1 #include "qemu/osdep.h" 2 #include "qapi/error.h" 3 #include "sysemu/hw_accel.h" 4 #include "sysemu/sysemu.h" 5 #include "qemu/log.h" 6 #include "qemu/error-report.h" 7 #include "cpu.h" 8 #include "exec/exec-all.h" 9 #include "helper_regs.h" 10 #include "hw/ppc/spapr.h" 11 #include "hw/ppc/spapr_cpu_core.h" 12 #include "mmu-hash64.h" 13 #include "cpu-models.h" 14 #include "trace.h" 15 #include "kvm_ppc.h" 16 #include "hw/ppc/spapr_ovec.h" 17 #include "mmu-book3s-v3.h" 18 #include "hw/mem/memory-device.h" 19 20 static bool has_spr(PowerPCCPU *cpu, int spr) 21 { 22 /* We can test whether the SPR is defined by checking for a valid name */ 23 return cpu->env.spr_cb[spr].name != NULL; 24 } 25 26 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) 27 { 28 /* 29 * hash value/pteg group index is normalized by HPT mask 30 */ 31 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { 32 return false; 33 } 34 return true; 35 } 36 37 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) 38 { 39 MachineState *machine = MACHINE(spapr); 40 DeviceMemoryState *dms = machine->device_memory; 41 42 if (addr < machine->ram_size) { 43 return true; 44 } 45 if ((addr >= dms->base) 46 && ((addr - dms->base) < memory_region_size(&dms->mr))) { 47 return true; 48 } 49 50 return false; 51 } 52 53 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr, 54 target_ulong opcode, target_ulong *args) 55 { 56 target_ulong flags = args[0]; 57 target_ulong ptex = args[1]; 58 target_ulong pteh = args[2]; 59 target_ulong ptel = args[3]; 60 unsigned apshift; 61 target_ulong raddr; 62 target_ulong slot; 63 const ppc_hash_pte64_t *hptes; 64 65 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); 66 if (!apshift) { 67 /* Bad page size encoding */ 68 return H_PARAMETER; 69 } 70 71 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); 72 73 if (is_ram_address(spapr, raddr)) { 74 /* Regular RAM - should have WIMG=0010 */ 75 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { 76 return H_PARAMETER; 77 } 78 } else { 79 target_ulong wimg_flags; 80 /* Looks like an IO address */ 81 /* FIXME: What WIMG combinations could be sensible for IO? 82 * For now we allow WIMG=010x, but are there others? */ 83 /* FIXME: Should we check against registered IO addresses? */ 84 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); 85 86 if (wimg_flags != HPTE64_R_I && 87 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { 88 return H_PARAMETER; 89 } 90 } 91 92 pteh &= ~0x60ULL; 93 94 if (!valid_ptex(cpu, ptex)) { 95 return H_PARAMETER; 96 } 97 98 slot = ptex & 7ULL; 99 ptex = ptex & ~7ULL; 100 101 if (likely((flags & H_EXACT) == 0)) { 102 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 103 for (slot = 0; slot < 8; slot++) { 104 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { 105 break; 106 } 107 } 108 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 109 if (slot == 8) { 110 return H_PTEG_FULL; 111 } 112 } else { 113 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); 114 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { 115 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); 116 return H_PTEG_FULL; 117 } 118 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 119 } 120 121 ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); 122 123 args[0] = ptex + slot; 124 return H_SUCCESS; 125 } 126 127 typedef enum { 128 REMOVE_SUCCESS = 0, 129 REMOVE_NOT_FOUND = 1, 130 REMOVE_PARM = 2, 131 REMOVE_HW = 3, 132 } RemoveResult; 133 134 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex, 135 target_ulong avpn, 136 target_ulong flags, 137 target_ulong *vp, target_ulong *rp) 138 { 139 const ppc_hash_pte64_t *hptes; 140 target_ulong v, r; 141 142 if (!valid_ptex(cpu, ptex)) { 143 return REMOVE_PARM; 144 } 145 146 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 147 v = ppc_hash64_hpte0(cpu, hptes, 0); 148 r = ppc_hash64_hpte1(cpu, hptes, 0); 149 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 150 151 if ((v & HPTE64_V_VALID) == 0 || 152 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || 153 ((flags & H_ANDCOND) && (v & avpn) != 0)) { 154 return REMOVE_NOT_FOUND; 155 } 156 *vp = v; 157 *rp = r; 158 ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); 159 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 160 return REMOVE_SUCCESS; 161 } 162 163 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 164 target_ulong opcode, target_ulong *args) 165 { 166 CPUPPCState *env = &cpu->env; 167 target_ulong flags = args[0]; 168 target_ulong ptex = args[1]; 169 target_ulong avpn = args[2]; 170 RemoveResult ret; 171 172 ret = remove_hpte(cpu, ptex, avpn, flags, 173 &args[0], &args[1]); 174 175 switch (ret) { 176 case REMOVE_SUCCESS: 177 check_tlb_flush(env, true); 178 return H_SUCCESS; 179 180 case REMOVE_NOT_FOUND: 181 return H_NOT_FOUND; 182 183 case REMOVE_PARM: 184 return H_PARAMETER; 185 186 case REMOVE_HW: 187 return H_HARDWARE; 188 } 189 190 g_assert_not_reached(); 191 } 192 193 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL 194 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL 195 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL 196 #define H_BULK_REMOVE_END 0xc000000000000000ULL 197 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL 198 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL 199 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL 200 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL 201 #define H_BULK_REMOVE_HW 0x3000000000000000ULL 202 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL 203 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL 204 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL 205 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL 206 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL 207 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL 208 209 #define H_BULK_REMOVE_MAX_BATCH 4 210 211 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 212 target_ulong opcode, target_ulong *args) 213 { 214 CPUPPCState *env = &cpu->env; 215 int i; 216 target_ulong rc = H_SUCCESS; 217 218 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { 219 target_ulong *tsh = &args[i*2]; 220 target_ulong tsl = args[i*2 + 1]; 221 target_ulong v, r, ret; 222 223 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { 224 break; 225 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { 226 return H_PARAMETER; 227 } 228 229 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; 230 *tsh |= H_BULK_REMOVE_RESPONSE; 231 232 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { 233 *tsh |= H_BULK_REMOVE_PARM; 234 return H_PARAMETER; 235 } 236 237 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, 238 (*tsh & H_BULK_REMOVE_FLAGS) >> 26, 239 &v, &r); 240 241 *tsh |= ret << 60; 242 243 switch (ret) { 244 case REMOVE_SUCCESS: 245 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; 246 break; 247 248 case REMOVE_PARM: 249 rc = H_PARAMETER; 250 goto exit; 251 252 case REMOVE_HW: 253 rc = H_HARDWARE; 254 goto exit; 255 } 256 } 257 exit: 258 check_tlb_flush(env, true); 259 260 return rc; 261 } 262 263 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr, 264 target_ulong opcode, target_ulong *args) 265 { 266 CPUPPCState *env = &cpu->env; 267 target_ulong flags = args[0]; 268 target_ulong ptex = args[1]; 269 target_ulong avpn = args[2]; 270 const ppc_hash_pte64_t *hptes; 271 target_ulong v, r; 272 273 if (!valid_ptex(cpu, ptex)) { 274 return H_PARAMETER; 275 } 276 277 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 278 v = ppc_hash64_hpte0(cpu, hptes, 0); 279 r = ppc_hash64_hpte1(cpu, hptes, 0); 280 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 281 282 if ((v & HPTE64_V_VALID) == 0 || 283 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { 284 return H_NOT_FOUND; 285 } 286 287 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | 288 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); 289 r |= (flags << 55) & HPTE64_R_PP0; 290 r |= (flags << 48) & HPTE64_R_KEY_HI; 291 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); 292 ppc_hash64_store_hpte(cpu, ptex, 293 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); 294 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 295 /* Flush the tlb */ 296 check_tlb_flush(env, true); 297 /* Don't need a memory barrier, due to qemu's global lock */ 298 ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); 299 return H_SUCCESS; 300 } 301 302 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr, 303 target_ulong opcode, target_ulong *args) 304 { 305 target_ulong flags = args[0]; 306 target_ulong ptex = args[1]; 307 int i, ridx, n_entries = 1; 308 const ppc_hash_pte64_t *hptes; 309 310 if (!valid_ptex(cpu, ptex)) { 311 return H_PARAMETER; 312 } 313 314 if (flags & H_READ_4) { 315 /* Clear the two low order bits */ 316 ptex &= ~(3ULL); 317 n_entries = 4; 318 } 319 320 hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries); 321 for (i = 0, ridx = 0; i < n_entries; i++) { 322 args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i); 323 args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i); 324 } 325 ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries); 326 327 return H_SUCCESS; 328 } 329 330 struct SpaprPendingHpt { 331 /* These fields are read-only after initialization */ 332 int shift; 333 QemuThread thread; 334 335 /* These fields are protected by the BQL */ 336 bool complete; 337 338 /* These fields are private to the preparation thread if 339 * !complete, otherwise protected by the BQL */ 340 int ret; 341 void *hpt; 342 }; 343 344 static void free_pending_hpt(SpaprPendingHpt *pending) 345 { 346 if (pending->hpt) { 347 qemu_vfree(pending->hpt); 348 } 349 350 g_free(pending); 351 } 352 353 static void *hpt_prepare_thread(void *opaque) 354 { 355 SpaprPendingHpt *pending = opaque; 356 size_t size = 1ULL << pending->shift; 357 358 pending->hpt = qemu_memalign(size, size); 359 if (pending->hpt) { 360 memset(pending->hpt, 0, size); 361 pending->ret = H_SUCCESS; 362 } else { 363 pending->ret = H_NO_MEM; 364 } 365 366 qemu_mutex_lock_iothread(); 367 368 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) { 369 /* Ready to go */ 370 pending->complete = true; 371 } else { 372 /* We've been cancelled, clean ourselves up */ 373 free_pending_hpt(pending); 374 } 375 376 qemu_mutex_unlock_iothread(); 377 return NULL; 378 } 379 380 /* Must be called with BQL held */ 381 static void cancel_hpt_prepare(SpaprMachineState *spapr) 382 { 383 SpaprPendingHpt *pending = spapr->pending_hpt; 384 385 /* Let the thread know it's cancelled */ 386 spapr->pending_hpt = NULL; 387 388 if (!pending) { 389 /* Nothing to do */ 390 return; 391 } 392 393 if (!pending->complete) { 394 /* thread will clean itself up */ 395 return; 396 } 397 398 free_pending_hpt(pending); 399 } 400 401 /* Convert a return code from the KVM ioctl()s implementing resize HPT 402 * into a PAPR hypercall return code */ 403 static target_ulong resize_hpt_convert_rc(int ret) 404 { 405 if (ret >= 100000) { 406 return H_LONG_BUSY_ORDER_100_SEC; 407 } else if (ret >= 10000) { 408 return H_LONG_BUSY_ORDER_10_SEC; 409 } else if (ret >= 1000) { 410 return H_LONG_BUSY_ORDER_1_SEC; 411 } else if (ret >= 100) { 412 return H_LONG_BUSY_ORDER_100_MSEC; 413 } else if (ret >= 10) { 414 return H_LONG_BUSY_ORDER_10_MSEC; 415 } else if (ret > 0) { 416 return H_LONG_BUSY_ORDER_1_MSEC; 417 } 418 419 switch (ret) { 420 case 0: 421 return H_SUCCESS; 422 case -EPERM: 423 return H_AUTHORITY; 424 case -EINVAL: 425 return H_PARAMETER; 426 case -ENXIO: 427 return H_CLOSED; 428 case -ENOSPC: 429 return H_PTEG_FULL; 430 case -EBUSY: 431 return H_BUSY; 432 case -ENOMEM: 433 return H_NO_MEM; 434 default: 435 return H_HARDWARE; 436 } 437 } 438 439 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 440 SpaprMachineState *spapr, 441 target_ulong opcode, 442 target_ulong *args) 443 { 444 target_ulong flags = args[0]; 445 int shift = args[1]; 446 SpaprPendingHpt *pending = spapr->pending_hpt; 447 uint64_t current_ram_size; 448 int rc; 449 450 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 451 return H_AUTHORITY; 452 } 453 454 if (!spapr->htab_shift) { 455 /* Radix guest, no HPT */ 456 return H_NOT_AVAILABLE; 457 } 458 459 trace_spapr_h_resize_hpt_prepare(flags, shift); 460 461 if (flags != 0) { 462 return H_PARAMETER; 463 } 464 465 if (shift && ((shift < 18) || (shift > 46))) { 466 return H_PARAMETER; 467 } 468 469 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 470 471 /* We only allow the guest to allocate an HPT one order above what 472 * we'd normally give them (to stop