1 /* 2 * QEMU ESP/NCR53C9x emulation 3 * 4 * Copyright (c) 2005-2006 Fabrice Bellard 5 * Copyright (c) 2012 Herve Poussineau 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "hw/sysbus.h" 28 #include "migration/vmstate.h" 29 #include "hw/irq.h" 30 #include "hw/scsi/esp.h" 31 #include "trace.h" 32 #include "qemu/log.h" 33 #include "qemu/module.h" 34 35 /* 36 * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), 37 * also produced as NCR89C100. See 38 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt 39 * and 40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt 41 * 42 * On Macintosh Quadra it is a NCR53C96. 43 */ 44 45 static void esp_raise_irq(ESPState *s) 46 { 47 if (!(s->rregs[ESP_RSTAT] & STAT_INT)) { 48 s->rregs[ESP_RSTAT] |= STAT_INT; 49 qemu_irq_raise(s->irq); 50 trace_esp_raise_irq(); 51 } 52 } 53 54 static void esp_lower_irq(ESPState *s) 55 { 56 if (s->rregs[ESP_RSTAT] & STAT_INT) { 57 s->rregs[ESP_RSTAT] &= ~STAT_INT; 58 qemu_irq_lower(s->irq); 59 trace_esp_lower_irq(); 60 } 61 } 62 63 static void esp_raise_drq(ESPState *s) 64 { 65 qemu_irq_raise(s->irq_data); 66 } 67 68 static void esp_lower_drq(ESPState *s) 69 { 70 qemu_irq_lower(s->irq_data); 71 } 72 73 void esp_dma_enable(ESPState *s, int irq, int level) 74 { 75 if (level) { 76 s->dma_enabled = 1; 77 trace_esp_dma_enable(); 78 if (s->dma_cb) { 79 s->dma_cb(s); 80 s->dma_cb = NULL; 81 } 82 } else { 83 trace_esp_dma_disable(); 84 s->dma_enabled = 0; 85 } 86 } 87 88 void esp_request_cancelled(SCSIRequest *req) 89 { 90 ESPState *s = req->hba_private; 91 92 if (req == s->current_req) { 93 scsi_req_unref(s->current_req); 94 s->current_req = NULL; 95 s->current_dev = NULL; 96 } 97 } 98 99 static void set_pdma(ESPState *s, enum pdma_origin_id origin, 100 uint32_t index, uint32_t len) 101 { 102 s->pdma_origin = origin; 103 s->pdma_start = index; 104 s->pdma_cur = index; 105 s->pdma_len = len; 106 } 107 108 static uint8_t *get_pdma_buf(ESPState *s) 109 { 110 switch (s->pdma_origin) { 111 case PDMA: 112 return s->pdma_buf; 113 case TI: 114 return s->ti_buf; 115 case CMD: 116 return s->cmdbuf; 117 case ASYNC: 118 return s->async_buf; 119 } 120 return NULL; 121 } 122 123 static int get_cmd_cb(ESPState *s) 124 { 125 int target; 126 127 target = s->wregs[ESP_WBUSID] & BUSID_DID; 128 129 s->ti_size = 0; 130 s->ti_rptr = 0; 131 s->ti_wptr = 0; 132 133 if (s->current_req) { 134 /* Started a new command before the old one finished. Cancel it. */ 135 scsi_req_cancel(s->current_req); 136 s->async_len = 0; 137 } 138 139 s->current_dev = scsi_device_find(&s->bus, 0, target, 0); 140 if (!s->current_dev) { 141 /* No such drive */ 142 s->rregs[ESP_RSTAT] = 0; 143 s->rregs[ESP_RINTR] = INTR_DC; 144 s->rregs[ESP_RSEQ] = SEQ_0; 145 esp_raise_irq(s); 146 return -1; 147 } 148 return 0; 149 } 150 151 static uint32_t get_cmd(ESPState *s, uint8_t *buf, uint8_t buflen) 152 { 153 uint32_t dmalen; 154 int target; 155 156 target = s->wregs[ESP_WBUSID] & BUSID_DID; 157 if (s->dma) { 158 dmalen = s->rregs[ESP_TCLO]; 159 dmalen |= s->rregs[ESP_TCMID] << 8; 160 dmalen |= s->rregs[ESP_TCHI] << 16; 161 if (dmalen > buflen) { 162 return 0; 163 } 164 if (s->dma_memory_read) { 165 