1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "hw/hw.h" 26 #include "hw/pci/pci.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/pci/pci_host.h" 30 #include "hw/ppc/spapr.h" 31 #include "hw/pci-host/spapr.h" 32 #include "exec/address-spaces.h" 33 #include <libfdt.h> 34 #include "trace.h" 35 #include "qemu/error-report.h" 36 37 #include "hw/pci/pci_bus.h" 38 39 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 40 #define RTAS_QUERY_FN 0 41 #define RTAS_CHANGE_FN 1 42 #define RTAS_RESET_FN 2 43 #define RTAS_CHANGE_MSI_FN 3 44 #define RTAS_CHANGE_MSIX_FN 4 45 46 /* Interrupt types to return on RTAS_CHANGE_* */ 47 #define RTAS_TYPE_MSI 1 48 #define RTAS_TYPE_MSIX 2 49 50 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid) 51 { 52 sPAPRPHBState *sphb; 53 54 QLIST_FOREACH(sphb, &spapr->phbs, list) { 55 if (sphb->buid != buid) { 56 continue; 57 } 58 return sphb; 59 } 60 61 return NULL; 62 } 63 64 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid, 65 uint32_t config_addr) 66 { 67 sPAPRPHBState *sphb = find_phb(spapr, buid); 68 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 69 int bus_num = (config_addr >> 16) & 0xFF; 70 int devfn = (config_addr >> 8) & 0xFF; 71 72 if (!phb) { 73 return NULL; 74 } 75 76 return pci_find_device(phb->bus, bus_num, devfn); 77 } 78 79 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 80 { 81 /* This handles the encoding of extended config space addresses */ 82 return ((arg >> 20) & 0xf00) | (arg & 0xff); 83 } 84 85 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid, 86 uint32_t addr, uint32_t size, 87 target_ulong rets) 88 { 89 PCIDevice *pci_dev; 90 uint32_t val; 91 92 if ((size != 1) && (size != 2) && (size != 4)) { 93 /* access must be 1, 2 or 4 bytes */ 94 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 95 return; 96 } 97 98 pci_dev = find_dev(spapr, buid, addr); 99 addr = rtas_pci_cfgaddr(addr); 100 101 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 102 /* Access must be to a valid device, within bounds and 103 * naturally aligned */ 104 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 105 return; 106 } 107 108 val = pci_host_config_read_common(pci_dev, addr, 109 pci_config_size(pci_dev), size); 110 111 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 112 rtas_st(rets, 1, val); 113 } 114 115 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 116 uint32_t token, uint32_t nargs, 117 target_ulong args, 118 uint32_t nret, target_ulong rets) 119 { 120 uint64_t buid; 121 uint32_t size, addr; 122 123 if ((nargs != 4) || (nret != 2)) { 124 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 125 return; 126 } 127 128 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 129 size = rtas_ld(args, 3); 130 addr = rtas_ld(args, 0); 131 132 finish_read_pci_config(spapr, buid, addr, size, rets); 133 } 134 135 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 136 uint32_t token, uint32_t nargs, 137 target_ulong args, 138 uint32_t nret, target_ulong rets) 139 { 140 uint32_t size, addr; 141 142 if ((nargs != 2) || (nret != 2)) { 143 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 144 return; 145 } 146 147 size = rtas_ld(args, 1); 148 addr = rtas_ld(args, 0); 149 150 finish_read_pci_config(spapr, 0, addr, size, rets); 151 } 152 153 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid, 154 uint32_t addr, uint32_t size, 155 uint32_t val, target_ulong rets) 156 { 157 PCIDevice *pci_dev; 158 159 if ((size != 1) && (size != 2) && (size != 4)) { 160 /* access must be 1, 2 or 4 bytes */ 161 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 162 return; 163 } 164 165 pci_dev = find_dev(spapr, buid, addr); 166 addr = rtas_pci_cfgaddr(addr); 167 168 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 169 /* Access must be to a valid device, within bounds and 170 * naturally aligned */ 171 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 172 return; 173 } 174 175 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 176 val, size); 177 178 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 179 } 180 181 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 182 uint32_t token, uint32_t nargs, 183 target_ulong args, 184 uint32_t nret, target_ulong rets) 185 { 186 uint64_t buid; 187 uint32_t val, size, addr; 188 189 if ((nargs != 5) || (nret != 1)) { 190 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 191 return; 192 } 193 194 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 195 val = rtas_ld(args, 4); 196 size = rtas_ld(args, 3); 197 addr = rtas_ld(args, 0); 198 199 finish_write_pci_config(spapr, buid, addr, size, val, rets); 200 } 201 202 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 203 uint32_t token, uint32_t nargs, 204 target_ulong args, 205 uint32_t nret, target_ulong rets) 206 { 207 uint32_t val, size, addr; 208 209 if ((nargs != 3) || (nret != 1)) { 210 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 211 return; 212 } 213 214 215 val = rtas_ld(args, 2); 216 size = rtas_ld(args, 1); 217 addr = rtas_ld(args, 0); 218 219 finish_write_pci_config(spapr, 0, addr, size, val, rets); 220 } 221 222 /* 223 * Set MSI/MSIX message data. 224 * This is required for msi_notify()/msix_notify() which 225 * will write at the addresses via spapr_msi_write(). 