xref: /qemu/hw/ppc/spapr_hcall.c (revision 993aaf0c0003f7af1bf62c1c2d5cc3c0fe687f5b)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "hw/ppc/spapr_cpu_core.h"
12 #include "mmu-hash64.h"
13 #include "cpu-models.h"
14 #include "trace.h"
15 #include "kvm_ppc.h"
16 #include "hw/ppc/spapr_ovec.h"
17 #include "mmu-book3s-v3.h"
18 #include "hw/mem/memory-device.h"
19 
20 static bool has_spr(PowerPCCPU *cpu, int spr)
21 {
22     /* We can test whether the SPR is defined by checking for a valid name */
23     return cpu->env.spr_cb[spr].name != NULL;
24 }
25 
26 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
27 {
28     /*
29      * hash value/pteg group index is normalized by HPT mask
30      */
31     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
32         return false;
33     }
34     return true;
35 }
36 
37 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
38 {
39     MachineState *machine = MACHINE(spapr);
40     DeviceMemoryState *dms = machine->device_memory;
41 
42     if (addr < machine->ram_size) {
43         return true;
44     }
45     if ((addr >= dms->base)
46         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
47         return true;
48     }
49 
50     return false;
51 }
52 
53 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
54                             target_ulong opcode, target_ulong *args)
55 {
56     target_ulong flags = args[0];
57     target_ulong ptex = args[1];
58     target_ulong pteh = args[2];
59     target_ulong ptel = args[3];
60     unsigned apshift;
61     target_ulong raddr;
62     target_ulong slot;
63     const ppc_hash_pte64_t *hptes;
64 
65     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
66     if (!apshift) {
67         /* Bad page size encoding */
68         return H_PARAMETER;
69     }
70 
71     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
72 
73     if (is_ram_address(spapr, raddr)) {
74         /* Regular RAM - should have WIMG=0010 */
75         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
76             return H_PARAMETER;
77         }
78     } else {
79         target_ulong wimg_flags;
80         /* Looks like an IO address */
81         /* FIXME: What WIMG combinations could be sensible for IO?
82          * For now we allow WIMG=010x, but are there others? */
83         /* FIXME: Should we check against registered IO addresses? */
84         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
85 
86         if (wimg_flags != HPTE64_R_I &&
87             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
88             return H_PARAMETER;
89         }
90     }
91 
92     pteh &= ~0x60ULL;
93 
94     if (!valid_ptex(cpu, ptex)) {
95         return H_PARAMETER;
96     }
97 
98     slot = ptex & 7ULL;
99     ptex = ptex & ~7ULL;
100 
101     if (likely((flags & H_EXACT) == 0)) {
102         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
103         for (slot = 0; slot < 8; slot++) {
104             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
105                 break;
106             }
107         }
108         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
109         if (slot == 8) {
110             return H_PTEG_FULL;
111         }
112     } else {
113         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
114         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
115             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
116             return H_PTEG_FULL;
117         }
118         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
119     }
120 
121     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
122 
123     args[0] = ptex + slot;
124     return H_SUCCESS;
125 }
126 
127 typedef enum {
128     REMOVE_SUCCESS = 0,
129     REMOVE_NOT_FOUND = 1,
130     REMOVE_PARM = 2,
131     REMOVE_HW = 3,
132 } RemoveResult;
133 
134 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
135                                 target_ulong avpn,
136                                 target_ulong flags,
137                                 target_ulong *vp, target_ulong *rp)
138 {
139     const ppc_hash_pte64_t *hptes;
140     target_ulong v, r;
141 
142     if (!valid_ptex(cpu, ptex)) {
143         return REMOVE_PARM;
144     }
145 
146     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
147     v = ppc_hash64_hpte0(cpu, hptes, 0);
148     r = ppc_hash64_hpte1(cpu, hptes, 0);
149     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
150 
151     if ((v & HPTE64_V_VALID) == 0 ||
152         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
153         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
154         return REMOVE_NOT_FOUND;
155     }
156     *vp = v;
157     *rp = r;
158     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
159     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
160     return REMOVE_SUCCESS;
161 }
162 
163 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
164                              target_ulong opcode, target_ulong *args)
165 {
166     CPUPPCState *env = &cpu->env;
167     target_ulong flags = args[0];
168     target_ulong ptex = args[1];
169     target_ulong avpn = args[2];
170     RemoveResult ret;
171 
172     ret = remove_hpte(cpu, ptex, avpn, flags,
173                       &args[0], &args[1]);
174 
175     switch (ret) {
176     case REMOVE_SUCCESS:
177         check_tlb_flush(env, true);
178         return H_SUCCESS;
179 
180     case REMOVE_NOT_FOUND:
181         return H_NOT_FOUND;
182 
183     case REMOVE_PARM:
184         return H_PARAMETER;
185 
186     case REMOVE_HW:
187         return H_HARDWARE;
188     }
189 
190     g_assert_not_reached();
191 }
192 
193 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
194 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
195 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
196 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
197 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
198 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
199 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
200 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
201 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
202 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
203 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
204 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
205 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
206 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
207 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
208 
209 #define H_BULK_REMOVE_MAX_BATCH        4
210 
211 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
212                                   target_ulong opcode, target_ulong *args)
213 {
214     CPUPPCState *env = &cpu->env;
215     int i;
216     target_ulong rc = H_SUCCESS;
217 
218     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
219         target_ulong *tsh = &args[i*2];
220         target_ulong tsl = args[i*2 + 1];
221         target_ulong v, r, ret;
222 
223         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
224             break;
225         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
226             return H_PARAMETER;
227         }
228 
229         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
230         *tsh |= H_BULK_REMOVE_RESPONSE;
231 
232         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
233             *tsh |= H_BULK_REMOVE_PARM;
234             return H_PARAMETER;
235         }
236 
237         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
238                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
239                           &v, &r);
240 
241         *tsh |= ret << 60;
242 
243         switch (ret) {
244         case REMOVE_SUCCESS:
