xref: /qemu/hw/sd/sdhci.c (revision 598a40b30f13b3cde6764173449671d0d8c4d058)
1 /*
2  * SD Association Host Standard Specification v2.0 controller emulation
3  *
4  * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf
5  *
6  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
7  * Mitsyanko Igor <i.mitsyanko@samsung.com>
8  * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
9  *
10  * Based on MMC controller for Samsung S5PC1xx-based board emulation
11  * by Alexey Merkulov and Vladimir Monakhov.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the
15  * Free Software Foundation; either version 2 of the License, or (at your
16  * option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License along
24  * with this program; if not, see <http://www.gnu.org/licenses/>.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/units.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31 #include "hw/irq.h"
32 #include "hw/qdev-properties.h"
33 #include "sysemu/dma.h"
34 #include "qemu/timer.h"
35 #include "qemu/bitops.h"
36 #include "hw/sd/sdhci.h"
37 #include "migration/vmstate.h"
38 #include "sdhci-internal.h"
39 #include "qemu/log.h"
40 #include "qemu/module.h"
41 #include "trace.h"
42 #include "qom/object.h"
43 
44 #define TYPE_SDHCI_BUS "sdhci-bus"
45 /* This is reusing the SDBus typedef from SD_BUS */
46 DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS,
47                          TYPE_SDHCI_BUS)
48 
49 #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
50 
51 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
52 {
53     return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
54 }
55 
56 /* return true on error */
57 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
58                                          uint8_t freq, Error **errp)
59 {
60     if (s->sd_spec_version >= 3) {
61         return false;
62     }
63     switch (freq) {
64     case 0:
65     case 10 ... 63:
66         break;
67     default:
68         error_setg(errp, "SD %s clock frequency can have value"
69                    "in range 0-63 only", desc);
70         return true;
71     }
72     return false;
73 }
74 
75 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
76 {
77     uint64_t msk = s->capareg;
78     uint32_t val;
79     bool y;
80 
81     switch (s->sd_spec_version) {
82     case 4:
83         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
84         trace_sdhci_capareg("64-bit system bus (v4)", val);
85         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
86 
87         val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
88         trace_sdhci_capareg("UHS-II", val);
89         msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
90 
91         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
92         trace_sdhci_capareg("ADMA3", val);
93         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
94 
95     /* fallthrough */
96     case 3:
97         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
98         trace_sdhci_capareg("async interrupt", val);
99         msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
100 
101         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
102         if (val) {
103             error_setg(errp, "slot-type not supported");
104             return;
105         }
106         trace_sdhci_capareg("slot type", val);
107         msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
108 
109         if (val != 2) {
110             val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
111             trace_sdhci_capareg("8-bit bus", val);
112         }
113         msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
114 
115         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
116         trace_sdhci_capareg("bus speed mask", val);
117         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
118 
119         val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
120         trace_sdhci_capareg("driver strength mask", val);
121         msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
122 
123         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
124         trace_sdhci_capareg("timer re-tuning", val);
125         msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
126 
127         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
128         trace_sdhci_capareg("use SDR50 tuning", val);
129         msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
130 
131         val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
132         trace_sdhci_capareg("re-tuning mode", val);
133         msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
134 
135         val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
136         trace_sdhci_capareg("clock multiplier", val);
137         msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
138 
139     /* fallthrough */
140     case 2: /* default version */
141         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
142         trace_sdhci_capareg("ADMA2", val);
143         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
144 
145         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
146         trace_sdhci_capareg("ADMA1", val);
147         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
148 
149         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
150         trace_sdhci_capareg("64-bit system bus (v3)", val);
151         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
152 
153     /* fallthrough */
154     case 1:
155         y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
156         msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
157 
158         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
159         trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
160         if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
161             return;
162         }
163         msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
164 
165         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
166         trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
167         if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
168             return;
169         }
170         msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
171 
172         val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
173         if (val >= 3) {
174             error_setg(errp, "block size can be 512, 1024 or 2048 only");
175             return;
176         }
177         trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
178         msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
179 
180         val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
181         trace_sdhci_capareg("high speed", val);
182         msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
183 
184         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
185         trace_sdhci_capareg("SDMA", val);
186         msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
187 
188         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
189         trace_sdhci_capareg("suspend/resume", val);
190         msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
191 
192         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
193         trace_sdhci_capareg("3.3v", val);
194         msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
195 
196         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
197         trace_sdhci_capareg("3.0v", val);
198         msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
199 
200         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
201         trace_sdhci_capareg("1.8v", val);
202         msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
203         break;
204 
205     default:
206         error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
207     }
208     if (msk) {
209         qemu_log_mask(LOG_UNIMP,
210                       "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
211     }
212 }
213 
214 static uint8_t sdhci_slotint(SDHCIState *s)
215 {
216     return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
217          ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
218          ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
219 }
220 
221 static inline void sdhci_update_irq(SDHCIState *s)
222 {
223     qemu_set_irq(s->irq, sdhci_slotint(s));
224 }
225 
226 static void sdhci_raise_insertion_irq(void *opaque)
227 {
228     SDHCIState *s = (SDHCIState *)opaque;
229 
230     if (s->norintsts & SDHC_NIS_REMOVE) {
231         timer_mod(s->insert_timer,
232                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
233     } else {
234         s->prnsts = 0x1ff0000;
235         if (s->norintstsen & SDHC_NISEN_INSERT) {
236             s->norintsts |= SDHC_NIS_INSERT;
237         }
238         sdhci_update_irq(s);
239     }
240 }
241 
242 static void sdhci_set_inserted(DeviceState *dev, bool level)
243 {
244     SDHCIState *s = (SDHCIState *)dev;
245 
246     trace_sdhci_set_inserted(level ? "insert" : "eject");
247     if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
248         /* Give target some time to notice card ejection */
249         timer_mod(s->insert_timer,
250                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
251     } else {
252         if (level) {
253             s->prnsts = 0x1ff0000;
254             if (s->norintstsen & SDHC_NISEN_INSERT) {
255                 s->norintsts |= SDHC_NIS_INSERT;
256             }
257         } else {
258             s->prnsts = 0x1fa0000;
259             s->pwrcon &= ~SDHC_POWER_ON;
260             s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
261             if (s->norintstsen & SDHC_NISEN_REMOVE) {
262                 s->norintsts |= SDHC_NIS_REMOVE;
263             }
264         }
265         sdhci_update_irq(s);
266     }
267 }
268 
269 static void sdhci_set_readonly(DeviceState *dev, bool level)
270 {
271     SDHCIState *s = (SDHCIState *)dev;
272 
273     if (level) {
274         s->prnsts &= ~SDHC_WRITE_PROTECT;
275     } else {
276         /* Write enabled */
277         s->prnsts |= SDHC_WRITE_PROTECT;
278     }
279 }
280 
281 static void sdhci_reset(SDHCIState *s)
282 {
283     DeviceState *dev = DEVICE(s);
284 
285     timer_del(s->insert_timer);
286     timer_del(s->transfer_timer);
287 
288     /* Set all registers to 0. Capabilities/Version registers are not cleared
289      * and assumed to always preserve their value, given to them during
290      * initialization */
291     memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
292 
293     /* Reset other state based on current card insertion/readonly status */
294     sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
295     sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
296 
297     s->data_count = 0;
298     s->stopped_state = sdhc_not_stopped;
299     s->pending_insert_state = false;
300 }
301 
302 static void sdhci_poweron_reset(DeviceState *dev)
303 {
304     /* QOM (ie power-on) reset. This is identical to reset
305      * commanded via device register apart from handling of the
306      * 'pending insert on powerup' quirk.