s->dma_memory_read(s->dma_opaque, buf, dmalen); 166 } else { 167 memcpy(s->pdma_buf, buf, dmalen); 168 set_pdma(s, PDMA, 0, dmalen); 169 esp_raise_drq(s); 170 return 0; 171 } 172 } else { 173 dmalen = s->ti_size; 174 if (dmalen > TI_BUFSZ) { 175 return 0; 176 } 177 memcpy(buf, s->ti_buf, dmalen); 178 buf[0] = buf[2] >> 5; 179 } 180 trace_esp_get_cmd(dmalen, target); 181 182 if (get_cmd_cb(s) < 0) { 183 return 0; 184 } 185 return dmalen; 186 } 187 188 static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid) 189 { 190 int32_t datalen; 191 int lun; 192 SCSIDevice *current_lun; 193 194 trace_esp_do_busid_cmd(busid); 195 lun = busid & 7; 196 current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun); 197 s->current_req = scsi_req_new(current_lun, 0, lun, buf, s); 198 datalen = scsi_req_enqueue(s->current_req); 199 s->ti_size = datalen; 200 if (datalen != 0) { 201 s->rregs[ESP_RSTAT] = STAT_TC; 202 s->dma_left = 0; 203 s->dma_counter = 0; 204 if (datalen > 0) { 205 s->rregs[ESP_RSTAT] |= STAT_DI; 206 } else { 207 s->rregs[ESP_RSTAT] |= STAT_DO; 208 } 209 scsi_req_continue(s->current_req); 210 } 211 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; 212 s->rregs[ESP_RSEQ] = SEQ_CD; 213 esp_raise_irq(s); 214 } 215 216 static void do_cmd(ESPState *s, uint8_t *buf) 217 { 218 uint8_t busid = buf[0]; 219 220 do_busid_cmd(s, &buf[1], busid); 221 } 222 223 static void satn_pdma_cb(ESPState *s) 224 { 225 if (get_cmd_cb(s) < 0) { 226 return; 227 } 228 if (s->pdma_cur != s->pdma_start) { 229 do_cmd(s, get_pdma_buf(s) + s->pdma_start); 230 } 231 } 232 233 static void handle_satn(ESPState *s) 234 { 235 uint8_t buf[32]; 236 int len; 237 238 if (s->dma && !s->dma_enabled) { 239 s->dma_cb = handle_satn; 240 return; 241 } 242 s->pdma_cb = satn_pdma_cb; 243 len = get_cmd(s, buf, sizeof(buf)); 244 if (len) { 245 do_cmd(s, buf); 246 } 247 } 248 249 static void s_without_satn_pdma_cb(ESPState *s) 250 { 251 if (get_cmd_cb(s) < 0) { 252 return; 253 } 254 if (s->pdma_cur != s->pdma_start) { 255 do_busid_cmd(s, get_pdma_buf(s) + s->pdma_start, 0); 256 } 257 } 258 259 static void handle_s_without_atn(ESPState *s) 260 { 261 uint8_t buf[32]; 262 int len; 263 264 if (s->dma && !s->dma_enabled) { 265 s->dma_cb = handle_s_without_atn; 266 return; 267 } 268 s->pdma_cb = s_without_satn_pdma_cb; 269 len = get_cmd(s, buf, sizeof(buf)); 270 if (len) { 271 do_busid_cmd(s, buf, 0); 272 } 273 } 274 275 static void satn_stop_pdma_cb(ESPState *s) 276 { 277 if (get_cmd_cb(s) < 0) { 278 return; 279 } 280 s->cmdlen = s->pdma_cur - s->pdma_start; 281 if (s->cmdlen) { 282 trace_esp_handle_satn_stop(s->cmdlen); 283 s->do_cmd = 1; 284 s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD; 285 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; 286 s->rregs[ESP_RSEQ] = SEQ_CD; 287 esp_raise_irq(s); 288 } 289 } 290 291 static void handle_satn_stop(ESPState *s) 292 { 293 if (s->dma && !s->dma_enabled) { 294 s->dma_cb = handle_satn_stop; 295 return; 296 } 297 s->pdma_cb = satn_stop_pdma_cb; 298 s->cmdlen = get_cmd(s, s->cmdbuf, sizeof(s->cmdbuf)); 299 if (s->cmdlen) { 300 trace_esp_handle_satn_stop(s->cmdlen); 301 s->do_cmd = 1; 302 s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD; 