245             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
246             break;
247 
248         case REMOVE_PARM:
249             rc = H_PARAMETER;
250             goto exit;
251 
252         case REMOVE_HW:
253             rc = H_HARDWARE;
254             goto exit;
255         }
256     }
257  exit:
258     check_tlb_flush(env, true);
259 
260     return rc;
261 }
262 
263 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
264                               target_ulong opcode, target_ulong *args)
265 {
266     CPUPPCState *env = &cpu->env;
267     target_ulong flags = args[0];
268     target_ulong ptex = args[1];
269     target_ulong avpn = args[2];
270     const ppc_hash_pte64_t *hptes;
271     target_ulong v, r;
272 
273     if (!valid_ptex(cpu, ptex)) {
274         return H_PARAMETER;
275     }
276 
277     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
278     v = ppc_hash64_hpte0(cpu, hptes, 0);
279     r = ppc_hash64_hpte1(cpu, hptes, 0);
280     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
281 
282     if ((v & HPTE64_V_VALID) == 0 ||
283         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
284         return H_NOT_FOUND;
285     }
286 
287     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
288            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
289     r |= (flags << 55) & HPTE64_R_PP0;
290     r |= (flags << 48) & HPTE64_R_KEY_HI;
291     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
292     ppc_hash64_store_hpte(cpu, ptex,
293                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
294     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
295     /* Flush the tlb */
296     check_tlb_flush(env, true);
297     /* Don't need a memory barrier, due to qemu's global lock */
298     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
299     return H_SUCCESS;
300 }
301 
302 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
303                            target_ulong opcode, target_ulong *args)
304 {
305     target_ulong flags = args[0];
306     target_ulong ptex = args[1];
307     int i, ridx, n_entries = 1;
308     const ppc_hash_pte64_t *hptes;
309 
310     if (!valid_ptex(cpu, ptex)) {
311         return H_PARAMETER;
312     }
313 
314     if (flags & H_READ_4) {
315         /* Clear the two low order bits */
316         ptex &= ~(3ULL);
317         n_entries = 4;
318     }
319 
320     hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
321     for (i = 0, ridx = 0; i < n_entries; i++) {
322         args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
323         args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
324     }
325     ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
326 
327     return H_SUCCESS;
328 }
329 
330 struct SpaprPendingHpt {
331     /* These fields are read-only after initialization */
332     int shift;
333     QemuThread thread;
334 
335     /* These fields are protected by the BQL */
336     bool complete;
337 
338     /* These fields are private to the preparation thread if
339      * !complete, otherwise protected by the BQL */
340     int ret;
341     void *hpt;
342 };
343 
344 static void free_pending_hpt(SpaprPendingHpt *pending)
345 {
346     if (pending->hpt) {
347         qemu_vfree(pending->hpt);
348     }
349 
350     g_free(pending);
351 }
352 
353 static void *hpt_prepare_thread(void *opaque)
354 {
355     SpaprPendingHpt *pending = opaque;
356     size_t size = 1ULL << pending->shift;
357 
358     pending->hpt = qemu_memalign(size, size);
359     if (pending->hpt) {
360         memset(pending->hpt, 0, size);
361         pending->ret = H_SUCCESS;
362     } else {
363         pending->ret = H_NO_MEM;
364     }
365 
366     qemu_mutex_lock_iothread();
367 
368     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
369         /* Ready to go */
370         pending->complete = true;
371     } else {
372         /* We've been cancelled, clean ourselves up */
373         free_pending_hpt(pending);
374     }
375 
376     qemu_mutex_unlock_iothread();
377     return NULL;
378 }
379 
380 /* Must be called with BQL held */
381 static void cancel_hpt_prepare(SpaprMachineState *spapr)
382 {
383     SpaprPendingHpt *pending = spapr->pending_hpt;
384 
385     /* Let the thread know it's cancelled */
386     spapr->pending_hpt = NULL;
387 
388     if (!pending) {
389         /* Nothing to do */
390         return;
391     }
392 
393     if (!pending->complete) {
394         /* thread will clean itself up */
395         return;
396     }
397 
398     free_pending_hpt(pending);
399 }
400 
401 /* Convert a return code from the KVM ioctl()s implementing resize HPT
402  * into a PAPR hypercall return code */
403 static target_ulong resize_hpt_convert_rc(int ret)
404 {
405     if (ret >= 100000) {
406         return H_LONG_BUSY_ORDER_100_SEC;
407     } else if (ret >= 10000) {
408         return H_LONG_BUSY_ORDER_10_SEC;
409     } else if (ret >= 1000) {
410         return H_LONG_BUSY_ORDER_1_SEC;
411     } else if (ret >= 100) {
412         return H_LONG_BUSY_ORDER_100_MSEC;
413     } else if (ret >= 10) {
414         return H_LONG_BUSY_ORDER_10_MSEC;
415     } else if (ret > 0) {
416         return H_LONG_BUSY_ORDER_1_MSEC;
417     }
418 
419     switch (ret) {
420     case 0:
421         return H_SUCCESS;
422     case -EPERM:
423         return H_AUTHORITY;
424     case -EINVAL:
425         return H_PARAMETER;
426     case -ENXIO:
427         return H_CLOSED;
428     case -ENOSPC:
429         return H_PTEG_FULL;
430     case -EBUSY:
431         return H_BUSY;
432     case -ENOMEM:
433         return H_NO_MEM;
434     default:
435         return H_HARDWARE;
436     }
437 }
438 
439 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
440                                          SpaprMachineState *spapr,
441                                          target_ulong opcode,
442                                          target_ulong *args)
443 {
444     target_ulong flags = args[0];
445     int shift = args[1];
446     SpaprPendingHpt *pending = spapr->pending_hpt;
447     uint64_t current_ram_size;
448     int rc;
449 
450     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
451         return H_AUTHORITY;
452     }
453 
454     if (!spapr->htab_shift) {
455         /* Radix guest, no HPT */
456         return H_NOT_AVAILABLE;
457     }
458 
459     trace_spapr_h_resize_hpt_prepare(flags, shift);
460 
461     if (flags != 0) {
462         return H_PARAMETER;
463     }
464 
465     if (shift && ((shift < 18) || (shift > 46))) {
466         return H_PARAMETER;
467     }
468 
469     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
470 
471     /* We only allow the guest to allocate an HPT one order above what
472      * we'd normally give them (to stop a small guest claiming a huge
473      * chunk of resources in the HPT */
474     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
475         return H_RESOURCE;
476     }
477 
478     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
479     if (rc != -ENOSYS) {
480         return resize_hpt_convert_rc(rc);
481     }
482 
483     if (pending) {
484         /* something already in progress */
485         if (pending->shift == shift) {
486             /* and it's suitable */
487             if (pending->complete) {
488                 return pending->ret;
489             } else {
490                 return H_LONG_BUSY_ORDER_100_MSEC;
491             }
492         }
493 
494         /* not suitable, cancel and replace */
495         cancel_hpt_prepare(spapr);
496     }
497 
498     if (!shift) {
499         /* nothing to do */
500         return H_SUCCESS;
501     }
502 
503     /* start new prepare */
504 
505     pending = g_new0(SpaprPendingHpt, 1);
506     pending->shift = shift;