307      */
308     SDHCIState *s = (SDHCIState *)dev;
309 
310     sdhci_reset(s);
311 
312     if (s->pending_insert_quirk) {
313         s->pending_insert_state = true;
314     }
315 }
316 
317 static void sdhci_data_transfer(void *opaque);
318 
319 static void sdhci_send_command(SDHCIState *s)
320 {
321     SDRequest request;
322     uint8_t response[16];
323     int rlen;
324 
325     s->errintsts = 0;
326     s->acmd12errsts = 0;
327     request.cmd = s->cmdreg >> 8;
328     request.arg = s->argument;
329 
330     trace_sdhci_send_command(request.cmd, request.arg);
331     rlen = sdbus_do_command(&s->sdbus, &request, response);
332 
333     if (s->cmdreg & SDHC_CMD_RESPONSE) {
334         if (rlen == 4) {
335             s->rspreg[0] = ldl_be_p(response);
336             s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
337             trace_sdhci_response4(s->rspreg[0]);
338         } else if (rlen == 16) {
339             s->rspreg[0] = ldl_be_p(&response[11]);
340             s->rspreg[1] = ldl_be_p(&response[7]);
341             s->rspreg[2] = ldl_be_p(&response[3]);
342             s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
343                             response[2];
344             trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
345                                    s->rspreg[1], s->rspreg[0]);
346         } else {
347             trace_sdhci_error("timeout waiting for command response");
348             if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
349                 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
350                 s->norintsts |= SDHC_NIS_ERR;
351             }
352         }
353 
354         if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
355             (s->norintstsen & SDHC_NISEN_TRSCMP) &&
356             (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
357             s->norintsts |= SDHC_NIS_TRSCMP;
358         }
359     }
360 
361     if (s->norintstsen & SDHC_NISEN_CMDCMP) {
362         s->norintsts |= SDHC_NIS_CMDCMP;
363     }
364 
365     sdhci_update_irq(s);
366 
367     if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
368         s->data_count = 0;
369         sdhci_data_transfer(s);
370     }
371 }
372 
373 static void sdhci_end_transfer(SDHCIState *s)
374 {
375     /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
376     if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
377         SDRequest request;
378         uint8_t response[16];
379 
380         request.cmd = 0x0C;
381         request.arg = 0;
382         trace_sdhci_end_transfer(request.cmd, request.arg);
383         sdbus_do_command(&s->sdbus, &request, response);
384         /* Auto CMD12 response goes to the upper Response register */
385         s->rspreg[3] = ldl_be_p(response);
386     }
387 
388     s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
389             SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
390             SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
391 
392     if (s->norintstsen & SDHC_NISEN_TRSCMP) {
393         s->norintsts |= SDHC_NIS_TRSCMP;
394     }
395 
396     sdhci_update_irq(s);
397 }
398 
399 /*
400  * Programmed i/o data transfer
401  */
402 #define BLOCK_SIZE_MASK (4 * KiB - 1)
403 
404 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
405 static void sdhci_read_block_from_card(SDHCIState *s)
406 {
407     const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
408 
409     if ((s->trnmod & SDHC_TRNS_MULTI) &&
410             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
411         return;
412     }
413 
414     if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
415         /* Device is not in tuning */
416         sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size);
417     }
418 
419     if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
420         /* Device is in tuning */
421         s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
422         s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
423         s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
424                        SDHC_DATA_INHIBIT);
425         goto read_done;
426     }
427 
428     /* New data now available for READ through Buffer Port Register */
429     s->prnsts |= SDHC_DATA_AVAILABLE;
430     if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
431         s->norintsts |= SDHC_NIS_RBUFRDY;
432     }
433 
434     /* Clear DAT line active status if that was the last block */
435     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
436             ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
437         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
438     }
439 
440     /* If stop at block gap request was set and it's not the last block of
441      * data - generate Block Event interrupt */
442     if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
443             s->blkcnt != 1)    {
444         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
445         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
446             s->norintsts |= SDHC_EIS_BLKGAP;
447         }
448     }
449 
450 read_done:
451     sdhci_update_irq(s);
452 }
453 
454 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
455 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
456 {
457     uint32_t value = 0;
458     int i;
459 
460     /* first check that a valid data exists in host controller input buffer */
461     if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
462         trace_sdhci_error("read from empty buffer");
463         return 0;
464     }
465 
466     for (i = 0; i < size; i++) {
467         value |= s->fifo_buffer[s->data_count] << i * 8;
468         s->data_count++;
469         /* check if we've read all valid data (blksize bytes) from buffer */
470         if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
471             trace_sdhci_read_dataport(s->data_count);
472             s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
473             s->data_count = 0;  /* next buff read must start at position [0] */
474 
475             if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
476                 s->blkcnt--;
477             }
478 
479             /* if that was the last block of data */
480             if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
481                 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
482                  /* stop at gap request */
483                 (s->stopped_state == sdhc_gap_read &&
484                  !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
485                 sdhci_end_transfer(s);
486             } else { /* if there are more data, read next block from card */
487                 sdhci_read_block_from_card(s);
488             }
489             break;
490         }
491     }
492 
493     return value;
494 }
495 
496 /* Write data from host controller FIFO to card */
497 static void sdhci_write_block_to_card(SDHCIState *s)
498 {
499     if (s->prnsts & SDHC_SPACE_AVAILABLE) {
500         if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
501             s->norintsts |= SDHC_NIS_WBUFRDY;
502         }
503         sdhci_update_irq(s);
504         return;
505     }
506 
507     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
508         if (s->blkcnt == 0) {
509             return;
510         } else {
511             s->blkcnt--;
512         }
513     }
514 
515     sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK);
516 
517     /* Next data can be written through BUFFER DATORT register */
518     s->prnsts |= SDHC_SPACE_AVAILABLE;
519 
520     /* Finish transfer if that was the last block of data */
521     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
522             ((s->trnmod & SDHC_TRNS_MULTI) &&
523             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
524         sdhci_end_transfer(s);
525     } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
526         s->norintsts |= SDHC_NIS_WBUFRDY;
527     }
528 
529     /* Generate Block Gap Event if requested and if not the last block */
530     if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