226 * 227 * If hwaddr == 0, all entries will have .data == first_irq i.e. 228 * table will be reset. 229 */ 230 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 231 unsigned first_irq, unsigned req_num) 232 { 233 unsigned i; 234 MSIMessage msg = { .address = addr, .data = first_irq }; 235 236 if (!msix) { 237 msi_set_message(pdev, msg); 238 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 239 return; 240 } 241 242 for (i = 0; i < req_num; ++i) { 243 msix_set_message(pdev, i, msg); 244 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 245 if (addr) { 246 ++msg.data; 247 } 248 } 249 } 250 251 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr, 252 uint32_t token, uint32_t nargs, 253 target_ulong args, uint32_t nret, 254 target_ulong rets) 255 { 256 uint32_t config_addr = rtas_ld(args, 0); 257 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 258 unsigned int func = rtas_ld(args, 3); 259 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 260 unsigned int seq_num = rtas_ld(args, 5); 261 unsigned int ret_intr_type; 262 unsigned int irq, max_irqs = 0, num = 0; 263 sPAPRPHBState *phb = NULL; 264 PCIDevice *pdev = NULL; 265 spapr_pci_msi *msi; 266 int *config_addr_key; 267 268 switch (func) { 269 case RTAS_CHANGE_MSI_FN: 270 case RTAS_CHANGE_FN: 271 ret_intr_type = RTAS_TYPE_MSI; 272 break; 273 case RTAS_CHANGE_MSIX_FN: 274 ret_intr_type = RTAS_TYPE_MSIX; 275 break; 276 default: 277 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 278 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 279 return; 280 } 281 282 /* Fins sPAPRPHBState */ 283 phb = find_phb(spapr, buid); 284 if (phb) { 285 pdev = find_dev(spapr, buid, config_addr); 286 } 287 if (!phb || !pdev) { 288 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 289 return; 290 } 291 292 /* Releasing MSIs */ 293 if (!req_num) { 294 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 295 if (!msi) { 296 trace_spapr_pci_msi("Releasing wrong config", config_addr); 297 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 298 return; 299 } 300 301 xics_free(spapr->icp, msi->first_irq, msi->num); 302 if (msi_present(pdev)) { 303 spapr_msi_setmsg(pdev, 0, false, 0, num); 304 } 305 if (msix_present(pdev)) { 306 spapr_msi_setmsg(pdev, 0, true, 0, num); 307 } 308 g_hash_table_remove(phb->msi, &config_addr); 309 310 trace_spapr_pci_msi("Released MSIs", config_addr); 311 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 312 rtas_st(rets, 1, 0); 313 return; 314 } 315 316 /* Enabling MSI */ 317 318 /* Check if the device supports as many IRQs as requested */ 319 if (ret_intr_type == RTAS_TYPE_MSI) { 320 max_irqs = msi_nr_vectors_allocated(pdev); 321 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 322 max_irqs = pdev->msix_entries_nr; 323 } 324 if (!max_irqs) { 325 error_report("Requested interrupt type %d is not enabled for device %x", 326 ret_intr_type, config_addr); 327 rtas_st(rets, 0, -1); /* Hardware error */ 328 return; 329 } 330 /* Correct the number if the guest asked for too many */ 331 if (req_num > max_irqs) { 332 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 333 req_num = max_irqs; 334 irq = 0; /* to avoid misleading trace */ 335 goto out; 336 } 337 338 /* Allocate MSIs */ 339 irq = xics_alloc_block(spapr->icp, 0, req_num, false, 340 ret_intr_type == RTAS_TYPE_MSI); 341 if (!irq) { 342 error_report("Cannot allocate MSIs for device %x", config_addr); 343 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 344 return; 345 } 346 347 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 348 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 349 irq, req_num); 350 351 /* Add MSI device to cache */ 352 msi = g_new(spapr_pci_msi, 1); 353 msi->first_irq = irq; 354 msi->num = req_num; 355 config_addr_key = g_new(int, 1); 356 *config_addr_key = config_addr; 357 g_hash_table_insert(phb->msi, config_addr_key, msi); 358 359 out: 360 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 361 rtas_st(rets, 1, req_num); 362 rtas_st(rets, 2, ++seq_num); 363 rtas_st(rets, 3, ret_intr_type); 364 365 