507     pending->ret = H_HARDWARE;
508 
509     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
510                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
511 
512     spapr->pending_hpt = pending;
513 
514     /* In theory we could estimate the time more accurately based on
515      * the new size, but there's not much point */
516     return H_LONG_BUSY_ORDER_100_MSEC;
517 }
518 
519 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
520 {
521     uint8_t *addr = htab;
522 
523     addr += pteg * HASH_PTEG_SIZE_64;
524     addr += slot * HASH_PTE_SIZE_64;
525     return  ldq_p(addr);
526 }
527 
528 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
529                            uint64_t pte0, uint64_t pte1)
530 {
531     uint8_t *addr = htab;
532 
533     addr += pteg * HASH_PTEG_SIZE_64;
534     addr += slot * HASH_PTE_SIZE_64;
535 
536     stq_p(addr, pte0);
537     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
538 }
539 
540 static int rehash_hpte(PowerPCCPU *cpu,
541                        const ppc_hash_pte64_t *hptes,
542                        void *old_hpt, uint64_t oldsize,
543                        void *new_hpt, uint64_t newsize,
544                        uint64_t pteg, int slot)
545 {
546     uint64_t old_hash_mask = (oldsize >> 7) - 1;
547     uint64_t new_hash_mask = (newsize >> 7) - 1;
548     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
549     target_ulong pte1;
550     uint64_t avpn;
551     unsigned base_pg_shift;
552     uint64_t hash, new_pteg, replace_pte0;
553 
554     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
555         return H_SUCCESS;
556     }
557 
558     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
559 
560     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
561     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
562     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
563 
564     if (pte0 & HPTE64_V_SECONDARY) {
565         pteg = ~pteg;
566     }
567 
568     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
569         uint64_t offset, vsid;
570 
571         /* We only have 28 - 23 bits of offset in avpn */
572         offset = (avpn & 0x1f) << 23;
573         vsid = avpn >> 5;
574         /* We can find more bits from the pteg value */
575         if (base_pg_shift < 23) {
576             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
577         }
578 
579         hash = vsid ^ (offset >> base_pg_shift);
580     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
581         uint64_t offset, vsid;
582 
583         /* We only have 40 - 23 bits of seg_off in avpn */
584         offset = (avpn & 0x1ffff) << 23;
585         vsid = avpn >> 17;
586         if (base_pg_shift < 23) {
587             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
588                 << base_pg_shift;
589         }
590 
591         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
592     } else {
593         error_report("rehash_pte: Bad segment size in HPTE");
594         return H_HARDWARE;
595     }
596 
597     new_pteg = hash & new_hash_mask;
598     if (pte0 & HPTE64_V_SECONDARY) {
599         assert(~pteg == (hash & old_hash_mask));
600         new_pteg = ~new_pteg;
601     } else {
602         assert(pteg == (hash & old_hash_mask));
603     }
604     assert((oldsize != newsize) || (pteg == new_pteg));
605     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
606     /*
607      * Strictly speaking, we don't need all these tests, since we only
608      * ever rehash bolted HPTEs.  We might in future handle non-bolted
609      * HPTEs, though so make the logic correct for those cases as
610      * well.
611      */
612     if (replace_pte0 & HPTE64_V_VALID) {
613         assert(newsize < oldsize);
614         if (replace_pte0 & HPTE64_V_BOLTED) {
615             if (pte0 & HPTE64_V_BOLTED) {
616                 /* Bolted collision, nothing we can do */
617                 return H_PTEG_FULL;
618             } else {
619                 /* Discard this hpte */
620                 return H_SUCCESS;
621             }
622         }
623     }
624 
625     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
626     return H_SUCCESS;
627 }
628 
629 static int rehash_hpt(PowerPCCPU *cpu,
630                       void *old_hpt, uint64_t oldsize,
631                       void *new_hpt, uint64_t newsize)
632 {
633     uint64_t n_ptegs = oldsize >> 7;
634     uint64_t pteg;
635     int slot;
636     int rc;
637 
638     for (pteg = 0; pteg < n_ptegs; pteg++) {
639         hwaddr ptex = pteg * HPTES_PER_GROUP;
640         const ppc_hash_pte64_t *hptes
641             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
642 
643         if (!hptes) {
644             return H_HARDWARE;
645         }
646 
647         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
648             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
649                              pteg, slot);
650             if (rc != H_SUCCESS) {
651                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
652                 return rc;
653             }
654         }
655         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
656     }
657 
658     return H_SUCCESS;
659 }
660 
661 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
662 {
663     int ret;
664 
665     cpu_synchronize_state(cs);
666 
667     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
668     if (ret < 0) {
669         error_report("failed to push sregs to KVM: %s", strerror(-ret));
670         exit(1);
671     }
672 }
673 
674 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
675 {
676     CPUState *cs;
677 
678     /*
679      * This is a hack for the benefit of KVM PR - it abuses the SDR1
680      * slot in kvm_sregs to communicate the userspace address of the
681      * HPT
682      */
683     if (!kvm_enabled() || !spapr->htab) {
684         return;
685     }
686 
687     CPU_FOREACH(cs) {
688         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
689     }
690 }
691 
692 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
693                                         SpaprMachineState *spapr,
694                                         target_ulong opcode,
695                                         target_ulong *args)
696 {
697     target_ulong flags = args[0];
698     target_ulong shift = args[1];
699     SpaprPendingHpt *pending = spapr->pending_hpt;
700     int rc;
701     size_t newsize;
702 
703     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
704         return H_AUTHORITY;
705     }
706 
707     if (!spapr->htab_shift) {
708         /* Radix guest, no HPT */
709         return H_NOT_AVAILABLE;
710     }
711 
712     trace_spapr_h_resize_hpt_commit(flags, shift);
713 
714     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
715     if (rc != -ENOSYS) {
716         rc = resize_hpt_convert_rc(rc);
717         if (rc == H_SUCCESS) {
718             /* Need to set the new htab_shift in the machine state */
719             spapr->htab_shift = shift;
720         }
721         return rc;
722     }
723 
724     if (flags != 0) {
725         return H_PARAMETER;
726     }
727 
728     if (!pending || (pending->shift != shift)) {
729         /* no matching prepare */
730         return H_CLOSED;
731     }
732 
733     if (!pending->complete) {
734         /* prepare has not completed */
735         return H_BUSY;
736     }
737 
738     /* Shouldn't have got past PREPARE without an HPT */
739     g_assert(spapr->htab_shift);
740 
741     newsize = 1ULL << pending->shift;
742     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
743                     pending->hpt, newsize);
744     if (rc == H_SUCCESS) {
745         qemu_vfree(spapr->htab);
