1 /* 2 * SD Association Host Standard Specification v2.0 controller emulation 3 * 4 * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf 5 * 6 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 7 * Mitsyanko Igor <i.mitsyanko@samsung.com> 8 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com> 9 * 10 * Based on MMC controller for Samsung S5PC1xx-based board emulation 11 * by Alexey Merkulov and Vladimir Monakhov. 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License along 24 * with this program; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/units.h" 29 #include "qemu/error-report.h" 30 #include "qapi/error.h" 31 #include "hw/irq.h" 32 #include "hw/qdev-properties.h" 33 #include "sysemu/dma.h" 34 #include "qemu/timer.h" 35 #include "qemu/bitops.h" 36 #include "hw/sd/sdhci.h" 37 #include "migration/vmstate.h" 38 #include "sdhci-internal.h" 39 #include "qemu/log.h" 40 #include "qemu/module.h" 41 #include "trace.h" 42 #include "qom/object.h" 43 44 #define TYPE_SDHCI_BUS "sdhci-bus" 45 /* This is reusing the SDBus typedef from SD_BUS */ 46 DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS, 47 TYPE_SDHCI_BUS) 48 49 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val)) 50 51 static inline unsigned int sdhci_get_fifolen(SDHCIState *s) 52 { 53 return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH)); 54 } 55 56 /* return true on error */ 57 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc, 58 uint8_t freq, Error **errp) 59 { 60 if (s->sd_spec_version >= 3) { 61 return false; 62 } 63 switch (freq) { 64 case 0: 65 case 10 ... 63: 66 break; 67 default: 68 error_setg(errp, "SD %s clock frequency can have value" 69 "in range 0-63 only", desc); 70 return true; 71 } 72 return false; 73 } 74 75 static void sdhci_check_capareg(SDHCIState *s, Error **errp) 76 { 77 uint64_t msk = s->capareg; 78 uint32_t val; 79 bool y; 80 81 switch (s->sd_spec_version) { 82 case 4: 83 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4); 84 trace_sdhci_capareg("64-bit system bus (v4)", val); 85 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0); 86 87 val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II); 88 trace_sdhci_capareg("UHS-II", val); 89 msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0); 90 91 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3); 92 trace_sdhci_capareg("ADMA3", val); 93 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0); 94 95 /* fallthrough */ 96 case 3: 97 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT); 98 trace_sdhci_capareg("async interrupt", val); 99 msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0); 100 101 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE); 102 if (val) { 103 error_setg(errp, "slot-type not supported"); 104 return; 105 } 106 trace_sdhci_capareg("slot type", val); 107 msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0); 108 109 if (val != 2) { 110 val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT); 111 trace_sdhci_capareg("8-bit bus", val); 112 } 113 msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0); 114 115 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED); 116 trace_sdhci_capareg("bus speed mask", val); 117 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0); 118 119 val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH); 120 trace_sdhci_capareg("driver strength mask", val); 121 msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0); 122 123 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING); 124 trace_sdhci_capareg("timer re-tuning", val); 125 msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0); 126 127 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING); 128 trace_sdhci_capareg("use SDR50 tuning", val); 129 msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0); 130 131 val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE); 132 trace_sdhci_capareg("re-tuning mode", val); 133 msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0); 134 135 val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT); 136 trace_sdhci_capareg("clock multiplier", val); 137 msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0); 138 139 /* fallthrough */ 140 case 2: /* default version */ 141 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2); 142 trace_sdhci_capareg("ADMA2", val); 143 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0); 144 145 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1); 146 trace_sdhci_capareg("ADMA1", val); 147 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0); 148 149 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT); 150 trace_sdhci_capareg("64-bit system bus (v3)", val); 151 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0); 152 153 /* fallthrough */ 154 case 1: 155 y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT); 156 msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0); 157 158 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ); 159 trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val); 160 if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) { 161 return; 162 } 163 msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0); 164 165 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ); 166 trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val); 167 if (sdhci_check_capab_freq_range(s, "base", val, errp)) { 168 return; 169 } 170 msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0); 171 172 val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH); 173 if (val >= 3) { 174 error_setg(errp, "block size can be 512, 1024 or 2048 only"); 175 return; 176 } 177 trace_sdhci_capareg("max block length", sdhci_get_fifolen(s)); 178 msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0); 179 180 val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED); 181 trace_sdhci_capareg("high speed", val); 182 msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0); 183 184 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA); 185 trace_sdhci_capareg("SDMA", val); 186 msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0); 187 188 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME); 189 trace_sdhci_capareg("suspend/resume", val); 190 msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0); 191 192 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33); 193 trace_sdhci_capareg("3.3v", val); 194 msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0); 195 196 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30); 197 trace_sdhci_capareg("3.0v", val); 198 msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0); 199 200 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18); 201 trace_sdhci_capareg("1.8v", val); 202 msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0); 203 break; 204 205 default: 206 error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version); 207 } 