303 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; 304 s->rregs[ESP_RSEQ] = SEQ_CD; 305 esp_raise_irq(s); 306 } 307 } 308 309 static void write_response_pdma_cb(ESPState *s) 310 { 311 s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; 312 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; 313 s->rregs[ESP_RSEQ] = SEQ_CD; 314 esp_raise_irq(s); 315 } 316 317 static void write_response(ESPState *s) 318 { 319 trace_esp_write_response(s->status); 320 s->ti_buf[0] = s->status; 321 s->ti_buf[1] = 0; 322 if (s->dma) { 323 if (s->dma_memory_write) { 324 s->dma_memory_write(s->dma_opaque, s->ti_buf, 2); 325 s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; 326 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; 327 s->rregs[ESP_RSEQ] = SEQ_CD; 328 } else { 329 set_pdma(s, TI, 0, 2); 330 s->pdma_cb = write_response_pdma_cb; 331 esp_raise_drq(s); 332 return; 333 } 334 } else { 335 s->ti_size = 2; 336 s->ti_rptr = 0; 337 s->ti_wptr = 2; 338 s->rregs[ESP_RFLAGS] = 2; 339 } 340 esp_raise_irq(s); 341 } 342 343 static void esp_dma_done(ESPState *s) 344 { 345 s->rregs[ESP_RSTAT] |= STAT_TC; 346 s->rregs[ESP_RINTR] = INTR_BS; 347 s->rregs[ESP_RSEQ] = 0; 348 s->rregs[ESP_RFLAGS] = 0; 349 s->rregs[ESP_TCLO] = 0; 350 s->rregs[ESP_TCMID] = 0; 351 s->rregs[ESP_TCHI] = 0; 352 esp_raise_irq(s); 353 } 354 355 static void do_dma_pdma_cb(ESPState *s) 356 { 357 int to_device = (s->ti_size < 0); 358 int len = s->pdma_cur - s->pdma_start; 359 if (s->do_cmd) { 360 s->ti_size = 0; 361 s->cmdlen = 0; 362 s->do_cmd = 0; 363 do_cmd(s, s->cmdbuf); 364 return; 365 } 366 s->dma_left -= len; 367 s->async_buf += len; 368 s->async_len -= len; 369 if (to_device) { 370 s->ti_size += len; 371 } else { 372 s->ti_size -= len; 373 } 374 if (s->async_len == 0) { 375 scsi_req_continue(s->current_req); 376 /* 377 * If there is still data to be read from the device then 378 * complete the DMA operation immediately. Otherwise defer 379 * until the scsi layer has completed. 380 */ 381 if (to_device || s->dma_left != 0 || s->ti_size == 0) { 382 return; 383 } 384 } 385 386 /* Partially filled a scsi buffer. Complete immediately. */ 387 esp_dma_done(s); 388 } 389 390 static void esp_do_dma(ESPState *s) 391 { 392 uint32_t len; 393 int to_device; 394 395 len = s->dma_left; 396 if (s->do_cmd) { 397 /* 398 * handle_ti_cmd() case: esp_do_dma() is called only from 399 * handle_ti_cmd() with do_cmd != NULL (see the assert()) 400 */ 401 trace_esp_do_dma(s->cmdlen, len); 402 assert(s->cmdlen <= sizeof(s->cmdbuf) && 403 len <= sizeof(s->cmdbuf) - s->cmdlen); 404 if (s->dma_memory_read) { 405 s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len); 406 } else { 407 set_pdma(s, CMD, s->cmdlen, len); 408 s->pdma_cb = do_dma_pdma_cb; 409 esp_raise_drq(s); 410 return; 411 } 412 trace_esp_handle_ti_cmd(s->cmdlen); 413 s->ti_size = 0; 414 s->cmdlen = 0; 415 s->do_cmd = 0; 416 do_cmd(s, s->cmdbuf); 417 return; 418 } 419 if (s->async_len == 0) { 420 /* Defer until data is available. */ 421 return; 422 } 423 if (len > s->async_len) { 424 len = s->async_len; 425 } 426 to_device = (s->ti_size < 0); 427 if (to_device) { 428 if (s->dma_memory_read) { 429 s->dma_memory_read(s->dma_opaque, s->async_buf, len); 