746         spapr->htab = pending->hpt;
747         spapr->htab_shift = pending->shift;
748 
749         push_sregs_to_kvm_pr(spapr);
750 
751         pending->hpt = NULL; /* so it's not free()d */
752     }
753 
754     /* Clean up */
755     spapr->pending_hpt = NULL;
756     free_pending_hpt(pending);
757 
758     return rc;
759 }
760 
761 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
762                                 target_ulong opcode, target_ulong *args)
763 {
764     cpu_synchronize_state(CPU(cpu));
765     cpu->env.spr[SPR_SPRG0] = args[0];
766 
767     return H_SUCCESS;
768 }
769 
770 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
771                                target_ulong opcode, target_ulong *args)
772 {
773     if (!has_spr(cpu, SPR_DABR)) {
774         return H_HARDWARE;              /* DABR register not available */
775     }
776     cpu_synchronize_state(CPU(cpu));
777 
778     if (has_spr(cpu, SPR_DABRX)) {
779         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
780     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
781         return H_RESERVED_DABR;
782     }
783 
784     cpu->env.spr[SPR_DABR] = args[0];
785     return H_SUCCESS;
786 }
787 
788 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
789                                 target_ulong opcode, target_ulong *args)
790 {
791     target_ulong dabrx = args[1];
792 
793     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
794         return H_HARDWARE;
795     }
796 
797     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
798         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
799         return H_PARAMETER;
800     }
801 
802     cpu_synchronize_state(CPU(cpu));
803     cpu->env.spr[SPR_DABRX] = dabrx;
804     cpu->env.spr[SPR_DABR] = args[0];
805 
806     return H_SUCCESS;
807 }
808 
809 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
810                                 target_ulong opcode, target_ulong *args)
811 {
812     target_ulong flags = args[0];
813     hwaddr dst = args[1];
814     hwaddr src = args[2];
815     hwaddr len = TARGET_PAGE_SIZE;
816     uint8_t *pdst, *psrc;
817     target_long ret = H_SUCCESS;
818 
819     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
820                   | H_COPY_PAGE | H_ZERO_PAGE)) {
821         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
822                       flags);
823         return H_PARAMETER;
824     }
825 
826     /* Map-in destination */
827     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
828         return H_PARAMETER;
829     }
830     pdst = cpu_physical_memory_map(dst, &len, 1);
831     if (!pdst || len != TARGET_PAGE_SIZE) {
832         return H_PARAMETER;
833     }
834 
835     if (flags & H_COPY_PAGE) {
836         /* Map-in source, copy to destination, and unmap source again */
837         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
838             ret = H_PARAMETER;
839             goto unmap_out;
840         }
841         psrc = cpu_physical_memory_map(src, &len, 0);
842         if (!psrc || len != TARGET_PAGE_SIZE) {
843             ret = H_PARAMETER;
844             goto unmap_out;
845         }
846         memcpy(pdst, psrc, len);
847         cpu_physical_memory_unmap(psrc, len, 0, len);
848     } else if (flags & H_ZERO_PAGE) {
849         memset(pdst, 0, len);          /* Just clear the destination page */
850     }
851 
852     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
853         kvmppc_dcbst_range(cpu, pdst, len);
854     }
855     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
856         if (kvm_enabled()) {
857             kvmppc_icbi_range(cpu, pdst, len);
858         } else {
859             tb_flush(CPU(cpu));
860         }
861     }
862 
863 unmap_out:
864     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
865     return ret;
866 }
867 
868 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
869 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
870 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
871 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
872 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
873 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
874 
875 #define VPA_MIN_SIZE           640
876 #define VPA_SIZE_OFFSET        0x4
877 #define VPA_SHARED_PROC_OFFSET 0x9
878 #define VPA_SHARED_PROC_VAL    0x2
879 
880 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
881 {
882     CPUState *cs = CPU(cpu);
883     CPUPPCState *env = &cpu->env;
884     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
885     uint16_t size;
886     uint8_t tmp;
887 
888     if (vpa == 0) {
889         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
890         return H_HARDWARE;
891     }
892 
893     if (vpa % env->dcache_line_size) {
894         return H_PARAMETER;
895     }
896     /* FIXME: bounds check the address */
897 
898     size = lduw_be_phys(cs->as, vpa + 0x4);
899 
900     if (size < VPA_MIN_SIZE) {
901         return H_PARAMETER;
902     }
903 
904     /* VPA is not allowed to cross a page boundary */
905     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
906         return H_PARAMETER;
907     }
908 
909     spapr_cpu->vpa_addr = vpa;
910 
911     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
912     tmp |= VPA_SHARED_PROC_VAL;
913     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
914 
915     return H_SUCCESS;
916 }
917 
918 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
919 {
920     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
921 
922     if (spapr_cpu->slb_shadow_addr) {
923         return H_RESOURCE;
924     }
925 
926     if (spapr_cpu->dtl_addr) {
927         return H_RESOURCE;
928     }
929 
930     spapr_cpu->vpa_addr = 0;
931     return H_SUCCESS;
932 }
933 
934 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
935 {
936     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
937     uint32_t size;
938 
939     if (addr == 0) {
940         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
941         return H_HARDWARE;
942     }
943 
944     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
945     if (size < 0x8) {
946         return H_PARAMETER;
947     }
948 
949     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
950         return H_PARAMETER;
951     }
952 
953     if (!spapr_cpu->vpa_addr) {
954         return H_RESOURCE;
955     }
956 
957     spapr_cpu->slb_shadow_addr = addr;
958     spapr_cpu->slb_shadow_size = size;
959 
960     return H_SUCCESS;
961 }
962 
963 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
964 {
965     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
966 
967     spapr_cpu->slb_shadow_addr = 0;
968     spapr_cpu->slb_shadow_size = 0;
969     return H_SUCCESS;
970 }
971 
972 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
973 {
974     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
975     uint32_t size;
976 
977     if (addr == 0) {
978         hcall_dprintf("Can't cope with DTL at logical 0\n");
979         return H_HARDWARE;
980     }
981 
982     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
983 
984     if (size < 48) {
985         return H_PARAMETER;
986     }
987 
988     if (!spapr_cpu->vpa_addr) {
989         return H_RESOURCE;
990     }
991 
992     spapr_cpu->dtl_addr = addr;
993     spapr_cpu->dtl_size = size;
994 
995     return H_SUCCESS;
996 }
997 
998 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
999 {
1000     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1001 
1002     spapr_cpu->dtl_addr = 0;
1003     spapr_cpu->dtl_size = 0;
1004 
1005     return H_SUCCESS;
1006 }
1007 
1008 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1009                                    target_ulong opcode, target_ulong *args)