208 if (msk) { 209 qemu_log_mask(LOG_UNIMP, 210 "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk); 211 } 212 } 213 214 static uint8_t sdhci_slotint(SDHCIState *s) 215 { 216 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) || 217 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) || 218 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV)); 219 } 220 221 /* Return true if IRQ was pending and delivered */ 222 static bool sdhci_update_irq(SDHCIState *s) 223 { 224 bool pending = sdhci_slotint(s); 225 226 qemu_set_irq(s->irq, pending); 227 228 return pending; 229 } 230 231 static void sdhci_raise_insertion_irq(void *opaque) 232 { 233 SDHCIState *s = (SDHCIState *)opaque; 234 235 if (s->norintsts & SDHC_NIS_REMOVE) { 236 timer_mod(s->insert_timer, 237 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY); 238 } else { 239 s->prnsts = 0x1ff0000; 240 if (s->norintstsen & SDHC_NISEN_INSERT) { 241 s->norintsts |= SDHC_NIS_INSERT; 242 } 243 sdhci_update_irq(s); 244 } 245 } 246 247 static void sdhci_set_inserted(DeviceState *dev, bool level) 248 { 249 SDHCIState *s = (SDHCIState *)dev; 250 251 trace_sdhci_set_inserted(level ? "insert" : "eject"); 252 if ((s->norintsts & SDHC_NIS_REMOVE) && level) { 253 /* Give target some time to notice card ejection */ 254 timer_mod(s->insert_timer, 255 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY); 256 } else { 257 if (level) { 258 s->prnsts = 0x1ff0000; 259 if (s->norintstsen & SDHC_NISEN_INSERT) { 260 s->norintsts |= SDHC_NIS_INSERT; 261 } 262 } else { 263 s->prnsts = 0x1fa0000; 264 s->pwrcon &= ~SDHC_POWER_ON; 265 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN; 266 if (s->norintstsen & SDHC_NISEN_REMOVE) { 267 s->norintsts |= SDHC_NIS_REMOVE; 268 } 269 } 270 sdhci_update_irq(s); 271 } 272 } 273 274 static void sdhci_set_readonly(DeviceState *dev, bool level) 275 { 276 SDHCIState *s = (SDHCIState *)dev; 277 278 if (level) { 279 s->prnsts &= ~SDHC_WRITE_PROTECT; 280 } else { 281 /* Write enabled */ 282 s->prnsts |= SDHC_WRITE_PROTECT; 283 } 284 } 285 286 static void sdhci_reset(SDHCIState *s) 287 { 288 DeviceState *dev = DEVICE(s); 289 290 timer_del(s->insert_timer); 291 timer_del(s->transfer_timer); 292 293 /* Set all registers to 0. Capabilities/Version registers are not cleared 294 * and assumed to always preserve their value, given to them during 295 * initialization */ 296 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad); 297 298 /* Reset other state based on current card insertion/readonly status */ 299 sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus)); 300 sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus)); 301 302 s->data_count = 0; 303 s->stopped_state = sdhc_not_stopped; 304 s->pending_insert_state = false; 305 } 306 307 static void sdhci_poweron_reset(DeviceState *dev) 308 { 309 /* QOM (ie power-on) reset. This is identical to reset 310 * commanded via device register apart from handling of the 311 * 'pending insert on powerup' quirk. 312 */ 313 SDHCIState *s = (SDHCIState *)dev; 314 315 sdhci_reset(s); 316 317 if (s->pending_insert_quirk) { 318 s->pending_insert_state = true; 319 } 320 } 321 322 static void sdhci_data_transfer(void *opaque); 323 324 static void sdhci_send_command(SDHCIState *s) 325 { 326 SDRequest request; 327 uint8_t response[16]; 328 int rlen; 329 bool timeout = false; 330 331 s->errintsts = 0; 332 s->acmd12errsts = 0; 333 request.cmd = s->cmdreg >> 8; 334 request.arg = s->argument; 335 336 trace_sdhci_send_command(request.cmd, request.arg); 337 rlen = sdbus_do_command(&s->sdbus, &request, response); 338 339 if (s->cmdreg & SDHC_CMD_RESPONSE) { 340 if (rlen == 4) { 341 s->rspreg[0] = ldl_be_p(response); 342 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0; 343 trace_sdhci_response4(s->rspreg[0]); 344 } else if (rlen == 16) { 345 s->rspreg[0] = ldl_be_p(&response[11]); 346 s->rspreg[1] = ldl_be_p(&response[7]); 347 s->rspreg[2] = ldl_be_p(&response[3]); 348 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) | 349 response[2]; 350 trace_sdhci_response16(s->rspreg[3], s->rspreg[2], 351 s->rspreg[1], s->rspreg[0]); 352 } else { 353 timeout = true; 354 trace_sdhci_error("timeout waiting for command response"); 355 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) { 356 s->errintsts |= SDHC_EIS_CMDTIMEOUT; 357 s->norintsts |= SDHC_NIS_ERR; 358 } 359 } 360 361 if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) && 362 (s->norintstsen & SDHC_NISEN_TRSCMP) && 363 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) { 364 s->norintsts |= SDHC_NIS_TRSCMP; 365 } 366 } 367 368 if (s->norintstsen & SDHC_NISEN_CMDCMP) { 369 s->norintsts |= SDHC_NIS_CMDCMP; 370 } 371 372 sdhci_update_irq(s); 373 374 if (!timeout && s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) { 375 s->data_count = 0; 376 sdhci_data_transfer(s); 377 } 378 } 379 380 static void sdhci_end_transfer(SDHCIState *s) 381 { 382 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */ 383 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) { 384 SDRequest request; 385 uint8_t response[16]; 386 387 request.cmd = 0x0C; 388 request.arg = 0; 389 trace_sdhci_end_transfer(request.cmd, request.arg); 390 sdbus_do_command(&s->sdbus, &request, response); 391 /* Auto CMD12 response goes to the upper Response register */ 392 s->rspreg[3] = ldl_be_p(response); 393 } 394 395 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE | 396 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT | 397 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE); 398 399 if (s->norintstsen & SDHC_NISEN_TRSCMP) { 400 s->norintsts |= SDHC_NIS_TRSCMP; 401 } 402 403 sdhci_update_irq(s); 404 } 405 406 /* 407 * Programmed i/o data transfer 408 */ 409 #define BLOCK_SIZE_MASK (4 * KiB - 1) 410 411 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */ 412 static void sdhci_read_block_from_card(SDHCIState *s) 413 { 414 const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK; 415 416 if ((s->trnmod & SDHC_TRNS_MULTI) && 417 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) { 418 return; 419 } 420 421 if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) { 422 /* Device is not in tuning */ 423 sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size); 424 } 425 426 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) { 427 /* Device is in tuning */ 428 s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK; 429 s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK; 430 s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ | 431 SDHC_DATA_INHIBIT); 432 goto read_done; 433 } 434 435 /* New data now available for READ through Buffer Port Register */ 436 s->prnsts |= SDHC_DATA_AVAILABLE; 437 if (s->norintstsen & SDHC_NISEN_RBUFRDY) { 438 s->norintsts |= SDHC_NIS_RBUFRDY; 439 } 440 441 /* Clear DAT line active status if that was the last block */ 442 