a small guest claiming a huge 473 * chunk of resources in the HPT */ 474 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 475 return H_RESOURCE; 476 } 477 478 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 479 if (rc != -ENOSYS) { 480 return resize_hpt_convert_rc(rc); 481 } 482 483 if (pending) { 484 /* something already in progress */ 485 if (pending->shift == shift) { 486 /* and it's suitable */ 487 if (pending->complete) { 488 return pending->ret; 489 } else { 490 return H_LONG_BUSY_ORDER_100_MSEC; 491 } 492 } 493 494 /* not suitable, cancel and replace */ 495 cancel_hpt_prepare(spapr); 496 } 497 498 if (!shift) { 499 /* nothing to do */ 500 return H_SUCCESS; 501 } 502 503 /* start new prepare */ 504 505 pending = g_new0(SpaprPendingHpt, 1); 506 pending->shift = shift; 507 pending->ret = H_HARDWARE; 508 509 qemu_thread_create(&pending->thread, "sPAPR HPT prepare", 510 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED); 511 512 spapr->pending_hpt = pending; 513 514 /* In theory we could estimate the time more accurately based on 515 * the new size, but there's not much point */ 516 return H_LONG_BUSY_ORDER_100_MSEC; 517 } 518 519 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot) 520 { 521 uint8_t *addr = htab; 522 523 addr += pteg * HASH_PTEG_SIZE_64; 524 addr += slot * HASH_PTE_SIZE_64; 525 return ldq_p(addr); 526 } 527 528 static void new_hpte_store(void *htab, uint64_t pteg, int slot, 529 uint64_t pte0, uint64_t pte1) 530 { 531 uint8_t *addr = htab; 532 533 addr += pteg * HASH_PTEG_SIZE_64; 534 addr += slot * HASH_PTE_SIZE_64; 535 536 stq_p(addr, pte0); 537 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1); 538 } 539 540 static int rehash_hpte(PowerPCCPU *cpu, 541 const ppc_hash_pte64_t *hptes, 542 void *old_hpt, uint64_t oldsize, 543 void *new_hpt, uint64_t newsize, 544 uint64_t pteg, int slot) 545 { 546 uint64_t old_hash_mask = (oldsize >> 7) - 1; 547 uint64_t new_hash_mask = (newsize >> 7) - 1; 548 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot); 549 target_ulong pte1; 550 uint64_t avpn; 551 unsigned base_pg_shift; 552 uint64_t hash, new_pteg, replace_pte0; 553 554 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) { 555 return H_SUCCESS; 556 } 557 558 pte1 = ppc_hash64_hpte1(cpu, hptes, slot); 559 560 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1); 561 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */ 562 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23); 563 564 if (pte0 & HPTE64_V_SECONDARY) { 565 pteg = ~pteg; 566 } 567 568 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) { 569 uint64_t offset, vsid; 570 571 /* We only have 28 - 23 bits of offset in avpn */ 572 offset = (avpn & 0x1f) << 23; 573 vsid = avpn >> 5; 574 /* We can find more bits from the pteg value */ 575 if (base_pg_shift < 23) { 576 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift; 577 } 578 579 hash = vsid ^ (offset >> base_pg_shift); 580 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) { 581 uint64_t offset, vsid; 582 583 /* We only have 40 - 23 bits of seg_off in avpn */ 584 offset = (avpn & 0x1ffff) << 23; 585 vsid = avpn >> 17; 586 if (base_pg_shift < 23) { 587 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) 588 << base_pg_shift; 589 } 590 591 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift); 592 } else { 593 error_report("rehash_pte: Bad segment size in HPTE"); 594 return H_HARDWARE; 595 } 596 597 new_pteg = hash & new_hash_mask; 598 if (pte0 & HPTE64_V_SECONDARY) { 599 assert(~pteg == (hash & old_hash_mask)); 600 new_pteg = ~new_pteg; 601 } else { 602 assert(pteg == (hash & old_hash_mask)); 603 } 604 assert((oldsize != newsize) || (pteg == new_pteg)); 605 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot); 606 /* 607 * Strictly speaking, we don't need all these tests, since we only 608 * ever rehash bolted HPTEs. We might in future handle non-bolted 609 * HPTEs, though so make the logic correct for those cases as 610 * well. 611 */ 612 if (replace_pte0 & HPTE64_V_VALID) { 613 assert(newsize < oldsize); 614 if (replace_pte0 & HPTE64_V_BOLTED) { 615 if (pte0 & HPTE64_V_BOLTED) { 616 /* Bolted collision, nothing we can do */ 617 return H_PTEG_FULL; 618 } else { 619 /* Discard this hpte */ 620 return H_SUCCESS; 621 } 622 } 623 } 624 625 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1); 626 return H_SUCCESS; 627 } 628 629 static int rehash_hpt(PowerPCCPU *cpu, 630 void *old_hpt, uint64_t oldsize, 631 void *new_hpt, uint64_t newsize) 632 { 633 uint64_t n_ptegs = oldsize >> 7; 634 uint64_t pteg; 635 int slot; 636 int rc; 637 638 for (pteg = 0; pteg < n_ptegs; pteg++) { 639 hwaddr ptex = pteg * HPTES_PER_GROUP; 640 const ppc_hash_pte64_t *hptes 641 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 642 643 if (!hptes) { 644 return H_HARDWARE; 645 } 646 647 for (slot = 0; slot < HPTES_PER_GROUP; slot++) { 648 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize, 649 pteg, slot); 650 if (rc != H_SUCCESS) { 651 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 652 return rc; 653 } 654 } 655 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 656 } 657 658 return H_SUCCESS; 659 } 660 661 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) 662 { 663 int ret; 664 665 cpu_synchronize_state(cs); 666 667 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); 668 if (ret < 0) { 669 error_report("failed to push sregs to KVM: %s", strerror(-ret)); 670 exit(1); 671 } 672 } 673 674 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr) 675 { 676 CPUState *cs; 677 678 /* 679 * This is a hack for the benefit of KVM PR - it abuses the SDR1 680 * slot in kvm_sregs to communicate the userspace address of the 681 * HPT 682 */ 683 if (!kvm_enabled() || !spapr->htab) { 684 return; 685 } 686 687 CPU_FOREACH(cs) { 688 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); 689 } 690 } 691 692 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 693 SpaprMachineState *spapr, 694 target_ulong opcode, 695 target_ulong *args) 696 { 697 target_ulong flags = args[0]; 698 target_ulong shift = args[1]; 699 SpaprPendingHpt *pending = spapr->pending_hpt; 700 int rc; 701 size_t newsize; 702 703 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 704 return H_AUTHORITY; 705 } 706 707 if (!spapr->htab_shift) { 708 /* Radix guest, no HPT */ 709 return H_NOT_AVAILABLE; 710 } 711 712 trace_spapr_h_resize_hpt_commit(flags, shift); 713 714 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 715 if (rc != -ENOSYS) { 716 rc = resize_hpt_convert_rc(rc); 717 if (rc == H_SUCCESS) { 718 /* Need to set the new htab_shift in the machine state */ 719 spapr->htab_shift = shift; 720 } 721 return rc; 722 } 723 724 if (flags != 0) { 725 return H_PARAMETER; 726 } 727 728 if (!pending || (pending->shift != shift)) { 729 /* no matching prepare */ 730 return H_CLOSED; 731 } 732 733 if (!pending->complete) { 734 /* prepare has not completed */ 735 return H_BUSY; 736 } 737 738 /* Shouldn't have got past PREPARE without an HPT */ 739 g_assert(spapr->htab_shift); 740 741 newsize = 1ULL << pending->shift; 742 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr), 743 pending->hpt, newsize); 744 if (rc == H_SUCCESS) { 745 qemu_vfree(spapr->htab); 746 spapr->htab = pending->hpt; 747 spapr->htab_shift = pending->shift; 748 749 push_sregs_to_kvm_pr(spapr); 750 751 pending->hpt = NULL; /* so it's not free()d */ 752 } 753 754 /* Clean up */ 755 spapr->pending_hpt = NULL; 756 free_pending_hpt(pending); 757 758 return rc; 759 } 760 761 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, 762 target_ulong opcode, target_ulong *args) 763 { 764 cpu_synchronize_state(CPU(cpu)); 765 cpu->env.spr[SPR_SPRG0] = args[0]; 766 767 return H_SUCCESS; 768 } 769 770 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 771 target_ulong opcode, target_ulong *args) 772 { 773 if (!has_spr(cpu, SPR_DABR)) { 774 return H_HARDWARE; /* DABR register not available */ 775 } 776 cpu_synchronize_state(CPU(cpu)); 777 778 if (has_spr(cpu, SPR_DABRX)) { 779 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 780 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 781 return H_RESERVED_DABR; 782 } 783 784 cpu->env.spr[SPR_DABR] = args[0]; 785 return H_SUCCESS; 786 } 787 788 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 789 target_ulong opcode, target_ulong *args) 790 { 791 target_ulong dabrx = args[1]; 792 793 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { 794 return H_HARDWARE; 795 } 796 797 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 798 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 799 return H_PARAMETER; 800 } 801 802 cpu_synchronize_state(CPU(cpu)); 803 cpu->env.spr[SPR_DABRX] = dabrx; 804 cpu->env.spr[SPR_DABR] = args[0]; 805 806 return H_SUCCESS; 807 } 808 809 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, 810 target_ulong opcode, target_ulong *args) 811 { 812 target_ulong flags = args[0]; 813 hwaddr dst = args[1]; 814 hwaddr src = args[2]; 815 hwaddr len = TARGET_PAGE_SIZE; 816 uint8_t *pdst, *psrc; 817 target_long ret = H_SUCCESS; 818 819 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 820 | H_COPY_PAGE | H_ZERO_PAGE)) { 821 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 822 flags); 823 return H_PARAMETER; 824 } 825 826 /* Map-in destination */ 827 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 828 return H_PARAMETER; 829 } 830 pdst = cpu_physical_memory_map(dst, &len, 1); 831 if (!pdst || len != TARGET_PAGE_SIZE) { 832 return H_PARAMETER; 833 } 834 835 if (flags & H_COPY_PAGE) { 836 /* Map-in source, copy to destination, and unmap source again */ 837 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 838 ret = H_PARAMETER; 839 goto unmap_out; 840 } 841 psrc = cpu_physical_memory_map(src, &len, 0); 842 if (!psrc || len != TARGET_PAGE_SIZE) { 843 ret = H_PARAMETER; 844 goto unmap_out; 845 } 846 memcpy(pdst, psrc, len); 847 cpu_physical_memory_unmap(psrc, len, 0, len); 848 } else if (flags & H_ZERO_PAGE) { 849 memset(pdst, 0, len); /* Just clear the destination page */ 850 } 851 852 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 853 kvmppc_dcbst_range(cpu, pdst, len); 854 } 855 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 856 if (kvm_enabled()) { 857 kvmppc_icbi_range(cpu, pdst, len); 858 } else { 859 tb_flush(CPU(cpu)); 860 } 861 } 862 863 unmap_out: 864 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 865 return ret; 866 } 867 868 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 869 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 870 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 871 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 872 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 873 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 874 875 #define VPA_MIN_SIZE 640 876 #define VPA_SIZE_OFFSET 0x4 877 #define VPA_SHARED_PROC_OFFSET 0x9 878 #define VPA_SHARED_PROC_VAL 0x2 879 880 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) 881 { 882 CPUState *cs = CPU(cpu); 883 CPUPPCState *env = &cpu->env; 884 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 885 uint16_t size; 886 uint8_t tmp; 887 888 if (vpa == 0) { 889 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 890 return H_HARDWARE; 891 } 892 893 if (vpa % env->dcache_line_size) { 894 return H_PARAMETER; 895 } 896 /* FIXME: bounds check the address */ 897 898 size = lduw_be_phys(cs->as, vpa + 0x4); 899 900 if (size < VPA_MIN_SIZE) { 901 return H_PARAMETER; 902 } 903 904 /* VPA is not allowed to cross a page boundary */ 905 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 906 return H_PARAMETER; 907 } 908 909 spapr_cpu->vpa_addr = vpa; 910 911 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); 912 tmp |= VPA_SHARED_PROC_VAL; 913 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 914 915 return H_SUCCESS; 916 } 917 918 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) 919 { 920 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 921 922 if (spapr_cpu->slb_shadow_addr) { 923 return H_RESOURCE; 924 } 925 926 if (spapr_cpu->dtl_addr) { 927 return H_RESOURCE; 928 } 929 930 spapr_cpu->vpa_addr = 0; 931 return H_SUCCESS; 932 } 933 934 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 935 { 936 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 937 uint32_t size; 938 939 if (addr == 0) { 940 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 941 return H_HARDWARE; 942 } 943 944 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 945 if (size < 0x8) { 946 return H_PARAMETER; 947 } 948 949 