1010 {
1011     target_ulong flags = args[0];
1012     target_ulong procno = args[1];
1013     target_ulong vpa = args[2];
1014     target_ulong ret = H_PARAMETER;
1015     PowerPCCPU *tcpu;
1016 
1017     tcpu = spapr_find_cpu(procno);
1018     if (!tcpu) {
1019         return H_PARAMETER;
1020     }
1021 
1022     switch (flags) {
1023     case FLAGS_REGISTER_VPA:
1024         ret = register_vpa(tcpu, vpa);
1025         break;
1026 
1027     case FLAGS_DEREGISTER_VPA:
1028         ret = deregister_vpa(tcpu, vpa);
1029         break;
1030 
1031     case FLAGS_REGISTER_SLBSHADOW:
1032         ret = register_slb_shadow(tcpu, vpa);
1033         break;
1034 
1035     case FLAGS_DEREGISTER_SLBSHADOW:
1036         ret = deregister_slb_shadow(tcpu, vpa);
1037         break;
1038 
1039     case FLAGS_REGISTER_DTL:
1040         ret = register_dtl(tcpu, vpa);
1041         break;
1042 
1043     case FLAGS_DEREGISTER_DTL:
1044         ret = deregister_dtl(tcpu, vpa);
1045         break;
1046     }
1047 
1048     return ret;
1049 }
1050 
1051 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1052                            target_ulong opcode, target_ulong *args)
1053 {
1054     CPUPPCState *env = &cpu->env;
1055     CPUState *cs = CPU(cpu);
1056 
1057     env->msr |= (1ULL << MSR_EE);
1058     hreg_compute_hflags(env);
1059     if (!cpu_has_work(cs)) {
1060         cs->halted = 1;
1061         cs->exception_index = EXCP_HLT;
1062         cs->exit_request = 1;
1063     }
1064     return H_SUCCESS;
1065 }
1066 
1067 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1068                            target_ulong opcode, target_ulong *args)
1069 {
1070     target_ulong rtas_r3 = args[0];
1071     uint32_t token = rtas_ld(rtas_r3, 0);
1072     uint32_t nargs = rtas_ld(rtas_r3, 1);
1073     uint32_t nret = rtas_ld(rtas_r3, 2);
1074 
1075     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1076                            nret, rtas_r3 + 12 + 4*nargs);
1077 }
1078 
1079 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1080                                    target_ulong opcode, target_ulong *args)
1081 {
1082     CPUState *cs = CPU(cpu);
1083     target_ulong size = args[0];
1084     target_ulong addr = args[1];
1085 
1086     switch (size) {
1087     case 1:
1088         args[0] = ldub_phys(cs->as, addr);
1089         return H_SUCCESS;
1090     case 2:
1091         args[0] = lduw_phys(cs->as, addr);
1092         return H_SUCCESS;
1093     case 4:
1094         args[0] = ldl_phys(cs->as, addr);
1095         return H_SUCCESS;
1096     case 8:
1097         args[0] = ldq_phys(cs->as, addr);
1098         return H_SUCCESS;
1099     }
1100     return H_PARAMETER;
1101 }
1102 
1103 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1104                                     target_ulong opcode, target_ulong *args)
1105 {
1106     CPUState *cs = CPU(cpu);
1107 
1108     target_ulong size = args[0];
1109     target_ulong addr = args[1];
1110     target_ulong val  = args[2];
1111 
1112     switch (size) {
1113     case 1:
1114         stb_phys(cs->as, addr, val);
1115         return H_SUCCESS;
1116     case 2:
1117         stw_phys(cs->as, addr, val);
1118         return H_SUCCESS;
1119     case 4:
1120         stl_phys(cs->as, addr, val);
1121         return H_SUCCESS;
1122     case 8:
1123         stq_phys(cs->as, addr, val);
1124         return H_SUCCESS;
1125     }
1126     return H_PARAMETER;
1127 }
1128 
1129 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1130                                     target_ulong opcode, target_ulong *args)
1131 {
1132     CPUState *cs = CPU(cpu);
1133 
1134     target_ulong dst   = args[0]; /* Destination address */
1135     target_ulong src   = args[1]; /* Source address */
1136     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1137     target_ulong count = args[3]; /* Element count */
1138     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1139     uint64_t tmp;
1140     unsigned int mask = (1 << esize) - 1;
1141     int step = 1 << esize;
1142 
1143     if (count > 0x80000000) {
1144         return H_PARAMETER;
1145     }
1146 
1147     if ((dst & mask) || (src & mask) || (op > 1)) {
1148         return H_PARAMETER;
1149     }
1150 
1151     if (dst >= src && dst < (src + (count << esize))) {
1152             dst = dst + ((count - 1) << esize);
1153             src = src + ((count - 1) << esize);
1154             step = -step;
1155     }
1156 
1157     while (count--) {
1158         switch (esize) {
1159         case 0:
1160             tmp = ldub_phys(cs->as, src);
1161             break;
1162         case 1:
1163             tmp = lduw_phys(cs->as, src);
1164             break;
1165         case 2:
1166             tmp = ldl_phys(cs->as, src);
1167             break;
1168         case 3:
1169             tmp = ldq_phys(cs->as, src);
1170             break;
1171         default:
1172             return H_PARAMETER;
1173         }
1174         if (op == 1) {
1175             tmp = ~tmp;
1176         }
1177         switch (esize) {
1178         case 0:
1179             stb_phys(cs->as, dst, tmp);
1180             break;
1181         case 1:
1182             stw_phys(cs->as, dst, tmp);
1183             break;
1184         case 2:
1185             stl_phys(cs->as, dst, tmp);
1186             break;
1187         case 3:
1188             stq_phys(cs->as, dst, tmp);
1189             break;
1190         }
1191         dst = dst + step;
1192         src = src + step;
1193     }
1194 
1195     return H_SUCCESS;
1196 }
1197 
1198 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1199                                    target_ulong opcode, target_ulong *args)
1200 {
1201     /* Nothing to do on emulation, KVM will trap this in the kernel */
1202     return H_SUCCESS;
1203 }
1204 
1205 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1206                                    target_ulong opcode, target_ulong *args)
1207 {
1208     /* Nothing to do on emulation, KVM will trap this in the kernel */
1209     return H_SUCCESS;
1210 }
1211 
1212 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1213                                            target_ulong mflags,
1214                                            target_ulong value1,
1215                                            target_ulong value2)
1216 {
1217     if (value1) {
1218         return H_P3;
1219     }
1220     if (value2) {
1221         return H_P4;
1222     }
1223 
1224     switch (mflags) {
1225     case H_SET_MODE_ENDIAN_BIG:
1226         spapr_set_all_lpcrs(0, LPCR_ILE);
1227         spapr_pci_switch_vga(true);
1228         return H_SUCCESS;
1229 
1230     case H_SET_MODE_ENDIAN_LITTLE:
1231         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1232         spapr_pci_switch_vga(false);
1233         return H_SUCCESS;
1234     }
1235 
1236     return H_UNSUPPORTED_FLAG;
1237 }
1238 
1239 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1240                                                         target_ulong mflags,
1241                                                         target_ulong value1,
1242                                                         target_ulong value2)
1243 {
1244     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1245 
1246     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1247         return H_P2;
1248     }
1249     if (value1) {
1250         return H_P3;
1251     }
1252     if (value2) {
1253         return H_P4;
1254     }
1255 
1256     if (mflags == AIL_RESERVED) {
1257         return H_UNSUPPORTED_FLAG;
1258     }
1259 
1260     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1261 
1262     return H_SUCCESS;
1263 }
1264 
1265 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1266                                target_ulong opcode, target_ulong *args)