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 366 } 367 368 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 369 sPAPREnvironment *spapr, 370 uint32_t token, 371 uint32_t nargs, 372 target_ulong args, 373 uint32_t nret, 374 target_ulong rets) 375 { 376 uint32_t config_addr = rtas_ld(args, 0); 377 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 378 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 379 sPAPRPHBState *phb = NULL; 380 PCIDevice *pdev = NULL; 381 spapr_pci_msi *msi; 382 383 /* Find sPAPRPHBState */ 384 phb = find_phb(spapr, buid); 385 if (phb) { 386 pdev = find_dev(spapr, buid, config_addr); 387 } 388 if (!phb || !pdev) { 389 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 390 return; 391 } 392 393 /* Find device descriptor and start IRQ */ 394 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 395 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 396 trace_spapr_pci_msi("Failed to return vector", config_addr); 397 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 398 return; 399 } 400 intr_src_num = msi->first_irq + ioa_intr_num; 401 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 402 intr_src_num); 403 404 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 405 rtas_st(rets, 1, intr_src_num); 406 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 407 } 408 409 static int pci_spapr_swizzle(int slot, int pin) 410 { 411 return (slot + pin) % PCI_NUM_PINS; 412 } 413 414 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 415 { 416 /* 417 * Here we need to convert pci_dev + irq_num to some unique value 418 * which is less than number of IRQs on the specific bus (4). We 419 * use standard PCI swizzling, that is (slot number + pin number) 420 * % 4. 421 */ 422 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 423 } 424 425 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 426 { 427 /* 428 * Here we use the number returned by pci_spapr_map_irq to find a 429 * corresponding qemu_irq. 430 */ 431 sPAPRPHBState *phb = opaque; 432 433 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 434 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 435 } 436 437 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 438 { 439 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 440 PCIINTxRoute route; 441 442 route.mode = PCI_INTX_ENABLED; 443 route.irq = sphb->lsi_table[pin].irq; 444 445 return route; 446 } 447 448 /* 449 * MSI/MSIX memory region implementation. 450 * The handler handles both MSI and MSIX. 451 * For MSI-X, the vector number is encoded as a part of the address, 452 * data is set to 0. 453 * For MSI, the vector number is encoded in least bits in data. 454 */ 455 static void spapr_msi_write(void *opaque, hwaddr addr, 456 uint64_t data, unsigned size) 457 { 458 uint32_t irq = data; 459 460 trace_spapr_pci_msi_write(addr, data, irq); 461 462 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq)); 463 } 464 465 static const MemoryRegionOps spapr_msi_ops = { 466 /* There is no .read as the read result is undefined by PCI spec */ 467 .read = NULL, 468 .write = spapr_msi_write, 469 .endianness = DEVICE_LITTLE_ENDIAN 470 }; 471 472 /* 473 * PHB PCI device 474 */ 475 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 476 { 477 sPAPRPHBState *phb = opaque; 478 479 return &phb->iommu_as; 480 } 481 482 static void spapr_phb_realize(DeviceState *dev, Error **errp) 483 { 484 SysBusDevice *s = SYS_BUS_DEVICE(dev); 485 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 486 PCIHostState *phb = PCI_HOST_BRIDGE(s); 487 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s); 488 char *namebuf; 489 int i; 490 PCIBus *bus; 491 uint64_t msi_window_size = 4096; 492 493 if (sphb->index != -1) { 494 hwaddr windows_base; 495 496 if ((sphb->buid != -1) || (sphb->dma_liobn != -1) 497 || (sphb->mem_win_addr != -1) 498 || (sphb->io_win_addr != -1)) { 499 error_setg(errp, "Either \"index\" or other parameters must" 500 " be specified for PAPR PHB, not both"); 501 return; 502 } 503 504 if (sphb->index > SPAPR_PCI_MAX_INDEX) { 505 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 506 SPAPR_PCI_MAX_INDEX); 507 return; 508 } 509 510 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index; 511 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index; 512 513 windows_base = SPAPR_PCI_WINDOW_BASE 514 + sphb->index * SPAPR_PCI_WINDOW_SPACING; 515 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF; 516 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF; 517 } 518 519 if (sphb->buid == -1) { 520 error_setg(errp, "BUID not specified for PHB"); 521 return; 522 } 523 524 if (sphb->dma_liobn == -1) { 525 error_setg(errp, "LIOBN not specified for