1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/hw.h" 30 #include "hw/sysbus.h" 31 #include "hw/pci/pci.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci_host.h" 35 #include "hw/ppc/spapr.h" 36 #include "hw/pci-host/spapr.h" 37 #include "exec/address-spaces.h" 38 #include "exec/ram_addr.h" 39 #include <libfdt.h> 40 #include "trace.h" 41 #include "qemu/error-report.h" 42 #include "qapi/qmp/qerror.h" 43 44 #include "hw/pci/pci_bridge.h" 45 #include "hw/pci/pci_bus.h" 46 #include "hw/pci/pci_ids.h" 47 #include "hw/ppc/spapr_drc.h" 48 #include "sysemu/device_tree.h" 49 #include "sysemu/kvm.h" 50 #include "sysemu/hostmem.h" 51 #include "sysemu/numa.h" 52 53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 54 #define RTAS_QUERY_FN 0 55 #define RTAS_CHANGE_FN 1 56 #define RTAS_RESET_FN 2 57 #define RTAS_CHANGE_MSI_FN 3 58 #define RTAS_CHANGE_MSIX_FN 4 59 60 /* Interrupt types to return on RTAS_CHANGE_* */ 61 #define RTAS_TYPE_MSI 1 62 #define RTAS_TYPE_MSIX 2 63 64 #define FDT_NAME_MAX 128 65 66 #define _FDT(exp) \ 67 do { \ 68 int ret = (exp); \ 69 if (ret < 0) { \ 70 return ret; \ 71 } \ 72 } while (0) 73 74 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid) 75 { 76 sPAPRPHBState *sphb; 77 78 QLIST_FOREACH(sphb, &spapr->phbs, list) { 79 if (sphb->buid != buid) { 80 continue; 81 } 82 return sphb; 83 } 84 85 return NULL; 86 } 87 88 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid, 89 uint32_t config_addr) 90 { 91 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid); 92 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 93 int bus_num = (config_addr >> 16) & 0xFF; 94 int devfn = (config_addr >> 8) & 0xFF; 95 96 if (!phb) { 97 return NULL; 98 } 99 100 return pci_find_device(phb->bus, bus_num, devfn); 101 } 102 103 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 104 { 105 /* This handles the encoding of extended config space addresses */ 106 return ((arg >> 20) & 0xf00) | (arg & 0xff); 107 } 108 109 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid, 110 uint32_t addr, uint32_t size, 111 target_ulong rets) 112 { 113 PCIDevice *pci_dev; 114 uint32_t val; 115 116 if ((size != 1) && (size != 2) && (size != 4)) { 117 /* access must be 1, 2 or 4 bytes */ 118 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 119 return; 120 } 121 122 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 123 addr = rtas_pci_cfgaddr(addr); 124 125 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 126 /* Access must be to a valid device, within bounds and 127 * naturally aligned */ 128 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 129 return; 130 } 131 132 val = pci_host_config_read_common(pci_dev, addr, 133 pci_config_size(pci_dev), size); 134 135 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 136 rtas_st(rets, 1, val); 137 } 138 139 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 140 uint32_t token, uint32_t nargs, 141 target_ulong args, 142 uint32_t nret, target_ulong rets) 143 { 144 uint64_t buid; 145 uint32_t size, addr; 146 147 if ((nargs != 4) || (nret != 2)) { 148 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 149 return; 150 } 151 152 buid = rtas_ldq(args, 1); 153 size = rtas_ld(args, 3); 154 addr = rtas_ld(args, 0); 155 156 finish_read_pci_config(spapr, buid, addr, size, rets); 157 } 158 159 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 160 uint32_t token, uint32_t nargs, 161 target_ulong args, 162 uint32_t nret, target_ulong rets) 163 { 164 uint32_t size, addr; 165 166 if ((nargs != 2) || (nret != 2)) { 167 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 168 return; 169 } 170 171 size = rtas_ld(args, 1); 172 addr = rtas_ld(args, 0); 173 174 finish_read_pci_config(spapr, 0, addr, size, rets); 175 } 176 177 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid, 178 uint32_t addr, uint32_t size, 179 uint32_t val, target_ulong rets) 180 { 181 PCIDevice *pci_dev; 182 183 if ((size != 1) && (size != 2) && (size != 4)) { 184 /* access must be 1, 2 or 4 bytes */ 185 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 186 return; 187 } 188 189 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 190 addr = rtas_pci_cfgaddr(addr); 191 192 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 193 /* Access must be to a valid device, within bounds and 194 * naturally aligned */ 195 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 196 return; 197 } 198 199 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 200 val, size); 201 202 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 203 } 204 205 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 206 uint32_t token, uint32_t nargs, 207 target_ulong args, 208 uint32_t nret, target_ulong rets) 209 { 210 uint64_t buid; 211 uint32_t val, size, addr; 212 213 if ((nargs != 5) || (nret != 1)) { 214 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 215 return; 216 } 217 218 buid = rtas_ldq(args, 1); 219 val = rtas_ld(args, 4); 220 size = rtas_ld(args, 3); 221 addr = rtas_ld(args, 0); 222 223 finish_write_pci_config(spapr, buid, addr, size, val, rets); 224 } 225 226 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 227 uint32_t token, uint32_t nargs, 228 target_ulong args, 229 uint32_t nret, target_ulong rets) 230 { 231 uint32_t val, size, addr; 232 233 if ((nargs != 3) || (nret != 1)) { 234 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 235 return; 236 } 237 238 239 val = rtas_ld(args, 2); 240 size = rtas_ld(args, 1); 241 addr = rtas_ld(args, 0); 242 243 finish_write_pci_config(spapr, 0, addr, size, val, rets); 244 } 245 246 /* 247 * Set MSI/MSIX message data. 248 * This is required for msi_notify()/msix_notify() which 249 * will write at the addresses via spapr_msi_write(). 250 * 251 * If hwaddr == 0, all entries will have .data == first_irq i.e. 252 * table will be reset. 253 */ 254 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 255 unsigned first_irq, unsigned req_num) 256 { 257 unsigned i; 258 MSIMessage msg = { .address = addr, .data = first_irq }; 259 260 if (!msix) { 261 msi_set_message(pdev, msg); 262 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 263 return; 264 } 265 266 for (i = 0; i < req_num; ++i) { 267 msix_set_message(pdev, i, msg); 268 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 269 if (addr) { 270 ++msg.data; 271 } 272 } 273 } 274 275 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr, 276 uint32_t token, uint32_t nargs, 277 target_ulong args, uint32_t nret, 278 target_ulong rets) 279 { 280 uint32_t config_addr = rtas_ld(args, 0); 281 uint64_t buid = rtas_ldq(args, 1); 282 unsigned int func = rtas_ld(args, 3); 283 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 284 unsigned int seq_num = rtas_ld(args, 5); 285 unsigned int ret_intr_type; 286 unsigned int irq, max_irqs = 0; 287 sPAPRPHBState *phb = NULL; 288 PCIDevice *pdev = NULL; 289 spapr_pci_msi *msi; 290 int *config_addr_key; 291 Error *err = NULL; 292 293 switch (func) { 294 case RTAS_CHANGE_MSI_FN: 295 case RTAS_CHANGE_FN: 296 ret_intr_type = RTAS_TYPE_MSI; 297 break; 298 case RTAS_CHANGE_MSIX_FN: 299 ret_intr_type = RTAS_TYPE_MSIX; 300 break; 301 default: 302 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 303 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 304 return; 305 } 306 307 /* Fins sPAPRPHBState */ 308 phb = spapr_pci_find_phb(spapr, buid); 309 if (phb) { 310 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 311 } 312 if (!phb || !pdev) { 313 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 314 return; 315 } 316 317 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 318 319 /* Releasing MSIs */ 320 if (!req_num) { 321 if (!msi) { 322 trace_spapr_pci_msi("Releasing wrong config", config_addr); 323 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 324 return; 325 } 326 327 spapr_ics_free(spapr->ics, msi->first_irq, msi->num); 328 if (msi_present(pdev)) { 329 spapr_msi_setmsg(pdev, 0, false, 0, 0); 330 } 331 if (msix_present(pdev)) { 332 spapr_msi_setmsg(pdev, 0, true, 0, 0); 333 } 334 g_hash_table_remove(phb->msi, &config_addr); 335 336 trace_spapr_pci_msi("Released MSIs", config_addr); 337 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 338 rtas_st(rets, 1, 0); 339 return; 340 } 341 342 /* Enabling MSI */ 343 344 /* Check if the device supports as many IRQs as requested */ 345 if (ret_intr_type == RTAS_TYPE_MSI) { 346 max_irqs = msi_nr_vectors_allocated(pdev); 347 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 348 max_irqs = pdev->msix_entries_nr; 349 } 350 if (!max_irqs) { 351 error_report("Requested interrupt type %d is not enabled for device %x", 352 ret_intr_type, config_addr); 353 rtas_st(rets, 0, -1); /* Hardware error */ 354 return; 355 } 356 /* Correct the number if the guest asked