1267 {
1268     target_ulong resource = args[1];
1269     target_ulong ret = H_P2;
1270 
1271     switch (resource) {
1272     case H_SET_MODE_RESOURCE_LE:
1273         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1274         break;
1275     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1276         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1277                                                   args[2], args[3]);
1278         break;
1279     }
1280 
1281     return ret;
1282 }
1283 
1284 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1285                                 target_ulong opcode, target_ulong *args)
1286 {
1287     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1288                   opcode, " (H_CLEAN_SLB)");
1289     return H_FUNCTION;
1290 }
1291 
1292 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1293                                      target_ulong opcode, target_ulong *args)
1294 {
1295     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1296                   opcode, " (H_INVALIDATE_PID)");
1297     return H_FUNCTION;
1298 }
1299 
1300 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1301                                        uint64_t patbe_old, uint64_t patbe_new)
1302 {
1303     /*
1304      * We have 4 Options:
1305      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1306      * HASH->RADIX                                  : Free HPT
1307      * RADIX->HASH                                  : Allocate HPT
1308      * NOTHING->HASH                                : Allocate HPT
1309      * Note: NOTHING implies the case where we said the guest could choose
1310      *       later and so assumed radix and now it's called H_REG_PROC_TBL
1311      */
1312 
1313     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1314         /* We assume RADIX, so this catches all the "Do Nothing" cases */
1315     } else if (!(patbe_old & PATE1_GR)) {
1316         /* HASH->RADIX : Free HPT */
1317         spapr_free_hpt(spapr);
1318     } else if (!(patbe_new & PATE1_GR)) {
1319         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1320         spapr_setup_hpt_and_vrma(spapr);
1321     }
1322     return;
1323 }
1324 
1325 #define FLAGS_MASK              0x01FULL
1326 #define FLAG_MODIFY             0x10
1327 #define FLAG_REGISTER           0x08
1328 #define FLAG_RADIX              0x04
1329 #define FLAG_HASH_PROC_TBL      0x02
1330 #define FLAG_GTSE               0x01
1331 
1332 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1333                                              SpaprMachineState *spapr,
1334                                              target_ulong opcode,
1335                                              target_ulong *args)
1336 {
1337     target_ulong flags = args[0];
1338     target_ulong proc_tbl = args[1];
1339     target_ulong page_size = args[2];
1340     target_ulong table_size = args[3];
1341     target_ulong update_lpcr = 0;
1342     uint64_t cproc;
1343 
1344     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1345         return H_PARAMETER;
1346     }
1347     if (flags & FLAG_MODIFY) {
1348         if (flags & FLAG_REGISTER) {
1349             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1350                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1351                     return H_P2;
1352                 } else if (page_size) {
1353                     return H_P3;
1354                 } else if (table_size > 24) {
1355                     return H_P4;
1356                 }
1357                 cproc = PATE1_GR | proc_tbl | table_size;
1358             } else { /* Register new HPT process table */
1359                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1360                     /* TODO - Not Supported */
1361                     /* Technically caused by flag bits => H_PARAMETER */
1362                     return H_PARAMETER;
1363                 } else { /* Hash with SLB */
1364                     if (proc_tbl >> 38) {
1365                         return H_P2;
1366                     } else if (page_size & ~0x7) {
1367                         return H_P3;
1368                     } else if (table_size > 24) {
1369                         return H_P4;
1370                     }
1371                 }
1372                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1373             }
1374 
1375         } else { /* Deregister current process table */
1376             /*
1377              * Set to benign value: (current GR) | 0. This allows
1378              * deregistration in KVM to succeed even if the radix bit
1379              * in flags doesn't match the radix bit in the old PATE.
1380              */
1381             cproc = spapr->patb_entry & PATE1_GR;
1382         }
1383     } else { /* Maintain current registration */
1384         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1385             /* Technically caused by flag bits => H_PARAMETER */
1386             return H_PARAMETER; /* Existing Process Table Mismatch */
1387         }
1388         cproc = spapr->patb_entry;
1389     }
1390 
1391     /* Check if we need to setup OR free the hpt */
1392     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1393 
1394     spapr->patb_entry = cproc; /* Save new process table */
1395 
1396     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1397     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1398         update_lpcr |= (LPCR_UPRT | LPCR_HR);
1399     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1400         update_lpcr |= LPCR_UPRT;
1401     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1402         update_lpcr |= LPCR_GTSE;
1403 
1404     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1405 
1406     if (kvm_enabled()) {
1407         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1408                                        flags & FLAG_GTSE, cproc);
1409     }
1410     return H_SUCCESS;
1411 }
1412 
1413 #define H_SIGNAL_SYS_RESET_ALL         -1
1414 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1415 
1416 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1417                                        SpaprMachineState *spapr,
1418                                        target_ulong opcode, target_ulong *args)
1419 {
1420     target_long target = args[0];
1421     CPUState *cs;
1422 
1423     if (target < 0) {
1424         /* Broadcast */
1425         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1426             return H_PARAMETER;
1427         }
1428 
1429         CPU_FOREACH(cs) {
1430             PowerPCCPU *c = POWERPC_CPU(cs);
1431 
1432             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1433                 if (c == cpu) {
1434                     continue;
1435                 }
1436             }
1437             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1438         }
1439         return H_SUCCESS;
1440 
1441     } else {
1442         /* Unicast */
1443         cs = CPU(spapr_find_cpu(target));
1444         if (cs) {
1445             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1446             return H_SUCCESS;
1447         }
1448         return H_PARAMETER;
1449     }
1450 }
1451 
1452 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1453                               target_ulong *addr, bool *raw_mode_supported,
1454                               Error **errp)
1455 {
1456     bool explicit_match = false; /* Matched the CPU's real PVR */
1457     uint32_t max_compat = spapr->max_compat_pvr;
1458     uint32_t best_compat = 0;
1459     int i;
1460 
1461     /*
1462      * We scan the supplied table of PVRs looking for two things
1463      *   1. Is our real CPU PVR in the list?
