xref: /qemu/hw/ppc/spapr_pci.c (revision 3e4ac9687103f907eadea10d6176eb2e989d1e36)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35 #include "qemu/error-report.h"
36 
37 #include "hw/pci/pci_bus.h"
38 
39 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
40 #define RTAS_QUERY_FN           0
41 #define RTAS_CHANGE_FN          1
42 #define RTAS_RESET_FN           2
43 #define RTAS_CHANGE_MSI_FN      3
44 #define RTAS_CHANGE_MSIX_FN     4
45 
46 /* Interrupt types to return on RTAS_CHANGE_* */
47 #define RTAS_TYPE_MSI           1
48 #define RTAS_TYPE_MSIX          2
49 
50 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
51 {
52     sPAPRPHBState *sphb;
53 
54     QLIST_FOREACH(sphb, &spapr->phbs, list) {
55         if (sphb->buid != buid) {
56             continue;
57         }
58         return sphb;
59     }
60 
61     return NULL;
62 }
63 
64 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
65                            uint32_t config_addr)
66 {
67     sPAPRPHBState *sphb = find_phb(spapr, buid);
68     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
69     int bus_num = (config_addr >> 16) & 0xFF;
70     int devfn = (config_addr >> 8) & 0xFF;
71 
72     if (!phb) {
73         return NULL;
74     }
75 
76     return pci_find_device(phb->bus, bus_num, devfn);
77 }
78 
79 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
80 {
81     /* This handles the encoding of extended config space addresses */
82     return ((arg >> 20) & 0xf00) | (arg & 0xff);
83 }
84 
85 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
86                                    uint32_t addr, uint32_t size,
87                                    target_ulong rets)
88 {
89     PCIDevice *pci_dev;
90     uint32_t val;
91 
92     if ((size != 1) && (size != 2) && (size != 4)) {
93         /* access must be 1, 2 or 4 bytes */
94         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
95         return;
96     }
97 
98     pci_dev = find_dev(spapr, buid, addr);
99     addr = rtas_pci_cfgaddr(addr);
100 
101     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
102         /* Access must be to a valid device, within bounds and
103          * naturally aligned */
104         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
105         return;
106     }
107 
108     val = pci_host_config_read_common(pci_dev, addr,
109                                       pci_config_size(pci_dev), size);
110 
111     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
112     rtas_st(rets, 1, val);
113 }
114 
115 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
116                                      uint32_t token, uint32_t nargs,
117                                      target_ulong args,
118                                      uint32_t nret, target_ulong rets)
119 {
120     uint64_t buid;
121     uint32_t size, addr;
122 
123     if ((nargs != 4) || (nret != 2)) {
124         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
125         return;
126     }
127 
128     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
129     size = rtas_ld(args, 3);
130     addr = rtas_ld(args, 0);
131 
132     finish_read_pci_config(spapr, buid, addr, size, rets);
133 }
134 
135 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
136                                  uint32_t token, uint32_t nargs,
137                                  target_ulong args,
138                                  uint32_t nret, target_ulong rets)
139 {
140     uint32_t size, addr;
141 
142     if ((nargs != 2) || (nret != 2)) {
143         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
144         return;
145     }
146 
147     size = rtas_ld(args, 1);
148     addr = rtas_ld(args, 0);
149 
150     finish_read_pci_config(spapr, 0, addr, size, rets);
151 }
152 
153 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
154                                     uint32_t addr, uint32_t size,
155                                     uint32_t val, target_ulong rets)
156 {
157     PCIDevice *pci_dev;
158 
159     if ((size != 1) && (size != 2) && (size != 4)) {
160         /* access must be 1, 2 or 4 bytes */
161         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
162         return;
163     }
164 
165     pci_dev = find_dev(spapr, buid, addr);
166     addr = rtas_pci_cfgaddr(addr);
167 
168     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
169         /* Access must be to a valid device, within bounds and
170          * naturally aligned */
171         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
172         return;
173     }
174 
175     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
176                                  val, size);
177 
178     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
179 }
180 
181 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
182                                       uint32_t token, uint32_t nargs,
183                                       target_ulong args,
184                                       uint32_t nret, target_ulong rets)
185 {
186     uint64_t buid;
187     uint32_t val, size, addr;
188 
189     if ((nargs != 5) || (nret != 1)) {
190         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
191         return;
192     }
193 
194     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
195     val = rtas_ld(args, 4);
196     size = rtas_ld(args, 3);
197     addr = rtas_ld(args, 0);
198 
199     finish_write_pci_config(spapr, buid, addr, size, val, rets);
200 }
201 
202 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
203                                   uint32_t token, uint32_t nargs,
204                                   target_ulong args,
205                                   uint32_t nret, target_ulong rets)
206 {
207     uint32_t val, size, addr;
208 
209     if ((nargs != 3) || (nret != 1)) {
210         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
211         return;
212     }
213 
214 
215     val = rtas_ld(args, 2);
216     size = rtas_ld(args, 1);
217     addr = rtas_ld(args, 0);
218 
219     finish_write_pci_config(spapr, 0, addr, size, val, rets);
220 }
221 
222 /*
223  * Set MSI/MSIX message data.
