xref: /qemu/hw/ppc/spapr_pci.c (revision 32420522482ffc20f8e9423af4f41f4e05ce3a56)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35 #include "qemu/error-report.h"
36 
37 #include "hw/pci/pci_bus.h"
38 
39 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
40 #define RTAS_QUERY_FN           0
41 #define RTAS_CHANGE_FN          1
42 #define RTAS_RESET_FN           2
43 #define RTAS_CHANGE_MSI_FN      3
44 #define RTAS_CHANGE_MSIX_FN     4
45 
46 /* Interrupt types to return on RTAS_CHANGE_* */
47 #define RTAS_TYPE_MSI           1
48 #define RTAS_TYPE_MSIX          2
49 
50 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
51 {
52     sPAPRPHBState *sphb;
53 
54     QLIST_FOREACH(sphb, &spapr->phbs, list) {
55         if (sphb->buid != buid) {
56             continue;
57         }
58         return sphb;
59     }
60 
61     return NULL;
62 }
63 
64 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
65                            uint32_t config_addr)
66 {
67     sPAPRPHBState *sphb = find_phb(spapr, buid);
68     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
69     int bus_num = (config_addr >> 16) & 0xFF;
70     int devfn = (config_addr >> 8) & 0xFF;
71 
72     if (!phb) {
73         return NULL;
74     }
75 
76     return pci_find_device(phb->bus, bus_num, devfn);
77 }
78 
79 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
80 {
81     /* This handles the encoding of extended config space addresses */
82     return ((arg >> 20) & 0xf00) | (arg & 0xff);
83 }
84 
85 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
86                                    uint32_t addr, uint32_t size,
87                                    target_ulong rets)
88 {
89     PCIDevice *pci_dev;
90     uint32_t val;
91 
92     if ((size != 1) && (size != 2) && (size != 4)) {
93         /* access must be 1, 2 or 4 bytes */
94         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
95         return;
96     }
97 
98     pci_dev = find_dev(spapr, buid, addr);
99     addr = rtas_pci_cfgaddr(addr);
100 
101     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
102         /* Access must be to a valid device, within bounds and
103          * naturally aligned */
104         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
105         return;
106     }
107 
108     val = pci_host_config_read_common(pci_dev, addr,
109                                       pci_config_size(pci_dev), size);
110 
111     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
112     rtas_st(rets, 1, val);
113 }
114 
115 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
116                                      uint32_t token, uint32_t nargs,
117                                      target_ulong args,
118                                      uint32_t nret, target_ulong rets)
119 {
120     uint64_t buid;
121     uint32_t size, addr;
122 
123     if ((nargs != 4) || (nret != 2)) {
124         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
125         return;
126     }
127 
128     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
129     size = rtas_ld(args, 3);
130     addr = rtas_ld(args, 0);
131 
132     finish_read_pci_config(spapr, buid, addr, size, rets);
133 }
134 
135 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
136                                  uint32_t token, uint32_t nargs,
137                                  target_ulong args,
138                                  uint32_t nret, target_ulong rets)
139 {
140     uint32_t size, addr;
141 
142     if ((nargs != 2) || (nret != 2)) {
143         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
144         return;
145     }
146 
147     size = rtas_ld(args, 1);
148     addr = rtas_ld(args, 0);
149 
150     finish_read_pci_config(spapr, 0, addr, size, rets);
151 }
152 
153 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
154                                     uint32_t addr, uint32_t size,
155                                     uint32_t val, target_ulong rets)
156 {
157     PCIDevice *pci_dev;
158 
159     if ((size != 1) && (size != 2) && (size != 4)) {
160         /* access must be 1, 2 or 4 bytes */
161         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
162         return;
163     }
164 
165     pci_dev = find_dev(spapr, buid, addr);
166     addr = rtas_pci_cfgaddr(addr);
167 
168     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
169         /* Access must be to a valid device, within bounds and
170          * naturally aligned */
171         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
172         return;
173     }
174 
175     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
176                                  val, size);
177 
178     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
179 }
180 
181 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
182                                       uint32_t token, uint32_t nargs,
183                                       target_ulong args,
184                                       uint32_t nret, target_ulong rets)
185 {
186     uint64_t buid;
187     uint32_t val, size, addr;
188 
189     if ((nargs != 5) || (nret != 1)) {
190         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
191         return;
192     }
193 
194     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
195     val = rtas_ld(args, 4);
196     size = rtas_ld(args, 3);
197     addr = rtas_ld(args, 0);
198 
199     finish_write_pci_config(spapr, buid, addr, size, val, rets);
200 }
201 
202 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
203                                   uint32_t token, uint32_t nargs,
204                                   target_ulong args,
205                                   uint32_t nret, target_ulong rets)
206 {
207     uint32_t val, size, addr;
208 
209     if ((nargs != 3) || (nret != 1)) {
210         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
211         return;
212     }
213 
214 
215     val = rtas_ld(args, 2);
216     size = rtas_ld(args, 1);
217     addr = rtas_ld(args, 0);
218 
219     finish_write_pci_config(spapr, 0, addr, size, val, rets);
220 }
221 
222 /*
223  * Set MSI/MSIX message data.