1464      *   2. What's the "best" listed logical PVR
1465      */
1466     for (i = 0; i < 512; ++i) {
1467         uint32_t pvr, pvr_mask;
1468 
1469         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1470         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1471         *addr += 8;
1472 
1473         if (~pvr_mask & pvr) {
1474             break; /* Terminator record */
1475         }
1476 
1477         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1478             explicit_match = true;
1479         } else {
1480             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1481                 best_compat = pvr;
1482             }
1483         }
1484     }
1485 
1486     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1487         /* We couldn't find a suitable compatibility mode, and either
1488          * the guest doesn't support "raw" mode for this CPU, or raw
1489          * mode is disabled because a maximum compat mode is set */
1490         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1491         return 0;
1492     }
1493 
1494     *raw_mode_supported = explicit_match;
1495 
1496     /* Parsing finished */
1497     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1498 
1499     return best_compat;
1500 }
1501 
1502 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1503                                                   SpaprMachineState *spapr,
1504                                                   target_ulong opcode,
1505                                                   target_ulong *args)
1506 {
1507     /* Working address in data buffer */
1508     target_ulong addr = ppc64_phys_to_real(args[0]);
1509     target_ulong ov_table;
1510     uint32_t cas_pvr;
1511     SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1512     bool guest_radix;
1513     Error *local_err = NULL;
1514     bool raw_mode_supported = false;
1515 
1516     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1517     if (local_err) {
1518         error_report_err(local_err);
1519         return H_HARDWARE;
1520     }
1521 
1522     /* Update CPUs */
1523     if (cpu->compat_pvr != cas_pvr) {
1524         ppc_set_compat_all(cas_pvr, &local_err);
1525         if (local_err) {
1526             /* We fail to set compat mode (likely because running with KVM PR),
1527              * but maybe we can fallback to raw mode if the guest supports it.
1528              */
1529             if (!raw_mode_supported) {
1530                 error_report_err(local_err);
1531                 return H_HARDWARE;
1532             }
1533             error_free(local_err);
1534             local_err = NULL;
1535         }
1536     }
1537 
1538     /* For the future use: here @ov_table points to the first option vector */
1539     ov_table = addr;
1540 
1541     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1542     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1543     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1544         error_report("guest requested hash and radix MMU, which is invalid.");
1545         exit(EXIT_FAILURE);
1546     }
1547     /* The radix/hash bit in byte 24 requires special handling: */
1548     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1549     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1550 
1551     /*
1552      * HPT resizing is a bit of a special case, because when enabled
1553      * we assume an HPT guest will support it until it says it
1554      * doesn't, instead of assuming it won't support it until it says
1555      * it does.  Strictly speaking that approach could break for
1556      * guests which don't make a CAS call, but those are so old we
1557      * don't care about them.  Without that assumption we'd have to
1558      * make at least a temporary allocation of an HPT sized for max
1559      * memory, which could be impossibly difficult under KVM HV if
1560      * maxram is large.
1561      */
1562     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1563         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1564 
1565         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1566             error_report(
1567                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1568             exit(1);
1569         }
1570 
1571         if (spapr->htab_shift < maxshift) {
1572             /* Guest doesn't know about HPT resizing, so we
1573              * pre-emptively resize for the maximum permitted RAM.  At
1574              * the point this is called, nothing should have been
1575              * entered into the existing HPT */
1576             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1577             push_sregs_to_kvm_pr(spapr);
1578         }
1579     }
1580 
1581     /* NOTE: there are actually a number of ov5 bits where input from the
1582      * guest is always zero, and the platform/QEMU enables them independently
1583      * of guest input. To model these properly we'd want some sort of mask,
1584      * but since they only currently apply to memory migration as defined
1585      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1586      * to worry about this for now.
1587      */
1588     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1589 
1590     /* also clear the radix/hash bit from the current ov5_cas bits to
1591      * be in sync with the newly ov5 bits. Else the radix bit will be
1592      * seen as being removed and this will generate a reset loop
1593      */
1594     spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1595 
1596     /* full range of negotiated ov5 capabilities */
1597     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1598     spapr_ovec_cleanup(ov5_guest);
1599     /* capabilities that have been added since CAS-generated guest reset.
1600      * if capabilities have since been removed, generate another reset
1601      */
1602     ov5_updates = spapr_ovec_new();
1603     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1604                                         ov5_cas_old, spapr->ov5_cas);
1605     /* Now that processing is finished, set the radix/hash bit for the
1606      * guest if it requested a valid mode; otherwise terminate the boot. */
1607     if (guest_radix) {
1608         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1609             error_report("Guest requested unavailable MMU mode (radix).");
1610             exit(EXIT_FAILURE);
1611         }
1612         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1613     } else {
1614         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1615             && !kvmppc_has_cap_mmu_hash_v3()) {
1616             error_report("Guest requested unavailable MMU mode (hash).");
1617             exit(EXIT_FAILURE);
1618         }
1619     }
1620     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1621                                                           OV1_PPC_3_00);
1622     if (!spapr->cas_reboot) {
1623         /* If spapr_machine_reset() did not set up a HPT but one is necessary
1624          * (because the guest isn't going to use radix) then set it up here. */
1625         if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1626             /* legacy hash or new hash: */
1627             spapr_setup_hpt_and_vrma(spapr);
1628         }
1629         spapr->cas_reboot =
1630             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1631                                           ov5_updates) != 0);
1632     }
1633 
1634     /*
1635      * Generate a machine reset when we have an update of the
1636      * interrupt mode. Only required when the machine supports both
1637      * modes.