PHB"); 526 return; 527 } 528 529 if (sphb->mem_win_addr == -1) { 530 error_setg(errp, "Memory window address not specified for PHB"); 531 return; 532 } 533 534 if (sphb->io_win_addr == -1) { 535 error_setg(errp, "IO window address not specified for PHB"); 536 return; 537 } 538 539 if (find_phb(spapr, sphb->buid)) { 540 error_setg(errp, "PCI host bridges must have unique BUIDs"); 541 return; 542 } 543 544 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 545 546 namebuf = alloca(strlen(sphb->dtbusname) + 32); 547 548 /* Initialize memory regions */ 549 sprintf(namebuf, "%s.mmio", sphb->dtbusname); 550 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 551 552 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname); 553 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb), 554 namebuf, &sphb->memspace, 555 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 556 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 557 &sphb->memwindow); 558 559 /* Initialize IO regions */ 560 sprintf(namebuf, "%s.io", sphb->dtbusname); 561 memory_region_init(&sphb->iospace, OBJECT(sphb), 562 namebuf, SPAPR_PCI_IO_WIN_SIZE); 563 564 sprintf(namebuf, "%s.io-alias", sphb->dtbusname); 565 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 566 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 567 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 568 &sphb->iowindow); 569 570 bus = pci_register_bus(dev, NULL, 571 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 572 &sphb->memspace, &sphb->iospace, 573 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 574 phb->bus = bus; 575 576 /* 577 * Initialize PHB address space. 578 * By default there will be at least one subregion for default 579 * 32bit DMA window. 580 * Later the guest might want to create another DMA window 581 * which will become another memory subregion. 582 */ 583 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname); 584 585 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 586 namebuf, UINT64_MAX); 587 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 588 sphb->dtbusname); 589 590 /* 591 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 592 * we need to allocate some memory to catch those writes coming 593 * from msi_notify()/msix_notify(). 594 * As MSIMessage:addr is going to be the same and MSIMessage:data 595 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 596 * be used. 597 * 598 * For KVM we want to ensure that this memory is a full page so that 599 * our memory slot is of page size granularity. 600 */ 601 #ifdef CONFIG_KVM 602 if (kvm_enabled()) { 603 msi_window_size = getpagesize(); 604 } 605 #endif 606 607 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr, 608 "msi", msi_window_size); 609 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 610 &sphb->msiwindow); 611 612 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 613 614 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 615 616 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 617 618 /* Initialize the LSI table */ 619 for (i = 0; i < PCI_NUM_PINS; i++) { 620 uint32_t irq; 621 622 irq = xics_alloc_block(spapr->icp, 0, 1, true, false); 623 if (!irq) { 624 error_setg(errp, "spapr_allocate_lsi failed"); 625 return; 626 } 627 628 sphb->lsi_table[i].irq = irq; 629 } 630 631 if (!info->finish_realize) { 632 error_setg(errp, "finish_realize not defined"); 633 return; 634 } 635 636 info->finish_realize(sphb, errp); 637 638 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); 639 } 640 641 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp) 642 { 643 sPAPRTCETable *tcet; 644 645 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn, 646 0, 647 SPAPR_TCE_PAGE_SHIFT, 648 0x40000000 >> SPAPR_TCE_PAGE_SHIFT, false); 649 if (!tcet) { 650 error_setg(errp, "Unable to create TCE table for %s", 651 sphb->dtbusname); 652 return ; 653 } 654 655 /* Register default 32bit DMA window */ 656 memory_region_add_subregion(&sphb->iommu_root, 0, 657 spapr_tce_get_iommu(tcet)); 658 } 659 660 static int spapr_phb_children_reset(Object *child, void *opaque) 661 { 662 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 663 664 if (dev) { 665 device_reset(dev); 666 } 667 668 return 0; 669 } 670 671 static void spapr_phb_reset(DeviceState *qdev) 672 { 673 /* Reset the IOMMU state */ 674 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 675 } 676 677 static Property spapr_phb_properties[] = { 678 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), 679 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1), 680 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1), 681 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), 