224  * This is required for msi_notify()/msix_notify() which
225  * will write at the addresses via spapr_msi_write().
226  *
227  * If hwaddr == 0, all entries will have .data == first_irq i.e.
228  * table will be reset.
229  */
230 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
231                              unsigned first_irq, unsigned req_num)
232 {
233     unsigned i;
234     MSIMessage msg = { .address = addr, .data = first_irq };
235 
236     if (!msix) {
237         msi_set_message(pdev, msg);
238         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
239         return;
240     }
241 
242     for (i = 0; i < req_num; ++i) {
243         msix_set_message(pdev, i, msg);
244         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
245         if (addr) {
246             ++msg.data;
247         }
248     }
249 }
250 
251 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
252                                 uint32_t token, uint32_t nargs,
253                                 target_ulong args, uint32_t nret,
254                                 target_ulong rets)
255 {
256     uint32_t config_addr = rtas_ld(args, 0);
257     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
258     unsigned int func = rtas_ld(args, 3);
259     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
260     unsigned int seq_num = rtas_ld(args, 5);
261     unsigned int ret_intr_type;
262     unsigned int irq, max_irqs = 0, num = 0;
263     sPAPRPHBState *phb = NULL;
264     PCIDevice *pdev = NULL;
265     spapr_pci_msi *msi;
266     int *config_addr_key;
267 
268     switch (func) {
269     case RTAS_CHANGE_MSI_FN:
270     case RTAS_CHANGE_FN:
271         ret_intr_type = RTAS_TYPE_MSI;
272         break;
273     case RTAS_CHANGE_MSIX_FN:
274         ret_intr_type = RTAS_TYPE_MSIX;
275         break;
276     default:
277         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
278         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
279         return;
280     }
281 
282     /* Fins sPAPRPHBState */
283     phb = find_phb(spapr, buid);
284     if (phb) {
285         pdev = find_dev(spapr, buid, config_addr);
286     }
287     if (!phb || !pdev) {
288         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
289         return;
290     }
291 
292     /* Releasing MSIs */
293     if (!req_num) {
294         msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
295         if (!msi) {
296             trace_spapr_pci_msi("Releasing wrong config", config_addr);
297             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
298             return;
299         }
300 
301         xics_free(spapr->icp, msi->first_irq, msi->num);
302         if (msi_present(pdev)) {
303             spapr_msi_setmsg(pdev, 0, false, 0, num);
304         }
305         if (msix_present(pdev)) {
306             spapr_msi_setmsg(pdev, 0, true, 0, num);
307         }
308         g_hash_table_remove(phb->msi, &config_addr);
309 
310         trace_spapr_pci_msi("Released MSIs", config_addr);
311         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
312         rtas_st(rets, 1, 0);
313         return;
314     }
315 
316     /* Enabling MSI */
317 
318     /* Check if the device supports as many IRQs as requested */
319     if (ret_intr_type == RTAS_TYPE_MSI) {
320         max_irqs = msi_nr_vectors_allocated(pdev);
321     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
322         max_irqs = pdev->msix_entries_nr;
323     }
324     if (!max_irqs) {
325         error_report("Requested interrupt type %d is not enabled for device %x",
326                      ret_intr_type, config_addr);
327         rtas_st(rets, 0, -1); /* Hardware error */
328         return;
329     }
330     /* Correct the number if the guest asked for too many */
331     if (req_num > max_irqs) {
332         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
333         req_num = max_irqs;
334         irq = 0; /* to avoid misleading trace */
335         goto out;
336     }
337 
338     /* Allocate MSIs */
339     irq = xics_alloc_block(spapr->icp, 0, req_num, false,
340                            ret_intr_type == RTAS_TYPE_MSI);
341     if (!irq) {
342         error_report("Cannot allocate MSIs for device %x", config_addr);
343         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
344         return;
345     }
346 
347     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
348     spapr_msi_setmsg(pdev, spapr->msi_win_addr, ret_intr_type == RTAS_TYPE_MSIX,
349                      irq, req_num);
350 
351     /* Add MSI device to cache */
352     msi = g_new(spapr_pci_msi, 1);
353     msi->first_irq = irq;
354     msi->num = req_num;
355     config_addr_key = g_new(int, 1);