531             s->blkcnt > 0) {
532         s->prnsts &= ~SDHC_DOING_WRITE;
533         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
534             s->norintsts |= SDHC_EIS_BLKGAP;
535         }
536         sdhci_end_transfer(s);
537     }
538 
539     sdhci_update_irq(s);
540 }
541 
542 /* Write @size bytes of @value data to host controller @s Buffer Data Port
543  * register */
544 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
545 {
546     unsigned i;
547 
548     /* Check that there is free space left in a buffer */
549     if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
550         trace_sdhci_error("Can't write to data buffer: buffer full");
551         return;
552     }
553 
554     for (i = 0; i < size; i++) {
555         s->fifo_buffer[s->data_count] = value & 0xFF;
556         s->data_count++;
557         value >>= 8;
558         if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
559             trace_sdhci_write_dataport(s->data_count);
560             s->data_count = 0;
561             s->prnsts &= ~SDHC_SPACE_AVAILABLE;
562             if (s->prnsts & SDHC_DOING_WRITE) {
563                 sdhci_write_block_to_card(s);
564             }
565         }
566     }
567 }
568 
569 /*
570  * Single DMA data transfer
571  */
572 
573 /* Multi block SDMA transfer */
574 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
575 {
576     bool page_aligned = false;
577     unsigned int begin;
578     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
579     uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
580     uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
581 
582     if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
583         qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
584         return;
585     }
586 
587     /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
588      * possible stop at page boundary if initial address is not page aligned,
589      * allow them to work properly */
590     if ((s->sdmasysad % boundary_chk) == 0) {
591         page_aligned = true;
592     }
593 
594     if (s->trnmod & SDHC_TRNS_READ) {
595         s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
596                 SDHC_DAT_LINE_ACTIVE;
597         while (s->blkcnt) {
598             if (s->data_count == 0) {
599                 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
600             }
601             begin = s->data_count;
602             if (((boundary_count + begin) < block_size) && page_aligned) {
603                 s->data_count = boundary_count + begin;
604                 boundary_count = 0;
605              } else {
606                 s->data_count = block_size;
607                 boundary_count -= block_size - begin;
608                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
609                     s->blkcnt--;
610                 }
611             }
612             dma_memory_write(s->dma_as, s->sdmasysad,
613                              &s->fifo_buffer[begin], s->data_count - begin);
614             s->sdmasysad += s->data_count - begin;
615             if (s->data_count == block_size) {
616                 s->data_count = 0;
617             }
618             if (page_aligned && boundary_count == 0) {
619                 break;
620             }
621         }
622     } else {
623         s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
624                 SDHC_DAT_LINE_ACTIVE;
625         while (s->blkcnt) {
626             begin = s->data_count;
627             if (((boundary_count + begin) < block_size) && page_aligned) {
628                 s->data_count = boundary_count + begin;
629                 boundary_count = 0;
630              } else {
631                 s->data_count = block_size;
632                 boundary_count -= block_size - begin;
633             }
634             dma_memory_read(s->dma_as, s->sdmasysad,
635                             &s->fifo_buffer[begin], s->data_count - begin);
636             s->sdmasysad += s->data_count - begin;
637             if (s->data_count == block_size) {
638                 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
639                 s->data_count = 0;
640                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
641                     s->blkcnt--;
642                 }
643             }
644             if (page_aligned && boundary_count == 0) {
645                 break;
646             }
647         }
648     }
649 
650     if (s->blkcnt == 0) {
651         sdhci_end_transfer(s);
652     } else {
653         if (s->norintstsen & SDHC_NISEN_DMA) {
654             s->norintsts |= SDHC_NIS_DMA;
655         }
656         sdhci_update_irq(s);
657     }
658 }
659 
660 /* single block SDMA transfer */
661 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
662 {
663     uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
664 
665     if (s->trnmod & SDHC_TRNS_READ) {
666         sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt);
667         dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
668     } else {
669         dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
670         sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt);
671     }
672     s->blkcnt--;
673 
674     sdhci_end_transfer(s);
675 }
676 
677 typedef struct ADMADescr {
678     hwaddr addr;
679     uint16_t length;
680     uint8_t attr;
681     uint8_t incr;
682 } ADMADescr;
683 
684 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
685 {
686     uint32_t adma1 = 0;
687     uint64_t adma2 = 0;
688     hwaddr entry_addr = (hwaddr)s->admasysaddr;
689     switch (SDHC_DMA_TYPE(s->hostctl1)) {
690     case SDHC_CTRL_ADMA2_32:
691         dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2));
692         adma2 = le64_to_cpu(adma2);
693         /* The spec does not specify endianness of descriptor table.
694          * We currently assume that it is LE.
695          */
696         dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
697         dscr->length = (uint16_t)extract64(adma2, 16, 16);
698         dscr->attr = (uint8_t)extract64(adma2, 0, 7);
699         dscr->incr = 8;
700         break;
701     case SDHC_CTRL_ADMA1_32:
702         dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1));
703         adma1 = le32_to_cpu(adma1);
704         dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
705         dscr->attr = (uint8_t)extract32(adma1, 0, 7);
706         dscr->incr = 4;
707         if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
708             dscr->length = (uint16_t)extract32(adma1, 12, 16);
709         } else {
710             dscr->length = 4 * KiB;
711         }
712         break;
713     case SDHC_CTRL_ADMA2_64:
714         dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1);
715         dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2);
716         dscr->length = le16_to_cpu(dscr->length);
717         dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8);
718         dscr->addr = le64_to_cpu(dscr->addr);
719         dscr->attr &= (uint8_t) ~0xC0;
720         dscr->incr = 12;
721         break;
722     }
723 }
724 
725 /* Advanced DMA data transfer */
726 
727 static void sdhci_do_adma(SDHCIState *s)
728 {
729     unsigned int begin, length;
730     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
731     ADMADescr dscr = {};
732     int i;
733 
734     for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
735         s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
736 
737         get_adma_description(s, &dscr);
738         trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
739 
740         if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
741             /* Indicate that error occurred in ST_FDS state */
742             s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
743             s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
744 
745             /* Generate ADMA error interrupt */
746             if (s->errintstsen & SDHC_EISEN_ADMAERR) {
747                 s->errintsts |= SDHC_EIS_ADMAERR;
748                 s->norintsts |= SDHC_NIS_ERR;
749             }