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 950 return H_PARAMETER; 951 } 952 953 if (!spapr_cpu->vpa_addr) { 954 return H_RESOURCE; 955 } 956 957 spapr_cpu->slb_shadow_addr = addr; 958 spapr_cpu->slb_shadow_size = size; 959 960 return H_SUCCESS; 961 } 962 963 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 964 { 965 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 966 967 spapr_cpu->slb_shadow_addr = 0; 968 spapr_cpu->slb_shadow_size = 0; 969 return H_SUCCESS; 970 } 971 972 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) 973 { 974 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 975 uint32_t size; 976 977 if (addr == 0) { 978 hcall_dprintf("Can't cope with DTL at logical 0\n"); 979 return H_HARDWARE; 980 } 981 982 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 983 984 if (size < 48) { 985 return H_PARAMETER; 986 } 987 988 if (!spapr_cpu->vpa_addr) { 989 return H_RESOURCE; 990 } 991 992 spapr_cpu->dtl_addr = addr; 993 spapr_cpu->dtl_size = size; 994 995 return H_SUCCESS; 996 } 997 998 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) 999 { 1000 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1001 1002 spapr_cpu->dtl_addr = 0; 1003 spapr_cpu->dtl_size = 0; 1004 1005 return H_SUCCESS; 1006 } 1007 1008 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, 1009 target_ulong opcode, target_ulong *args) 1010 { 1011 target_ulong flags = args[0]; 1012 target_ulong procno = args[1]; 1013 target_ulong vpa = args[2]; 1014 target_ulong ret = H_PARAMETER; 1015 PowerPCCPU *tcpu; 1016 1017 tcpu = spapr_find_cpu(procno); 1018 if (!tcpu) { 1019 return H_PARAMETER; 1020 } 1021 1022 switch (flags) { 1023 case FLAGS_REGISTER_VPA: 1024 ret = register_vpa(tcpu, vpa); 1025 break; 1026 1027 case FLAGS_DEREGISTER_VPA: 1028 ret = deregister_vpa(tcpu, vpa); 1029 break; 1030 1031 case FLAGS_REGISTER_SLBSHADOW: 1032 ret = register_slb_shadow(tcpu, vpa); 1033 break; 1034 1035 case FLAGS_DEREGISTER_SLBSHADOW: 1036 ret = deregister_slb_shadow(tcpu, vpa); 1037 break; 1038 1039 case FLAGS_REGISTER_DTL: 1040 ret = register_dtl(tcpu, vpa); 1041 break; 1042 1043 case FLAGS_DEREGISTER_DTL: 1044 ret = deregister_dtl(tcpu, vpa); 1045 break; 1046 } 1047 1048 return ret; 1049 } 1050 1051 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, 1052 target_ulong opcode, target_ulong *args) 1053 { 1054 CPUPPCState *env = &cpu->env; 1055 CPUState *cs = CPU(cpu); 1056 1057 env->msr |= (1ULL << MSR_EE); 1058 hreg_compute_hflags(env); 1059 if (!cpu_has_work(cs)) { 1060 cs->halted = 1; 1061 cs->exception_index = EXCP_HLT; 1062 cs->exit_request = 1; 1063 } 1064 return H_SUCCESS; 1065 } 1066 1067 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, 1068 target_ulong opcode, target_ulong *args) 1069 { 1070 target_ulong rtas_r3 = args[0]; 1071 uint32_t token = rtas_ld(rtas_r3, 0); 1072 uint32_t nargs = rtas_ld(rtas_r3, 1); 1073 uint32_t nret = rtas_ld(rtas_r3, 2); 1074 1075 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 1076 nret, rtas_r3 + 12 + 4*nargs); 1077 } 1078 1079 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, 1080 target_ulong opcode, target_ulong *args) 1081 { 1082 CPUState *cs = CPU(cpu); 1083 target_ulong size = args[0]; 1084 target_ulong addr = args[1]; 1085 1086 switch (size) { 1087 case 1: 1088 args[0] = ldub_phys(cs->as, addr); 1089 return H_SUCCESS; 1090 case 2: 1091 args[0] = lduw_phys(cs->as, addr); 1092 return H_SUCCESS; 1093 case 4: 1094 args[0] = ldl_phys(cs->as, addr); 1095 return H_SUCCESS; 1096 case 8: 1097 args[0] = ldq_phys(cs->as, addr); 1098 return H_SUCCESS; 1099 } 1100 return H_PARAMETER; 1101 } 1102 1103 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, 1104 target_ulong opcode, target_ulong *args) 1105 { 1106 CPUState *cs = CPU(cpu); 1107 1108 target_ulong size = args[0]; 1109 target_ulong addr = args[1]; 1110 target_ulong val = args[2]; 1111 1112 switch (size) { 1113 case 1: 1114 stb_phys(cs->as, addr, val); 1115 return H_SUCCESS; 1116 case 2: 1117 stw_phys(cs->as, addr, val); 1118 return H_SUCCESS; 1119 case 4: 1120 stl_phys(cs->as, addr, val); 1121 return H_SUCCESS; 1122 case 8: 1123 stq_phys(cs->as, addr, val); 1124 return H_SUCCESS; 1125 } 1126 return H_PARAMETER; 1127 } 1128 1129 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, 1130 target_ulong opcode, target_ulong *args) 1131 { 1132 CPUState *cs = CPU(cpu); 1133 1134 target_ulong dst = args[0]; /* Destination address */ 1135 target_ulong src = args[1]; /* Source address */ 1136 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 1137 target_ulong count = args[3]; /* Element count */ 1138 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 1139 uint64_t tmp; 1140 unsigned int mask = (1 << esize) - 1; 1141 int step = 1 << esize; 1142 1143 if (count > 0x80000000) { 1144 return H_PARAMETER; 1145 } 1146 1147 if ((dst & mask) || (src & mask) || (op > 1)) { 1148 return H_PARAMETER; 1149 } 1150 1151 if (dst >= src && dst < (src + (count << esize))) { 1152 dst = dst + ((count - 1) << esize); 1153 src = src + ((count - 1) << esize); 1154 step = -step; 1155 } 1156 1157 while (count--) { 1158 switch (esize) { 1159 case 0: 1160 tmp = ldub_phys(cs->as, src); 1161 break; 1162 case 1: 1163 tmp = lduw_phys(cs->as, src); 1164 break; 1165 case 2: 1166 tmp = ldl_phys(cs->as, src); 1167 break; 1168 case 3: 1169 tmp = ldq_phys(cs->as, src); 1170 break; 1171 default: 1172 return H_PARAMETER; 1173 } 1174 if (op == 1) { 1175 tmp = ~tmp; 1176 } 1177 switch (esize) { 1178 case 0: 1179 stb_phys(cs->as, dst, tmp); 1180 break; 1181 case 1: 1182 stw_phys(cs->as, dst, tmp); 1183 break; 1184 case 2: 1185 stl_phys(cs->as, dst, tmp); 1186 break; 1187 case 3: 1188 stq_phys(cs->as, dst, tmp); 1189 break; 1190 } 1191 dst = dst + step; 1192 src = src + step; 1193 } 1194 1195 return H_SUCCESS; 1196 } 1197 1198 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, 1199 target_ulong opcode, target_ulong *args) 1200 { 1201 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1202 return H_SUCCESS; 1203 } 1204 1205 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, 1206 target_ulong opcode, target_ulong *args) 1207 { 1208 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1209 return H_SUCCESS; 1210 } 1211 1212 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 1213 target_ulong mflags, 1214 