356     *config_addr_key = config_addr;
357     g_hash_table_insert(phb->msi, config_addr_key, msi);
358 
359 out:
360     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
361     rtas_st(rets, 1, req_num);
362     rtas_st(rets, 2, ++seq_num);
363     rtas_st(rets, 3, ret_intr_type);
364 
365     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
366 }
367 
368 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
369                                                    sPAPREnvironment *spapr,
370                                                    uint32_t token,
371                                                    uint32_t nargs,
372                                                    target_ulong args,
373                                                    uint32_t nret,
374                                                    target_ulong rets)
375 {
376     uint32_t config_addr = rtas_ld(args, 0);
377     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
378     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
379     sPAPRPHBState *phb = NULL;
380     PCIDevice *pdev = NULL;
381     spapr_pci_msi *msi;
382 
383     /* Find sPAPRPHBState */
384     phb = find_phb(spapr, buid);
385     if (phb) {
386         pdev = find_dev(spapr, buid, config_addr);
387     }
388     if (!phb || !pdev) {
389         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
390         return;
391     }
392 
393     /* Find device descriptor and start IRQ */
394     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
395     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
396         trace_spapr_pci_msi("Failed to return vector", config_addr);
397         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
398         return;
399     }
400     intr_src_num = msi->first_irq + ioa_intr_num;
401     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
402                                                            intr_src_num);
403 
404     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
405     rtas_st(rets, 1, intr_src_num);
406     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
407 }
408 
409 static int pci_spapr_swizzle(int slot, int pin)
410 {
411     return (slot + pin) % PCI_NUM_PINS;
412 }
413 
414 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
415 {
416     /*
417      * Here we need to convert pci_dev + irq_num to some unique value
418      * which is less than number of IRQs on the specific bus (4).  We
419      * use standard PCI swizzling, that is (slot number + pin number)
420      * % 4.
421      */
422     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
423 }
424 
425 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
426 {
427     /*
428      * Here we use the number returned by pci_spapr_map_irq to find a
429      * corresponding qemu_irq.
430      */
431     sPAPRPHBState *phb = opaque;
432 
433     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
434     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
435 }
436 
437 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
438 {
439     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
440     PCIINTxRoute route;
441 
442     route.mode = PCI_INTX_ENABLED;
443     route.irq = sphb->lsi_table[pin].irq;
444 
445     return route;
446 }
447 
448 /*
449  * MSI/MSIX memory region implementation.
450  * The handler handles both MSI and MSIX.
451  * For MSI-X, the vector number is encoded as a part of the address,
452  * data is set to 0.
453  * For MSI, the vector number is encoded in least bits in data.
454  */
455 static void spapr_msi_write(void *opaque, hwaddr addr,
456                             uint64_t data, unsigned size)
457 {
458     uint32_t irq = data;
459 
460     trace_spapr_pci_msi_write(addr, data, irq);
461 
462     qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
463 }
464 
465 static const MemoryRegionOps spapr_msi_ops = {
466     /* There is no .read as the read result is undefined by PCI spec */
467     .read = NULL,
468     .write = spapr_msi_write,
469     .endianness = DEVICE_LITTLE_ENDIAN
470 };
471 
472 void spapr_pci_msi_init(sPAPREnvironment *spapr, hwaddr addr)
473 {
474     uint64_t window_size = 4096;
475 
476     /*
477      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
478      * we need to allocate some memory to catch those writes coming
479      * from msi_notify()/msix_notify().
480      * As MSIMessage:addr is going to be the same and MSIMessage:data
481      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
482      * be used.
483      *
484      * For KVM we want to ensure that this memory is a full page so that
485      * our memory slot is of page size granularity.