750 
751             sdhci_update_irq(s);
752             return;
753         }
754 
755         length = dscr.length ? dscr.length : 64 * KiB;
756 
757         switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
758         case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
759 
760             if (s->trnmod & SDHC_TRNS_READ) {
761                 while (length) {
762                     if (s->data_count == 0) {
763                         sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
764                     }
765                     begin = s->data_count;
766                     if ((length + begin) < block_size) {
767                         s->data_count = length + begin;
768                         length = 0;
769                      } else {
770                         s->data_count = block_size;
771                         length -= block_size - begin;
772                     }
773                     dma_memory_write(s->dma_as, dscr.addr,
774                                      &s->fifo_buffer[begin],
775                                      s->data_count - begin);
776                     dscr.addr += s->data_count - begin;
777                     if (s->data_count == block_size) {
778                         s->data_count = 0;
779                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
780                             s->blkcnt--;
781                             if (s->blkcnt == 0) {
782                                 break;
783                             }
784                         }
785                     }
786                 }
787             } else {
788                 while (length) {
789                     begin = s->data_count;
790                     if ((length + begin) < block_size) {
791                         s->data_count = length + begin;
792                         length = 0;
793                      } else {
794                         s->data_count = block_size;
795                         length -= block_size - begin;
796                     }
797                     dma_memory_read(s->dma_as, dscr.addr,
798                                     &s->fifo_buffer[begin],
799                                     s->data_count - begin);
800                     dscr.addr += s->data_count - begin;
801                     if (s->data_count == block_size) {
802                         sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
803                         s->data_count = 0;
804                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
805                             s->blkcnt--;
806                             if (s->blkcnt == 0) {
807                                 break;
808                             }
809                         }
810                     }
811                 }
812             }
813             s->admasysaddr += dscr.incr;
814             break;
815         case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
816             s->admasysaddr = dscr.addr;
817             trace_sdhci_adma("link", s->admasysaddr);
818             break;
819         default:
820             s->admasysaddr += dscr.incr;
821             break;
822         }
823 
824         if (dscr.attr & SDHC_ADMA_ATTR_INT) {
825             trace_sdhci_adma("interrupt", s->admasysaddr);
826             if (s->norintstsen & SDHC_NISEN_DMA) {
827                 s->norintsts |= SDHC_NIS_DMA;
828             }
829 
830             sdhci_update_irq(s);
831         }
832 
833         /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
834         if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
835                     (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
836             trace_sdhci_adma_transfer_completed();
837             if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
838                 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
839                 s->blkcnt != 0)) {
840                 trace_sdhci_error("SD/MMC host ADMA length mismatch");
841                 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
842                         SDHC_ADMAERR_STATE_ST_TFR;
843                 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
844                     trace_sdhci_error("Set ADMA error flag");
845                     s->errintsts |= SDHC_EIS_ADMAERR;
846                     s->norintsts |= SDHC_NIS_ERR;
847                 }
848 
849                 sdhci_update_irq(s);
850             }
851             sdhci_end_transfer(s);
852             return;
853         }
854 
855     }
856 
857     /* we have unfinished business - reschedule to continue ADMA */
858     timer_mod(s->transfer_timer,
859                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
860 }
861 
862 /* Perform data transfer according to controller configuration */
863 
864 static void sdhci_data_transfer(void *opaque)
865 {
866     SDHCIState *s = (SDHCIState *)opaque;
867 
868     if (s->trnmod & SDHC_TRNS_DMA) {
869         switch (SDHC_DMA_TYPE(s->hostctl1)) {
870         case SDHC_CTRL_SDMA:
871             if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
872                 sdhci_sdma_transfer_single_block(s);
873             } else {
874                 sdhci_sdma_transfer_multi_blocks(s);
875             }
876 
877             break;
878         case SDHC_CTRL_ADMA1_32:
879             if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
880                 trace_sdhci_error("ADMA1 not supported");
881                 break;
882             }
883 
884             sdhci_do_adma(s);
885             break;
886         case SDHC_CTRL_ADMA2_32:
887             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
888                 trace_sdhci_error("ADMA2 not supported");
889                 break;
890             }
891 
892             sdhci_do_adma(s);
893             break;
894         case SDHC_CTRL_ADMA2_64:
895             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
896                     !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
897                 trace_sdhci_error("64 bit ADMA not supported");
898                 break;
899             }
900 
901             sdhci_do_adma(s);
902             break;
903         default:
904             trace_sdhci_error("Unsupported DMA type");
905             break;
906         }
907     } else {
908         if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
909             s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
910                     SDHC_DAT_LINE_ACTIVE;
911             sdhci_read_block_from_card(s);
912         } else {
913             s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
914                     SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
915             sdhci_write_block_to_card(s);
916         }
917     }
918 }
919 
920 static bool sdhci_can_issue_command(SDHCIState *s)
921 {
922     if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
923         (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
924         ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
925         ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
926         !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
927         return false;
928     }
929 
930     return true;
931 }
932 
933 /* The Buffer Data Port register must be accessed in sequential and
934  * continuous manner */
935 static inline bool
936 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
937 {
938     if ((s->data_count & 0x3) != byte_num) {
939         trace_sdhci_error("Non-sequential access to Buffer Data Port register"
940                           "is prohibited\n");
941         return false;
942     }
943     return true;
944 }
945 
946 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
947 {
948     SDHCIState *s = (SDHCIState *)opaque;
949     uint32_t ret = 0;
950 
951     switch (offset & ~0x3) {
952     case SDHC_SYSAD:
953         ret = s->sdmasysad;
954         break;
955     case SDHC_BLKSIZE:
956         ret = s->blksize | (s->blkcnt << 16);
957         break;
958     case SDHC_ARGUMENT:
959         ret = s->argument;
960         break;