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 443 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) { 444 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; 445 } 446 447 /* If stop at block gap request was set and it's not the last block of 448 * data - generate Block Event interrupt */ 449 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) && 450 s->blkcnt != 1) { 451 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; 452 if (s->norintstsen & SDHC_EISEN_BLKGAP) { 453 s->norintsts |= SDHC_EIS_BLKGAP; 454 } 455 } 456 457 read_done: 458 sdhci_update_irq(s); 459 } 460 461 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */ 462 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size) 463 { 464 uint32_t value = 0; 465 int i; 466 467 /* first check that a valid data exists in host controller input buffer */ 468 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) { 469 trace_sdhci_error("read from empty buffer"); 470 return 0; 471 } 472 473 for (i = 0; i < size; i++) { 474 value |= s->fifo_buffer[s->data_count] << i * 8; 475 s->data_count++; 476 /* check if we've read all valid data (blksize bytes) from buffer */ 477 if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) { 478 trace_sdhci_read_dataport(s->data_count); 479 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */ 480 s->data_count = 0; /* next buff read must start at position [0] */ 481 482 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 483 s->blkcnt--; 484 } 485 486 /* if that was the last block of data */ 487 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 488 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) || 489 /* stop at gap request */ 490 (s->stopped_state == sdhc_gap_read && 491 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) { 492 sdhci_end_transfer(s); 493 } else { /* if there are more data, read next block from card */ 494 sdhci_read_block_from_card(s); 495 } 496 break; 497 } 498 } 499 500 return value; 501 } 502 503 /* Write data from host controller FIFO to card */ 504 static void sdhci_write_block_to_card(SDHCIState *s) 505 { 506 if (s->prnsts & SDHC_SPACE_AVAILABLE) { 507 if (s->norintstsen & SDHC_NISEN_WBUFRDY) { 508 s->norintsts |= SDHC_NIS_WBUFRDY; 509 } 510 sdhci_update_irq(s); 511 return; 512 } 513 514 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 515 if (s->blkcnt == 0) { 516 return; 517 } else { 518 s->blkcnt--; 519 } 520 } 521 522 sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK); 523 524 /* Next data can be written through BUFFER DATORT register */ 525 s->prnsts |= SDHC_SPACE_AVAILABLE; 526 527 /* Finish transfer if that was the last block of data */ 528 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 529 ((s->trnmod & SDHC_TRNS_MULTI) && 530 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) { 531 sdhci_end_transfer(s); 532 } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) { 533 s->norintsts |= SDHC_NIS_WBUFRDY; 534 } 535 536 /* Generate Block Gap Event if requested and if not the last block */ 537 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) && 538 s->blkcnt > 0) { 539 s->prnsts &= ~SDHC_DOING_WRITE; 540 if (s->norintstsen & SDHC_EISEN_BLKGAP) { 541 s->norintsts |= SDHC_EIS_BLKGAP; 542 } 543 sdhci_end_transfer(s); 544 } 545 546 sdhci_update_irq(s); 547 } 548 549 /* Write @size bytes of @value data to host controller @s Buffer Data Port 550 * register */ 551 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size) 552 { 553 unsigned i; 554 555 /* Check that there is free space left in a buffer */ 556 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) { 557 trace_sdhci_error("Can't write to data buffer: buffer full"); 558 return; 559 } 560 561 for (i = 0; i < size; i++) { 562 s->fifo_buffer[s->data_count] = value & 0xFF; 563 s->data_count++; 564 value >>= 8; 565 if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) { 566 trace_sdhci_write_dataport(s->data_count); 567 s->data_count = 0; 568 s->prnsts &= ~SDHC_SPACE_AVAILABLE; 569 if (s->prnsts & SDHC_DOING_WRITE) { 570 sdhci_write_block_to_card(s); 571 } 572 } 573 } 574 } 575 576 /* 577 * Single DMA data transfer 578 */ 579 580 /* Multi block SDMA transfer */ 581 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s) 582 { 583 bool page_aligned = false; 584 unsigned int begin; 585 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK; 586 uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12); 587 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk); 588 589 if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) { 590 qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n"); 591 return; 592 } 593 594 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for 595 * possible stop at page boundary if initial address is not page aligned, 596 * allow them to work properly */ 597 if ((s->sdmasysad % boundary_chk) == 0) { 598 page_aligned = true; 599 } 600 601 s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE; 602 if (s->trnmod & SDHC_TRNS_READ) { 603 s->prnsts |= SDHC_DOING_READ; 604 while (s->blkcnt) { 605 if (s->data_count == 0) { 606 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size); 607 } 608 begin = s->data_count; 609 if (((boundary_count + begin) < block_size) && page_aligned) { 610 s->data_count = boundary_count + begin; 611 boundary_count = 0; 612 } else { 613 s->data_count = block_size; 614 boundary_count -= block_size - begin; 615 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 616 s->blkcnt--; 617 } 618 } 619 dma_memory_write(s->dma_as, s->sdmasysad, 620 &s->fifo_buffer[begin], s->data_count - begin); 621 s->sdmasysad += s->data_count - begin; 622 if (s->data_count == block_size) { 623 s->data_count = 0; 624 } 625 if (page_aligned && boundary_count == 0) { 626 break; 627 } 628 } 629 } else { 630 s->prnsts |= SDHC_DOING_WRITE; 631 while (s->blkcnt) { 632 begin = s->data_count; 633 if (((boundary_count + begin) < block_size) && page_aligned) { 634 s->data_count = boundary_count + begin; 635 boundary_count = 0; 636 } else { 637 s->data_count = block_size; 638 boundary_count -= block_size - begin; 639 } 640 dma_memory_read(s->dma_as, s->sdmasysad, 641 &s->fifo_buffer[begin], s->data_count - begin); 642 s->sdmasysad += s->data_count - begin; 643 if (s->data_count == block_size) { 644 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size); 645 s->data_count = 0; 646 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 647 s->blkcnt--; 648 } 649 } 650 if (page_aligned && boundary_count == 0) { 651 break; 652 } 653 } 654 } 655 656 if (s->blkcnt == 0) { 657 sdhci_end_transfer(s); 658 } else { 659 if (s->norintstsen & SDHC_NISEN_DMA) { 660 s->norintsts |= SDHC_NIS_DMA; 661 } 662 sdhci_update_irq(s); 663 } 664 } 665 666 /* single block SDMA transfer */ 667 static void sdhci_sdma_transfer_single_block(SDHCIState *s) 668 { 669 uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK; 670 671 if (s->trnmod & SDHC_TRNS_READ) { 672 sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt); 673 dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt); 674 } else { 675 dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt); 676 sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt); 677 } 678 s->blkcnt--; 679 680 sdhci_end_transfer(s); 681 } 682 683 typedef struct ADMADescr { 684 hwaddr addr; 685 uint16_t length; 686 uint8_t attr; 687 uint8_t incr; 688 } ADMADescr; 689 690 static void get_adma_description(SDHCIState *s, ADMADescr *dscr) 691 { 692 uint32_t adma1 = 0; 693 uint64_t adma2 = 0; 694 hwaddr entry_addr = (hwaddr)s->admasysaddr; 695 switch (SDHC_DMA_TYPE(s->hostctl1)) { 696 case SDHC_CTRL_ADMA2_32: 697 dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2)); 698 adma2 = le64_to_cpu(adma2); 699 /* The spec does not specify endianness of descriptor table. 