486      */
487 #ifdef CONFIG_KVM
488     if (kvm_enabled()) {
489         window_size = getpagesize();
490     }
491 #endif
492 
493     spapr->msi_win_addr = addr;
494     memory_region_init_io(&spapr->msiwindow, NULL, &spapr_msi_ops, spapr,
495                           "msi", window_size);
496     memory_region_add_subregion(get_system_memory(), spapr->msi_win_addr,
497                                 &spapr->msiwindow);
498 }
499 
500 /*
501  * PHB PCI device
502  */
503 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
504 {
505     sPAPRPHBState *phb = opaque;
506 
507     return &phb->iommu_as;
508 }
509 
510 static void spapr_phb_realize(DeviceState *dev, Error **errp)
511 {
512     SysBusDevice *s = SYS_BUS_DEVICE(dev);
513     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
514     PCIHostState *phb = PCI_HOST_BRIDGE(s);
515     sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
516     char *namebuf;
517     int i;
518     PCIBus *bus;
519 
520     if (sphb->index != -1) {
521         hwaddr windows_base;
522 
523         if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
524             || (sphb->mem_win_addr != -1)
525             || (sphb->io_win_addr != -1)) {
526             error_setg(errp, "Either \"index\" or other parameters must"
527                        " be specified for PAPR PHB, not both");
528             return;
529         }
530 
531         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
532         sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
533 
534         windows_base = SPAPR_PCI_WINDOW_BASE
535             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
536         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
537         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
538     }
539 
540     if (sphb->buid == -1) {
541         error_setg(errp, "BUID not specified for PHB");
542         return;
543     }
544 
545     if (sphb->dma_liobn == -1) {
546         error_setg(errp, "LIOBN not specified for PHB");
547         return;
548     }
549 
550     if (sphb->mem_win_addr == -1) {
551         error_setg(errp, "Memory window address not specified for PHB");
552         return;
553     }
554 
555     if (sphb->io_win_addr == -1) {
556         error_setg(errp, "IO window address not specified for PHB");
557         return;
558     }
559 
560     if (find_phb(spapr, sphb->buid)) {
561         error_setg(errp, "PCI host bridges must have unique BUIDs");
562         return;
563     }
564 
565     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
566 
567     namebuf = alloca(strlen(sphb->dtbusname) + 32);
568 
569     /* Initialize memory regions */
570     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
571     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
572 
573     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
574     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
575                              namebuf, &sphb->memspace,
576                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
577     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
578                                 &sphb->memwindow);
579 
580     /* Initialize IO regions */
581     sprintf(namebuf, "%s.io", sphb->dtbusname);
582     memory_region_init(&sphb->iospace, OBJECT(sphb),
583                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
584 
585     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
586     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
587                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
588     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
589                                 &sphb->iowindow);
590 
591     bus = pci_register_bus(dev, NULL,
592                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
593                            &sphb->memspace, &sphb->iospace,
594                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
595     phb->bus = bus;
596 
597     /*
598      * Initialize PHB address space.
599      * By default there will be at least one subregion for default
600      * 32bit DMA window.
601      * Later the guest might want to create another DMA window
602      * which will become another memory subregion.