961     case SDHC_TRNMOD:
962         ret = s->trnmod | (s->cmdreg << 16);
963         break;
964     case SDHC_RSPREG0 ... SDHC_RSPREG3:
965         ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
966         break;
967     case  SDHC_BDATA:
968         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
969             ret = sdhci_read_dataport(s, size);
970             trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
971             return ret;
972         }
973         break;
974     case SDHC_PRNSTS:
975         ret = s->prnsts;
976         ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
977                          sdbus_get_dat_lines(&s->sdbus));
978         ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
979                          sdbus_get_cmd_line(&s->sdbus));
980         break;
981     case SDHC_HOSTCTL:
982         ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
983               (s->wakcon << 24);
984         break;
985     case SDHC_CLKCON:
986         ret = s->clkcon | (s->timeoutcon << 16);
987         break;
988     case SDHC_NORINTSTS:
989         ret = s->norintsts | (s->errintsts << 16);
990         break;
991     case SDHC_NORINTSTSEN:
992         ret = s->norintstsen | (s->errintstsen << 16);
993         break;
994     case SDHC_NORINTSIGEN:
995         ret = s->norintsigen | (s->errintsigen << 16);
996         break;
997     case SDHC_ACMD12ERRSTS:
998         ret = s->acmd12errsts | (s->hostctl2 << 16);
999         break;
1000     case SDHC_CAPAB:
1001         ret = (uint32_t)s->capareg;
1002         break;
1003     case SDHC_CAPAB + 4:
1004         ret = (uint32_t)(s->capareg >> 32);
1005         break;
1006     case SDHC_MAXCURR:
1007         ret = (uint32_t)s->maxcurr;
1008         break;
1009     case SDHC_MAXCURR + 4:
1010         ret = (uint32_t)(s->maxcurr >> 32);
1011         break;
1012     case SDHC_ADMAERR:
1013         ret =  s->admaerr;
1014         break;
1015     case SDHC_ADMASYSADDR:
1016         ret = (uint32_t)s->admasysaddr;
1017         break;
1018     case SDHC_ADMASYSADDR + 4:
1019         ret = (uint32_t)(s->admasysaddr >> 32);
1020         break;
1021     case SDHC_SLOT_INT_STATUS:
1022         ret = (s->version << 16) | sdhci_slotint(s);
1023         break;
1024     default:
1025         qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1026                       "not implemented\n", size, offset);
1027         break;
1028     }
1029 
1030     ret >>= (offset & 0x3) * 8;
1031     ret &= (1ULL << (size * 8)) - 1;
1032     trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1033     return ret;
1034 }
1035 
1036 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1037 {
1038     if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1039         return;
1040     }
1041     s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1042 
1043     if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1044             (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1045         if (s->stopped_state == sdhc_gap_read) {
1046             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1047             sdhci_read_block_from_card(s);
1048         } else {
1049             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1050             sdhci_write_block_to_card(s);
1051         }
1052         s->stopped_state = sdhc_not_stopped;
1053     } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1054         if (s->prnsts & SDHC_DOING_READ) {
1055             s->stopped_state = sdhc_gap_read;
1056         } else if (s->prnsts & SDHC_DOING_WRITE) {
1057             s->stopped_state = sdhc_gap_write;
1058         }
1059     }
1060 }
1061 
1062 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1063 {
1064     switch (value) {
1065     case SDHC_RESET_ALL:
1066         sdhci_reset(s);
1067         break;
1068     case SDHC_RESET_CMD:
1069         s->prnsts &= ~SDHC_CMD_INHIBIT;
1070         s->norintsts &= ~SDHC_NIS_CMDCMP;
1071         break;
1072     case SDHC_RESET_DATA:
1073         s->data_count = 0;
1074         s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1075                 SDHC_DOING_READ | SDHC_DOING_WRITE |
1076                 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1077         s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1078         s->stopped_state = sdhc_not_stopped;
1079         s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1080                 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1081         break;
1082     }
1083 }
1084 
1085 static void
1086 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1087 {
1088     SDHCIState *s = (SDHCIState *)opaque;
1089     unsigned shift =  8 * (offset & 0x3);
1090     uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1091     uint32_t value = val;
1092     value <<= shift;
1093 
1094     switch (offset & ~0x3) {
1095     case SDHC_SYSAD:
1096         s->sdmasysad = (s->sdmasysad & mask) | value;
1097         MASKED_WRITE(s->sdmasysad, mask, value);
1098         /* Writing to last byte of sdmasysad might trigger transfer */
1099         if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1100                 s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1101             if (s->trnmod & SDHC_TRNS_MULTI) {
1102                 sdhci_sdma_transfer_multi_blocks(s);
1103             } else {
1104                 sdhci_sdma_transfer_single_block(s);
1105             }
1106         }
1107         break;
1108     case SDHC_BLKSIZE:
1109         if (!TRANSFERRING_DATA(s->prnsts)) {
1110             MASKED_WRITE(s->blksize, mask, value);
1111             MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1112         }
1113 
1114         /* Limit block size to the maximum buffer size */
1115         if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1116             qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than "
1117                           "the maximum buffer 0x%x\n", __func__, s->blksize,
1118                           s->buf_maxsz);
1119 
1120             s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1121         }
1122 
1123         break;
1124     case SDHC_ARGUMENT:
1125         MASKED_WRITE(s->argument, mask, value);
1126         break;
1127     case SDHC_TRNMOD:
1128         /* DMA can be enabled only if it is supported as indicated by
1129          * capabilities register */
1130         if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1131             value &= ~SDHC_TRNS_DMA;
1132         }
1133         MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1134         MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1135 
1136         /* Writing to the upper byte of CMDREG triggers SD command generation */
1137         if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1138             break;
1139         }
1140 
1141         sdhci_send_command(s);
1142         break;
1143     case  SDHC_BDATA:
1144         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1145             sdhci_write_dataport(s, value >> shift, size);
1146         }
1147         break;
1148     case SDHC_HOSTCTL:
1149         if (!(mask & 0xFF0000)) {
1150             sdhci_blkgap_write(s, value >> 16);
1151         }
1152         MASKED_WRITE(s->hostctl1, mask, value);
1153         MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1154         MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1155         if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1156                 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1157             s->pwrcon &= ~SDHC_POWER_ON;
1158         }
1159         break;
1160     case SDHC_CLKCON:
1161         if (!(mask & 0xFF000000)) {
1162             sdhci_reset_write(s, value >> 24);
1163         }
1164         MASKED_WRITE(s->clkcon, mask, value);
1165         MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1166         if (s->clkcon & SDHC_CLOCK_INT_EN) {
1167             s->clkcon |= SDHC_CLOCK_INT_STABLE;
1168         } else {
1169             s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1170         }
1171         break;
1172     case SDHC_NORINTSTS:
1173         if (s->norintstsen & SDHC_NISEN_CARDINT) {
1174             value &= ~SDHC_NIS_CARDINT;
1175         }
1176         s->norintsts &= mask | ~value;
1177         s->errintsts &= (mask >> 16) | ~(value >> 16);
1178         if (s->errintsts) {
1179             s->norintsts |= SDHC_NIS_ERR;
1180         } else {
1181             s->norintsts &= ~SDHC_NIS_ERR;
1182         }
1183         sdhci_update_irq(s);
1184         break;
1185     case SDHC_NORINTSTSEN:
1186         MASKED_WRITE(s->norintstsen, mask, value);
1187         MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1188         s->norintsts &= s->norintstsen;
1189         s->errintsts &= s->errintstsen;
1190         if (s->errintsts) {
1191             s->norintsts |= SDHC_NIS_ERR;
1192         } else {
1193             s->norintsts &= ~SDHC_NIS_ERR;
1194         }
1195         /* Quirk for Raspberry Pi: pending card insert interrupt
1196          * appears when first enabled after power on */
1197         if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1198             assert(s->pending_insert_quirk);
1199             s->norintsts |= SDHC_NIS_INSERT;
1200             s->pending_insert_state = false;
1201         }
1202         sdhci_update_irq(s);
1203         break;
1204     case SDHC_NORINTSIGEN:
1205         MASKED_WRITE(s->norintsigen, mask, value);
1206         MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1207         sdhci_update_irq(s);
1208         break;
1209     case SDHC_ADMAERR:
1210         MASKED_WRITE(s->admaerr, mask, value);
1211         break;
1212     case SDHC_ADMASYSADDR:
1213         s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1214                 (uint64_t)mask)) | (uint64_t)value;
1215         break;
1216     case SDHC_ADMASYSADDR + 4:
1217         s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1218                 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1219         break;
1220     case SDHC_FEAER:
1221         s->acmd12errsts |= value;
1222         s->errintsts |= (value >> 16) & s->errintstsen;
1223         if (s->acmd12errsts) {
1224             s->errintsts |= SDHC_EIS_CMD12ERR;
1225         }
1226         if (s->errintsts) {
1227             s->norintsts |= SDHC_NIS_ERR;
1228         }
1229         sdhci_update_irq(s);
1230         break;
1231     case SDHC_ACMD12ERRSTS:
1232         MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1233         if (s->uhs_mode >= UHS_I) {
1234             MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1235 
1236             if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1237                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1238             } else {
1239                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1240             }
1241         }
1242         break;
1243 
1244     case SDHC_CAPAB:
1245     case SDHC_CAPAB + 4:
1246     case SDHC_MAXCURR:
1247     case SDHC_MAXCURR + 4:
1248         qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1249                       " <- 0x%08x read-only\n", size, offset, value >> shift);
1250         break;
1251 
1252     default:
1253         qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1254                       "not implemented\n", size, offset, value >> shift);
1255         break;
1256     }
1257     trace_sdhci_access("wr", size << 3, offset, "<-",
1258                        value >> shift, value >> shift);
1259 }
1260 
1261 static const MemoryRegionOps sdhci_mmio_ops = {
1262     .read = sdhci_read,
1263     .write = sdhci_write,
1264     .valid = {
1265         .min_access_size = 1,
1266         .max_access_size = 4,
1267         .unaligned = false
1268     },
1269     .endianness = DEVICE_LITTLE_ENDIAN,
1270 };
1271 
1272 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1273 {
1274     ERRP_GUARD();
1275 
1276     switch (s->sd_spec_version) {
1277     case 2 ... 3:
1278         break;
1279     default:
1280         error_setg(errp, "Only Spec v2/v3 are supported");
1281         return;
1282     }
1283     s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1284 
1285     sdhci_check_capareg(s, errp);
1286     if (*errp) {
1287         return;
1288     }
1289 }
1290 
1291 /* --- qdev common --- */
1292 
1293 void sdhci_initfn(SDHCIState *s)
1294 {
1295     qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1296                         TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1297 
1298     s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1299     s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1300 
1301     s->io_ops = &sdhci_mmio_ops;
1302 }
1303 
1304 void sdhci_uninitfn(SDHCIState *s)
1305 {
1306     timer_del(s->insert_timer);
1307     timer_free(s->insert_timer);
1308     timer_del(s->transfer_timer);
1309     timer_free(s->transfer_timer);
1310 
1311     g_free(s->fifo_buffer);
1312     s->fifo_buffer = NULL;
1313 }
1314 
1315 void sdhci_common_realize(SDHCIState *s, Error **errp)
1316 {
1317     ERRP_GUARD();
1318 
1319     sdhci_init_readonly_registers(s, errp);
1320     if (*errp) {
1321         return;
1322     }
1323     s->buf_maxsz = sdhci_get_fifolen(s);
1324     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1325 
1326     memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1327                           SDHC_REGISTERS_MAP_SIZE);
1328 }
1329 
1330 void sdhci_common_unrealize(SDHCIState *s)
1331 {
1332     /* This function is expected to be called only once for each class:
1333      * - SysBus:    via DeviceClass->unrealize(),
1334      * - PCI:       via PCIDeviceClass->exit().
1335      * However to avoid double-free and/or use-after-free we still nullify
1336      * this variable (better safe than sorry!). */
1337     g_free(s->fifo_buffer);
1338     s->fifo_buffer = NULL;
1339 }
1340 
1341 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1342 {
1343     SDHCIState *s = opaque;
1344 
1345     return s->pending_insert_state;
1346 }
1347 
1348 static const VMStateDescription sdhci_pending_insert_vmstate = {
1349     .name = "sdhci/pending-insert",
1350     .version_id = 1,
1351     .minimum_version_id = 1,
1352     .needed = sdhci_pending_insert_vmstate_needed,
1353     .fields = (VMStateField[]) {
1354         VMSTATE_BOOL(pending_insert_state, SDHCIState),
1355         VMSTATE_END_OF_LIST()
1356     },
1357 };
1358 
1359 const VMStateDescription sdhci_vmstate = {
1360     .name = "sdhci",
1361     .version_id = 1,
1362     .minimum_version_id = 1,
1363     .fields = (VMStateField[]) {
1364         VMSTATE_UINT32(sdmasysad, SDHCIState),
1365         VMSTATE_UINT16(blksize, SDHCIState),
1366         VMSTATE_UINT16(blkcnt, SDHCIState),
1367         VMSTATE_UINT32(argument, SDHCIState),
1368         VMSTATE_UINT16(trnmod, SDHCIState),
1369         VMSTATE_UINT16(cmdreg, SDHCIState),
1370         VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1371         VMSTATE_UINT32(prnsts, SDHCIState),
1372         VMSTATE_UINT8(hostctl1, SDHCIState),
1373         VMSTATE_UINT8(pwrcon, SDHCIState),
1374         VMSTATE_UINT8(blkgap, SDHCIState),
1375         VMSTATE_UINT8(wakcon, SDHCIState),
1376         VMSTATE_UINT16(clkcon, SDHCIState),
1377         VMSTATE_UINT8(timeoutcon, SDHCIState),
1378         VMSTATE_UINT8(admaerr, SDHCIState),
1379         VMSTATE_UINT16(norintsts, SDHCIState),
1380         VMSTATE_UINT16(errintsts, SDHCIState),
1381         VMSTATE_UINT16(norintstsen, SDHCIState),
1382         VMSTATE_UINT16(errintstsen, SDHCIState),
1383         VMSTATE_UINT16(norintsigen, SDHCIState),
1384         VMSTATE_UINT16(errintsigen, SDHCIState),
1385         VMSTATE_UINT16(acmd12errsts, SDHCIState),
1386         VMSTATE_UINT16(data_count, SDHCIState),
1387         VMSTATE_UINT64(admasysaddr, SDHCIState),
1388         VMSTATE_UINT8(stopped_state, SDHCIState),
1389         VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1390         VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1391         VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1392         VMSTATE_END_OF_LIST()
1393     },
1394     .subsections = (const VMStateDescription*[]) {
1395         &sdhci_pending_insert_vmstate,
1396         NULL