for too many */ 357 if (req_num > max_irqs) { 358 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 359 req_num = max_irqs; 360 irq = 0; /* to avoid misleading trace */ 361 goto out; 362 } 363 364 /* Allocate MSIs */ 365 irq = spapr_ics_alloc_block(spapr->ics, req_num, false, 366 ret_intr_type == RTAS_TYPE_MSI, &err); 367 if (err) { 368 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 369 config_addr); 370 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 371 return; 372 } 373 374 /* Release previous MSIs */ 375 if (msi) { 376 spapr_ics_free(spapr->ics, msi->first_irq, msi->num); 377 g_hash_table_remove(phb->msi, &config_addr); 378 } 379 380 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 381 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 382 irq, req_num); 383 384 /* Add MSI device to cache */ 385 msi = g_new(spapr_pci_msi, 1); 386 msi->first_irq = irq; 387 msi->num = req_num; 388 config_addr_key = g_new(int, 1); 389 *config_addr_key = config_addr; 390 g_hash_table_insert(phb->msi, config_addr_key, msi); 391 392 out: 393 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 394 rtas_st(rets, 1, req_num); 395 rtas_st(rets, 2, ++seq_num); 396 if (nret > 3) { 397 rtas_st(rets, 3, ret_intr_type); 398 } 399 400 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 401 } 402 403 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 404 sPAPRMachineState *spapr, 405 uint32_t token, 406 uint32_t nargs, 407 target_ulong args, 408 uint32_t nret, 409 target_ulong rets) 410 { 411 uint32_t config_addr = rtas_ld(args, 0); 412 uint64_t buid = rtas_ldq(args, 1); 413 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 414 sPAPRPHBState *phb = NULL; 415 PCIDevice *pdev = NULL; 416 spapr_pci_msi *msi; 417 418 /* Find sPAPRPHBState */ 419 phb = spapr_pci_find_phb(spapr, buid); 420 if (phb) { 421 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 422 } 423 if (!phb || !pdev) { 424 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 425 return; 426 } 427 428 /* Find device descriptor and start IRQ */ 429 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 430 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 431 trace_spapr_pci_msi("Failed to return vector", config_addr); 432 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 433 return; 434 } 435 intr_src_num = msi->first_irq + ioa_intr_num; 436 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 437 intr_src_num); 438 439 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 440 rtas_st(rets, 1, intr_src_num); 441 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 442 } 443 444 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 445 sPAPRMachineState *spapr, 446 uint32_t token, uint32_t nargs, 447 target_ulong args, uint32_t nret, 448 target_ulong rets) 449 { 450 sPAPRPHBState *sphb; 451 uint32_t addr, option; 452 uint64_t buid; 453 int ret; 454 455 if ((nargs != 4) || (nret != 1)) { 456 goto param_error_exit; 457 } 458 459 buid = rtas_ldq(args, 1); 460 addr = rtas_ld(args, 0); 461 option = rtas_ld(args, 3); 462 463 sphb = spapr_pci_find_phb(spapr, buid); 464 if (!sphb) { 465 goto param_error_exit; 466 } 467 468 if (!spapr_phb_eeh_available(sphb)) { 469 goto param_error_exit; 470 } 471 472 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 473 rtas_st(rets, 0, ret); 474 return; 475 476 param_error_exit: 477 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 478 } 479 480 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 481 sPAPRMachineState *spapr, 482 uint32_t token, uint32_t nargs, 483 target_ulong args, uint32_t nret, 484 target_ulong rets) 485 { 486 sPAPRPHBState *sphb; 487 PCIDevice *pdev; 488 uint32_t addr, option; 489 uint64_t buid; 490 491 if ((nargs != 4) || (nret != 2)) { 492 goto param_error_exit; 493 } 494 495 buid = rtas_ldq(args, 1); 496 sphb = spapr_pci_find_phb(spapr, buid); 497 if (!sphb) { 498 goto param_error_exit; 499 } 500 501 if (!spapr_phb_eeh_available(sphb)) { 502 goto param_error_exit; 503 } 504 505 /* 506 * We always have PE address of form "00BB0001". "BB" 507 * represents the bus number of PE's primary bus. 508 */ 509 option = rtas_ld(args, 3); 510 switch (option) { 511 case RTAS_GET_PE_ADDR: 512 addr = rtas_ld(args, 0); 513 pdev = spapr_pci_find_dev(spapr, buid, addr); 514 if (!pdev) { 515 goto param_error_exit; 516 } 517 518 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1); 519 break; 520 case RTAS_GET_PE_MODE: 521 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 522 break; 523 default: 524 goto param_error_exit; 525 } 526 527 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 528 return; 529 530 param_error_exit: 531 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 532 } 533 534 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 535 sPAPRMachineState *spapr, 536 uint32_t token, uint32_t nargs, 537 target_ulong args, uint32_t nret, 538 target_ulong rets) 539 { 540 sPAPRPHBState *sphb; 541 uint64_t buid; 542 int state, ret; 543 544 if ((nargs != 3) || (nret != 4 && nret != 5)) { 545 goto param_error_exit; 546 } 547 548 buid = rtas_ldq(args, 1); 549 sphb = spapr_pci_find_phb(spapr, buid); 550 if (!sphb) { 551 goto param_error_exit; 552 } 553 554 if (!spapr_phb_eeh_available(sphb)) { 555 goto param_error_exit; 556 } 557 558 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 559 rtas_st(rets, 0, ret); 560 if (ret != RTAS_OUT_SUCCESS) { 561 return; 562 } 563 564 rtas_st(rets, 1, state); 565 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 566 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 567 if (nret >= 5) { 568 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 569 } 570 return; 571 572 param_error_exit: 573 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 574 } 575 576 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 577 sPAPRMachineState *spapr, 578 uint32_t token, uint32_t nargs, 579 target_ulong args, uint32_t nret, 580 target_ulong rets) 581 { 582 sPAPRPHBState *sphb; 583 uint32_t option; 584 uint64_t buid; 585 int ret; 586 587 if ((nargs != 4) || (nret != 1)) { 588 goto param_error_exit; 589 } 590 591 buid = rtas_ldq(args, 1); 592 option = rtas_ld(args, 3); 593 sphb = spapr_pci_find_phb(spapr, buid); 594 if (!sphb) { 595 goto param_error_exit; 596 } 597 598 if (!spapr_phb_eeh_available(sphb)) { 599 goto param_error_exit; 600 } 601 602 ret = spapr_phb_vfio_eeh_reset(sphb, option); 603 rtas_st(rets, 0, ret); 604 return; 605 606 param_error_exit: 607 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 608 } 609 610 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 611 sPAPRMachineState *spapr, 612 uint32_t token, uint32_t nargs, 613 target_ulong args, uint32_t nret, 614 target_ulong rets) 615 { 616 sPAPRPHBState *sphb; 617 uint64_t buid; 618 int ret; 619 620 if ((nargs != 3) || (nret != 1)) { 621 goto param_error_exit; 622 } 623 624 buid = rtas_ldq(args, 1); 625 sphb = spapr_pci_find_phb(spapr, buid); 626 if (!sphb) { 627 goto param_error_exit; 628 } 629 630 if (!spapr_phb_eeh_available(sphb)) { 631 goto param_error_exit; 632 } 633 634 ret = spapr_phb_vfio_eeh_configure(sphb); 635 rtas_st(rets, 0, ret); 636 return; 637 638 param_error_exit: 639 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 640 } 641 642 /* To support it later */ 643 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 644 sPAPRMachineState *spapr, 645 uint32_t token, uint32_t nargs, 646 target_ulong args, uint32_t nret, 647 target_ulong rets) 648 { 649 sPAPRPHBState *sphb; 650 int option; 651 uint64_t buid; 652 653 if ((nargs != 8) || (nret != 1)) { 654 goto param_error_exit; 655 } 656 657 buid = rtas_ldq(args, 1); 658 sphb = spapr_pci_find_phb(spapr, buid); 659 if (!sphb) { 660 goto param_error_exit; 661 } 662 663 if (!spapr_phb_eeh_available(sphb)) { 664 goto param_error_exit; 665 } 666 667 option = rtas_ld(args, 7); 668 switch (option) { 669 case RTAS_SLOT_TEMP_ERR_LOG: 670 case RTAS_SLOT_PERM_ERR_LOG: 671 break; 672 default: 673 goto param_error_exit; 674 } 675 676 /* We don't have error log yet */ 677 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 678 return; 679 680 param_error_exit: 681 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 682 } 683 684 static int pci_spapr_swizzle(int slot, int pin) 685 { 686 return (slot + pin) % PCI_NUM_PINS; 687 } 688 689 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 690 { 691 /* 692 * Here we need to convert pci_dev + irq_num to some unique value 693 * which is less than number of IRQs on the specific bus (4). We 694 * use standard PCI swizzling, that is (slot number + pin number) 695 * % 4. 