target_ulong value1, 1215 target_ulong value2) 1216 { 1217 if (value1) { 1218 return H_P3; 1219 } 1220 if (value2) { 1221 return H_P4; 1222 } 1223 1224 switch (mflags) { 1225 case H_SET_MODE_ENDIAN_BIG: 1226 spapr_set_all_lpcrs(0, LPCR_ILE); 1227 spapr_pci_switch_vga(true); 1228 return H_SUCCESS; 1229 1230 case H_SET_MODE_ENDIAN_LITTLE: 1231 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); 1232 spapr_pci_switch_vga(false); 1233 return H_SUCCESS; 1234 } 1235 1236 return H_UNSUPPORTED_FLAG; 1237 } 1238 1239 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 1240 target_ulong mflags, 1241 target_ulong value1, 1242 target_ulong value2) 1243 { 1244 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 1245 1246 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 1247 return H_P2; 1248 } 1249 if (value1) { 1250 return H_P3; 1251 } 1252 if (value2) { 1253 return H_P4; 1254 } 1255 1256 if (mflags == AIL_RESERVED) { 1257 return H_UNSUPPORTED_FLAG; 1258 } 1259 1260 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); 1261 1262 return H_SUCCESS; 1263 } 1264 1265 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, 1266 target_ulong opcode, target_ulong *args) 1267 { 1268 target_ulong resource = args[1]; 1269 target_ulong ret = H_P2; 1270 1271 switch (resource) { 1272 case H_SET_MODE_RESOURCE_LE: 1273 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); 1274 break; 1275 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 1276 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 1277 args[2], args[3]); 1278 break; 1279 } 1280 1281 return ret; 1282 } 1283 1284 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, 1285 target_ulong opcode, target_ulong *args) 1286 { 1287 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1288 opcode, " (H_CLEAN_SLB)"); 1289 return H_FUNCTION; 1290 } 1291 1292 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, 1293 target_ulong opcode, target_ulong *args) 1294 { 1295 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1296 opcode, " (H_INVALIDATE_PID)"); 1297 return H_FUNCTION; 1298 } 1299 1300 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, 1301 uint64_t patbe_old, uint64_t patbe_new) 1302 { 1303 /* 1304 * We have 4 Options: 1305 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 1306 * HASH->RADIX : Free HPT 1307 * RADIX->HASH : Allocate HPT 1308 * NOTHING->HASH : Allocate HPT 1309 * Note: NOTHING implies the case where we said the guest could choose 1310 * later and so assumed radix and now it's called H_REG_PROC_TBL 1311 */ 1312 1313 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { 1314 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 1315 } else if (!(patbe_old & PATE1_GR)) { 1316 /* HASH->RADIX : Free HPT */ 1317 spapr_free_hpt(spapr); 1318 } else if (!(patbe_new & PATE1_GR)) { 1319 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 1320 spapr_setup_hpt_and_vrma(spapr); 1321 } 1322 return; 1323 } 1324 1325 #define FLAGS_MASK 0x01FULL 1326 #define FLAG_MODIFY 0x10 1327 #define FLAG_REGISTER 0x08 1328 #define FLAG_RADIX 0x04 1329 #define FLAG_HASH_PROC_TBL 0x02 1330 #define FLAG_GTSE 0x01 1331 1332 static target_ulong h_register_process_table(PowerPCCPU *cpu, 1333 SpaprMachineState *spapr, 1334 target_ulong opcode, 1335 target_ulong *args) 1336 { 1337 target_ulong flags = args[0]; 1338 target_ulong proc_tbl = args[1]; 1339 target_ulong page_size = args[2]; 1340 target_ulong table_size = args[3]; 1341 target_ulong update_lpcr = 0; 1342 uint64_t cproc; 1343 1344 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 1345 return H_PARAMETER; 1346 } 1347 if (flags & FLAG_MODIFY) { 1348 if (flags & FLAG_REGISTER) { 1349 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 1350 if (proc_tbl & 0xfff || proc_tbl >> 60) { 1351 return H_P2; 1352 } else if (page_size) { 1353 return H_P3; 1354 } else if (table_size > 24) { 1355 return H_P4; 1356 } 1357 cproc = PATE1_GR | proc_tbl | table_size; 1358 } else { /* Register new HPT process table */ 1359 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 1360 /* TODO - Not Supported */ 1361 /* Technically caused by flag bits => H_PARAMETER */ 1362 return H_PARAMETER; 1363 } else { /* Hash with SLB */ 1364 if (proc_tbl >> 38) { 1365 return H_P2; 1366 } else if (page_size & ~0x7) { 1367 return H_P3; 1368 } else if (table_size > 24) { 1369 return H_P4; 1370 } 1371 } 1372 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 1373 } 1374 1375 } else { /* Deregister current process table */ 1376 /* 1377 * Set to benign value: (current GR) | 0. This allows 1378 * deregistration in KVM to succeed even if the radix bit 1379 * in flags doesn't match the radix bit in the old PATE. 1380 */ 1381 cproc = spapr->patb_entry & PATE1_GR; 1382 } 1383 } else { /* Maintain current registration */ 1384 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { 1385 /* Technically caused by flag bits => H_PARAMETER */ 1386 return H_PARAMETER; /* Existing Process Table Mismatch */ 1387 } 1388 cproc = spapr->patb_entry; 1389 } 1390 1391 /* Check if we need to setup OR free the hpt */ 1392 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 1393 1394 spapr->patb_entry = cproc; /* Save new process table */ 1395 1396 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ 1397 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ 1398 update_lpcr |= (LPCR_UPRT | LPCR_HR); 1399 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ 1400 update_lpcr |= LPCR_UPRT; 1401 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ 1402 update_lpcr |= LPCR_GTSE; 1403 1404 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); 1405 1406 if (kvm_enabled()) { 1407 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 1408 flags & FLAG_GTSE, cproc); 1409 } 1410 return H_SUCCESS; 1411 } 1412 1413 #define H_SIGNAL_SYS_RESET_ALL -1 1414 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 1415 1416 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 1417 SpaprMachineState *spapr, 1418 target_ulong opcode, target_ulong *args) 1419 { 1420 target_long target = args[0]; 1421 CPUState *cs; 1422 1423 if (target < 0) { 1424 /* Broadcast */ 1425 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1426 return H_PARAMETER; 1427 } 1428 1429 CPU_FOREACH(cs) { 1430 PowerPCCPU *c = POWERPC_CPU(cs); 1431 1432 