224  * This is required for msi_notify()/msix_notify() which
225  * will write at the addresses via spapr_msi_write().
226  *
227  * If hwaddr == 0, all entries will have .data == first_irq i.e.
228  * table will be reset.
229  */
230 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
231                              unsigned first_irq, unsigned req_num)
232 {
233     unsigned i;
234     MSIMessage msg = { .address = addr, .data = first_irq };
235 
236     if (!msix) {
237         msi_set_message(pdev, msg);
238         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
239         return;
240     }
241 
242     for (i = 0; i < req_num; ++i) {
243         msix_set_message(pdev, i, msg);
244         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
245         if (addr) {
246             ++msg.data;
247         }
248     }
249 }
250 
251 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
252                                 uint32_t token, uint32_t nargs,
253                                 target_ulong args, uint32_t nret,
254                                 target_ulong rets)
255 {
256     uint32_t config_addr = rtas_ld(args, 0);
257     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
258     unsigned int func = rtas_ld(args, 3);
259     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
260     unsigned int seq_num = rtas_ld(args, 5);
261     unsigned int ret_intr_type;
262     unsigned int irq, max_irqs = 0, num = 0;
263     sPAPRPHBState *phb = NULL;
264     PCIDevice *pdev = NULL;
265     spapr_pci_msi *msi;
266     int *config_addr_key;
267 
268     switch (func) {
269     case RTAS_CHANGE_MSI_FN:
270     case RTAS_CHANGE_FN:
271         ret_intr_type = RTAS_TYPE_MSI;
272         break;
273     case RTAS_CHANGE_MSIX_FN:
274         ret_intr_type = RTAS_TYPE_MSIX;
275         break;
276     default:
277         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
278         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
279         return;
280     }
281 
282     /* Fins sPAPRPHBState */
283     phb = find_phb(spapr, buid);
284     if (phb) {
285         pdev = find_dev(spapr, buid, config_addr);
286     }
287     if (!phb || !pdev) {
288         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
289         return;
290     }
291 
292     /* Releasing MSIs */
293     if (!req_num) {
294         msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
295         if (!msi) {
296             trace_spapr_pci_msi("Releasing wrong config", config_addr);
297             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
298             return;
299         }
300 
301         xics_free(spapr->icp, msi->first_irq, msi->num);
302         if (msi_present(pdev)) {
303             spapr_msi_setmsg(pdev, 0, false, 0, num);
304         }
305         if (msix_present(pdev)) {
306             spapr_msi_setmsg(pdev, 0, true, 0, num);
307         }
308         g_hash_table_remove(phb->msi, &config_addr);
309 
310         trace_spapr_pci_msi("Released MSIs", config_addr);
311         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
312         rtas_st(rets, 1, 0);
313         return;
314     }
315 
316     /* Enabling MSI */
317 
318     /* Check if the device supports as many IRQs as requested */
319     if (ret_intr_type == RTAS_TYPE_MSI) {
320         max_irqs = msi_nr_vectors_allocated(pdev);
321     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
322         max_irqs = pdev->msix_entries_nr;
323     }
324     if (!max_irqs) {
325         error_report("Requested interrupt type %d is not enabled for device %x",
326                      ret_intr_type, config_addr);
327         rtas_st(rets, 0, -1); /* Hardware error */
328         return;
329     }
330     /* Correct the number if the guest asked for too many */
331     if (req_num > max_irqs) {
332         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
333         req_num = max_irqs;
334         irq = 0; /* to avoid misleading trace */
335         goto out;
336     }
337 
338     /* Allocate MSIs */
339     irq = xics_alloc_block(spapr->icp, 0, req_num, false,