430 } else { 431 set_pdma(s, ASYNC, 0, len); 432 s->pdma_cb = do_dma_pdma_cb; 433 esp_raise_drq(s); 434 return; 435 } 436 } else { 437 if (s->dma_memory_write) { 438 s->dma_memory_write(s->dma_opaque, s->async_buf, len); 439 } else { 440 set_pdma(s, ASYNC, 0, len); 441 s->pdma_cb = do_dma_pdma_cb; 442 esp_raise_drq(s); 443 return; 444 } 445 } 446 s->dma_left -= len; 447 s->async_buf += len; 448 s->async_len -= len; 449 if (to_device) { 450 s->ti_size += len; 451 } else { 452 s->ti_size -= len; 453 } 454 if (s->async_len == 0) { 455 scsi_req_continue(s->current_req); 456 /* 457 * If there is still data to be read from the device then 458 * complete the DMA operation immediately. Otherwise defer 459 * until the scsi layer has completed. 460 */ 461 if (to_device || s->dma_left != 0 || s->ti_size == 0) { 462 return; 463 } 464 } 465 466 /* Partially filled a scsi buffer. Complete immediately. */ 467 esp_dma_done(s); 468 } 469 470 static void esp_report_command_complete(ESPState *s, uint32_t status) 471 { 472 trace_esp_command_complete(); 473 if (s->ti_size != 0) { 474 trace_esp_command_complete_unexpected(); 475 } 476 s->ti_size = 0; 477 s->dma_left = 0; 478 s->async_len = 0; 479 if (status) { 480 trace_esp_command_complete_fail(); 481 } 482 s->status = status; 483 s->rregs[ESP_RSTAT] = STAT_ST; 484 esp_dma_done(s); 485 if (s->current_req) { 486 scsi_req_unref(s->current_req); 487 s->current_req = NULL; 488 s->current_dev = NULL; 489 } 490 } 491 492 void esp_command_complete(SCSIRequest *req, size_t resid) 493 { 494 ESPState *s = req->hba_private; 495 496 if (s->rregs[ESP_RSTAT] & STAT_INT) { 497 /* 498 * Defer handling command complete until the previous 499 * interrupt has been handled. 500 */ 501 trace_esp_command_complete_deferred(); 502 s->deferred_status = req->status; 503 s->deferred_complete = true; 504 return; 505 } 506 esp_report_command_complete(s, req->status); 507 } 508 509 void esp_transfer_data(SCSIRequest *req, uint32_t len) 510 { 511 ESPState *s = req->hba_private; 512 513 assert(!s->do_cmd); 514 trace_esp_transfer_data(s->dma_left, s->ti_size); 515 s->async_len = len; 516 s->async_buf = scsi_req_get_buf(req); 517 if (s->dma_left) { 518 esp_do_dma(s); 519 } else if (s->dma_counter != 0 && s->ti_size <= 0) { 520 /* 521 * If this was the last part of a DMA transfer then the 522 * completion interrupt is deferred to here. 523 */ 524 esp_dma_done(s); 525 } 526 } 527 528 static void handle_ti(ESPState *s) 529 { 530 uint32_t dmalen, minlen; 531 532 if (s->dma && !s->dma_enabled) { 533 s->dma_cb = handle_ti; 534 return; 535 } 536 537 dmalen = s->rregs[ESP_TCLO]; 538 dmalen |= s->rregs[ESP_TCMID] << 8; 539 dmalen |= s->rregs[ESP_TCHI] << 16; 540 if (dmalen == 0) { 541 dmalen = 0x10000; 542 } 543 s->dma_counter = dmalen; 544 545 if (s->do_cmd) { 546 minlen = (dmalen < ESP_CMDBUF_SZ) ? dmalen : ESP_CMDBUF_SZ; 547 } else if (s->ti_size < 0) { 548 minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size; 549 } else { 550 minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size; 551 } 552 trace_esp_handle_ti(minlen); 553 if (s->dma) { 554 s->dma_left = minlen; 555 s->rregs[ESP_RSTAT] &= ~STAT_TC; 