1397     },
1398 };
1399 
1400 void sdhci_common_class_init(ObjectClass *klass, void *data)
1401 {
1402     DeviceClass *dc = DEVICE_CLASS(klass);
1403 
1404     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1405     dc->vmsd = &sdhci_vmstate;
1406     dc->reset = sdhci_poweron_reset;
1407 }
1408 
1409 /* --- qdev SysBus --- */
1410 
1411 static Property sdhci_sysbus_properties[] = {
1412     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1413     DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1414                      false),
1415     DEFINE_PROP_LINK("dma", SDHCIState,
1416                      dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1417     DEFINE_PROP_END_OF_LIST(),
1418 };
1419 
1420 static void sdhci_sysbus_init(Object *obj)
1421 {
1422     SDHCIState *s = SYSBUS_SDHCI(obj);
1423 
1424     sdhci_initfn(s);
1425 }
1426 
1427 static void sdhci_sysbus_finalize(Object *obj)
1428 {
1429     SDHCIState *s = SYSBUS_SDHCI(obj);
1430 
1431     if (s->dma_mr) {
1432         object_unparent(OBJECT(s->dma_mr));
1433     }
1434 
1435     sdhci_uninitfn(s);
1436 }
1437 
1438 static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
1439 {
1440     ERRP_GUARD();
1441     SDHCIState *s = SYSBUS_SDHCI(dev);
1442     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1443 
1444     sdhci_common_realize(s, errp);
1445     if (*errp) {
1446         return;
1447     }
1448 
1449     if (s->dma_mr) {
1450         s->dma_as = &s->sysbus_dma_as;
1451         address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1452     } else {
1453         /* use system_memory() if property "dma" not set */
1454         s->dma_as = &address_space_memory;
1455     }
1456 
1457     sysbus_init_irq(sbd, &s->irq);
1458 
1459     sysbus_init_mmio(sbd, &s->iomem);
1460 }
1461 
1462 static void sdhci_sysbus_unrealize(DeviceState *dev)
1463 {
1464     SDHCIState *s = SYSBUS_SDHCI(dev);
1465 
1466     sdhci_common_unrealize(s);
1467 
1468      if (s->dma_mr) {
1469         address_space_destroy(s->dma_as);
1470     }
1471 }
1472 
1473 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1474 {
1475     DeviceClass *dc = DEVICE_CLASS(klass);
1476 
1477     device_class_set_props(dc, sdhci_sysbus_properties);
1478     dc->realize = sdhci_sysbus_realize;
1479     dc->unrealize = sdhci_sysbus_unrealize;
1480 
1481     sdhci_common_class_init(klass, data);
1482 }
1483 
1484 static const TypeInfo sdhci_sysbus_info = {
1485     .name = TYPE_SYSBUS_SDHCI,
1486     .parent = TYPE_SYS_BUS_DEVICE,
1487     .instance_size = sizeof(SDHCIState),
1488     .instance_init = sdhci_sysbus_init,
1489     .instance_finalize = sdhci_sysbus_finalize,
1490     .class_init = sdhci_sysbus_class_init,
1491 };
1492 
1493 /* --- qdev bus master --- */
1494 
1495 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1496 {
1497     SDBusClass *sbc = SD_BUS_CLASS(klass);
1498 
1499     sbc->set_inserted = sdhci_set_inserted;
1500     sbc->set_readonly = sdhci_set_readonly;
1501 }
1502 
1503 static const TypeInfo sdhci_bus_info = {
1504     .name = TYPE_SDHCI_BUS,
1505     .parent = TYPE_SD_BUS,
1506     .instance_size = sizeof(SDBus),
1507     .class_init = sdhci_bus_class_init,
1508 };
1509 
1510 /* --- qdev i.MX eSDHC --- */
1511 
1512 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1513 {
1514     SDHCIState *s = SYSBUS_SDHCI(opaque);
1515     uint32_t ret;
1516     uint16_t hostctl1;
1517 
1518     switch (offset) {
1519     default:
1520         return sdhci_read(opaque, offset, size);
1521 
1522     case SDHC_HOSTCTL:
1523         /*
1524          * For a detailed explanation on the following bit
1525          * manipulation code see comments in a similar part of
1526          * usdhc_write()
1527          */
1528         hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1529 
1530         if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1531             hostctl1 |= ESDHC_CTRL_8BITBUS;
1532         }
1533 
1534         if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1535             hostctl1 |= ESDHC_CTRL_4BITBUS;
1536         }
1537 
1538         ret  = hostctl1;
1539         ret |= (uint32_t)s->blkgap << 16;
1540         ret |= (uint32_t)s->wakcon << 24;
1541 
1542         break;
1543 
1544     case SDHC_PRNSTS:
1545         /* Add SDSTB (SD Clock Stable) bit to PRNSTS */
1546         ret = sdhci_read(opaque, offset, size) & ~ESDHC_PRNSTS_SDSTB;
1547         if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
1548             ret |= ESDHC_PRNSTS_SDSTB;
1549         }
1550         break;
1551 
1552     case ESDHC_VENDOR_SPEC:
1553         ret = s->vendor_spec;
1554         break;
1555     case ESDHC_DLL_CTRL:
1556     case ESDHC_TUNE_CTRL_STATUS:
1557     case ESDHC_UNDOCUMENTED_REG27:
1558     case ESDHC_TUNING_CTRL:
1559     case ESDHC_MIX_CTRL:
1560     case ESDHC_WTMK_LVL:
1561         ret = 0;
1562         break;
1563     }
1564 
1565     return ret;
1566 }
1567 
1568 static void
1569 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1570 {
1571     SDHCIState *s = SYSBUS_SDHCI(opaque);
1572     uint8_t hostctl1;
1573     uint32_t value = (uint32_t)val;
1574 
1575     switch (offset) {
1576     case ESDHC_DLL_CTRL:
1577     case ESDHC_TUNE_CTRL_STATUS:
1578     case ESDHC_UNDOCUMENTED_REG27:
1579     case ESDHC_TUNING_CTRL:
1580     case ESDHC_WTMK_LVL:
1581         break;
1582 
1583     case ESDHC_VENDOR_SPEC:
1584         s->vendor_spec = value;
1585         switch (s->vendor) {
1586         case SDHCI_VENDOR_IMX:
1587             if (value & ESDHC_IMX_FRC_SDCLK_ON) {
1588                 s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
1589             } else {
1590                 s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
1591             }
1592             break;
1593         default:
1594             break;
1595         }
1596         break;
1597 
1598     case SDHC_HOSTCTL:
1599         /*
1600          * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1601          *
1602          *       7         6     5      4      3      2        1      0
1603          * |-----------+--------+--------+-----------+----------+---------|
1604          * | Card      | Card   | Endian | DATA3     | Data     | Led     |
1605          * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
1606          * | Signal    | Test   |        | Detection | Width    |         |
1607          * | Selection | Level  |        | Pin       |          |         |
1608          * |-----------+--------+--------+-----------+----------+---------|
1609          *
1610          * and 0x29
1611          *
1612          *  15      10 9    8
1613          * |----------+------|
1614          * | Reserved | DMA  |
1615          * |          | Sel. |
1616          * |          |      |
1617          * |----------+------|
1618          *
1619          * and here's what SDCHI spec expects those offsets to be:
1620          *
1621          * 0x28 (Host Control Register)
1622          *
1623          *     7        6         5       4  3      2         1        0
1624          * |--------+--------+----------+------+--------+----------+---------|
1625          * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
1626          * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
1627          * | Signal | Test   | Transfer |      | Enable | Width    |         |
1628          * | Sel.   | Level  | Width    |      |        |          |         |
1629          * |--------+--------+----------+------+--------+----------+---------|
1630          *
1631          * and 0x29 (Power Control Register)
1632          *
1633          * |----------------------------------|
1634          * | Power Control Register           |
1635          * |                                  |
1636          * | Description omitted,             |
1637          * | since it has no analog in ESDHCI |
1638          * |                                  |
1639          * |----------------------------------|
1640          *
1641          * Since offsets 0x2A and 0x2B should be compatible between
1642          * both IP specs we only need to reconcile least 16-bit of the
1643          * word we've been given.