340                            ret_intr_type == RTAS_TYPE_MSI);
341     if (!irq) {
342         error_report("Cannot allocate MSIs for device %x", config_addr);
343         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
344         return;
345     }
346 
347     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
348     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
349                      irq, req_num);
350 
351     /* Add MSI device to cache */
352     msi = g_new(spapr_pci_msi, 1);
353     msi->first_irq = irq;
354     msi->num = req_num;
355     config_addr_key = g_new(int, 1);
356     *config_addr_key = config_addr;
357     g_hash_table_insert(phb->msi, config_addr_key, msi);
358 
359 out:
360     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
361     rtas_st(rets, 1, req_num);
362     rtas_st(rets, 2, ++seq_num);
363     rtas_st(rets, 3, ret_intr_type);
364 
365     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
366 }
367 
368 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
369                                                    sPAPREnvironment *spapr,
370                                                    uint32_t token,
371                                                    uint32_t nargs,
372                                                    target_ulong args,
373                                                    uint32_t nret,
374                                                    target_ulong rets)
375 {
376     uint32_t config_addr = rtas_ld(args, 0);
377     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
378     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
379     sPAPRPHBState *phb = NULL;
380     PCIDevice *pdev = NULL;
381     spapr_pci_msi *msi;
382 
383     /* Find sPAPRPHBState */
384     phb = find_phb(spapr, buid);
385     if (phb) {
386         pdev = find_dev(spapr, buid, config_addr);
387     }
388     if (!phb || !pdev) {
389         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
390         return;
391     }
392 
393     /* Find device descriptor and start IRQ */
394     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
395     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
396         trace_spapr_pci_msi("Failed to return vector", config_addr);
397         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
398         return;
399     }
400     intr_src_num = msi->first_irq + ioa_intr_num;
401     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
402                                                            intr_src_num);
403 
404     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
405     rtas_st(rets, 1, intr_src_num);
406     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
407 }
408 
409 static int pci_spapr_swizzle(int slot, int pin)
410 {
411     return (slot + pin) % PCI_NUM_PINS;
412 }
413 
414 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
415 {
416     /*
417      * Here we need to convert pci_dev + irq_num to some unique value
418      * which is less than number of IRQs on the specific bus (4).  We
419      * use standard PCI swizzling, that is (slot number + pin number)
420      * % 4.
421      */
422     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
423 }
424 
425 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
426 {
427     /*
428      * Here we use the number returned by pci_spapr_map_irq to find a
429      * corresponding qemu_irq.
430      */
431     sPAPRPHBState *phb = opaque;
432 
433     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
434     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
435 }
436 
437 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
438 {
439     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
440     PCIINTxRoute route;
441 
442     route.mode = PCI_INTX_ENABLED;
443     route.irq = sphb->lsi_table[pin].irq;
444 
445     return route;
446 }
447 
448 /*
449  * MSI/MSIX memory region implementation.
450  * The handler handles both MSI and MSIX.
451  * For MSI-X, the vector number is encoded as a part of the address,
452  * data is set to 0.
453  * For MSI, the vector number is encoded in least bits in data.