696 */ 697 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 698 } 699 700 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 701 { 702 /* 703 * Here we use the number returned by pci_spapr_map_irq to find a 704 * corresponding qemu_irq. 705 */ 706 sPAPRPHBState *phb = opaque; 707 708 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 709 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 710 } 711 712 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 713 { 714 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 715 PCIINTxRoute route; 716 717 route.mode = PCI_INTX_ENABLED; 718 route.irq = sphb->lsi_table[pin].irq; 719 720 return route; 721 } 722 723 /* 724 * MSI/MSIX memory region implementation. 725 * The handler handles both MSI and MSIX. 726 * The vector number is encoded in least bits in data. 727 */ 728 static void spapr_msi_write(void *opaque, hwaddr addr, 729 uint64_t data, unsigned size) 730 { 731 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 732 uint32_t irq = data; 733 734 trace_spapr_pci_msi_write(addr, data, irq); 735 736 qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq)); 737 } 738 739 static const MemoryRegionOps spapr_msi_ops = { 740 /* There is no .read as the read result is undefined by PCI spec */ 741 .read = NULL, 742 .write = spapr_msi_write, 743 .endianness = DEVICE_LITTLE_ENDIAN 744 }; 745 746 /* 747 * PHB PCI device 748 */ 749 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 750 { 751 sPAPRPHBState *phb = opaque; 752 753 return &phb->iommu_as; 754 } 755 756 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 757 { 758 char *path = NULL, *buf = NULL, *host = NULL; 759 760 /* Get the PCI VFIO host id */ 761 host = object_property_get_str(OBJECT(pdev), "host", NULL); 762 if (!host) { 763 goto err_out; 764 } 765 766 /* Construct the path of the file that will give us the DT location */ 767 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 768 g_free(host); 769 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 770 goto err_out; 771 } 772 g_free(path); 773 774 /* Construct and read from host device tree the loc-code */ 775 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 776 g_free(buf); 777 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 778 goto err_out; 779 } 780 return buf; 781 782 err_out: 783 g_free(path); 784 return NULL; 785 } 786 787 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 788 { 789 char *buf; 790 const char *devtype = "qemu"; 791 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 792 793 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 794 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 795 if (buf) { 796 return buf; 797 } 798 devtype = "vfio"; 799 } 800 /* 801 * For emulated devices and VFIO-failure case, make up 802 * the loc-code. 803 */ 804 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 805 devtype, pdev->name, sphb->index, busnr, 806 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 807 return buf; 808 } 809 810 /* Macros to operate with address in OF binding to PCI */ 811 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 812 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 813 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 814 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 815 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 816 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 817 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 818 #define b_fff(x) b_x((x), 8, 3) /* function number */ 819 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 820 821 /* for 'reg'/'assigned-addresses' OF properties */ 822 #define RESOURCE_CELLS_SIZE 2 823 #define RESOURCE_CELLS_ADDRESS 3 824 825 typedef struct ResourceFields { 826 uint32_t phys_hi; 827 uint32_t phys_mid; 828 uint32_t phys_lo; 829 uint32_t size_hi; 830 uint32_t size_lo; 831 } QEMU_PACKED ResourceFields; 832 833 typedef struct ResourceProps { 834 ResourceFields reg[8]; 835 ResourceFields assigned[7]; 836 uint32_t reg_len; 837 uint32_t assigned_len; 838 } ResourceProps; 839 840 /* fill in the 'reg'/'assigned-resources' OF properties for 841 * a PCI device. 'reg' describes resource requirements for a 842 * device's IO/MEM regions, 'assigned-addresses' describes the 843 * actual resource assignments. 844 * 845 * the properties are arrays of ('phys-addr', 'size') pairs describing 846 * the addressable regions of the PCI device, where 'phys-addr' is a 847 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 848 * (phys.hi, phys.mid, phys.lo), and 'size' is a 849 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 850 * 851 * phys.hi = 0xYYXXXXZZ, where: 852 * 0xYY = npt000ss 853 * ||| | 854 * ||| +-- space code 855 * ||| | 856 * ||| + 00 if configuration space 857 * ||| + 01 if IO region, 858 * ||| + 10 if 32-bit MEM region 859 * ||| + 11 if 64-bit MEM region 860 * ||| 861 * ||+------ for non-relocatable IO: 1 if aliased 862 * || for relocatable IO: 1 if below 64KB 863 * || for MEM: 1 if below 1MB 864 * |+------- 1 if region is prefetchable 865 * +-------- 1 if region is non-relocatable 866 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 867 * bits respectively 868 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 869 * to the region 870 * 871 * phys.mid and phys.lo correspond respectively to the hi/lo portions 872 * of the actual address of the region. 873 * 874 * how the phys-addr/size values are used differ slightly between 875 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has 876 * an additional description for the config space region of the 877 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 878 * to describe the region as relocatable, with an address-mapping 879 * that corresponds directly to the PHB's address space for the 880 * resource. 'assigned-addresses' always has n=1 set with an absolute 881 * address assigned for the resource. in general, 'assigned-addresses' 882 * won't be populated, since addresses for PCI devices are generally 883 * unmapped initially and left to the guest to assign. 884 * 885 * note also that addresses defined in these properties are, at least 886 * for PAPR guests, relative to the PHBs IO/MEM windows, and 887 * correspond directly to the addresses in the BARs. 888 * 889 * in accordance with PCI Bus Binding to Open Firmware, 890 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 891 * Appendix C. 892 */ 893 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 894 { 895 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 896 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 897 b_ddddd(PCI_SLOT(d->devfn)) | 898 b_fff(PCI_FUNC(d->devfn))); 899 ResourceFields *reg, *assigned; 900 int i, reg_idx = 0, assigned_idx = 0; 901 902 /* config space region */ 903 reg = &rp->reg[reg_idx++]; 904 reg->phys_hi = cpu_to_be32(dev_id); 905 reg->phys_mid = 0; 906 reg->phys_lo = 0; 907 reg->size_hi = 0; 908 reg->size_lo = 0; 909 910 for (i = 0; i < PCI_NUM_REGIONS; i++) { 911 if (!d->io_regions[i].size) { 912 continue; 913 } 914 915 reg = &rp->reg[reg_idx++]; 916 917 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 918 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 919 reg->phys_hi |= cpu_to_be32(b_ss(1)); 920 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 921 reg->phys_hi |= cpu_to_be32(b_ss(3)); 922 } else { 923 reg->phys_hi |= cpu_to_be32(b_ss(2)); 924 } 925 reg->phys_mid = 0; 926 reg->phys_lo = 0; 927 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 928 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 929 930 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { 931 continue; 932 } 933 934 assigned = &rp->assigned[assigned_idx++]; 935 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1)); 936 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); 937 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); 938 assigned->size_hi = reg->size_hi; 939 assigned->size_lo = reg->size_lo; 940 } 941 942 rp->reg_len = reg_idx * sizeof(ResourceFields); 943 rp->assigned_len = assigned_idx * sizeof(ResourceFields); 944 } 945 946 typedef struct PCIClass PCIClass; 947 typedef struct PCISubClass PCISubClass; 948 typedef struct PCIIFace PCIIFace; 949 950 struct PCIIFace { 951 int iface; 952 const char *name; 953 }; 954 955 struct PCISubClass { 956 int subclass; 957 const char *name; 958 const PCIIFace *iface; 959 }; 960 961 struct PCIClass { 962 const char *name; 963 const PCISubClass *subc; 964 }; 965 966 static const PCISubClass undef_subclass[] = { 967 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 968 { 0xFF, NULL, NULL }, 969 }; 970 971 static const PCISubClass mass_subclass[] = { 972 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 973 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 974 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 975 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 976 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 