700 * We currently assume that it is LE. 701 */ 702 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull; 703 dscr->length = (uint16_t)extract64(adma2, 16, 16); 704 dscr->attr = (uint8_t)extract64(adma2, 0, 7); 705 dscr->incr = 8; 706 break; 707 case SDHC_CTRL_ADMA1_32: 708 dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1)); 709 adma1 = le32_to_cpu(adma1); 710 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000); 711 dscr->attr = (uint8_t)extract32(adma1, 0, 7); 712 dscr->incr = 4; 713 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) { 714 dscr->length = (uint16_t)extract32(adma1, 12, 16); 715 } else { 716 dscr->length = 4 * KiB; 717 } 718 break; 719 case SDHC_CTRL_ADMA2_64: 720 dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1); 721 dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2); 722 dscr->length = le16_to_cpu(dscr->length); 723 dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8); 724 dscr->addr = le64_to_cpu(dscr->addr); 725 dscr->attr &= (uint8_t) ~0xC0; 726 dscr->incr = 12; 727 break; 728 } 729 } 730 731 /* Advanced DMA data transfer */ 732 733 static void sdhci_do_adma(SDHCIState *s) 734 { 735 unsigned int begin, length; 736 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK; 737 ADMADescr dscr = {}; 738 int i; 739 740 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) { 741 /* Stop Multiple Transfer */ 742 sdhci_end_transfer(s); 743 return; 744 } 745 746 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) { 747 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH; 748 749 get_adma_description(s, &dscr); 750 trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr); 751 752 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) { 753 /* Indicate that error occurred in ST_FDS state */ 754 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK; 755 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS; 756 757 /* Generate ADMA error interrupt */ 758 if (s->errintstsen & SDHC_EISEN_ADMAERR) { 759 s->errintsts |= SDHC_EIS_ADMAERR; 760 s->norintsts |= SDHC_NIS_ERR; 761 } 762 763 sdhci_update_irq(s); 764 return; 765 } 766 767 length = dscr.length ? dscr.length : 64 * KiB; 768 769 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) { 770 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */ 771 if (s->trnmod & SDHC_TRNS_READ) { 772 while (length) { 773 if (s->data_count == 0) { 774 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size); 775 } 776 begin = s->data_count; 777 if ((length + begin) < block_size) { 778 s->data_count = length + begin; 779 length = 0; 780 } else { 781 s->data_count = block_size; 782 length -= block_size - begin; 783 } 784 dma_memory_write(s->dma_as, dscr.addr, 785 &s->fifo_buffer[begin], 786 s->data_count - begin); 787 dscr.addr += s->data_count - begin; 788 if (s->data_count == block_size) { 789 s->data_count = 0; 790 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 791 s->blkcnt--; 792 if (s->blkcnt == 0) { 793 break; 794 } 795 } 796 } 797 } 798 } else { 799 while (length) { 800 begin = s->data_count; 801 if ((length + begin) < block_size) { 802 s->data_count = length + begin; 803 length = 0; 804 } else { 805 s->data_count = block_size; 806 length -= block_size - begin; 807 } 808 dma_memory_read(s->dma_as, dscr.addr, 809 &s->fifo_buffer[begin], 810 s->data_count - begin); 811 dscr.addr += s->data_count - begin; 812 if (s->data_count == block_size) { 813 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size); 814 s->data_count = 0; 815 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 816 s->blkcnt--; 817 if (s->blkcnt == 0) { 818 break; 819 } 820 } 821 } 822 } 823 } 824 s->admasysaddr += dscr.incr; 825 break; 826 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */ 827 s->admasysaddr = dscr.addr; 828 trace_sdhci_adma("link", s->admasysaddr); 829 break; 830 default: 831 s->admasysaddr += dscr.incr; 832 break; 833 } 834 835 if (dscr.attr & SDHC_ADMA_ATTR_INT) { 836 trace_sdhci_adma("interrupt", s->admasysaddr); 837 if (s->norintstsen & SDHC_NISEN_DMA) { 838 s->norintsts |= SDHC_NIS_DMA; 839 } 840 841 if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) { 842 /* IRQ delivered, reschedule current transfer */ 843 break; 844 } 845 } 846 847 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */ 848 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && 849 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) { 850 trace_sdhci_adma_transfer_completed(); 851 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) && 852 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && 853 s->blkcnt != 0)) { 854 trace_sdhci_error("SD/MMC host ADMA length mismatch"); 855 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH | 856 SDHC_ADMAERR_STATE_ST_TFR; 857 if (s->errintstsen & SDHC_EISEN_ADMAERR) { 858 trace_sdhci_error("Set ADMA error flag"); 859 s->errintsts |= SDHC_EIS_ADMAERR; 860 s->norintsts |= SDHC_NIS_ERR; 861 } 862 863 sdhci_update_irq(s); 864 } 865 sdhci_end_transfer(s); 866 return; 867 } 868 869 } 870 871 /* we have unfinished business - reschedule to continue ADMA */ 872 timer_mod(s->transfer_timer, 873 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY); 874 } 875 876 /* Perform data transfer according to controller configuration */ 877 878 static void sdhci_data_transfer(void *opaque) 879 { 880 SDHCIState *s = (SDHCIState *)opaque; 881 882 if (s->trnmod & SDHC_TRNS_DMA) { 883 switch (SDHC_DMA_TYPE(s->hostctl1)) { 884 case SDHC_CTRL_SDMA: 885 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) { 886 sdhci_sdma_transfer_single_block(s); 887 } else { 888 sdhci_sdma_transfer_multi_blocks(s); 889 } 890 891 break; 892 case SDHC_CTRL_ADMA1_32: 893 if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) { 894 trace_sdhci_error("ADMA1 not supported"); 895 break; 896 } 897 898 sdhci_do_adma(s); 899 break; 900 case SDHC_CTRL_ADMA2_32: 901 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) { 902 trace_sdhci_error("ADMA2 not supported"); 903 break; 904 } 905 906 sdhci_do_adma(s); 907 break; 908 case SDHC_CTRL_ADMA2_64: 909 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) || 910 !