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1433 if (c == cpu) { 1434 continue; 1435 } 1436 } 1437 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1438 } 1439 return H_SUCCESS; 1440 1441 } else { 1442 /* Unicast */ 1443 cs = CPU(spapr_find_cpu(target)); 1444 if (cs) { 1445 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1446 return H_SUCCESS; 1447 } 1448 return H_PARAMETER; 1449 } 1450 } 1451 1452 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu, 1453 target_ulong *addr, bool *raw_mode_supported, 1454 Error **errp) 1455 { 1456 bool explicit_match = false; /* Matched the CPU's real PVR */ 1457 uint32_t max_compat = spapr->max_compat_pvr; 1458 uint32_t best_compat = 0; 1459 int i; 1460 1461 /* 1462 * We scan the supplied table of PVRs looking for two things 1463 * 1. Is our real CPU PVR in the list? 1464 * 2. What's the "best" listed logical PVR 1465 */ 1466 for (i = 0; i < 512; ++i) { 1467 uint32_t pvr, pvr_mask; 1468 1469 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1470 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1471 *addr += 8; 1472 1473 if (~pvr_mask & pvr) { 1474 break; /* Terminator record */ 1475 } 1476 1477 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1478 explicit_match = true; 1479 } else { 1480 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1481 best_compat = pvr; 1482 } 1483 } 1484 } 1485 1486 if ((best_compat == 0) && (!explicit_match || max_compat)) { 1487 /* We couldn't find a suitable compatibility mode, and either 1488 * the guest doesn't support "raw" mode for this CPU, or raw 1489 * mode is disabled because a maximum compat mode is set */ 1490 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS"); 1491 return 0; 1492 } 1493 1494 *raw_mode_supported = explicit_match; 1495 1496 /* Parsing finished */ 1497 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1498 1499 return best_compat; 1500 } 1501 1502 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1503 SpaprMachineState *spapr, 1504 target_ulong opcode, 1505 target_ulong *args) 1506 { 1507 /* Working address in data buffer */ 1508 target_ulong addr = ppc64_phys_to_real(args[0]); 1509 target_ulong ov_table; 1510 uint32_t cas_pvr; 1511 SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates; 1512 bool guest_radix; 1513 Error *local_err = NULL; 1514 bool raw_mode_supported = false; 1515 1516 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err); 1517 if (local_err) { 1518 error_report_err(local_err); 1519 return H_HARDWARE; 1520 } 1521 1522 /* Update CPUs */ 1523 if (cpu->compat_pvr != cas_pvr) { 1524 ppc_set_compat_all(cas_pvr, &local_err); 1525 if (local_err) { 1526 /* We fail to set compat mode (likely because running with KVM PR), 1527 * but maybe we can fallback to raw mode if the guest supports it. 1528 */ 1529 if (!raw_mode_supported) { 1530 error_report_err(local_err); 1531 return H_HARDWARE; 1532 } 1533 error_free(local_err); 1534 local_err = NULL; 1535 } 1536 } 1537 1538 /* For the future use: here @ov_table points to the first option vector */ 1539 ov_table = addr; 1540 1541 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1542 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1543 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1544 error_report("guest requested hash and radix MMU, which is invalid."); 1545 exit(EXIT_FAILURE); 1546 } 1547 /* The radix/hash bit in byte 24 requires special handling: */ 1548 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1549 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); 1550 1551 /* 1552 * HPT resizing is a bit of a special case, because when enabled 1553 * we assume an HPT guest will support it until it says it 1554 * doesn't, instead of assuming it won't support it until it says 1555 * it does. Strictly speaking that approach could break for 1556 * guests which don't make a CAS call, but those are so old we 1557 * don't care about them. Without that assumption we'd have to 1558 * make at least a temporary allocation of an HPT sized for max 1559 * memory, which could be impossibly difficult under KVM HV if 1560 * maxram is large. 1561 */ 1562 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1563 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1564 1565 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1566 error_report( 1567 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1568 exit(1); 1569 } 1570 1571 if (spapr->htab_shift < maxshift) { 1572 /* Guest doesn't know about HPT resizing, so we 1573 * pre-emptively resize for the maximum permitted RAM. At 1574 * the point this is called, nothing should have been 1575 * entered into the existing HPT */ 1576 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1577 push_sregs_to_kvm_pr(spapr); 1578 } 1579 } 1580 1581 /* NOTE: there are actually a number of ov5 bits where input from the 1582 * guest is always zero, and the platform/QEMU enables them independently 1583 * of guest input. To model these properly we'd want some sort of mask, 1584 * but since they only currently apply to memory migration as defined 1585 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1586 * to worry about this for now. 1587 */ 1588 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); 1589 1590 /* also clear the radix/hash bit from the current ov5_cas bits to 1591 * be in sync with the newly ov5 bits. Else the radix bit will be 1592 * seen as being removed and this will generate a reset loop 1593 */ 1594 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300); 1595 1596 /* full range of negotiated ov5 capabilities */ 1597 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1598 spapr_ovec_cleanup(ov5_guest); 1599 /* capabilities that have been added since CAS-generated guest reset. 