454  */
455 static void spapr_msi_write(void *opaque, hwaddr addr,
456                             uint64_t data, unsigned size)
457 {
458     uint32_t irq = data;
459 
460     trace_spapr_pci_msi_write(addr, data, irq);
461 
462     qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
463 }
464 
465 static const MemoryRegionOps spapr_msi_ops = {
466     /* There is no .read as the read result is undefined by PCI spec */
467     .read = NULL,
468     .write = spapr_msi_write,
469     .endianness = DEVICE_LITTLE_ENDIAN
470 };
471 
472 /*
473  * PHB PCI device
474  */
475 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
476 {
477     sPAPRPHBState *phb = opaque;
478 
479     return &phb->iommu_as;
480 }
481 
482 static void spapr_phb_realize(DeviceState *dev, Error **errp)
483 {
484     SysBusDevice *s = SYS_BUS_DEVICE(dev);
485     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
486     PCIHostState *phb = PCI_HOST_BRIDGE(s);
487     sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
488     char *namebuf;
489     int i;
490     PCIBus *bus;
491     uint64_t msi_window_size = 4096;
492 
493     if (sphb->index != -1) {
494         hwaddr windows_base;
495 
496         if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
497             || (sphb->mem_win_addr != -1)
498             || (sphb->io_win_addr != -1)) {
499             error_setg(errp, "Either \"index\" or other parameters must"
500                        " be specified for PAPR PHB, not both");
501             return;
502         }
503 
504         if (sphb->index > SPAPR_PCI_MAX_INDEX) {
505             error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
506                        SPAPR_PCI_MAX_INDEX);
507             return;
508         }
509 
510         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
511         sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
512 
513         windows_base = SPAPR_PCI_WINDOW_BASE
514             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
515         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
516         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
517     }
518 
519     if (sphb->buid == -1) {
520         error_setg(errp, "BUID not specified for PHB");
521         return;
522     }
523 
524     if (sphb->dma_liobn == -1) {
525         error_setg(errp, "LIOBN not specified for PHB");
526         return;
527     }
528 
529     if (sphb->mem_win_addr == -1) {
530         error_setg(errp, "Memory window address not specified for PHB");
531         return;
532     }
533 
534     if (sphb->io_win_addr == -1) {
535         error_setg(errp, "IO window address not specified for PHB");
536         return;
537     }
538 
539     if (find_phb(spapr, sphb->buid)) {
540         error_setg(errp, "PCI host bridges must have unique BUIDs");
541         return;
542     }
543 
544     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
545 
546     namebuf = alloca(strlen(sphb->dtbusname) + 32);
547 
548     /* Initialize memory regions */
549     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
550     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
551 
552     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
553     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
554                              namebuf, &sphb->memspace,
555                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
556     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
557                                 &sphb->memwindow);
558 
559     /* Initialize IO regions */
560     sprintf(namebuf, "%s.io", sphb->dtbusname);
561     memory_region_init(&sphb->iospace, OBJECT(sphb),
562                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
563 
564     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
565     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
566                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
567     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
568                                 &sphb->iowindow);
569 
570     bus = pci_register_bus(dev, NULL,
571                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
572                            &sphb->memspace, &sphb->iospace,
573                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
574     phb->bus = bus;
575 
576     /*
577      * Initialize PHB address space.
578      * By default there will be at least one subregion for default
579      * 32bit DMA window.
580      * Later the guest might want to create another DMA window
581      * which will become another memory subregion.
582      */
583     sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
584 
585     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
586                        namebuf, UINT64_MAX);
587     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
588                        sphb->dtbusname);
589 
590     /*
591      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
592      * we need to allocate some memory to catch those writes coming
593      * from msi_notify()/msix_notify().
594      * As MSIMessage:addr is going to be the same and MSIMessage:data
595      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
596      * be used.
597      *
598      * For KVM we want to ensure that this memory is a full page so that
599      * our memory slot is of page size granularity.
600      */
601 #ifdef CONFIG_KVM
602     if (kvm_enabled()) {
603         msi_window_size = getpagesize();
604     }
605 #endif
606 
607     memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
608                           "msi", msi_window_size);
609     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
610                                 &sphb->msiwindow);
611 
612     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
613 
614     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
615 
616     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
617 
618     /* Initialize the LSI table */
619     for (i = 0; i < PCI_NUM_PINS; i++) {
620         uint32_t irq;
621 
622         irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
623         if (!irq) {
624             error_setg(errp, "spapr_allocate_lsi failed");
625             return;
626         }
627 
628         sphb->lsi_table[i].irq = irq;