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) { 911 trace_sdhci_error("64 bit ADMA not supported"); 912 break; 913 } 914 915 sdhci_do_adma(s); 916 break; 917 default: 918 trace_sdhci_error("Unsupported DMA type"); 919 break; 920 } 921 } else { 922 if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) { 923 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT | 924 SDHC_DAT_LINE_ACTIVE; 925 sdhci_read_block_from_card(s); 926 } else { 927 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE | 928 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT; 929 sdhci_write_block_to_card(s); 930 } 931 } 932 } 933 934 static bool sdhci_can_issue_command(SDHCIState *s) 935 { 936 if (!SDHC_CLOCK_IS_ON(s->clkcon) || 937 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) && 938 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) || 939 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY && 940 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) { 941 return false; 942 } 943 944 return true; 945 } 946 947 /* The Buffer Data Port register must be accessed in sequential and 948 * continuous manner */ 949 static inline bool 950 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num) 951 { 952 if ((s->data_count & 0x3) != byte_num) { 953 trace_sdhci_error("Non-sequential access to Buffer Data Port register" 954 "is prohibited\n"); 955 return false; 956 } 957 return true; 958 } 959 960 static void sdhci_resume_pending_transfer(SDHCIState *s) 961 { 962 timer_del(s->transfer_timer); 963 sdhci_data_transfer(s); 964 } 965 966 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size) 967 { 968 SDHCIState *s = (SDHCIState *)opaque; 969 uint32_t ret = 0; 970 971 if (timer_pending(s->transfer_timer)) { 972 sdhci_resume_pending_transfer(s); 973 } 974 975 switch (offset & ~0x3) { 976 case SDHC_SYSAD: 977 ret = s->sdmasysad; 978 break; 979 case SDHC_BLKSIZE: 980 ret = s->blksize | (s->blkcnt << 16); 981 break; 982 case SDHC_ARGUMENT: 983 ret = s->argument; 984 break; 985 case SDHC_TRNMOD: 986 ret = s->trnmod | (s->cmdreg << 16); 987 break; 988 case SDHC_RSPREG0 ... SDHC_RSPREG3: 989 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2]; 990 break; 991 case SDHC_BDATA: 992 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { 993 ret = sdhci_read_dataport(s, size); 994 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret); 995 return ret; 996 } 997 break; 998 case SDHC_PRNSTS: 999 ret = s->prnsts; 1000 ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL, 1001 sdbus_get_dat_lines(&s->sdbus)); 1002 ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL, 1003 sdbus_get_cmd_line(&s->sdbus)); 1004 break; 1005 case SDHC_HOSTCTL: 1006 ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) | 1007 (s->wakcon << 24); 1008 break; 1009 case SDHC_CLKCON: 1010 ret = s->clkcon | (s->timeoutcon << 16); 1011 break; 1012 case SDHC_NORINTSTS: 1013 ret = s->norintsts | (s->errintsts << 16); 1014 break; 1015 case SDHC_NORINTSTSEN: 1016 ret = s->norintstsen | (s->errintstsen << 16); 1017 break; 1018 case SDHC_NORINTSIGEN: 1019 ret = s->norintsigen | (s->errintsigen << 16); 1020 break; 1021 case SDHC_ACMD12ERRSTS: 1022 ret = s->acmd12errsts | (s->hostctl2 << 16); 1023 break; 1024 case SDHC_CAPAB: 1025 ret = (uint32_t)s->capareg; 1026 break; 1027 case SDHC_CAPAB + 4: 1028 ret = (uint32_t)(s->capareg >> 32); 1029 break; 1030 case SDHC_MAXCURR: 1031 ret = (uint32_t)s->maxcurr; 1032 break; 1033 case SDHC_MAXCURR + 4: 1034 ret = (uint32_t)(s->maxcurr >> 32); 1035 break; 1036 case SDHC_ADMAERR: 1037 ret = s->admaerr; 1038 break; 1039 case SDHC_ADMASYSADDR: 1040 ret = (uint32_t)s->admasysaddr; 1041 break; 1042 case SDHC_ADMASYSADDR + 4: 1043 ret = (uint32_t)(s->admasysaddr >> 32); 1044 break; 1045 case SDHC_SLOT_INT_STATUS: 1046 ret = (s->version << 16) | sdhci_slotint(s); 1047 break; 1048 default: 1049 qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " " 1050 "not implemented\n", size, offset); 1051 break; 1052 } 1053 1054 ret >>= (offset & 0x3) * 8; 1055 ret &= (1ULL << (size * 8)) - 1; 1056 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret); 1057 return ret; 1058 } 1059 1060 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value) 1061 { 1062 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) { 1063 return; 1064 } 1065 s->blkgap = value & SDHC_STOP_AT_GAP_REQ; 1066 1067 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state && 1068 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) { 1069 if (s->stopped_state == sdhc_gap_read) { 1070 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ; 1071 sdhci_read_block_from_card(s); 1072 } else { 1073 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE; 1074 sdhci_write_block_to_card(s); 1075 } 1076 s->stopped_state = sdhc_not_stopped; 1077 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) { 1078 if (s->prnsts & SDHC_DOING_READ) { 1079 s->stopped_state = sdhc_gap_read; 1080 } else if (s->prnsts & SDHC_DOING_WRITE) { 1081 s->stopped_state = sdhc_gap_write; 1082 } 1083 } 1084 } 1085 1086 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value) 1087 { 1088 switch (value) { 1089 case SDHC_RESET_ALL: 1090 sdhci_reset(s); 1091 break; 1092 case SDHC_RESET_CMD: 1093 s->prnsts &= ~SDHC_CMD_INHIBIT; 1094 s->norintsts &= ~SDHC_NIS_CMDCMP; 1095 break; 1096 case SDHC_RESET_DATA: 1097 s->data_count = 0; 1098 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE | 1099 SDHC_DOING_READ | SDHC_DOING_WRITE | 1100 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE); 1101 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ); 1102 s->stopped_state = sdhc_not_stopped; 1103 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY | 1104 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP); 1105 break; 1106 } 1107 } 1108 1109 static void 1110 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) 1111 { 1112 SDHCIState *s = (SDHCIState *)opaque; 1113 unsigned shift = 8 * (offset & 0x3); 1114 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift); 1115 uint32_t value = val; 1116 value <<= shift; 1117 1118 if (timer_pending(s->transfer_timer)) { 1119 sdhci_resume_pending_transfer(s); 1120 } 1121 1122 switch (offset & ~0x3) { 1123 case SDHC_SYSAD: 1124 s->sdmasysad = (s->sdmasysad & mask) | value; 1125 MASKED_WRITE(s->sdmasysad, mask, value); 1126 /* Writing to last byte of sdmasysad might trigger transfer */ 1127 if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt && 1128 s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) { 1129 if (s->trnmod & SDHC_TRNS_MULTI) { 1130 sdhci_sdma_transfer_multi_blocks(s); 1131 } else { 1132 sdhci_sdma_transfer_single_block(s); 1133 } 1134 } 1135 break; 1136 case SDHC_BLKSIZE: 1137 if (!TRANSFERRING_DATA(s->prnsts)) { 1138 