1644          */
1645 
1646         /*
1647          * First, save bits 7 6 and 0 since they are identical
1648          */
1649         hostctl1 = value & (SDHC_CTRL_LED |
1650                             SDHC_CTRL_CDTEST_INS |
1651                             SDHC_CTRL_CDTEST_EN);
1652         /*
1653          * Second, split "Data Transfer Width" from bits 2 and 1 in to
1654          * bits 5 and 1
1655          */
1656         if (value & ESDHC_CTRL_8BITBUS) {
1657             hostctl1 |= SDHC_CTRL_8BITBUS;
1658         }
1659 
1660         if (value & ESDHC_CTRL_4BITBUS) {
1661             hostctl1 |= ESDHC_CTRL_4BITBUS;
1662         }
1663 
1664         /*
1665          * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1666          */
1667         hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1668 
1669         /*
1670          * Now place the corrected value into low 16-bit of the value
1671          * we are going to give standard SDHCI write function
1672          *
1673          * NOTE: This transformation should be the inverse of what can
1674          * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1675          * kernel
1676          */
1677         value &= ~UINT16_MAX;
1678         value |= hostctl1;
1679         value |= (uint16_t)s->pwrcon << 8;
1680 
1681         sdhci_write(opaque, offset, value, size);
1682         break;
1683 
1684     case ESDHC_MIX_CTRL:
1685         /*
1686          * So, when SD/MMC stack in Linux tries to write to "Transfer
1687          * Mode Register", ESDHC i.MX quirk code will translate it
1688          * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1689          * order to get where we started
1690          *
1691          * Note that Auto CMD23 Enable bit is located in a wrong place
1692          * on i.MX, but since it is not used by QEMU we do not care.
1693          *
1694          * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1695          * here becuase it will result in a call to
1696          * sdhci_send_command(s) which we don't want.
1697          *
1698          */
1699         s->trnmod = value & UINT16_MAX;
1700         break;
1701     case SDHC_TRNMOD:
1702         /*
1703          * Similar to above, but this time a write to "Command
1704          * Register" will be translated into a 4-byte write to
1705          * "Transfer Mode register" where lower 16-bit of value would
1706          * be set to zero. So what we do is fill those bits with
1707          * cached value from s->trnmod and let the SDHCI
1708          * infrastructure handle the rest
1709          */
1710         sdhci_write(opaque, offset, val | s->trnmod, size);
1711         break;
1712     case SDHC_BLKSIZE:
1713         /*
1714          * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1715          * Linux driver will try to zero this field out which will
1716          * break the rest of SDHCI emulation.
1717          *
1718          * Linux defaults to maximum possible setting (512K boundary)
1719          * and it seems to be the only option that i.MX IP implements,
1720          * so we artificially set it to that value.
1721          */
1722         val |= 0x7 << 12;
1723         /* FALLTHROUGH */
1724     default:
1725         sdhci_write(opaque, offset, val, size);
1726         break;
1727     }
1728 }
1729 
1730 static const MemoryRegionOps usdhc_mmio_ops = {
1731     .read = usdhc_read,
1732     .write = usdhc_write,
1733     .valid = {
1734         .min_access_size = 1,
1735         .max_access_size = 4,
1736         .unaligned = false
1737     },
1738     .endianness = DEVICE_LITTLE_ENDIAN,
1739 };
1740 
1741 static void imx_usdhc_init(Object *obj)
1742 {
1743     SDHCIState *s = SYSBUS_SDHCI(obj);
1744 
1745     s->io_ops = &usdhc_mmio_ops;
1746     s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1747 }
1748 
1749 static const TypeInfo imx_usdhc_info = {
1750     .name = TYPE_IMX_USDHC,
1751     .parent = TYPE_SYSBUS_SDHCI,
1752     .instance_init = imx_usdhc_init,
1753 };
1754 
1755 /* --- qdev Samsung s3c --- */
1756 
1757 #define S3C_SDHCI_CONTROL2      0x80
1758 #define S3C_SDHCI_CONTROL3      0x84
1759 #define S3C_SDHCI_CONTROL4      0x8c
1760 
1761 static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
1762 {
1763     uint64_t ret;
1764 
1765     switch (offset) {
1766     case S3C_SDHCI_CONTROL2:
1767     case S3C_SDHCI_CONTROL3:
1768     case S3C_SDHCI_CONTROL4:
1769         /* ignore */
1770         ret = 0;
1771         break;
1772     default:
1773         ret = sdhci_read(opaque, offset, size);
1774         break;
1775     }
1776 
1777     return ret;
1778 }
1779 
1780 static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
1781                             unsigned size)
1782 {
1783     switch (offset) {
1784     case S3C_SDHCI_CONTROL2:
1785     case S3C_SDHCI_CONTROL3:
1786     case S3C_SDHCI_CONTROL4:
1787         /* ignore */
1788         break;
1789     default:
1790         sdhci_write(opaque, offset, val, size);
1791         break;
1792     }
1793 }
1794 
1795 static const MemoryRegionOps sdhci_s3c_mmio_ops = {
1796     .read = sdhci_s3c_read,
1797     .write = sdhci_s3c_write,
1798     .valid = {
1799         .min_access_size = 1,
1800         .max_access_size = 4,
1801         .unaligned = false
1802     },
1803     .endianness = DEVICE_LITTLE_ENDIAN,
1804 };
1805 
1806 static void sdhci_s3c_init(Object *obj)
1807 {
1808     SDHCIState *s = SYSBUS_SDHCI(obj);
1809 
1810     s->io_ops = &sdhci_s3c_mmio_ops;
1811 }
1812 
1813 static const TypeInfo sdhci_s3c_info = {
1814     .name = TYPE_S3C_SDHCI  ,
1815     .parent = TYPE_SYSBUS_SDHCI,
1816     .instance_init = sdhci_s3c_init,
1817 };
1818 
1819 static void sdhci_register_types(void)
1820 {
1821     type_register_static(&sdhci_sysbus_info);
1822     type_register_static(&sdhci_bus_info);
1823     type_register_static(&imx_usdhc_info);
1824     type_register_static(&sdhci_s3c_info);
1825 }
1826 
1827 type_init(sdhci_register_types)
1828