977 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 978 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 979 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 980 { 0xFF, NULL, NULL }, 981 }; 982 983 static const PCISubClass net_subclass[] = { 984 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 985 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 986 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 987 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 988 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 989 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 990 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 991 { 0xFF, NULL, NULL }, 992 }; 993 994 static const PCISubClass displ_subclass[] = { 995 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 996 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 997 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 998 { 0xFF, NULL, NULL }, 999 }; 1000 1001 static const PCISubClass media_subclass[] = { 1002 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 1003 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 1004 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 1005 { 0xFF, NULL, NULL }, 1006 }; 1007 1008 static const PCISubClass mem_subclass[] = { 1009 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1010 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1011 { 0xFF, NULL, NULL }, 1012 }; 1013 1014 static const PCISubClass bridg_subclass[] = { 1015 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1016 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1017 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1018 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1019 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1020 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1021 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1022 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1023 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1024 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1025 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1026 { 0xFF, NULL, NULL }, 1027 }; 1028 1029 static const PCISubClass comm_subclass[] = { 1030 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1031 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1032 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1033 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1034 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1035 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1036 { 0xFF, NULL, NULL, }, 1037 }; 1038 1039 static const PCIIFace pic_iface[] = { 1040 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1041 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1042 { 0xFF, NULL }, 1043 }; 1044 1045 static const PCISubClass sys_subclass[] = { 1046 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1047 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1048 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1049 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1050 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1051 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1052 { 0xFF, NULL, NULL }, 1053 }; 1054 1055 static const PCISubClass inp_subclass[] = { 1056 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1057 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1058 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1059 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1060 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1061 { 0xFF, NULL, NULL }, 1062 }; 1063 1064 static const PCISubClass dock_subclass[] = { 1065 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1066 { 0xFF, NULL, NULL }, 1067 }; 1068 1069 static const PCISubClass cpu_subclass[] = { 1070 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1071 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1072 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1073 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1074 { 0xFF, NULL, NULL }, 1075 }; 1076 1077 static const PCIIFace usb_iface[] = { 1078 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1079 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1080 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1081 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1082 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1083 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1084 { 0xFF, NULL }, 1085 }; 1086 1087 static const PCISubClass ser_subclass[] = { 1088 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1089 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1090 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1091 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1092 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1093 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1094 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1095 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1096 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1097 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1098 { 0xFF, NULL, NULL }, 1099 }; 1100 1101 static const PCISubClass wrl_subclass[] = { 1102 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1103 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1104 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1105 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1106 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1107 { 0xFF, NULL, NULL }, 1108 }; 1109 1110 static const PCISubClass sat_subclass[] = { 1111 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1112 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1113 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1114 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1115 { 0xFF, NULL, NULL }, 1116 }; 1117 1118 static const PCISubClass crypt_subclass[] = { 1119 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1120 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1121 "entertainment-encryption", NULL }, 1122 { 0xFF, NULL, NULL }, 1123 }; 1124 1125 static const PCISubClass spc_subclass[] = { 1126 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1127 { PCI_CLASS_SP_PERF, "counter", NULL }, 1128 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1129 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1130 { 0xFF, NULL, NULL }, 1131 }; 1132 1133 static const PCIClass pci_classes[] = { 1134 { "legacy-device", undef_subclass }, 1135 { "mass-storage", mass_subclass }, 1136 { "network", net_subclass }, 1137 { "display", displ_subclass, }, 1138 { "multimedia-device", media_subclass }, 1139 { "memory-controller", mem_subclass }, 1140 { "unknown-bridge", bridg_subclass }, 1141 { "communication-controller", comm_subclass}, 1142 { "system-peripheral", sys_subclass }, 1143 { "input-controller", inp_subclass }, 1144 { "docking-station", dock_subclass }, 1145 { "cpu", cpu_subclass }, 1146 { "serial-bus", ser_subclass }, 1147 { "wireless-controller", wrl_subclass }, 1148 { "intelligent-io", NULL }, 1149 { "satellite-device", sat_subclass }, 1150 { "encryption", crypt_subclass }, 1151 { "data-processing-controller", spc_subclass }, 1152 }; 1153 1154 static const char *pci_find_device_name(uint8_t class, uint8_t subclass, 1155 uint8_t iface) 1156 { 1157 const PCIClass *pclass; 1158 const PCISubClass *psubclass; 1159 const PCIIFace *piface; 1160 const char *name; 1161 1162 if (class >= ARRAY_SIZE(pci_classes)) { 1163 return "pci"; 1164 } 1165 1166 pclass = pci_classes + class; 1167 name = pclass->name; 1168 1169 if (pclass->subc == NULL) { 1170 return name; 1171 } 1172 1173 psubclass = pclass->subc; 1174 while ((psubclass->subclass & 0xff) != 0xff) { 1175 if ((psubclass->subclass & 0xff) == subclass) { 1176 name = psubclass->name; 1177 break; 1178 } 1179 psubclass++; 1180 } 1181 1182 piface = psubclass->iface; 1183 if (piface == NULL) { 1184 return name; 1185 } 1186 while ((piface->iface & 0xff) != 0xff) { 1187 if ((piface->iface & 0xff) == iface) { 1188 name = piface->name; 1189 break; 1190 } 1191 piface++; 1192 } 1193 1194 return name; 1195 } 1196 1197 static void pci_get_node_name(char *nodename, int len, PCIDevice *dev) 1198 { 1199 int slot = PCI_SLOT(dev->devfn); 1200 int func = PCI_FUNC(dev->devfn); 1201 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1202 const char *name; 1203 1204 name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1205 ccode & 0xff); 1206 1207 if (func != 0) { 1208 snprintf(nodename, len, "%s@%x,%x", name, slot, func); 1209 } else { 1210 snprintf(nodename, len, "%s@%x", name, slot); 1211 } 1212 } 1213 1214 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1215 