556 esp_do_dma(s); 557 } else if (s->do_cmd) { 558 trace_esp_handle_ti_cmd(s->cmdlen); 559 s->ti_size = 0; 560 s->cmdlen = 0; 561 s->do_cmd = 0; 562 do_cmd(s, s->cmdbuf); 563 } 564 } 565 566 void esp_hard_reset(ESPState *s) 567 { 568 memset(s->rregs, 0, ESP_REGS); 569 memset(s->wregs, 0, ESP_REGS); 570 s->tchi_written = 0; 571 s->ti_size = 0; 572 s->ti_rptr = 0; 573 s->ti_wptr = 0; 574 s->dma = 0; 575 s->do_cmd = 0; 576 s->dma_cb = NULL; 577 578 s->rregs[ESP_CFG1] = 7; 579 } 580 581 static void esp_soft_reset(ESPState *s) 582 { 583 qemu_irq_lower(s->irq); 584 qemu_irq_lower(s->irq_data); 585 esp_hard_reset(s); 586 } 587 588 static void parent_esp_reset(ESPState *s, int irq, int level) 589 { 590 if (level) { 591 esp_soft_reset(s); 592 } 593 } 594 595 uint64_t esp_reg_read(ESPState *s, uint32_t saddr) 596 { 597 uint32_t old_val; 598 599 trace_esp_mem_readb(saddr, s->rregs[saddr]); 600 switch (saddr) { 601 case ESP_FIFO: 602 if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) { 603 /* Data out. */ 604 qemu_log_mask(LOG_UNIMP, "esp: PIO data read not implemented\n"); 605 s->rregs[ESP_FIFO] = 0; 606 } else if (s->ti_rptr < s->ti_wptr) { 607 s->ti_size--; 608 s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++]; 609 } 610 if (s->ti_rptr == s->ti_wptr) { 611 s->ti_rptr = 0; 612 s->ti_wptr = 0; 613 } 614 break; 615 case ESP_RINTR: 616 /* 617 * Clear sequence step, interrupt register and all status bits 618 * except TC 619 */ 620 old_val = s->rregs[ESP_RINTR]; 621 s->rregs[ESP_RINTR] = 0; 622 s->rregs[ESP_RSTAT] &= ~STAT_TC; 623 s->rregs[ESP_RSEQ] = SEQ_CD; 624 esp_lower_irq(s); 625 if (s->deferred_complete) { 626 esp_report_command_complete(s, s->deferred_status); 627 s->deferred_complete = false; 628 } 629 return old_val; 630 case ESP_TCHI: 631 /* Return the unique id if the value has never been written */ 632 if (!s->tchi_written) { 633 return s->chip_id; 634 } 635 default: 636 break; 637 } 638 return s->rregs[saddr]; 639 } 640 641 void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val) 642 { 643 trace_esp_mem_writeb(saddr, s->wregs[saddr], val); 644 switch (saddr) { 645 case ESP_TCHI: 646 s->tchi_written = true; 647 /* fall through */ 648 case ESP_TCLO: 649 case ESP_TCMID: 650 s->rregs[ESP_RSTAT] &= ~STAT_TC; 651 break; 652 case ESP_FIFO: 653 if (s->do_cmd) { 654 if (s->cmdlen < ESP_CMDBUF_SZ) { 655 s->cmdbuf[s->cmdlen++] = val & 0xff; 656 } else { 657 trace_esp_error_fifo_overrun(); 658 } 659 } else if (s->ti_wptr == TI_BUFSZ - 1) { 660 trace_esp_error_fifo_overrun(); 661 } else { 662 s->ti_size++; 663 s->ti_buf[s->ti_wptr++] = val & 0xff; 664 } 665 break; 666 case ESP_CMD: 667 s->rregs[saddr] = val; 668 if (val & CMD_DMA) { 669 s->dma = 1; 670 /* Reload DMA counter. */ 671 s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO]; 672 s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID]; 673 s->rregs[ESP_TCHI] = s->wregs[ESP_TCHI]; 674 } else { 675 s->dma = 0; 676 } 677 switch (val & CMD_CMD) { 678 case CMD_NOP: 679 trace_esp_mem_writeb_cmd_nop(val); 680 break; 681 case CMD_FLUSH: 682 trace_esp_mem_writeb_cmd_flush(val); 683 /*s->ti_size = 0;*/ 684 s->rregs[ESP_RINTR] = INTR_FC; 685 s->rregs[ESP_RSEQ] = 0; 686 