682 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, 683 SPAPR_PCI_MMIO_WIN_SIZE), 684 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1), 685 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, 686 SPAPR_PCI_IO_WIN_SIZE), 687 DEFINE_PROP_END_OF_LIST(), 688 }; 689 690 static const VMStateDescription vmstate_spapr_pci_lsi = { 691 .name = "spapr_pci/lsi", 692 .version_id = 1, 693 .minimum_version_id = 1, 694 .fields = (VMStateField[]) { 695 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi), 696 697 VMSTATE_END_OF_LIST() 698 }, 699 }; 700 701 static const VMStateDescription vmstate_spapr_pci_msi = { 702 .name = "spapr_pci/msi", 703 .version_id = 1, 704 .minimum_version_id = 1, 705 .fields = (VMStateField []) { 706 VMSTATE_UINT32(key, spapr_pci_msi_mig), 707 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), 708 VMSTATE_UINT32(value.num, spapr_pci_msi_mig), 709 VMSTATE_END_OF_LIST() 710 }, 711 }; 712 713 static void spapr_pci_fill_msi_devs(gpointer key, gpointer value, 714 gpointer opaque) 715 { 716 sPAPRPHBState *sphb = opaque; 717 718 sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key; 719 sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value; 720 sphb->msi_devs_num++; 721 } 722 723 static void spapr_pci_pre_save(void *opaque) 724 { 725 sPAPRPHBState *sphb = opaque; 726 int msi_devs_num; 727 728 if (sphb->msi_devs) { 729 g_free(sphb->msi_devs); 730 sphb->msi_devs = NULL; 731 } 732 sphb->msi_devs_num = 0; 733 msi_devs_num = g_hash_table_size(sphb->msi); 734 if (!msi_devs_num) { 735 return; 736 } 737 sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig)); 738 739 g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb); 740 assert(sphb->msi_devs_num == msi_devs_num); 741 } 742 743 static int spapr_pci_post_load(void *opaque, int version_id) 744 { 745 sPAPRPHBState *sphb = opaque; 746 gpointer key, value; 747 int i; 748 749 for (i = 0; i < sphb->msi_devs_num; ++i) { 750 key = g_memdup(&sphb->msi_devs[i].key, 751 sizeof(sphb->msi_devs[i].key)); 752 value = g_memdup(&sphb->msi_devs[i].value, 753 sizeof(sphb->msi_devs[i].value)); 754 g_hash_table_insert(sphb->msi, key, value); 755 } 756 if (sphb->msi_devs) { 757 g_free(sphb->msi_devs); 758 sphb->msi_devs = NULL; 759 } 760 sphb->msi_devs_num = 0; 761 762 return 0; 763 } 764 765 static const VMStateDescription vmstate_spapr_pci = { 766 .name = "spapr_pci", 767 .version_id = 2, 768 .minimum_version_id = 2, 769 .pre_save = spapr_pci_pre_save, 770 .post_load = spapr_pci_post_load, 771 .fields = (VMStateField[]) { 772 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState), 773 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState), 774 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState), 775 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState), 776 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState), 777 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState), 778 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, 779 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 780 VMSTATE_INT32(msi_devs_num, sPAPRPHBState), 781 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, 782 vmstate_spapr_pci_msi, spapr_pci_msi_mig), 783 VMSTATE_END_OF_LIST() 784 }, 785 }; 786 787 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 788 PCIBus *rootbus) 789 { 790 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 791 792 return sphb->dtbusname; 793 } 794 795 static void spapr_phb_class_init(ObjectClass *klass, void *data) 796 { 797 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 798 DeviceClass *dc = DEVICE_CLASS(klass); 799 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass); 800 801 hc->root_bus_path = spapr_phb_root_bus_path; 802 dc->realize = spapr_phb_realize; 803 dc->props = spapr_phb_properties; 804 dc->reset = spapr_phb_reset; 805 dc->vmsd = &vmstate_spapr_pci; 806 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 807 dc->cannot_instantiate_with_device_add_yet = false; 808 spc->finish_realize = spapr_phb_finish_realize; 809 } 810 811 static const TypeInfo spapr_phb_info = { 812 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 813 .parent = TYPE_PCI_HOST_BRIDGE, 814 .instance_size = sizeof(sPAPRPHBState), 815 .class_init = spapr_phb_class_init, 816 .class_size = sizeof(sPAPRPHBClass), 817 }; 818 819 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index) 820 { 821 DeviceState *dev; 822 823 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 824 qdev_prop_set_uint32(dev, "index", index); 825 qdev_init_nofail(dev); 826 827 return PCI_HOST_BRIDGE(dev); 828 } 829 830 /* Macros to operate with address in OF binding to PCI */ 831 