ID_REDHAT;
1401     k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1402     k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1403     dc->props = sdhci_pci_properties;
1404 
1405     sdhci_common_class_init(klass, data);
1406 }
1407 
1408 static const TypeInfo sdhci_pci_info = {
1409     .name = TYPE_PCI_SDHCI,
1410     .parent = TYPE_PCI_DEVICE,
1411     .instance_size = sizeof(SDHCIState),
1412     .class_init = sdhci_pci_class_init,
1413     .interfaces = (InterfaceInfo[]) {
1414         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1415         { },
1416     },
1417 };
1418 
1419 /* --- qdev SysBus --- */
1420 
1421 static Property sdhci_sysbus_properties[] = {
1422     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1423     DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1424                      false),
1425     DEFINE_PROP_LINK("dma", SDHCIState,
1426                      dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1427     DEFINE_PROP_END_OF_LIST(),
1428 };
1429 
1430 static void sdhci_sysbus_init(Object *obj)
1431 {
1432     SDHCIState *s = SYSBUS_SDHCI(obj);
1433 
1434     sdhci_initfn(s);
1435 }
1436 
1437 static void sdhci_sysbus_finalize(Object *obj)
1438 {
1439     SDHCIState *s = SYSBUS_SDHCI(obj);
1440 
1441     if (s->dma_mr) {
1442         object_unparent(OBJECT(s->dma_mr));
1443     }
1444 
1445     sdhci_uninitfn(s);
1446 }
1447 
1448 static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1449 {
1450     SDHCIState *s = SYSBUS_SDHCI(dev);
1451     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1452     Error *local_err = NULL;
1453 
1454     sdhci_common_realize(s, errp);
1455     if (local_err) {
1456         error_propagate(errp, local_err);
1457         return;
1458     }
1459 
1460     if (s->dma_mr) {
1461         s->dma_as = &s->sysbus_dma_as;
1462         address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1463     } else {
1464         /* use system_memory() if property "dma" not set */
1465         s->dma_as = &address_space_memory;
1466     }
1467 
1468     sysbus_init_irq(sbd, &s->irq);
1469 
1470     memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1471             SDHC_REGISTERS_MAP_SIZE);
1472 
1473     sysbus_init_mmio(sbd, &s->iomem);
1474 }
1475 
1476 static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
1477 {
1478     SDHCIState *s = SYSBUS_SDHCI(dev);
1479 
1480     sdhci_common_unrealize(s, &error_abort);
1481 
1482      if (s->dma_mr) {
1483         address_space_destroy(s->dma_as);
1484     }
1485 }
1486 
1487 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1488 {
1489     DeviceClass *dc = DEVICE_CLASS(klass);
1490 
1491     dc->props = sdhci_sysbus_properties;
1492     dc->realize = sdhci_sysbus_realize;
1493     dc->unrealize = sdhci_sysbus_unrealize;
1494 
1495     sdhci_common_class_init(klass, data);
1496 }
1497 
1498 static const TypeInfo sdhci_sysbus_info = {
1499     .name = TYPE_SYSBUS_SDHCI,
1500     .parent = TYPE_SYS_BUS_DEVICE,
1501     .instance_size = sizeof(SDHCIState),
1502     .instance_init = sdhci_sysbus_init,
1503     .instance_finalize = sdhci_sysbus_finalize,
1504     .class_init = sdhci_sysbus_class_init,
1505 };
1506 
1507 /* --- qdev bus master --- */
1508 
1509 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1510 {
1511     SDBusClass *sbc = SD_BUS_CLASS(klass);
1512 
1513     sbc->set_inserted = sdhci_set_inserted;
1514     sbc->set_readonly = sdhci_set_readonly;
1515 }
1516 
1517 static const TypeInfo sdhci_bus_info = {
1518     .name = TYPE_SDHCI_BUS,
1519     .parent = TYPE_SD_BUS,
1520     .instance_size = sizeof(SDBus),
1521     .class_init = sdhci_bus_class_init,
1522 };
1523 
1524 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1525 {
1526     SDHCIState *s = SYSBUS_SDHCI(opaque);
1527     uint32_t ret;
1528     uint16_t hostctl;
1529 
1530     switch (offset) {