MASKED_WRITE(s->blksize, mask, extract32(value, 0, 12)); 1139 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16); 1140 } 1141 1142 /* Limit block size to the maximum buffer size */ 1143 if (extract32(s->blksize, 0, 12) > s->buf_maxsz) { 1144 qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " 1145 "the maximum buffer 0x%x\n", __func__, s->blksize, 1146 s->buf_maxsz); 1147 1148 s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz); 1149 } 1150 1151 break; 1152 case SDHC_ARGUMENT: 1153 MASKED_WRITE(s->argument, mask, value); 1154 break; 1155 case SDHC_TRNMOD: 1156 /* DMA can be enabled only if it is supported as indicated by 1157 * capabilities register */ 1158 if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) { 1159 value &= ~SDHC_TRNS_DMA; 1160 } 1161 MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK); 1162 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16); 1163 1164 /* Writing to the upper byte of CMDREG triggers SD command generation */ 1165 if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) { 1166 break; 1167 } 1168 1169 sdhci_send_command(s); 1170 break; 1171 case SDHC_BDATA: 1172 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { 1173 sdhci_write_dataport(s, value >> shift, size); 1174 } 1175 break; 1176 case SDHC_HOSTCTL: 1177 if (!(mask & 0xFF0000)) { 1178 sdhci_blkgap_write(s, value >> 16); 1179 } 1180 MASKED_WRITE(s->hostctl1, mask, value); 1181 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8); 1182 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24); 1183 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 || 1184 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) { 1185 s->pwrcon &= ~SDHC_POWER_ON; 1186 } 1187 break; 1188 case SDHC_CLKCON: 1189 if (!(mask & 0xFF000000)) { 1190 sdhci_reset_write(s, value >> 24); 1191 } 1192 MASKED_WRITE(s->clkcon, mask, value); 1193 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16); 1194 if (s->clkcon & SDHC_CLOCK_INT_EN) { 1195 s->clkcon |= SDHC_CLOCK_INT_STABLE; 1196 } else { 1197 s->clkcon &= ~SDHC_CLOCK_INT_STABLE; 1198 } 1199 break; 1200 case SDHC_NORINTSTS: 1201 if (s->norintstsen & SDHC_NISEN_CARDINT) { 1202 value &= ~SDHC_NIS_CARDINT; 1203 } 1204 s->norintsts &= mask | ~value; 1205 s->errintsts &= (mask >> 16) | ~(value >> 16); 1206 if (s->errintsts) { 1207 s->norintsts |= SDHC_NIS_ERR; 1208 } else { 1209 s->norintsts &= ~SDHC_NIS_ERR; 1210 } 1211 sdhci_update_irq(s); 1212 break; 1213 case SDHC_NORINTSTSEN: 1214 MASKED_WRITE(s->norintstsen, mask, value); 1215 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16); 1216 s->norintsts &= s->norintstsen; 1217 s->errintsts &= s->errintstsen; 1218 if (s->errintsts) { 1219 s->norintsts |= SDHC_NIS_ERR; 1220 } else { 1221 s->norintsts &= ~SDHC_NIS_ERR; 1222 } 1223 /* Quirk for Raspberry Pi: pending card insert interrupt 1224 * appears when first enabled after power on */ 1225 if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) { 1226 assert(s->pending_insert_quirk); 1227 s->norintsts |= SDHC_NIS_INSERT; 1228 s->pending_insert_state = false; 1229 } 1230 sdhci_update_irq(s); 1231 break; 1232 case SDHC_NORINTSIGEN: 1233 MASKED_WRITE(s->norintsigen, mask, value); 1234 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16); 1235 sdhci_update_irq(s); 1236 break; 1237 case SDHC_ADMAERR: 1238 MASKED_WRITE(s->admaerr, mask, value); 1239 break; 1240 case SDHC_ADMASYSADDR: 1241 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL | 1242 (uint64_t)mask)) | (uint64_t)value; 1243 break; 1244 case SDHC_ADMASYSADDR + 4: 1245 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL | 1246 ((uint64_t)mask << 32))) | ((uint64_t)value << 32); 1247 break; 1248 case SDHC_FEAER: 1249 s->acmd12errsts |= value; 1250 s->errintsts |= (value >> 16) & s->errintstsen; 1251 if (s->acmd12errsts) { 1252 s->errintsts |= SDHC_EIS_CMD12ERR; 1253 } 1254 if (s->errintsts) { 1255 s->norintsts |= SDHC_NIS_ERR; 1256 } 1257 sdhci_update_irq(s); 1258 break; 1259 case SDHC_ACMD12ERRSTS: 1260 MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX); 1261 if (s->uhs_mode >= UHS_I) { 1262 MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16); 1263 1264 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) { 1265 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V); 1266 } else { 1267 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V); 1268 } 1269 } 1270 break; 1271 1272 case SDHC_CAPAB: 1273 case SDHC_CAPAB + 4: 1274 case SDHC_MAXCURR: 1275 case SDHC_MAXCURR + 4: 1276 qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx 1277 " <- 0x%08x read-only\n", size, offset, value >> shift); 1278 break; 1279 1280 default: 1281 qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x " 1282 "not implemented\n", size, offset, value >> shift); 1283 break; 1284 } 1285 trace_sdhci_access("wr", size << 3, offset, "<-", 1286 value >> shift, value >> shift); 1287 } 1288 1289 static const MemoryRegionOps sdhci_mmio_ops = { 1290 .read = sdhci_read, 1291 .write = sdhci_write, 1292 .valid = { 1293 .min_access_size = 1, 1294 .max_access_size = 4, 1295 .unaligned = false 1296 }, 1297 .endianness = DEVICE_LITTLE_ENDIAN, 1298 }; 1299 1300 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp) 1301 { 1302 ERRP_GUARD(); 1303 1304 switch (s->sd_spec_version) { 1305 case 2 ... 3: 1306 break; 1307 default: 1308 error_setg(errp, "Only Spec v2/v3 are supported"); 1309 return; 1310 } 1311 s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1); 1312 1313 sdhci_check_capareg(s, errp); 1314 if (*errp) { 1315 return; 1316 } 1317 } 1318 1319 /* --- qdev common --- */ 1320 1321 void sdhci_initfn(SDHCIState *s) 1322 { 1323 qbus_create_inplace(&s->sdbus, sizeof(s->sdbus), 1324 TYPE_SDHCI_BUS, DEVICE(s), "sd-bus"); 1325 1326 s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s); 1327 s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s); 1328 1329 s->io_ops = &sdhci_mmio_ops; 1330 } 1331 1332 void sdhci_uninitfn(SDHCIState *s) 1333 { 1334 timer_free(s->insert_timer); 1335 timer_free(s->transfer_timer); 1336 1337 g_free(s->fifo_buffer); 1338 s->fifo_buffer = NULL; 1339 } 1340 1341 void sdhci_common_realize(SDHCIState *s, Error **errp) 1342 { 1343 ERRP_GUARD(); 1344 1345 sdhci_init_readonly_registers(s, errp); 1346 if (*errp) { 1347 return; 1348 } 1349 s->buf_maxsz = sdhci_get_fifolen(s); 1350 s->fifo_buffer = g_malloc0(s->buf_maxsz); 1351 1352 memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci", 1353 SDHC_REGISTERS_MAP_SIZE); 1354 } 1355 1356 void sdhci_common_unrealize(SDHCIState *s) 1357 { 1358 /* This function is expected to be called only once for each class: 1359 * - SysBus: via DeviceClass->unrealize(), 1360 * - PCI: via PCIDeviceClass->exit(). 