PCIDevice *pdev); 1216 1217 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, 1218 sPAPRPHBState *sphb) 1219 { 1220 ResourceProps rp; 1221 bool is_bridge = false; 1222 int pci_status, err; 1223 char *buf = NULL; 1224 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); 1225 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1226 uint32_t max_msi, max_msix; 1227 1228 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == 1229 PCI_HEADER_TYPE_BRIDGE) { 1230 is_bridge = true; 1231 } 1232 1233 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1234 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", 1235 pci_default_read_config(dev, PCI_VENDOR_ID, 2))); 1236 _FDT(fdt_setprop_cell(fdt, offset, "device-id", 1237 pci_default_read_config(dev, PCI_DEVICE_ID, 2))); 1238 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", 1239 pci_default_read_config(dev, PCI_REVISION_ID, 1))); 1240 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1241 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { 1242 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", 1243 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); 1244 } 1245 1246 if (!is_bridge) { 1247 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", 1248 pci_default_read_config(dev, PCI_MIN_GNT, 1))); 1249 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", 1250 pci_default_read_config(dev, PCI_MAX_LAT, 1))); 1251 } 1252 1253 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { 1254 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", 1255 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); 1256 } 1257 1258 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { 1259 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1260 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); 1261 } 1262 1263 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", 1264 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); 1265 1266 /* the following fdt cells are masked off the pci status register */ 1267 pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1268 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1269 PCI_STATUS_DEVSEL_MASK & pci_status)); 1270 1271 if (pci_status & PCI_STATUS_FAST_BACK) { 1272 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1273 } 1274 if (pci_status & PCI_STATUS_66MHZ) { 1275 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1276 } 1277 if (pci_status & PCI_STATUS_UDF) { 1278 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1279 } 1280 1281 _FDT(fdt_setprop_string(fdt, offset, "name", 1282 pci_find_device_name((ccode >> 16) & 0xff, 1283 (ccode >> 8) & 0xff, 1284 ccode & 0xff))); 1285 1286 buf = spapr_phb_get_loc_code(sphb, dev); 1287 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf); 1288 g_free(buf); 1289 if (err < 0) { 1290 return err; 1291 } 1292 1293 if (drc_index) { 1294 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); 1295 } 1296 1297 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1298 RESOURCE_CELLS_ADDRESS)); 1299 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1300 RESOURCE_CELLS_SIZE)); 1301 1302 max_msi = msi_nr_vectors_allocated(dev); 1303 if (max_msi) { 1304 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1305 } 1306 max_msix = dev->msix_entries_nr; 1307 if (max_msix) { 1308 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1309 } 1310 1311 populate_resource_props(dev, &rp); 1312 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1313 _FDT(fdt_setprop(fdt, offset, "assigned-addresses", 1314 (uint8_t *)rp.assigned, rp.assigned_len)); 1315 1316 if (sphb->pcie_ecs && pci_is_express(dev)) { 1317 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1318 } 1319 1320 return 0; 1321 } 1322 1323 /* create OF node for pci device and required OF DT properties */ 1324 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev, 1325 void *fdt, int node_offset) 1326 { 1327 int offset, ret; 1328 char nodename[FDT_NAME_MAX]; 1329 1330 pci_get_node_name(nodename, FDT_NAME_MAX, dev); 1331 offset = fdt_add_subnode(fdt, node_offset, nodename); 1332 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb); 1333 1334 g_assert(!ret); 1335 if (ret) { 1336 return 0; 1337 } 1338 return offset; 1339 } 1340 1341 /* Callback to be called during DRC release. */ 1342 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1343 { 1344 /* some version guests do not wait for completion of a device 1345 * cleanup (generally done asynchronously by the kernel) before 1346 * signaling to QEMU that the device is safe, but instead sleep 1347 * for some 'safe' period of time. unfortunately on a busy host 1348 * this sleep isn't guaranteed to be long enough, resulting in 1349 * bad things like IRQ lines being left asserted during final 1350 * device removal. to deal with this we call reset just prior 1351 * to finalizing the device, which will put the device back into 1352 * an 'idle' state, as the device cleanup code expects. 1353 */ 1354 pci_device_reset(PCI_DEVICE(dev)); 1355 object_unparent(OBJECT(dev)); 1356 } 1357 1358 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb, 1359 uint32_t busnr, 1360 int32_t devfn) 1361 { 1362 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1363 (phb->index << 16) | (busnr << 8) | devfn); 1364 } 1365 1366 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb, 1367 PCIDevice *pdev) 1368 { 1369 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 1370 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); 1371 } 1372 1373 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1374 PCIDevice *pdev) 1375 { 1376 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1377 1378 if (!drc) { 1379 return 0; 1380 } 1381 1382 return spapr_drc_index(drc); 1383 } 1384 1385 static void spapr_pci_plug(HotplugHandler *plug_handler, 1386 DeviceState *plugged_dev, Error **errp) 1387 { 1388 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1389 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1390 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1391 Error *local_err = NULL; 1392 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1393 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1394 void *fdt = NULL; 1395 int fdt_start_offset, fdt_size; 1396 1397 /* if DR is disabled we don't need to do anything in the case of 1398 * hotplug or coldplug callbacks 1399 */ 1400 if (!phb->dr_enabled) { 1401 /* if this is a hotplug operation initiated by the user 1402 * we need to let them know it's not enabled 1403 */ 1404 if (plugged_dev->hotplugged) { 1405 error_setg(&local_err, QERR_BUS_NO_HOTPLUG, 1406 object_get_typename(OBJECT(phb))); 1407 } 1408 goto out; 1409 } 1410 1411 g_assert(drc); 1412 1413 /* Following the QEMU convention used for PCIe multifunction 1414 * hotplug, we do not allow functions to be hotplugged to a 1415 * slot that already has function 0 present 1416 */ 1417 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1418 PCI_FUNC(pdev->devfn) != 0) { 1419 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," 1420 " additional functions can no longer be exposed to guest.", 1421 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1422 goto out; 1423 } 1424 1425 fdt = create_device_tree(&fdt_size); 1426 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0); 1427 if (!fdt_start_offset) { 1428 error_setg(&local_err, "Failed to create pci child device tree node"); 1429 goto out; 1430 } 1431 1432 spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err); 1433 if (local_err) { 1434 goto out; 1435 } 1436 1437 /* If this is function 0, signal hotplug for all the device functions. 1438 * Otherwise defer sending the hotplug event. 