1531     default:
1532         return sdhci_read(opaque, offset, size);
1533 
1534     case SDHC_HOSTCTL:
1535         /*
1536          * For a detailed explanation on the following bit
1537          * manipulation code see comments in a similar part of
1538          * usdhc_write()
1539          */
1540         hostctl = SDHC_DMA_TYPE(s->hostctl) << (8 - 3);
1541 
1542         if (s->hostctl & SDHC_CTRL_8BITBUS) {
1543             hostctl |= ESDHC_CTRL_8BITBUS;
1544         }
1545 
1546         if (s->hostctl & SDHC_CTRL_4BITBUS) {
1547             hostctl |= ESDHC_CTRL_4BITBUS;
1548         }
1549 
1550         ret  = hostctl;
1551         ret |= (uint32_t)s->blkgap << 16;
1552         ret |= (uint32_t)s->wakcon << 24;
1553 
1554         break;
1555 
1556     case ESDHC_DLL_CTRL:
1557     case ESDHC_TUNE_CTRL_STATUS:
1558     case ESDHC_UNDOCUMENTED_REG27:
1559     case ESDHC_TUNING_CTRL:
1560     case ESDHC_VENDOR_SPEC:
1561     case ESDHC_MIX_CTRL:
1562     case ESDHC_WTMK_LVL:
1563         ret = 0;
1564         break;
1565     }
1566 
1567     return ret;
1568 }
1569 
1570 static void
1571 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1572 {
1573     SDHCIState *s = SYSBUS_SDHCI(opaque);
1574     uint8_t hostctl;
1575     uint32_t value = (uint32_t)val;
1576 
1577     switch (offset) {
1578     case ESDHC_DLL_CTRL:
1579     case ESDHC_TUNE_CTRL_STATUS:
1580     case ESDHC_UNDOCUMENTED_REG27:
1581     case ESDHC_TUNING_CTRL:
1582     case ESDHC_WTMK_LVL:
1583     case ESDHC_VENDOR_SPEC:
1584         break;
1585 
1586     case SDHC_HOSTCTL:
1587         /*
1588          * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1589          *
1590          *       7         6     5      4      3      2        1      0
1591          * |-----------+--------+--------+-----------+----------+---------|
1592          * | Card      | Card   | Endian | DATA3     | Data     | Led     |
1593          * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
1594          * | Signal    | Test   |        | Detection | Width    |         |
1595          * | Selection | Level  |        | Pin       |          |         |
1596          * |-----------+--------+--------+-----------+----------+---------|
1597          *
1598          * and 0x29
1599          *
1600          *  15      10 9    8
1601          * |----------+------|
1602          * | Reserved | DMA  |
1603          * |          | Sel. |
1604          * |          |      |
1605          * |----------+------|
1606          *
1607          * and here's what SDCHI spec expects those offsets to be:
1608          *
1609          * 0x28 (Host Control Register)
1610          *
1611          *     7        6         5       4  3      2         1        0
1612          * |--------+--------+----------+------+--------+----------+---------|
1613          * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
1614          * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
1615          * | Signal | Test   | Transfer |      | Enable | Width    |         |
1616          * | Sel.   | Level  | Width    |      |        |          |         |
1617          * |--------+--------+----------+------+--------+----------+---------|
1618          *
1619          * and 0x29 (Power Control Register)
1620          *
1621          * |----------------------------------|
1622          * | Power Control Register           |
1623          * |                                  |
1624          * | Description omitted,             |
1625          * | since it has no analog in ESDHCI |
1626          * |                                  |
1627          * |----------------------------------|
1628          *
1629          * Since offsets 0x2A and 0x2B should be compatible between
1630          * both IP specs we only need to reconcile least 16-bit of the
1631          * word we've been given.