629     }
630 
631     if (!info->finish_realize) {
632         error_setg(errp, "finish_realize not defined");
633         return;
634     }
635 
636     info->finish_realize(sphb, errp);
637 
638     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
639 }
640 
641 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
642 {
643     sPAPRTCETable *tcet;
644 
645     tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
646                                0,
647                                SPAPR_TCE_PAGE_SHIFT,
648                                0x40000000 >> SPAPR_TCE_PAGE_SHIFT, false);
649     if (!tcet) {
650         error_setg(errp, "Unable to create TCE table for %s",
651                    sphb->dtbusname);
652         return ;
653     }
654 
655     /* Register default 32bit DMA window */
656     memory_region_add_subregion(&sphb->iommu_root, 0,
657                                 spapr_tce_get_iommu(tcet));
658 }
659 
660 static int spapr_phb_children_reset(Object *child, void *opaque)
661 {
662     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
663 
664     if (dev) {
665         device_reset(dev);
666     }
667 
668     return 0;
669 }
670 
671 static void spapr_phb_reset(DeviceState *qdev)
672 {
673     /* Reset the IOMMU state */
674     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
675 }
676 
677 static Property spapr_phb_properties[] = {
678     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
679     DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
680     DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
681     DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
682     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
683                        SPAPR_PCI_MMIO_WIN_SIZE),
684     DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
685     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
686                        SPAPR_PCI_IO_WIN_SIZE),
687     DEFINE_PROP_END_OF_LIST(),
688 };
689 
690 static const VMStateDescription vmstate_spapr_pci_lsi = {
691     .name = "spapr_pci/lsi",
692     .version_id = 1,
693     .minimum_version_id = 1,
694     .fields = (VMStateField[]) {
695         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
696 
697         VMSTATE_END_OF_LIST()
698     },
699 };
700 
701 static const VMStateDescription vmstate_spapr_pci_msi = {
702     .name = "spapr_pci/msi",
703     .version_id = 1,
704     .minimum_version_id = 1,
705     .fields = (VMStateField []) {
706         VMSTATE_UINT32(key, spapr_pci_msi_mig),
707         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
708         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
709         VMSTATE_END_OF_LIST()
710     },
711 };
712 
713 static void spapr_pci_fill_msi_devs(gpointer key, gpointer value,
714                                     gpointer opaque)
715 {
716     sPAPRPHBState *sphb = opaque;
717 
718     sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key;
719     sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value;
720     sphb->msi_devs_num++;
721 }
722 
723 static void spapr_pci_pre_save(void *opaque)
724 {
725     sPAPRPHBState *sphb = opaque;
726     int msi_devs_num;
727 
728     if (sphb->msi_devs) {
729         g_free(sphb->msi_devs);
730         sphb->msi_devs = NULL;
731     }
732     sphb->msi_devs_num = 0;
733     msi_devs_num = g_hash_table_size(sphb->msi);
734     if (!msi_devs_num) {
735         return;
736     }
737     sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig));
738 
739     g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb);
740     assert(sphb->msi_devs_num == msi_devs_num);
741 }
742 
743 static int spapr_pci_post_load(void *opaque, int version_id)
744 {
745     sPAPRPHBState *sphb = opaque;
746     gpointer key, value;
747     int i;
748 
749     for (i = 0; i < sphb->msi_devs_num; ++i) {
750         key = g_memdup(&sphb->msi_devs[i].key,
751                        sizeof(sphb->msi_devs[i].key));
752         value = g_memdup(&sphb->msi_devs[i].value,
753                          sizeof(sphb->msi_devs[i].value));
754         g_hash_table_insert(sphb->msi, key, value);
755     }
756     if (sphb->msi_devs) {
757         g_free(sphb->msi_devs);
758         sphb->msi_devs = NULL;
759     }
760     sphb->msi_devs_num = 0;
761 
762     return 0;
763 }
764 
765 static const VMStateDescription vmstate_spapr_pci = {
766     .name = "spapr_pci",
767     .version_id = 2,
768     .minimum_version_id = 2,
769     .pre_save = spapr_pci_pre_save,
770     .post_load = spapr_pci_post_load,
771     .fields = (VMStateField[]) {
772         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
773         VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
774         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
775         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
776         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
777         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
778         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
779                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
780         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
781         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
782                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
783         VMSTATE_END_OF_LIST()
784     },
785 };
786 
787 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
788                                            PCIBus *rootbus)
789 {
790     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
791 
792     return sphb->dtbusname;
793 }
794 
795 static void spapr_phb_class_init(ObjectClass *klass, void *data)
796 {
797     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
798     DeviceClass *dc = DEVICE_CLASS(klass);
799     sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
800 
801     hc->root_bus_path = spapr_phb_root_bus_path;
802     dc->realize = spapr_phb_realize;
803     dc->props = spapr_phb_properties;
804     dc->reset = spapr_phb_reset;
805     dc->vmsd = &vmstate_spapr_pci;
806     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
807     dc->cannot_instantiate_with_device_add_yet = false;
808     spc->finish_realize = spapr_phb_finish_realize;
809 }
810 
811 static const TypeInfo spapr_phb_info = {