s->rregs[ESP_RFLAGS] = 0; 687 break; 688 case CMD_RESET: 689 trace_esp_mem_writeb_cmd_reset(val); 690 esp_soft_reset(s); 691 break; 692 case CMD_BUSRESET: 693 trace_esp_mem_writeb_cmd_bus_reset(val); 694 s->rregs[ESP_RINTR] = INTR_RST; 695 if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { 696 esp_raise_irq(s); 697 } 698 break; 699 case CMD_TI: 700 handle_ti(s); 701 break; 702 case CMD_ICCS: 703 trace_esp_mem_writeb_cmd_iccs(val); 704 write_response(s); 705 s->rregs[ESP_RINTR] = INTR_FC; 706 s->rregs[ESP_RSTAT] |= STAT_MI; 707 break; 708 case CMD_MSGACC: 709 trace_esp_mem_writeb_cmd_msgacc(val); 710 s->rregs[ESP_RINTR] = INTR_DC; 711 s->rregs[ESP_RSEQ] = 0; 712 s->rregs[ESP_RFLAGS] = 0; 713 esp_raise_irq(s); 714 break; 715 case CMD_PAD: 716 trace_esp_mem_writeb_cmd_pad(val); 717 s->rregs[ESP_RSTAT] = STAT_TC; 718 s->rregs[ESP_RINTR] = INTR_FC; 719 s->rregs[ESP_RSEQ] = 0; 720 break; 721 case CMD_SATN: 722 trace_esp_mem_writeb_cmd_satn(val); 723 break; 724 case CMD_RSTATN: 725 trace_esp_mem_writeb_cmd_rstatn(val); 726 break; 727 case CMD_SEL: 728 trace_esp_mem_writeb_cmd_sel(val); 729 handle_s_without_atn(s); 730 break; 731 case CMD_SELATN: 732 trace_esp_mem_writeb_cmd_selatn(val); 733 handle_satn(s); 734 break; 735 case CMD_SELATNS: 736 trace_esp_mem_writeb_cmd_selatns(val); 737 handle_satn_stop(s); 738 break; 739 case CMD_ENSEL: 740 trace_esp_mem_writeb_cmd_ensel(val); 741 s->rregs[ESP_RINTR] = 0; 742 break; 743 case CMD_DISSEL: 744 trace_esp_mem_writeb_cmd_dissel(val); 745 s->rregs[ESP_RINTR] = 0; 746 esp_raise_irq(s); 747 break; 748 default: 749 trace_esp_error_unhandled_command(val); 750 break; 751 } 752 break; 753 case ESP_WBUSID ... ESP_WSYNO: 754 break; 755 case ESP_CFG1: 756 case ESP_CFG2: case ESP_CFG3: 757 case ESP_RES3: case ESP_RES4: 758 s->rregs[saddr] = val; 759 break; 760 case ESP_WCCF ... ESP_WTEST: 761 break; 762 default: 763 trace_esp_error_invalid_write(val, saddr); 764 return; 765 } 766 s->wregs[saddr] = val; 767 } 768 769 static bool esp_mem_accepts(void *opaque, hwaddr addr, 770 unsigned size, bool is_write, 771 MemTxAttrs attrs) 772 { 773 return (size == 1) || (is_write && size == 4); 774 } 775 776 static bool esp_pdma_needed(void *opaque) 777 { 778 ESPState *s = opaque; 779 return s->dma_memory_read == NULL && s->dma_memory_write == NULL && 780 s->dma_enabled; 781 } 782 783 static const VMStateDescription vmstate_esp_pdma = { 784 .name = "esp/pdma", 785 .version_id = 1, 786 .minimum_version_id = 1, 787 .needed = esp_pdma_needed, 788 .fields = (VMStateField[]) { 789 VMSTATE_BUFFER(pdma_buf, ESPState), 790 VMSTATE_INT32(pdma_origin, ESPState), 791 VMSTATE_UINT32(pdma_len, ESPState), 792 VMSTATE_UINT32(pdma_start, ESPState), 793 VMSTATE_UINT32(pdma_cur, ESPState), 794 VMSTATE_END_OF_LIST() 795 } 796 }; 797 798 const VMStateDescription vmstate_esp = { 799 .name = "esp", 800 .version_id = 4, 801 .minimum_version_id = 3, 802 .fields = (VMStateField[]) { 803 VMSTATE_BUFFER(rregs, ESPState), 804 VMSTATE_BUFFER(wregs, ESPState), 805 VMSTATE_INT32(ti_size, ESPState), 806 VMSTATE_UINT32(ti_rptr, ESPState), 807 VMSTATE_UINT32(ti_wptr, ESPState), 808 VMSTATE_BUFFER(ti_buf, ESPState), 809 VMSTATE_UINT32(status, ESPState), 