1439 */ 1440 if (!spapr_drc_hotplugged(plugged_dev)) { 1441 spapr_drc_reset(drc); 1442 } else if (PCI_FUNC(pdev->devfn) == 0) { 1443 int i; 1444 1445 for (i = 0; i < 8; i++) { 1446 sPAPRDRConnector *func_drc; 1447 sPAPRDRConnectorClass *func_drck; 1448 sPAPRDREntitySense state; 1449 1450 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1451 PCI_DEVFN(slotnr, i)); 1452 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1453 state = func_drck->dr_entity_sense(func_drc); 1454 1455 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1456 spapr_hotplug_req_add_by_index(func_drc); 1457 } 1458 } 1459 } 1460 1461 out: 1462 if (local_err) { 1463 error_propagate(errp, local_err); 1464 g_free(fdt); 1465 } 1466 } 1467 1468 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1469 DeviceState *plugged_dev, Error **errp) 1470 { 1471 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1472 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1473 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1474 1475 if (!phb->dr_enabled) { 1476 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1477 object_get_typename(OBJECT(phb))); 1478 return; 1479 } 1480 1481 g_assert(drc); 1482 g_assert(drc->dev == plugged_dev); 1483 1484 if (!spapr_drc_unplug_requested(drc)) { 1485 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1486 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1487 sPAPRDRConnector *func_drc; 1488 sPAPRDRConnectorClass *func_drck; 1489 sPAPRDREntitySense state; 1490 int i; 1491 1492 /* ensure any other present functions are pending unplug */ 1493 if (PCI_FUNC(pdev->devfn) == 0) { 1494 for (i = 1; i < 8; i++) { 1495 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1496 PCI_DEVFN(slotnr, i)); 1497 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1498 state = func_drck->dr_entity_sense(func_drc); 1499 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1500 && !spapr_drc_unplug_requested(func_drc)) { 1501 error_setg(errp, 1502 "PCI: slot %d, function %d still present. " 1503 "Must unplug all non-0 functions first.", 1504 slotnr, i); 1505 return; 1506 } 1507 } 1508 } 1509 1510 spapr_drc_detach(drc); 1511 1512 /* if this isn't func 0, defer unplug event. otherwise signal removal 1513 * for all present functions 1514 */ 1515 if (PCI_FUNC(pdev->devfn) == 0) { 1516 for (i = 7; i >= 0; i--) { 1517 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1518 PCI_DEVFN(slotnr, i)); 1519 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1520 state = func_drck->dr_entity_sense(func_drc); 1521 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1522 spapr_hotplug_req_remove_by_index(func_drc); 1523 } 1524 } 1525 } 1526 } 1527 } 1528 1529 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1530 { 1531 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1532 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1533 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1534 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1535 char *namebuf; 1536 int i; 1537 PCIBus *bus; 1538 uint64_t msi_window_size = 4096; 1539 sPAPRTCETable *tcet; 1540 const unsigned windows_supported = 1541 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1; 1542 1543 if (sphb->index != (uint32_t)-1) { 1544 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1545 Error *local_err = NULL; 1546 1547 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1) 1548 || (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2) 1549 || (sphb->mem_win_addr != (hwaddr)-1) 1550 || (sphb->mem64_win_addr != (hwaddr)-1) 1551 || (sphb->io_win_addr != (hwaddr)-1)) { 1552 error_setg(errp, "Either \"index\" or other parameters must" 1553 " be specified for PAPR PHB, not both"); 1554 return; 1555 } 1556 1557 smc->phb_placement(spapr, sphb->index, 1558 &sphb->buid, &sphb->io_win_addr, 1559 &sphb->mem_win_addr, &sphb->mem64_win_addr, 1560 windows_supported, sphb->dma_liobn, &local_err); 1561 if (local_err) { 1562 error_propagate(errp, local_err); 1563 return; 1564 } 1565 } 1566 1567 if (sphb->buid == (uint64_t)-1) { 1568 error_setg(errp, "BUID not specified for PHB"); 1569 return; 1570 } 1571 1572 if ((sphb->dma_liobn[0] == (uint32_t)-1) || 1573 ((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) { 1574 error_setg(errp, "LIOBN(s) not specified for PHB"); 1575 return; 1576 } 1577 1578 if (sphb->mem_win_addr == (hwaddr)-1) { 1579 error_setg(errp, "Memory window address not specified for PHB"); 1580 return; 1581 } 1582 1583 if (sphb->io_win_addr == (hwaddr)-1) { 1584 error_setg(errp, "IO window address not specified for PHB"); 1585 return; 1586 } 1587 1588 if (sphb->mem64_win_size != 0) { 1589 if (sphb->mem64_win_addr == (hwaddr)-1) { 1590 error_setg(errp, 1591 "64-bit memory window address not specified for PHB"); 1592 return; 1593 } 1594 1595 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1596 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1597 " (max 2 GiB)", sphb->mem_win_size); 1598 return; 1599 } 1600 1601 if (sphb->mem64_win_pciaddr == (hwaddr)-1) { 1602 /* 64-bit window defaults to identity mapping */ 1603 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1604 } 1605 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1606 /* 1607 * For compatibility with old configuration, if no 64-bit MMIO 1608 * window is specified, but the ordinary (32-bit) memory 1609 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1610 * window, with a 64-bit MMIO window following on immediately 1611 * afterwards 1612 */ 1613 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1614 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1615 sphb->mem64_win_pciaddr = 1616 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1617 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1618 } 1619 1620 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1621 error_setg(errp, "PCI host bridges must have unique BUIDs"); 1622 return; 1623 } 1624 1625 if (sphb->numa_node != -1 && 1626 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { 1627 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1628 return; 1629 } 1630 1631 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1632 1633 namebuf = alloca(strlen(sphb->dtbusname) + 32); 1634 1635 /* Initialize memory regions */ 1636 sprintf(namebuf, "%s.mmio", sphb->dtbusname); 1637 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1638 1639 sprintf(namebuf, "%s.mmio32-alias", sphb->dtbusname); 1640 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1641 namebuf, &sphb->memspace, 1642 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1643 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1644 &sphb->mem32window); 1645 1646 sprintf(namebuf, "%s.mmio64-alias", sphb->dtbusname); 1647 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1648 namebuf, &sphb->memspace, 1649 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1650 memory_region_add_subregion(get_system_memory(), sphb->mem64_win_addr, 1651 &sphb->mem64window); 1652 1653 /* Initialize IO regions */ 1654 sprintf(namebuf, "%s.io", sphb->dtbusname); 1655 memory_region_init(&sphb->iospace, OBJECT(sphb), 1656 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1657 1658 sprintf(namebuf, "%s.io-alias", sphb->dtbusname); 1659 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1660 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1661 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1662 &sphb->iowindow); 1663 1664 bus = pci_register_bus(dev, NULL, 1665 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 1666 &sphb->memspace, &sphb->iospace, 1667 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 1668 phb->bus = bus; 1669 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL); 1670 1671 /* 1672 * Initialize PHB address space. 1673 * By default there will be at least one subregion for default 1674 * 32bit DMA window. 1675 * Later the guest might want to create another DMA window 1676 * which will become another memory subregion. 1677 */ 1678 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname); 1679 1680 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1681 namebuf, UINT64_MAX); 1682 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1683 sphb->dtbusname); 1684 1685 /* 1686 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1687 * we need to allocate some memory to catch those writes coming 1688 * from msi_notify()/msix_notify(). 1689 * As MSIMessage:addr is going to be the same and MSIMessage:data 1690 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1691 * be used. 1692 * 1693 * For KVM we want to ensure that this memory is a full page so that 1694 * our memory slot is of page size granularity. 