812     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
813     .parent        = TYPE_PCI_HOST_BRIDGE,
814     .instance_size = sizeof(sPAPRPHBState),
815     .class_init    = spapr_phb_class_init,
816     .class_size    = sizeof(sPAPRPHBClass),
817 };
818 
819 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
820 {
821     DeviceState *dev;
822 
823     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
824     qdev_prop_set_uint32(dev, "index", index);
825     qdev_init_nofail(dev);
826 
827     return PCI_HOST_BRIDGE(dev);
828 }
829 
830 /* Macros to operate with address in OF binding to PCI */
831 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
832 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
833 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
834 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
835 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
836 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
837 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
838 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
839 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
840 
841 typedef struct sPAPRTCEDT {
842     void *fdt;
843     int node_off;
844 } sPAPRTCEDT;
845 
846 static int spapr_phb_children_dt(Object *child, void *opaque)
847 {
848     sPAPRTCEDT *p = opaque;
849     sPAPRTCETable *tcet;
850 
851     tcet = (sPAPRTCETable *) object_dynamic_cast(child, TYPE_SPAPR_TCE_TABLE);
852     if (!tcet) {
853         return 0;
854     }
855 
856     spapr_dma_dt(p->fdt, p->node_off, "ibm,dma-window",
857                  tcet->liobn, tcet->bus_offset,
858                  tcet->nb_table << tcet->page_shift);
859     /* Stop after the first window */
860 
861     return 1;
862 }
863 
864 int spapr_populate_pci_dt(sPAPRPHBState *phb,
865                           uint32_t xics_phandle,
866                           void *fdt)
867 {
868     int bus_off, i, j;
869     char nodename[256];
870     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
871     struct {
872         uint32_t hi;
873         uint64_t child;
874         uint64_t parent;
875         uint64_t size;
876     } QEMU_PACKED ranges[] = {
877         {
878             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
879             cpu_to_be64(phb->io_win_addr),
880             cpu_to_be64(memory_region_size(&phb->iospace)),
881         },
882         {
883             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
884             cpu_to_be64(phb->mem_win_addr),
885             cpu_to_be64(memory_region_size(&phb->memwindow)),
886         },
887     };
888     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
889     uint32_t interrupt_map_mask[] = {
890         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
891     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
892 
893     /* Start populating the FDT */
894     sprintf(nodename, "pci@%" PRIx64, phb->buid);
895     bus_off = fdt_add_subnode(fdt, 0, nodename);
896     if (bus_off < 0) {
897         return bus_off;
898     }
899 
900 #define _FDT(exp) \
901     do { \
902         int ret = (exp);                                           \
903         if (ret < 0) {                                             \
904             return ret;                                            \
905         }                                                          \
906     } while (0)
907 
908     /* Write PHB properties */
909     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
910     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
911     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
912     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
913     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
914     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
915     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
916     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
917     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
918     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
919     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
920 
921     /* Build the interrupt-map, this must matches what is done
922      * in pci_spapr_map_irq
923      */
924     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
925                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
926     for (i = 0; i < PCI_SLOT_MAX; i++) {
927         for (j = 0; j < PCI_NUM_PINS; j++) {
928             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
929             int lsi_num = pci_spapr_swizzle(i, j);
930 
931             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
932             irqmap[1] = 0;
933             irqmap[2] = 0;
934             irqmap[3] = cpu_to_be32(j+1);
935             irqmap[4] = cpu_to_be32(xics_phandle);
936             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
937             irqmap[6] = cpu_to_be32(0x8);
938         }
939     }
940     /* Write interrupt map */
941     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
942                      sizeof(interrupt_map)));
943 
944     object_child_foreach(OBJECT(phb), spapr_phb_children_dt,
945                          &((sPAPRTCEDT){ .fdt = fdt, .node_off = bus_off }));
946 
947     return 0;
948 }
949 
950 void spapr_pci_rtas_init(void)
951 {
952     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
953                         rtas_read_pci_config);
954     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
955                         rtas_write_pci_config);
956     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
957                         rtas_ibm_read_pci_config);
958     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
959                         rtas_ibm_write_pci_config);
960     if (msi_supported) {
961         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
962                             "ibm,query-interrupt-source-number",
963                             rtas_ibm_query_interrupt_source_number);
964         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
965                             rtas_ibm_change_msi);
966     }
967 }
968 
969 static void spapr_pci_register_types(void)
970 {
971     type_register_static(&spapr_phb_info);
972 }
973 
974 type_init(spapr_pci_register_types)
975