603      */
604     sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
605 
606     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
607                        namebuf, UINT64_MAX);
608     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
609                        sphb->dtbusname);
610 
611     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
612 
613     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
614 
615     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
616 
617     /* Initialize the LSI table */
618     for (i = 0; i < PCI_NUM_PINS; i++) {
619         uint32_t irq;
620 
621         irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
622         if (!irq) {
623             error_setg(errp, "spapr_allocate_lsi failed");
624             return;
625         }
626 
627         sphb->lsi_table[i].irq = irq;
628     }
629 
630     if (!info->finish_realize) {
631         error_setg(errp, "finish_realize not defined");
632         return;
633     }
634 
635     info->finish_realize(sphb, errp);
636 
637     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
638 }
639 
640 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
641 {
642     sPAPRTCETable *tcet;
643 
644     tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
645                                0,
646                                SPAPR_TCE_PAGE_SHIFT,
647                                0x40000000 >> SPAPR_TCE_PAGE_SHIFT, false);
648     if (!tcet) {
649         error_setg(errp, "Unable to create TCE table for %s",
650                    sphb->dtbusname);
651         return ;
652     }
653 
654     /* Register default 32bit DMA window */
655     memory_region_add_subregion(&sphb->iommu_root, 0,
656                                 spapr_tce_get_iommu(tcet));
657 }
658 
659 static int spapr_phb_children_reset(Object *child, void *opaque)
660 {
661     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
662 
663     if (dev) {
664         device_reset(dev);
665     }
666 
667     return 0;
668 }
669 
670 static void spapr_phb_reset(DeviceState *qdev)
671 {
672     /* Reset the IOMMU state */
673     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
674 }
675 
676 static Property spapr_phb_properties[] = {
677     DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
678     DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
679     DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
680     DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
681     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
682                        SPAPR_PCI_MMIO_WIN_SIZE),
683     DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
684     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
685                        SPAPR_PCI_IO_WIN_SIZE),
686     DEFINE_PROP_END_OF_LIST(),
687 };
688 
689 static const VMStateDescription vmstate_spapr_pci_lsi = {
690     .name = "spapr_pci/lsi",
691     .version_id = 1,
692     .minimum_version_id = 1,
693     .fields = (VMStateField[]) {
694         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
695 
696         VMSTATE_END_OF_LIST()
697     },
698 };
699 
700 static const VMStateDescription vmstate_spapr_pci_msi = {
701     .name = "spapr_pci/msi",
702     .version_id = 1,
703     .minimum_version_id = 1,
704     .fields = (VMStateField []) {
705         VMSTATE_UINT32(key, spapr_pci_msi_mig),
706         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
707         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
708         VMSTATE_END_OF_LIST()
709     },
710 };
711 
712 static void spapr_pci_pre_save(void *opaque)
713 {
714     sPAPRPHBState *sphb = opaque;
715     GHashTableIter iter;
716     gpointer key, value;
717     int i;
718 
719     if (sphb->msi_devs) {
720         g_free(sphb->msi_devs);
721         sphb->msi_devs = NULL;
722     }
723     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
724     if (!sphb->msi_devs_num) {
725         return;
726     }
727     sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
728 
729     g_hash_table_iter_init(&iter, sphb->msi);
730     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
731         sphb->msi_devs[i].key = *(uint32_t *) key;
732         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
733     }
734 }
735 
736 static int spapr_pci_post_load(void *opaque, int version_id)
737 {
738     sPAPRPHBState *sphb = opaque;
739     gpointer key, value;
740     int i;
741 
742     for (i = 0; i < sphb->msi_devs_num; ++i) {
743         key = g_memdup(&sphb->msi_devs[i].key,
744                        sizeof(sphb->msi_devs[i].key));
745         value = g_memdup(&sphb->msi_devs[i].value,
746                          sizeof(sphb->msi_devs[i].value));
747         g_hash_table_insert(sphb->msi, key, value);
748     }
749     if (sphb->msi_devs) {
750         g_free(sphb->msi_devs);
751         sphb->msi_devs = NULL;
752     }
753     sphb->msi_devs_num = 0;
754 
755     return 0;
756 }
757 
758 static const VMStateDescription vmstate_spapr_pci = {
759     .name = "spapr_pci",
760     .version_id = 2,
761     .minimum_version_id = 2,
762     .pre_save = spapr_pci_pre_save,
763     .post_load = spapr_pci_post_load,
764     .fields = (VMStateField[]) {
765         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
766         VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
767         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
768         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
769         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
770         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
771         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
772                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
773         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
774         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
775                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
776         VMSTATE_END_OF_LIST()
777     },
778 };
779 
780 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
781                                            PCIBus *rootbus)
782 {
783     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
784 
785     return sphb->dtbusname;
786 }
787 
788 static void spapr_phb_class_init(ObjectClass *klass, void *data)
789 {
790     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
791     DeviceClass *dc = DEVICE_CLASS(klass);
792     sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
793 
794     hc->root_bus_path = spapr_phb_root_bus_path;
795     dc->realize = spapr_phb_realize;
796     dc->props = spapr_phb_properties;