1361 * However to avoid double-free and/or use-after-free we still nullify 1362 * this variable (better safe than sorry!). */ 1363 g_free(s->fifo_buffer); 1364 s->fifo_buffer = NULL; 1365 } 1366 1367 static bool sdhci_pending_insert_vmstate_needed(void *opaque) 1368 { 1369 SDHCIState *s = opaque; 1370 1371 return s->pending_insert_state; 1372 } 1373 1374 static const VMStateDescription sdhci_pending_insert_vmstate = { 1375 .name = "sdhci/pending-insert", 1376 .version_id = 1, 1377 .minimum_version_id = 1, 1378 .needed = sdhci_pending_insert_vmstate_needed, 1379 .fields = (VMStateField[]) { 1380 VMSTATE_BOOL(pending_insert_state, SDHCIState), 1381 VMSTATE_END_OF_LIST() 1382 }, 1383 }; 1384 1385 const VMStateDescription sdhci_vmstate = { 1386 .name = "sdhci", 1387 .version_id = 1, 1388 .minimum_version_id = 1, 1389 .fields = (VMStateField[]) { 1390 VMSTATE_UINT32(sdmasysad, SDHCIState), 1391 VMSTATE_UINT16(blksize, SDHCIState), 1392 VMSTATE_UINT16(blkcnt, SDHCIState), 1393 VMSTATE_UINT32(argument, SDHCIState), 1394 VMSTATE_UINT16(trnmod, SDHCIState), 1395 VMSTATE_UINT16(cmdreg, SDHCIState), 1396 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4), 1397 VMSTATE_UINT32(prnsts, SDHCIState), 1398 VMSTATE_UINT8(hostctl1, SDHCIState), 1399 VMSTATE_UINT8(pwrcon, SDHCIState), 1400 VMSTATE_UINT8(blkgap, SDHCIState), 1401 VMSTATE_UINT8(wakcon, SDHCIState), 1402 VMSTATE_UINT16(clkcon, SDHCIState), 1403 VMSTATE_UINT8(timeoutcon, SDHCIState), 1404 VMSTATE_UINT8(admaerr, SDHCIState), 1405 VMSTATE_UINT16(norintsts, SDHCIState), 1406 VMSTATE_UINT16(errintsts, SDHCIState), 1407 VMSTATE_UINT16(norintstsen, SDHCIState), 1408 VMSTATE_UINT16(errintstsen, SDHCIState), 1409 VMSTATE_UINT16(norintsigen, SDHCIState), 1410 VMSTATE_UINT16(errintsigen, SDHCIState), 1411 VMSTATE_UINT16(acmd12errsts, SDHCIState), 1412 VMSTATE_UINT16(data_count, SDHCIState), 1413 VMSTATE_UINT64(admasysaddr, SDHCIState), 1414 VMSTATE_UINT8(stopped_state, SDHCIState), 1415 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz), 1416 VMSTATE_TIMER_PTR(insert_timer, SDHCIState), 1417 VMSTATE_TIMER_PTR(transfer_timer, SDHCIState), 1418 VMSTATE_END_OF_LIST() 1419 }, 1420 .subsections = (const VMStateDescription*[]) { 1421 &sdhci_pending_insert_vmstate, 1422 NULL 1423 }, 1424 }; 1425 1426 void sdhci_common_class_init(ObjectClass *klass, void *data) 1427 { 1428 DeviceClass *dc = DEVICE_CLASS(klass); 1429 1430 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1431 dc->vmsd = &sdhci_vmstate; 1432 dc->reset = sdhci_poweron_reset; 1433 } 1434 1435 /* --- qdev SysBus --- */ 1436 1437 static Property sdhci_sysbus_properties[] = { 1438 DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState), 1439 DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk, 1440 false), 1441 DEFINE_PROP_LINK("dma", SDHCIState, 1442 dma_mr, TYPE_MEMORY_REGION, MemoryRegion *), 1443 DEFINE_PROP_END_OF_LIST(), 1444 }; 1445 1446 static void sdhci_sysbus_init(Object *obj) 1447 { 1448 SDHCIState *s = SYSBUS_SDHCI(obj); 1449 1450 sdhci_initfn(s); 1451 } 1452 1453 static void sdhci_sysbus_finalize(Object *obj) 1454 { 1455 SDHCIState *s = SYSBUS_SDHCI(obj); 1456 1457 if (s->dma_mr) { 1458 object_unparent(OBJECT(s->dma_mr)); 1459 } 1460 1461 sdhci_uninitfn(s); 1462 } 1463 1464 static void sdhci_sysbus_realize(DeviceState *dev, Error **errp) 1465 { 1466 ERRP_GUARD(); 1467 SDHCIState *s = SYSBUS_SDHCI(dev); 1468 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1469 1470 sdhci_common_realize(s, errp); 1471 if (*errp) { 1472 return; 1473 } 1474 1475 if (s->dma_mr) { 1476 s->dma_as = &s->sysbus_dma_as; 1477 address_space_init(s->dma_as, s->dma_mr, "sdhci-dma"); 1478 } else { 1479 /* use system_memory() if property "dma" not set */ 1480 s->dma_as = &address_space_memory; 1481 } 1482 1483 sysbus_init_irq(sbd, &s->irq); 1484 1485 sysbus_init_mmio(sbd, &s->iomem); 1486 } 1487 1488 static void sdhci_sysbus_unrealize(DeviceState *dev) 1489 { 1490 SDHCIState *s = SYSBUS_SDHCI(dev); 1491 1492 sdhci_common_unrealize(s); 1493 1494 if (s->dma_mr) { 1495 address_space_destroy(s->dma_as); 1496 } 1497 } 1498 1499 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data) 1500 { 1501 DeviceClass *dc = DEVICE_CLASS(klass); 1502 1503 device_class_set_props(dc, sdhci_sysbus_properties); 1504 dc->realize = sdhci_sysbus_realize; 1505 dc->unrealize = sdhci_sysbus_unrealize; 1506 1507 sdhci_common_class_init(klass, data); 1508 } 1509 1510 static const TypeInfo sdhci_sysbus_info = { 1511 .name = TYPE_SYSBUS_SDHCI, 1512 .parent = TYPE_SYS_BUS_DEVICE, 1513 .instance_size = sizeof(SDHCIState), 1514 .instance_init = sdhci_sysbus_init, 1515 .instance_finalize = sdhci_sysbus_finalize, 1516 .class_init = sdhci_sysbus_class_init, 1517 }; 1518 1519 /* --- qdev bus master --- */ 1520 1521 static void sdhci_bus_class_init(ObjectClass *klass, void *data) 1522 { 1523 SDBusClass *sbc = SD_BUS_CLASS(klass); 1524 1525 sbc->set_inserted = sdhci_set_inserted; 1526 sbc->set_readonly = sdhci_set_readonly; 1527 } 1528 1529 static const TypeInfo sdhci_bus_info = { 1530 .name = TYPE_SDHCI_BUS, 1531 .parent = TYPE_SD_BUS, 1532 .instance_size = sizeof(SDBus), 1533 .class_init = sdhci_bus_class_init, 1534 }; 1535 1536 /* --- qdev i.MX eSDHC --- */ 1537 1538 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size) 1539 { 1540 SDHCIState *s = SYSBUS_SDHCI(opaque); 1541 uint32_t ret; 1542 uint16_t hostctl1; 1543 1544 switch (offset) { 1545 default: 1546 return sdhci_read(opaque, offset, size); 1547 1548 case SDHC_HOSTCTL: 1549 /* 1550 * For a detailed explanation on the following bit 1551 * manipulation code see comments in a similar part of 1552 * usdhc_write() 1553 */ 1554 hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3); 1555 1556 if (s->hostctl1 & SDHC_CTRL_8BITBUS) { 1557 hostctl1 |= ESDHC_CTRL_8BITBUS; 1558 } 1559 1560 if (s->hostctl1 & SDHC_CTRL_4BITBUS) { 1561 hostctl1 |= ESDHC_CTRL_4BITBUS; 1562 } 1563 1564 ret = hostctl1; 1565 ret |= (uint32_t)s->blkgap << 16; 1566 ret |= (uint32_t)s->wakcon << 24; 1567 1568 break; 1569 1570 case SDHC_PRNSTS: 1571 /* Add SDSTB (SD Clock Stable) bit to PRNSTS */ 1572 ret = sdhci_read(opaque, offset, size) & ~ESDHC_PRNSTS_SDSTB; 1573 if (s->clkcon & SDHC_CLOCK_INT_STABLE) { 1574 ret |= ESDHC_PRNSTS_SDSTB; 1575 } 1576 break; 1577 1578 case ESDHC_VENDOR_SPEC: 1579 ret = s->vendor_spec; 1580 break; 1581 case ESDHC_DLL_CTRL: 1582 case ESDHC_TUNE_CTRL_STATUS: 1583 case ESDHC_UNDOCUMENTED_REG27: 1584 case ESDHC_TUNING_CTRL: 1585 case ESDHC_MIX_CTRL: 1586 case ESDHC_WTMK_LVL: 1587 ret = 0; 1588 break; 1589 } 1590 1591 return ret; 1592 } 1593 1594 static void 1595 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) 1596 { 1597 SDHCIState *s = SYSBUS_SDHCI(opaque); 1598 uint8_t hostctl1; 1599 uint32_t value = (uint32_t)val; 1600 1601 switch (offset) { 1602 case ESDHC_DLL_CTRL: 1603 case ESDHC_TUNE_CTRL_STATUS: 1604 case ESDHC_UNDOCUMENTED_REG27: 1605 case ESDHC_TUNING_CTRL: 1606 case ESDHC_WTMK_LVL: 1607 break; 1608 1609 case ESDHC_VENDOR_SPEC: 1610 s->vendor_spec = value; 1611 switch (s->vendor) { 1612 case SDHCI_VENDOR_IMX: 