1632          */
1633 
1634         /*
1635          * First, save bits 7 6 and 0 since they are identical
1636          */
1637         hostctl = value & (SDHC_CTRL_LED |
1638                            SDHC_CTRL_CDTEST_INS |
1639                            SDHC_CTRL_CDTEST_EN);
1640         /*
1641          * Second, split "Data Transfer Width" from bits 2 and 1 in to
1642          * bits 5 and 1
1643          */
1644         if (value & ESDHC_CTRL_8BITBUS) {
1645             hostctl |= SDHC_CTRL_8BITBUS;
1646         }
1647 
1648         if (value & ESDHC_CTRL_4BITBUS) {
1649             hostctl |= ESDHC_CTRL_4BITBUS;
1650         }
1651 
1652         /*
1653          * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1654          */
1655         hostctl |= SDHC_DMA_TYPE(value >> (8 - 3));
1656 
1657         /*
1658          * Now place the corrected value into low 16-bit of the value
1659          * we are going to give standard SDHCI write function
1660          *
1661          * NOTE: This transformation should be the inverse of what can
1662          * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1663          * kernel
1664          */
1665         value &= ~UINT16_MAX;
1666         value |= hostctl;
1667         value |= (uint16_t)s->pwrcon << 8;
1668 
1669         sdhci_write(opaque, offset, value, size);
1670         break;
1671 
1672     case ESDHC_MIX_CTRL:
1673         /*
1674          * So, when SD/MMC stack in Linux tries to write to "Transfer
1675          * Mode Register", ESDHC i.MX quirk code will translate it
1676          * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1677          * order to get where we started
1678          *
1679          * Note that Auto CMD23 Enable bit is located in a wrong place
1680          * on i.MX, but since it is not used by QEMU we do not care.
1681          *
1682          * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1683          * here becuase it will result in a call to
1684          * sdhci_send_command(s) which we don't want.
1685          *
1686          */
1687         s->trnmod = value & UINT16_MAX;
1688         break;
1689     case SDHC_TRNMOD:
1690         /*
1691          * Similar to above, but this time a write to "Command
1692          * Register" will be translated into a 4-byte write to
1693          * "Transfer Mode register" where lower 16-bit of value would
1694          * be set to zero. So what we do is fill those bits with
1695          * cached value from s->trnmod and let the SDHCI
1696          * infrastructure handle the rest
1697          */
1698         sdhci_write(opaque, offset, val | s->trnmod, size);
1699         break;
1700     case SDHC_BLKSIZE:
1701         /*
1702          * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1703          * Linux driver will try to zero this field out which will
1704          * break the rest of SDHCI emulation.
1705          *
1706          * Linux defaults to maximum possible setting (512K boundary)
1707          * and it seems to be the only option that i.MX IP implements,
1708          * so we artificially set it to that value.
1709          */
1710         val |= 0x7 << 12;
1711         /* FALLTHROUGH */
1712     default:
1713         sdhci_write(opaque, offset, val, size);
1714         break;
1715     }
1716 }
1717 
1718 
1719 static const MemoryRegionOps usdhc_mmio_ops = {
1720     .read = usdhc_read,
1721     .write = usdhc_write,
1722     .valid = {
1723         .min_access_size = 1,
1724         .max_access_size = 4,
1725         .unaligned = false
1726     },
1727     .endianness = DEVICE_LITTLE_ENDIAN,
1728 };
1729 
1730 static void imx_usdhc_init(Object *obj)
1731 {
1732     SDHCIState *s = SYSBUS_SDHCI(obj);
1733 
1734     s->io_ops = &usdhc_mmio_ops;
1735     s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1736 }
1737 
1738 static const TypeInfo imx_usdhc_info = {
1739     .name = TYPE_IMX_USDHC,
1740     .parent = TYPE_SYSBUS_SDHCI,
1741     .instance_init = imx_usdhc_init,
1742 };
1743 
1744 static void sdhci_register_types(void)
1745 {
1746     type_register_static(&sdhci_pci_info);
1747     type_register_static(&sdhci_sysbus_info);
1748     type_register_static(&sdhci_bus_info);
1749     type_register_static(&imx_usdhc_info);
1750 }
1751 
1752 type_init(sdhci_register_types)
1753