1695 */ 1696 #ifdef CONFIG_KVM 1697 if (kvm_enabled()) { 1698 msi_window_size = getpagesize(); 1699 } 1700 #endif 1701 1702 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1703 "msi", msi_window_size); 1704 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1705 &sphb->msiwindow); 1706 1707 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1708 1709 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1710 1711 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1712 1713 /* Initialize the LSI table */ 1714 for (i = 0; i < PCI_NUM_PINS; i++) { 1715 uint32_t irq; 1716 Error *local_err = NULL; 1717 1718 irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err); 1719 if (local_err) { 1720 error_propagate(errp, local_err); 1721 error_prepend(errp, "can't allocate LSIs: "); 1722 return; 1723 } 1724 1725 sphb->lsi_table[i].irq = irq; 1726 } 1727 1728 /* allocate connectors for child PCI devices */ 1729 if (sphb->dr_enabled) { 1730 for (i = 0; i < PCI_SLOT_MAX * 8; i++) { 1731 spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI, 1732 (sphb->index << 16) | i); 1733 } 1734 } 1735 1736 /* DMA setup */ 1737 if (((sphb->page_size_mask & qemu_getrampagesize()) == 0) 1738 && kvm_enabled()) { 1739 error_report("System page size 0x%lx is not enabled in page_size_mask " 1740 "(0x%"PRIx64"). Performance may be slow", 1741 qemu_getrampagesize(), sphb->page_size_mask); 1742 } 1743 1744 for (i = 0; i < windows_supported; ++i) { 1745 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 1746 if (!tcet) { 1747 error_setg(errp, "Creating window#%d failed for %s", 1748 i, sphb->dtbusname); 1749 return; 1750 } 1751 memory_region_add_subregion(&sphb->iommu_root, 0, 1752 spapr_tce_get_iommu(tcet)); 1753 } 1754 1755 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); 1756 } 1757 1758 static int spapr_phb_children_reset(Object *child, void *opaque) 1759 { 1760 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 1761 1762 if (dev) { 1763 device_reset(dev); 1764 } 1765 1766 return 0; 1767 } 1768 1769 void spapr_phb_dma_reset(sPAPRPHBState *sphb) 1770 { 1771 int i; 1772 sPAPRTCETable *tcet; 1773 1774 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 1775 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1776 1777 if (tcet && tcet->nb_table) { 1778 spapr_tce_table_disable(tcet); 1779 } 1780 } 1781 1782 /* Register default 32bit DMA window */ 1783 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 1784 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 1785 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 1786 } 1787 1788 static void spapr_phb_reset(DeviceState *qdev) 1789 { 1790 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 1791 1792 spapr_phb_dma_reset(sphb); 1793 1794 /* Reset the IOMMU state */ 1795 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 1796 1797 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 1798 spapr_phb_vfio_reset(qdev); 1799 } 1800 } 1801 1802 static Property spapr_phb_properties[] = { 1803 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), 1804 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1), 1805 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1), 1806 DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1), 1807 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), 1808 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, 1809 SPAPR_PCI_MEM32_WIN_SIZE), 1810 DEFINE_PROP_UINT64("mem64_win_addr", sPAPRPHBState, mem64_win_addr, -1), 1811 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size, 1812 SPAPR_PCI_MEM64_WIN_SIZE), 1813 DEFINE_PROP_UINT64("mem64_win_pciaddr", sPAPRPHBState, mem64_win_pciaddr, 1814 -1), 1815 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1), 1816 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, 1817 SPAPR_PCI_IO_WIN_SIZE), 1818 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled, 1819 true), 1820 /* Default DMA window is 0..1GB */ 1821 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0), 1822 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000), 1823 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr, 1824 0x800000000000000ULL), 1825 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true), 1826 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask, 1827 (1ULL << 12) | (1ULL << 16)), 1828 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1), 1829 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState, 1830 pre_2_8_migration, false), 1831 DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState, 1832 pcie_ecs, true), 1833 DEFINE_PROP_END_OF_LIST(), 1834 }; 1835 1836 static const VMStateDescription vmstate_spapr_pci_lsi = { 1837 .name = "spapr_pci/lsi", 1838 .version_id = 1, 1839 .minimum_version_id = 1, 1840 .fields = (VMStateField[]) { 1841 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL), 1842 1843 VMSTATE_END_OF_LIST() 1844 }, 1845 }; 1846 1847 static const VMStateDescription vmstate_spapr_pci_msi = { 1848 .name = "spapr_pci/msi", 1849 .version_id = 1, 1850 .minimum_version_id = 1, 1851 .fields = (VMStateField []) { 1852 VMSTATE_UINT32(key, spapr_pci_msi_mig), 1853 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), 1854 VMSTATE_UINT32(value.num, spapr_pci_msi_mig), 1855 VMSTATE_END_OF_LIST() 1856 }, 1857 }; 1858 1859 static void spapr_pci_pre_save(void *opaque) 1860 { 1861 sPAPRPHBState *sphb = opaque; 1862 GHashTableIter iter; 1863 gpointer key, value; 1864 int i; 1865 1866 if (sphb->pre_2_8_migration) { 1867 sphb->mig_liobn = sphb->dma_liobn[0]; 1868 sphb->mig_mem_win_addr = sphb->mem_win_addr; 1869 sphb->mig_mem_win_size = sphb->mem_win_size; 1870 sphb->mig_io_win_addr = sphb->io_win_addr; 1871 sphb->mig_io_win_size = sphb->io_win_size; 1872 1873 if ((sphb->mem64_win_size != 0) 1874 && (sphb->mem64_win_addr 1875 == (sphb->mem_win_addr + sphb->mem_win_size))) { 1876 sphb->mig_mem_win_size += sphb->mem64_win_size; 1877 } 1878 } 1879 1880 g_free(sphb->msi_devs); 1881 sphb->msi_devs = NULL; 1882 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 1883 if (!sphb->msi_devs_num) { 1884 return; 1885 } 1886 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig)); 1887 1888 g_hash_table_iter_init(&iter, sphb->msi); 1889 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 1890 sphb->msi_devs[i].key = *(uint32_t *) key; 1891 sphb->msi_devs[i].value = *(spapr_pci_msi *) value; 1892 } 1893 } 1894 1895 static int spapr_pci_post_load(void *opaque, int version_id) 1896 { 1897 sPAPRPHBState *sphb = opaque; 1898 gpointer key, value; 1899 int i; 1900 1901 for (i = 0; i < sphb->msi_devs_num; ++i) { 1902 key = g_memdup(&sphb->msi_devs[i].key, 1903 sizeof(sphb->msi_devs[i].key)); 1904 value = g_memdup(&sphb->msi_devs[i].value, 1905 sizeof(sphb->msi_devs[i].value)); 1906 g_hash_table_insert(sphb->msi, key, value); 1907 } 1908 g_free(sphb->msi_devs); 1909 sphb->msi_devs = NULL; 1910 sphb->msi_devs_num = 0; 1911 1912 return 0; 1913 } 1914 1915 static bool pre_2_8_migration(void *opaque, int version_id) 1916 { 1917 sPAPRPHBState *sphb = opaque; 1918 1919 return sphb->pre_2_8_migration; 1920 } 1921 1922 static const VMStateDescription vmstate_spapr_pci = { 1923 .name = "spapr_pci", 1924 .version_id = 2, 1925 .minimum_version_id = 2, 1926 .pre_save = spapr_pci_pre_save, 1927 .post_load = spapr_pci_post_load, 1928 .fields = (VMStateField[]) { 1929 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL), 1930 VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration), 1931 VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration), 1932 VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration), 1933 VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration), 1934 VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration), 1935 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, 1936 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 1937 VMSTATE_INT32(msi_devs_num, sPAPRPHBState), 1938 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, 1939 vmstate_spapr_pci_msi, spapr_pci_msi_mig), 1940 VMSTATE_END_OF_LIST() 1941 }, 1942 }; 1943 1944 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 1945 PCIBus *rootbus) 1946 { 1947 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 1948 1949 return sphb->dtbusname; 1950 } 1951 1952 static void spapr_phb_class_init(ObjectClass *klass, void *data) 1953 { 1954 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 1955 DeviceClass *dc = DEVICE_CLASS(klass); 1956 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 1957 1958 hc->root_bus_path = spapr_phb_root_bus_path; 1959 dc->realize = spapr_phb_realize; 1960 dc->props = spapr_phb_properties; 1961 dc->reset = spapr_phb_reset; 1962 dc->vmsd = &vmstate_spapr_pci; 1963 /* Supported by TYPE_SPAPR_MACHINE */ 1964 dc->user_creatable = true; 1965 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1966 hp->plug = spapr_pci_plug; 1967 hp->unplug_request = spapr_pci_unplug_request; 1968 } 1969 1970 static const TypeInfo spapr_phb_info = { 1971 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 1972 .parent = TYPE_PCI_HOST_BRIDGE, 1973 .instance_size = sizeof(sPAPRPHBState), 1974 .class_init = spapr_phb_class_init, 1975 .interfaces = (InterfaceInfo[]) { 1976 { TYPE_HOTPLUG_HANDLER }, 1977 { } 1978 } 1979 }; 1980 1981 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index) 1982 { 1983 DeviceState *dev; 1984 1985 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 1986 qdev_prop_set_uint32(dev, "index", index); 1987 qdev_init_nofail(dev); 1988 1989 return PCI_HOST_BRIDGE(dev); 1990 } 1991 1992 typedef struct sPAPRFDT { 1993 void *fdt; 1994 int node_off; 1995 sPAPRPHBState *sphb; 1996 } sPAPRFDT; 1997 1998 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, 1999 void *opaque) 2000 { 2001 PCIBus *sec_bus; 2002 sPAPRFDT *p = opaque; 2003 int offset; 2004 sPAPRFDT s_fdt; 2005 2006 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); 2007 if (!offset) { 2008 error_report("Failed to create pci child