810 VMSTATE_UINT32(deferred_status, ESPState), 811 VMSTATE_BOOL(deferred_complete, ESPState), 812 VMSTATE_UINT32(dma, ESPState), 813 VMSTATE_PARTIAL_BUFFER(cmdbuf, ESPState, 16), 814 VMSTATE_BUFFER_START_MIDDLE_V(cmdbuf, ESPState, 16, 4), 815 VMSTATE_UINT32(cmdlen, ESPState), 816 VMSTATE_UINT32(do_cmd, ESPState), 817 VMSTATE_UINT32(dma_left, ESPState), 818 VMSTATE_END_OF_LIST() 819 }, 820 .subsections = (const VMStateDescription * []) { 821 &vmstate_esp_pdma, 822 NULL 823 } 824 }; 825 826 static void sysbus_esp_mem_write(void *opaque, hwaddr addr, 827 uint64_t val, unsigned int size) 828 { 829 SysBusESPState *sysbus = opaque; 830 ESPState *s = ESP(&sysbus->esp); 831 uint32_t saddr; 832 833 saddr = addr >> sysbus->it_shift; 834 esp_reg_write(s, saddr, val); 835 } 836 837 static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr, 838 unsigned int size) 839 { 840 SysBusESPState *sysbus = opaque; 841 ESPState *s = ESP(&sysbus->esp); 842 uint32_t saddr; 843 844 saddr = addr >> sysbus->it_shift; 845 return esp_reg_read(s, saddr); 846 } 847 848 static const MemoryRegionOps sysbus_esp_mem_ops = { 849 .read = sysbus_esp_mem_read, 850 .write = sysbus_esp_mem_write, 851 .endianness = DEVICE_NATIVE_ENDIAN, 852 .valid.accepts = esp_mem_accepts, 853 }; 854 855 static void sysbus_esp_pdma_write(void *opaque, hwaddr addr, 856 uint64_t val, unsigned int size) 857 { 858 SysBusESPState *sysbus = opaque; 859 ESPState *s = ESP(&sysbus->esp); 860 uint32_t dmalen; 861 uint8_t *buf = get_pdma_buf(s); 862 863 dmalen = s->rregs[ESP_TCLO]; 864 dmalen |= s->rregs[ESP_TCMID] << 8; 865 dmalen |= s->rregs[ESP_TCHI] << 16; 866 if (dmalen == 0 || s->pdma_len == 0) { 867 return; 868 } 869 switch (size) { 870 case 1: 871 buf[s->pdma_cur++] = val; 872 s->pdma_len--; 873 dmalen--; 874 break; 875 case 2: 876 buf[s->pdma_cur++] = val >> 8; 877 buf[s->pdma_cur++] = val; 878 s->pdma_len -= 2; 879 dmalen -= 2; 880 break; 881 } 882 s->rregs[ESP_TCLO] = dmalen & 0xff; 883 s->rregs[ESP_TCMID] = dmalen >> 8; 884 s->rregs[ESP_TCHI] = dmalen >> 16; 885 if (s->pdma_len == 0 && s->pdma_cb) { 886 esp_lower_drq(s); 887 s->pdma_cb(s); 888 s->pdma_cb = NULL; 889 } 890 } 891 892 static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr, 893 unsigned int size) 894 { 895 SysBusESPState *sysbus = opaque; 896 ESPState *s = ESP(&sysbus->esp); 897 uint8_t *buf = get_pdma_buf(s); 898 uint64_t val = 0; 899 900 if (s->pdma_len == 0) { 901 return 0; 902 } 903 switch (size) { 904 case 1: 905 val = buf[s->pdma_cur++]; 906 s->pdma_len--; 907 break; 908 case 2: 909 val = buf[s->pdma_cur++]; 910 val = (val << 8) | buf[s->pdma_cur++]; 911 s->pdma_len -= 2; 912 break; 913 } 914 915 if (s->pdma_len == 0 && s->pdma_cb) { 916 esp_lower_drq(s); 917 s->pdma_cb(s); 918 s->pdma_cb = NULL; 919 } 920 return val; 921 } 922 923 static const MemoryRegionOps sysbus_esp_pdma_ops = { 924 .read = sysbus_esp_pdma_read, 925 .write = sysbus_esp_pdma_write, 926 .endianness = DEVICE_NATIVE_ENDIAN, 927 .valid.min_access_size = 1, 928 .valid.max_access_size = 2, 929 }; 930 931 static const struct SCSIBusInfo esp_scsi_info = { 932 .tcq = false, 933 .max_target = ESP_MAX_DEVS, 934 .max_lun = 7, 935 936 .transfer_data = esp_transfer_data, 937 .complete = esp_command_complete, 938 .cancel = esp_request_cancelled 939 }; 940 941 static void sysbus_esp_gpio_demux(void *opaque, int irq, int level) 942 { 943 SysBusESPState *sysbus = SYSBUS_ESP(opaque); 944 ESPState *s = ESP(&sysbus->esp); 945 946 switch (irq) { 947 case 0: 948 parent_esp_reset(s, irq, level); 949 break; 950 case 1: 951 esp_dma_enable(opaque, irq, level); 952 break; 953 } 954 } 955 956 static void sysbus_esp_realize(DeviceState *dev, Error **errp) 957 { 958 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 959 SysBusESPState *sysbus = SYSBUS_ESP(dev); 960 ESPState *s = ESP(&sysbus->esp); 961 962 if (!qdev_realize(DEVICE(s), NULL, errp)) { 963 return; 964 } 965 966 sysbus_init_irq(sbd, &s->irq); 967 sysbus_init_irq(sbd, &s->irq_data); 968 assert(sysbus->it_shift != -1); 969 970 s->chip_id = TCHI_FAS100A; 971 memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops, 972 sysbus, "esp-regs", ESP_REGS << sysbus->it_shift); 973 sysbus_init_mmio(sbd, &sysbus->iomem); 974 memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops, 975 sysbus, "esp-pdma", 2); 976 sysbus_init_mmio(sbd, &sysbus->pdma); 977 978 qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2); 979 980 scsi_bus_new(&s->bus, sizeof(s->bus), dev, &esp_scsi_info, NULL); 981 } 982 983 static void sysbus_esp_hard_reset(DeviceState *dev) 984 { 985 SysBusESPState *sysbus = SYSBUS_ESP(dev); 986 ESPState *s = ESP(&sysbus->esp); 987 988 esp_hard_reset(s); 989 } 990 991 static void sysbus_esp_init(Object *obj) 992 { 993 SysBusESPState *sysbus = SYSBUS_ESP(obj); 994 995 object_initialize_child(obj, "esp", &sysbus->esp, TYPE_ESP); 996 } 997 998 static const VMStateDescription vmstate_sysbus_esp_scsi = { 999 .name = "sysbusespscsi", 1000 .version_id = 1, 1001 .minimum_version_id = 1, 1002 .fields = (VMStateField[]) { 1003 VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState), 1004 VMSTATE_END_OF_LIST() 1005 } 1006 }; 1007 1008 static void sysbus_esp_class_init(ObjectClass *klass, void *data) 1009 { 1010 DeviceClass *dc = DEVICE_CLASS(klass); 1011 1012 dc->realize = sysbus_esp_realize; 1013 dc->reset = sysbus_esp_hard_reset; 1014 dc->vmsd = &vmstate_sysbus_esp_scsi; 1015 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1016 } 1017 1018 static const TypeInfo sysbus_esp_info = { 1019 .name = TYPE_SYSBUS_ESP, 1020 .parent = TYPE_SYS_BUS_DEVICE, 1021 .instance_init = sysbus_esp_init, 1022 .instance_size = sizeof(SysBusESPState), 1023 .class_init = sysbus_esp_class_init, 1024 }; 1025 1026 static void esp_class_init(ObjectClass *klass, void *data) 1027 { 1028 DeviceClass *dc = DEVICE_CLASS(klass); 1029 1030 /* internal device for sysbusesp/pciespscsi, not user-creatable */ 1031 dc->user_creatable = false; 1032 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1033 } 1034 1035 static const TypeInfo esp_info = { 1036 .name = TYPE_ESP, 1037 .parent = TYPE_DEVICE, 1038 .instance_size = sizeof(ESPState), 1039 .class_init = esp_class_init, 1040 }; 1041 1042 static void esp_register_types(void) 1043 { 1044 type_register_static(&sysbus_esp_info); 1045 type_register_static(&esp_info); 1046 } 1047 1048 type_init(esp_register_types) 1049