797     dc->reset = spapr_phb_reset;
798     dc->vmsd = &vmstate_spapr_pci;
799     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
800     dc->cannot_instantiate_with_device_add_yet = false;
801     spc->finish_realize = spapr_phb_finish_realize;
802 }
803 
804 static const TypeInfo spapr_phb_info = {
805     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
806     .parent        = TYPE_PCI_HOST_BRIDGE,
807     .instance_size = sizeof(sPAPRPHBState),
808     .class_init    = spapr_phb_class_init,
809     .class_size    = sizeof(sPAPRPHBClass),
810 };
811 
812 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
813 {
814     DeviceState *dev;
815 
816     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
817     qdev_prop_set_uint32(dev, "index", index);
818     qdev_init_nofail(dev);
819 
820     return PCI_HOST_BRIDGE(dev);
821 }
822 
823 /* Macros to operate with address in OF binding to PCI */
824 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
825 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
826 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
827 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
828 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
829 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
830 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
831 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
832 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
833 
834 typedef struct sPAPRTCEDT {
835     void *fdt;
836     int node_off;
837 } sPAPRTCEDT;
838 
839 static int spapr_phb_children_dt(Object *child, void *opaque)
840 {
841     sPAPRTCEDT *p = opaque;
842     sPAPRTCETable *tcet;
843 
844     tcet = (sPAPRTCETable *) object_dynamic_cast(child, TYPE_SPAPR_TCE_TABLE);
845     if (!tcet) {
846         return 0;
847     }
848 
849     spapr_dma_dt(p->fdt, p->node_off, "ibm,dma-window",
850                  tcet->liobn, tcet->bus_offset,
851                  tcet->nb_table << tcet->page_shift);
852     /* Stop after the first window */
853 
854     return 1;
855 }
856 
857 int spapr_populate_pci_dt(sPAPRPHBState *phb,
858                           uint32_t xics_phandle,
859                           void *fdt)
860 {
861     int bus_off, i, j;
862     char nodename[256];
863     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
864     struct {
865         uint32_t hi;
866         uint64_t child;
867         uint64_t parent;
868         uint64_t size;
869     } QEMU_PACKED ranges[] = {
870         {
871             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
872             cpu_to_be64(phb->io_win_addr),
873             cpu_to_be64(memory_region_size(&phb->iospace)),
874         },
875         {
876             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
877             cpu_to_be64(phb->mem_win_addr),
878             cpu_to_be64(memory_region_size(&phb->memwindow)),
879         },
880     };
881     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
882     uint32_t interrupt_map_mask[] = {
883         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
884     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
885 
886     /* Start populating the FDT */
887     sprintf(nodename, "pci@%" PRIx64, phb->buid);
888     bus_off = fdt_add_subnode(fdt, 0, nodename);
889     if (bus_off < 0) {
890         return bus_off;
891     }
892 
893 #define _FDT(exp) \
894     do { \
895         int ret = (exp);                                           \
896         if (ret < 0) {                                             \
897             return ret;                                            \
898         }                                                          \
899     } while (0)
900 
901     /* Write PHB properties */
902     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
903     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
904     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
905     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
906     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
907     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
908     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
909     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
910     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
911     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
912     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
913 
914     /* Build the interrupt-map, this must matches what is done
915      * in pci_spapr_map_irq
916      */
917     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
918                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
919     for (i = 0; i < PCI_SLOT_MAX; i++) {
920         for (j = 0; j < PCI_NUM_PINS; j++) {
921             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
922             int lsi_num = pci_spapr_swizzle(i, j);
923 
924             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
925             irqmap[1] = 0;
926             irqmap[2] = 0;
927             irqmap[3] = cpu_to_be32(j+1);
928             irqmap[4] = cpu_to_be32(xics_phandle);
929             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
930             irqmap[6] = cpu_to_be32(0x8);
931         }
932     }
933     /* Write interrupt map */
934     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
935                      sizeof(interrupt_map)));
936 
937     object_child_foreach(OBJECT(phb), spapr_phb_children_dt,
938                          &((sPAPRTCEDT){ .fdt = fdt, .node_off = bus_off }));
939 
940     return 0;
941 }
942 
943 void spapr_pci_rtas_init(void)
944 {
945     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
946                         rtas_read_pci_config);
947     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
948                         rtas_write_pci_config);
949     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
950                         rtas_ibm_read_pci_config);
951     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
952                         rtas_ibm_write_pci_config);
953     if (msi_supported) {
954         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
955                             "ibm,query-interrupt-source-number",
956                             rtas_ibm_query_interrupt_source_number);
957         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
958                             rtas_ibm_change_msi);
959     }
960 }
961 
962 static void spapr_pci_register_types(void)
963 {
964     type_register_static(&spapr_phb_info);
965 }
966 
967 type_init(spapr_pci_register_types)
968