device tree node"); 2009 return; 2010 } 2011 2012 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2013 PCI_HEADER_TYPE_BRIDGE)) { 2014 return; 2015 } 2016 2017 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2018 if (!sec_bus) { 2019 return; 2020 } 2021 2022 s_fdt.fdt = p->fdt; 2023 s_fdt.node_off = offset; 2024 s_fdt.sphb = p->sphb; 2025 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus), 2026 spapr_populate_pci_devices_dt, 2027 &s_fdt); 2028 } 2029 2030 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2031 void *opaque) 2032 { 2033 unsigned int *bus_no = opaque; 2034 unsigned int primary = *bus_no; 2035 unsigned int subordinate = 0xff; 2036 PCIBus *sec_bus = NULL; 2037 2038 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2039 PCI_HEADER_TYPE_BRIDGE)) { 2040 return; 2041 } 2042 2043 (*bus_no)++; 2044 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1); 2045 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2046 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2047 2048 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2049 if (!sec_bus) { 2050 return; 2051 } 2052 2053 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1); 2054 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 2055 spapr_phb_pci_enumerate_bridge, bus_no); 2056 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2057 } 2058 2059 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb) 2060 { 2061 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2062 unsigned int bus_no = 0; 2063 2064 pci_for_each_device(bus, pci_bus_num(bus), 2065 spapr_phb_pci_enumerate_bridge, 2066 &bus_no); 2067 2068 } 2069 2070 int spapr_populate_pci_dt(sPAPRPHBState *phb, 2071 uint32_t xics_phandle, 2072 void *fdt) 2073 { 2074 int bus_off, i, j, ret; 2075 char nodename[FDT_NAME_MAX]; 2076 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2077 struct { 2078 uint32_t hi; 2079 uint64_t child; 2080 uint64_t parent; 2081 uint64_t size; 2082 } QEMU_PACKED ranges[] = { 2083 { 2084 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2085 cpu_to_be64(phb->io_win_addr), 2086 cpu_to_be64(memory_region_size(&phb->iospace)), 2087 }, 2088 { 2089 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2090 cpu_to_be64(phb->mem_win_addr), 2091 cpu_to_be64(phb->mem_win_size), 2092 }, 2093 { 2094 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2095 cpu_to_be64(phb->mem64_win_addr), 2096 cpu_to_be64(phb->mem64_win_size), 2097 }, 2098 }; 2099 const unsigned sizeof_ranges = 2100 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2101 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2102 uint32_t interrupt_map_mask[] = { 2103 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2104 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2105 uint32_t ddw_applicable[] = { 2106 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2107 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2108 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2109 }; 2110 uint32_t ddw_extensions[] = { 2111 cpu_to_be32(1), 2112 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2113 }; 2114 uint32_t associativity[] = {cpu_to_be32(0x4), 2115 cpu_to_be32(0x0), 2116 cpu_to_be32(0x0), 2117 cpu_to_be32(0x0), 2118 cpu_to_be32(phb->numa_node)}; 2119 sPAPRTCETable *tcet; 2120 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2121 sPAPRFDT s_fdt; 2122 2123 /* Start populating the FDT */ 2124 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid); 2125 bus_off = fdt_add_subnode(fdt, 0, nodename); 2126 if (bus_off < 0) { 2127 return bus_off; 2128 } 2129 2130 /* Write PHB properties */ 2131 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2132 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2133 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 2134 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 2135 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2136 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2137 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2138 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2139 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2140 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2141 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR)); 2142 2143 /* Dynamic DMA window */ 2144 if (phb->ddw_enabled) { 2145 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2146 sizeof(ddw_applicable))); 2147 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2148 &ddw_extensions, sizeof(ddw_extensions))); 2149 } 2150 2151 /* Advertise NUMA via ibm,associativity */ 2152 if (phb->numa_node != -1) { 2153 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, 2154 sizeof(associativity))); 2155 } 2156 2157 /* Build the interrupt-map, this must matches what is done 2158 * in pci_spapr_map_irq 2159 */ 2160 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2161 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2162 for (i = 0; i < PCI_SLOT_MAX; i++) { 2163 for (j = 0; j < PCI_NUM_PINS; j++) { 2164 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2165 int lsi_num = pci_spapr_swizzle(i, j); 2166 2167 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2168 irqmap[1] = 0; 2169 irqmap[2] = 0; 2170 irqmap[3] = cpu_to_be32(j+1); 2171 irqmap[4] = cpu_to_be32(xics_phandle); 2172 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); 2173 irqmap[6] = cpu_to_be32(0x8); 2174 } 2175 } 2176 /* Write interrupt map */ 2177 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2178 sizeof(interrupt_map))); 2179 2180 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2181 if (!tcet) { 2182 return -1; 2183 } 2184 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2185 tcet->liobn, tcet->bus_offset, 2186 tcet->nb_table << tcet->page_shift); 2187 2188 /* Walk the bridges and program the bus numbers*/ 2189 spapr_phb_pci_enumerate(phb); 2190 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2191 2192 /* Populate tree nodes with PCI devices attached */ 2193 s_fdt.fdt = fdt; 2194 s_fdt.node_off = bus_off; 2195 s_fdt.sphb = phb; 2196 pci_for_each_device_reverse(bus, pci_bus_num(bus), 2197 spapr_populate_pci_devices_dt, 2198 &s_fdt); 2199 2200 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), 2201 SPAPR_DR_CONNECTOR_TYPE_PCI); 2202 if (ret) { 2203 return ret; 2204 } 2205 2206 return 0; 2207 } 2208 2209 void spapr_pci_rtas_init(void) 2210 { 2211 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2212 rtas_read_pci_config); 2213 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2214 rtas_write_pci_config); 2215 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2216 rtas_ibm_read_pci_config); 2217 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2218 rtas_ibm_write_pci_config); 2219 if (msi_nonbroken) { 2220 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2221 "ibm,query-interrupt-source-number", 2222 rtas_ibm_query_interrupt_source_number); 2223 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2224 rtas_ibm_change_msi); 2225 } 2226 2227 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2228 "ibm,set-eeh-option", 2229 rtas_ibm_set_eeh_option); 2230 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2231 "ibm,get-config-addr-info2", 2232 rtas_ibm_get_config_addr_info2); 2233 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2234 "ibm,read-slot-reset-state2", 2235 rtas_ibm_read_slot_reset_state2); 2236 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2237 "ibm,set-slot-reset", 2238 rtas_ibm_set_slot_reset); 2239 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2240 "ibm,configure-pe", 2241 rtas_ibm_configure_pe); 2242 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2243 "ibm,slot-error-detail", 2244 rtas_ibm_slot_error_detail); 2245 } 2246 2247 static void spapr_pci_register_types(void) 2248 { 2249 type_register_static(&spapr_phb_info); 2250 } 2251 2252 type_init(spapr_pci_register_types) 2253 2254 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2255 { 2256 bool be = *(bool *)opaque; 2257 2258 if (object_dynamic_cast(OBJECT(dev), "VGA") 2259 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { 2260 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", 2261 &error_abort); 2262 } 2263 return 0; 2264 } 2265 2266 void spapr_pci_switch_vga(bool big_endian) 2267 { 2268 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2269 sPAPRPHBState *sphb; 2270 2271 /* 2272 * For backward compatibility with existing guests, we switch 2273 * the endianness of the VGA controller when changing the guest 2274 * interrupt mode 2275 */ 2276 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2277 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2278 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2279 &big_endian); 2280 } 2281 } 2282