1638      */
1639     if (!spapr->cas_reboot) {
1640         spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1641             && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1642     }
1643 
1644     spapr_ovec_cleanup(ov5_updates);
1645 
1646     if (spapr->cas_reboot) {
1647         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1648     }
1649 
1650     return H_SUCCESS;
1651 }
1652 
1653 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1654                                               SpaprMachineState *spapr,
1655                                               target_ulong opcode,
1656                                               target_ulong *args)
1657 {
1658     target_ulong flags = args[0];
1659     target_ulong procno = args[1];
1660     PowerPCCPU *tcpu;
1661     int idx;
1662 
1663     /* only support procno from H_REGISTER_VPA */
1664     if (flags != 0x1) {
1665         return H_FUNCTION;
1666     }
1667 
1668     tcpu = spapr_find_cpu(procno);
1669     if (tcpu == NULL) {
1670         return H_P2;
1671     }
1672 
1673     /* sequence is the same as in the "ibm,associativity" property */
1674 
1675     idx = 0;
1676 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1677                              ((uint64_t)(b) & 0xffffffff))
1678     args[idx++] = ASSOCIATIVITY(0, 0);
1679     args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1680     args[idx++] = ASSOCIATIVITY(procno, -1);
1681     for ( ; idx < 6; idx++) {
1682         args[idx] = -1;
1683     }
1684 #undef ASSOCIATIVITY
1685 
1686     return H_SUCCESS;
1687 }
1688 
1689 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1690                                               SpaprMachineState *spapr,
1691                                               target_ulong opcode,
1692                                               target_ulong *args)
1693 {
1694     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1695                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1696     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1697     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1698     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1699     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1700     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1701                                                      SPAPR_CAP_CCF_ASSIST);
1702 
1703     switch (safe_cache) {
1704     case SPAPR_CAP_WORKAROUND:
1705         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1706         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1707         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1708         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1709         break;
1710     case SPAPR_CAP_FIXED:
1711         break;
1712     default: /* broken */
1713         assert(safe_cache == SPAPR_CAP_BROKEN);
1714         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1715         break;
1716     }
1717 
1718     switch (safe_bounds_check) {
1719     case SPAPR_CAP_WORKAROUND:
1720         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1721         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1722         break;
1723     case SPAPR_CAP_FIXED:
1724         break;
1725     default: /* broken */
1726         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1727         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1728         break;
1729     }
1730 
1731     switch (safe_indirect_branch) {
1732     case SPAPR_CAP_FIXED_NA:
1733         break;
1734     case SPAPR_CAP_FIXED_CCD:
1735         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1736         break;
1737     case SPAPR_CAP_FIXED_IBS:
1738         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1739         break;
1740     case SPAPR_CAP_WORKAROUND:
1741         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1742         if (count_cache_flush_assist) {
1743             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1744         }
1745         break;
1746     default: /* broken */
1747         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1748         break;
1749     }
1750 
1751     args[0] = characteristics;
1752     args[1] = behaviour;
1753     return H_SUCCESS;
1754 }
1755 
1756 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1757                                 target_ulong opcode, target_ulong *args)
1758 {
1759     target_ulong dt = ppc64_phys_to_real(args[0]);
1760     struct fdt_header hdr = { 0 };
1761     unsigned cb;
1762     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1763     void *fdt;
1764 
1765     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1766     cb = fdt32_to_cpu(hdr.totalsize);
1767 
1768     if (!smc->update_dt_enabled) {
1769         return H_SUCCESS;
1770     }
1771 
1772     /* Check that the fdt did not grow out of proportion */
1773     if (cb > spapr->fdt_initial_size * 2) {
1774         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1775                                           fdt32_to_cpu(hdr.magic));
1776         return H_PARAMETER;
1777     }
1778 
1779     fdt = g_malloc0(cb);
1780     cpu_physical_memory_read(dt, fdt, cb);
1781 
1782     /* Check the fdt consistency */
1783     if (fdt_check_full(fdt, cb)) {
1784         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1785                                            fdt32_to_cpu(hdr.magic));
1786         return H_PARAMETER;
1787     }
1788 
1789     g_free(spapr->fdt_blob);
1790     spapr->fdt_size = cb;
1791     spapr->fdt_blob = fdt;
1792     trace_spapr_update_dt(cb);
1793 
1794     return H_SUCCESS;
1795 }
1796 
1797 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1798 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1799 
1800 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1801 {
1802     spapr_hcall_fn *slot;
1803 
1804     if (opcode <= MAX_HCALL_OPCODE) {
1805         assert((opcode & 0x3) == 0);
1806 
1807         slot = &papr_hypercall_table[opcode / 4];
1808     } else {
1809         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1810 
1811         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1812     }
1813 
1814     assert(!(*slot));
1815     *slot = fn;
1816 }
1817 
1818 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1819                              target_ulong *args)
1820 {
1821     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1822 
1823     if ((opcode <= MAX_HCALL_OPCODE)
1824         && ((opcode & 0x3) == 0)) {
1825         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1826 
1827         if (fn) {
1828             return fn(cpu, spapr, opcode, args);
1829         }
1830     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1831                (opcode <= KVMPPC_HCALL_MAX)) {
1832         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1833 
1834         if (fn) {
1835             return fn(cpu, spapr, opcode, args);
1836         }
1837     }
1838 
1839     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1840                   opcode);
1841     return H_FUNCTION;
1842 }
1843 
1844 static void hypercall_register_types(void)
1845 {
1846     /* hcall-pft */
1847     spapr_register_hypercall(H_ENTER, h_enter);
1848     spapr_register_hypercall(H_REMOVE, h_remove);
1849     spapr_register_hypercall(H_PROTECT, h_protect);
1850     spapr_register_hypercall(H_READ, h_read);
1851 
1852     /* hcall-bulk */
1853     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1854 
1855     /* hcall-hpt-resize */
1856     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1857     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1858 
1859     /* hcall-splpar */
1860     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1861     spapr_register_hypercall(H_CEDE, h_cede);
1862     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1863 
1864     /* processor register resource access h-calls */
1865     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1866     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1867     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1868     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1869     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1870 
1871     /* In Memory Table MMU h-calls */
1872     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1873     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1874     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1875 
1876     /* hcall-get-cpu-characteristics */
1877     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1878                              h_get_cpu_characteristics);
1879 
1880     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1881      * here between the "CI" and the "CACHE" variants, they will use whatever
1882      * mapping attributes qemu is using. When using KVM, the kernel will
1883      * enforce the attributes more strongly
1884      */
1885     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1886     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1887     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1888     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1889     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1890     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1891     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1892 
1893     /* qemu/KVM-PPC specific hcalls */
1894     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1895 
1896     /* ibm,client-architecture-support support */
1897     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1898 
1899     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1900 
1901     /* Virtual Processor Home Node */
1902     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1903                              h_home_node_associativity);
1904 }
1905 
1906 type_init(hypercall_register_types)
1907