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 832 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 833 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 834 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 835 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 836 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 837 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 838 #define b_fff(x) b_x((x), 8, 3) /* function number */ 839 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 840 841 typedef struct sPAPRTCEDT { 842 void *fdt; 843 int node_off; 844 } sPAPRTCEDT; 845 846 static int spapr_phb_children_dt(Object *child, void *opaque) 847 { 848 sPAPRTCEDT *p = opaque; 849 sPAPRTCETable *tcet; 850 851 tcet = (sPAPRTCETable *) object_dynamic_cast(child, TYPE_SPAPR_TCE_TABLE); 852 if (!tcet) { 853 return 0; 854 } 855 856 spapr_dma_dt(p->fdt, p->node_off, "ibm,dma-window", 857 tcet->liobn, tcet->bus_offset, 858 tcet->nb_table << tcet->page_shift); 859 /* Stop after the first window */ 860 861 return 1; 862 } 863 864 int spapr_populate_pci_dt(sPAPRPHBState *phb, 865 uint32_t xics_phandle, 866 void *fdt) 867 { 868 int bus_off, i, j; 869 char nodename[256]; 870 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 871 struct { 872 uint32_t hi; 873 uint64_t child; 874 uint64_t parent; 875 uint64_t size; 876 } QEMU_PACKED ranges[] = { 877 { 878 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 879 cpu_to_be64(phb->io_win_addr), 880 cpu_to_be64(memory_region_size(&phb->iospace)), 881 }, 882 { 883 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 884 cpu_to_be64(phb->mem_win_addr), 885 cpu_to_be64(memory_region_size(&phb->memwindow)), 886 }, 887 }; 888 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 889 uint32_t interrupt_map_mask[] = { 890 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 891 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 892 893 /* Start populating the FDT */ 894 sprintf(nodename, "pci@%" PRIx64, phb->buid); 895 bus_off = fdt_add_subnode(fdt, 0, nodename); 896 if (bus_off < 0) { 897 return bus_off; 898 } 899 900 #define _FDT(exp) \ 901 do { \ 902 int ret = (exp); \ 903 if (ret < 0) { \ 904 return ret; \ 905 } \ 906 } while (0) 907 908 /* Write PHB properties */ 909 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 910 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 911 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 912 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 913 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 914 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 915 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 916 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges))); 917 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 918 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 919 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS)); 920 921 /* Build the interrupt-map, this must matches what is done 922 * in pci_spapr_map_irq 923 */ 924 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 925 &interrupt_map_mask, sizeof(interrupt_map_mask))); 926 for (i = 0; i < PCI_SLOT_MAX; i++) { 927 for (j = 0; j < PCI_NUM_PINS; j++) { 928 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 929 int lsi_num = pci_spapr_swizzle(i, j); 930 931 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 932 irqmap[1] = 0; 933 irqmap[2] = 0; 934 irqmap[3] = cpu_to_be32(j+1); 935 irqmap[4] = cpu_to_be32(xics_phandle); 936 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); 937 irqmap[6] = cpu_to_be32(0x8); 938 } 939 } 940 /* Write interrupt map */ 941 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 942 sizeof(interrupt_map))); 943 944 object_child_foreach(OBJECT(phb), spapr_phb_children_dt, 945 &((sPAPRTCEDT){ .fdt = fdt, .node_off = bus_off })); 946 947 return 0; 948 } 949 950 void spapr_pci_rtas_init(void) 951 { 952 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 953 rtas_read_pci_config); 954 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 955 rtas_write_pci_config); 956 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 957 rtas_ibm_read_pci_config); 958 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 959 rtas_ibm_write_pci_config); 960 if (msi_supported) { 961 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 962 "ibm,query-interrupt-source-number", 963 rtas_ibm_query_interrupt_source_number); 964 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 965 rtas_ibm_change_msi); 966 } 967 } 968 969 static void spapr_pci_register_types(void) 970 { 971 type_register_static(&spapr_phb_info); 972 } 973 974 type_init(spapr_pci_register_types) 975