1613 if (value & ESDHC_IMX_FRC_SDCLK_ON) { 1614 s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF; 1615 } else { 1616 s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF; 1617 } 1618 break; 1619 default: 1620 break; 1621 } 1622 break; 1623 1624 case SDHC_HOSTCTL: 1625 /* 1626 * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL) 1627 * 1628 * 7 6 5 4 3 2 1 0 1629 * |-----------+--------+--------+-----------+----------+---------| 1630 * | Card | Card | Endian | DATA3 | Data | Led | 1631 * | Detect | Detect | Mode | as Card | Transfer | Control | 1632 * | Signal | Test | | Detection | Width | | 1633 * | Selection | Level | | Pin | | | 1634 * |-----------+--------+--------+-----------+----------+---------| 1635 * 1636 * and 0x29 1637 * 1638 * 15 10 9 8 1639 * |----------+------| 1640 * | Reserved | DMA | 1641 * | | Sel. | 1642 * | | | 1643 * |----------+------| 1644 * 1645 * and here's what SDCHI spec expects those offsets to be: 1646 * 1647 * 0x28 (Host Control Register) 1648 * 1649 * 7 6 5 4 3 2 1 0 1650 * |--------+--------+----------+------+--------+----------+---------| 1651 * | Card | Card | Extended | DMA | High | Data | LED | 1652 * | Detect | Detect | Data | Sel. | Speed | Transfer | Control | 1653 * | Signal | Test | Transfer | | Enable | Width | | 1654 * | Sel. | Level | Width | | | | | 1655 * |--------+--------+----------+------+--------+----------+---------| 1656 * 1657 * and 0x29 (Power Control Register) 1658 * 1659 * |----------------------------------| 1660 * | Power Control Register | 1661 * | | 1662 * | Description omitted, | 1663 * | since it has no analog in ESDHCI | 1664 * | | 1665 * |----------------------------------| 1666 * 1667 * Since offsets 0x2A and 0x2B should be compatible between 1668 * both IP specs we only need to reconcile least 16-bit of the 1669 * word we've been given. 1670 */ 1671 1672 /* 1673 * First, save bits 7 6 and 0 since they are identical 1674 */ 1675 hostctl1 = value & (SDHC_CTRL_LED | 1676 SDHC_CTRL_CDTEST_INS | 1677 SDHC_CTRL_CDTEST_EN); 1678 /* 1679 * Second, split "Data Transfer Width" from bits 2 and 1 in to 1680 * bits 5 and 1 1681 */ 1682 if (value & ESDHC_CTRL_8BITBUS) { 1683 hostctl1 |= SDHC_CTRL_8BITBUS; 1684 } 1685 1686 if (value & ESDHC_CTRL_4BITBUS) { 1687 hostctl1 |= ESDHC_CTRL_4BITBUS; 1688 } 1689 1690 /* 1691 * Third, move DMA select from bits 9 and 8 to bits 4 and 3 1692 */ 1693 hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3)); 1694 1695 /* 1696 * Now place the corrected value into low 16-bit of the value 1697 * we are going to give standard SDHCI write function 1698 * 1699 * NOTE: This transformation should be the inverse of what can 1700 * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux 1701 * kernel 1702 */ 1703 value &= ~UINT16_MAX; 1704 value |= hostctl1; 1705 value |= (uint16_t)s->pwrcon << 8; 1706 1707 sdhci_write(opaque, offset, value, size); 1708 break; 1709 1710 case ESDHC_MIX_CTRL: 1711 /* 1712 * So, when SD/MMC stack in Linux tries to write to "Transfer 1713 * Mode Register", ESDHC i.MX quirk code will translate it 1714 * into a write to ESDHC_MIX_CTRL, so we do the opposite in 1715 * order to get where we started 1716 * 1717 * Note that Auto CMD23 Enable bit is located in a wrong place 1718 * on i.MX, but since it is not used by QEMU we do not care. 1719 * 1720 * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...) 1721 * here becuase it will result in a call to 1722 * sdhci_send_command(s) which we don't want. 1723 * 1724 */ 1725 s->trnmod = value & UINT16_MAX; 1726 break; 1727 case SDHC_TRNMOD: 1728 /* 1729 * Similar to above, but this time a write to "Command 1730 * Register" will be translated into a 4-byte write to 1731 * "Transfer Mode register" where lower 16-bit of value would 1732 * be set to zero. So what we do is fill those bits with 1733 * cached value from s->trnmod and let the SDHCI 1734 * infrastructure handle the rest 1735 */ 1736 sdhci_write(opaque, offset, val | s->trnmod, size); 1737 break; 1738 case SDHC_BLKSIZE: 1739 /* 1740 * ESDHCI does not implement "Host SDMA Buffer Boundary", and 1741 * Linux driver will try to zero this field out which will 1742 * break the rest of SDHCI emulation. 1743 * 1744 * Linux defaults to maximum possible setting (512K boundary) 1745 * and it seems to be the only option that i.MX IP implements, 1746 * so we artificially set it to that value. 1747 */ 1748 val |= 0x7 << 12; 1749 /* FALLTHROUGH */ 1750 default: 1751 sdhci_write(opaque, offset, val, size); 1752 break; 1753 } 1754 } 1755 1756 static const MemoryRegionOps usdhc_mmio_ops = { 1757 .read = usdhc_read, 1758 .write = usdhc_write, 1759 .valid = { 1760 .min_access_size = 1, 1761 .max_access_size = 4, 1762 .unaligned = false 1763 }, 1764 .endianness = DEVICE_LITTLE_ENDIAN, 1765 }; 1766 1767 static void imx_usdhc_init(Object *obj) 1768 { 1769 SDHCIState *s = SYSBUS_SDHCI(obj); 1770 1771 s->io_ops = &usdhc_mmio_ops; 1772 s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ; 1773 } 1774 1775 static const TypeInfo imx_usdhc_info = { 1776 .name = TYPE_IMX_USDHC, 1777 .parent = TYPE_SYSBUS_SDHCI, 1778 .instance_init = imx_usdhc_init, 1779 }; 1780 1781 /* --- qdev Samsung s3c --- */ 1782 1783 #define S3C_SDHCI_CONTROL2 0x80 1784 #define S3C_SDHCI_CONTROL3 0x84 1785 #define S3C_SDHCI_CONTROL4 0x8c 1786 1787 static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size) 1788 { 1789 uint64_t ret; 1790 1791 switch (offset) { 1792 case S3C_SDHCI_CONTROL2: 1793 case S3C_SDHCI_CONTROL3: 1794 case S3C_SDHCI_CONTROL4: 1795 /* ignore */ 1796 ret = 0; 1797 break; 1798 default: 1799 ret = sdhci_read(opaque, offset, size); 1800 break; 1801 } 1802 1803 return ret; 1804 } 1805 1806 static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val, 1807 unsigned size) 1808 { 1809 switch (offset) { 1810 case S3C_SDHCI_CONTROL2: 1811 case S3C_SDHCI_CONTROL3: 1812 case S3C_SDHCI_CONTROL4: 1813 /* ignore */ 1814 break; 1815 default: 1816 sdhci_write(opaque, offset, val, size); 1817 break; 1818 } 1819 } 1820 1821 static const MemoryRegionOps sdhci_s3c_mmio_ops = { 1822 .read = sdhci_s3c_read, 1823 .write = sdhci_s3c_write, 1824 .valid = { 1825 .min_access_size = 1, 1826 .max_access_size = 4, 1827 .unaligned = false 1828 }, 1829 .endianness = DEVICE_LITTLE_ENDIAN, 1830 }; 1831 1832 static void sdhci_s3c_init(Object *obj) 1833 { 1834 SDHCIState *s = SYSBUS_SDHCI(obj); 1835 1836 s->io_ops = &sdhci_s3c_mmio_ops; 1837 } 1838 1839 static const TypeInfo sdhci_s3c_info = { 1840 .name = TYPE_S3C_SDHCI , 1841 .parent = TYPE_SYSBUS_SDHCI, 1842 .instance_init = sdhci_s3c_init, 1843 }; 1844 1845 static void sdhci_register_types(void) 1846 { 1847 type_register_static(&sdhci_sysbus_info); 1848 type_register_static(&sdhci_bus_info); 1849 type_register_static(&imx_usdhc_info); 1850 type_register_static(&sdhci_s3c_info); 1851 } 1852 1853 type_init(sdhci_register_types) 1854