1600 * if capabilities have since been removed, generate another reset 1601 */ 1602 ov5_updates = spapr_ovec_new(); 1603 spapr->cas_reboot = spapr_ovec_diff(ov5_updates, 1604 ov5_cas_old, spapr->ov5_cas); 1605 /* Now that processing is finished, set the radix/hash bit for the 1606 * guest if it requested a valid mode; otherwise terminate the boot. */ 1607 if (guest_radix) { 1608 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1609 error_report("Guest requested unavailable MMU mode (radix)."); 1610 exit(EXIT_FAILURE); 1611 } 1612 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); 1613 } else { 1614 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1615 && !kvmppc_has_cap_mmu_hash_v3()) { 1616 error_report("Guest requested unavailable MMU mode (hash)."); 1617 exit(EXIT_FAILURE); 1618 } 1619 } 1620 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest, 1621 OV1_PPC_3_00); 1622 if (!spapr->cas_reboot) { 1623 /* If spapr_machine_reset() did not set up a HPT but one is necessary 1624 * (because the guest isn't going to use radix) then set it up here. */ 1625 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { 1626 /* legacy hash or new hash: */ 1627 spapr_setup_hpt_and_vrma(spapr); 1628 } 1629 spapr->cas_reboot = 1630 (spapr_h_cas_compose_response(spapr, args[1], args[2], 1631 ov5_updates) != 0); 1632 } 1633 1634 /* 1635 * Generate a machine reset when we have an update of the 1636 * interrupt mode. Only required when the machine supports both 1637 * modes. 1638 */ 1639 if (!spapr->cas_reboot) { 1640 spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT) 1641 && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH; 1642 } 1643 1644 spapr_ovec_cleanup(ov5_updates); 1645 1646 if (spapr->cas_reboot) { 1647 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1648 } 1649 1650 return H_SUCCESS; 1651 } 1652 1653 static target_ulong h_home_node_associativity(PowerPCCPU *cpu, 1654 SpaprMachineState *spapr, 1655 target_ulong opcode, 1656 target_ulong *args) 1657 { 1658 target_ulong flags = args[0]; 1659 target_ulong procno = args[1]; 1660 PowerPCCPU *tcpu; 1661 int idx; 1662 1663 /* only support procno from H_REGISTER_VPA */ 1664 if (flags != 0x1) { 1665 return H_FUNCTION; 1666 } 1667 1668 tcpu = spapr_find_cpu(procno); 1669 if (tcpu == NULL) { 1670 return H_P2; 1671 } 1672 1673 /* sequence is the same as in the "ibm,associativity" property */ 1674 1675 idx = 0; 1676 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ 1677 ((uint64_t)(b) & 0xffffffff)) 1678 args[idx++] = ASSOCIATIVITY(0, 0); 1679 args[idx++] = ASSOCIATIVITY(0, tcpu->node_id); 1680 args[idx++] = ASSOCIATIVITY(procno, -1); 1681 for ( ; idx < 6; idx++) { 1682 args[idx] = -1; 1683 } 1684 #undef ASSOCIATIVITY 1685 1686 return H_SUCCESS; 1687 } 1688 1689 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, 1690 SpaprMachineState *spapr, 1691 target_ulong opcode, 1692 target_ulong *args) 1693 { 1694 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & 1695 ~H_CPU_CHAR_THR_RECONF_TRIG; 1696 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; 1697 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); 1698 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); 1699 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); 1700 uint8_t count_cache_flush_assist = spapr_get_cap(spapr, 1701 SPAPR_CAP_CCF_ASSIST); 1702 1703 switch (safe_cache) { 1704 case SPAPR_CAP_WORKAROUND: 1705 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; 1706 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; 1707 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; 1708 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1709 break; 1710 case SPAPR_CAP_FIXED: 1711 break; 1712 default: /* broken */ 1713 assert(safe_cache == SPAPR_CAP_BROKEN); 1714 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1715 break; 1716 } 1717 1718 switch (safe_bounds_check) { 1719 case SPAPR_CAP_WORKAROUND: 1720 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; 1721 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1722 break; 1723 case SPAPR_CAP_FIXED: 1724 break; 1725 default: /* broken */ 1726 assert(safe_bounds_check == SPAPR_CAP_BROKEN); 1727 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1728 break; 1729 } 1730 1731 switch (safe_indirect_branch) { 1732 case SPAPR_CAP_FIXED_NA: 1733 break; 1734 case SPAPR_CAP_FIXED_CCD: 1735 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; 1736 break; 1737 case SPAPR_CAP_FIXED_IBS: 1738 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; 1739 break; 1740 case SPAPR_CAP_WORKAROUND: 1741 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; 1742 if (count_cache_flush_assist) { 1743 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; 1744 } 1745 break; 1746 default: /* broken */ 1747 assert(safe_indirect_branch == SPAPR_CAP_BROKEN); 1748 break; 1749 } 1750 1751 args[0] = characteristics; 1752 args[1] = behaviour; 1753 return H_SUCCESS; 1754 } 1755 1756 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, 1757 target_ulong opcode, target_ulong *args) 1758 { 1759 target_ulong dt = ppc64_phys_to_real(args[0]); 1760 struct fdt_header hdr = { 0 }; 1761 unsigned cb; 1762 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1763 void *fdt; 1764 1765 cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); 1766 cb = fdt32_to_cpu(hdr.totalsize); 1767 1768 if (!smc->update_dt_enabled) { 1769 return H_SUCCESS; 1770 } 1771 1772 /* Check that the fdt did not grow out of proportion */ 1773 if (cb > spapr->fdt_initial_size * 2) { 1774 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, 1775 fdt32_to_cpu(hdr.magic)); 1776 return H_PARAMETER; 1777 } 1778 1779 fdt = g_malloc0(cb); 1780 cpu_physical_memory_read(dt, fdt, cb); 1781 1782 /* Check the fdt consistency */ 1783 if (fdt_check_full(fdt, cb)) { 1784 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, 1785 fdt32_to_cpu(hdr.magic)); 1786 return H_PARAMETER; 1787 } 1788 1789 g_free(spapr->fdt_blob); 1790 spapr->fdt_size = cb; 1791 spapr->fdt_blob = fdt; 1792 trace_spapr_update_dt(cb); 1793 1794 return H_SUCCESS; 1795 } 1796 1797 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1798 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1799 1800 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1801 { 1802 spapr_hcall_fn *slot; 1803 1804 if (opcode <= MAX_HCALL_OPCODE) { 1805 assert((opcode & 0x3) == 0); 1806 1807 slot = &papr_hypercall_table[opcode / 4]; 1808 } else { 1809 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1810 1811 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1812 } 1813 1814 assert(!(*slot)); 1815 *slot = fn; 1816 } 1817 1818 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1819 target_ulong *args) 1820 { 1821 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1822 1823 if ((opcode <= MAX_HCALL_OPCODE) 1824 && ((opcode & 0x3) == 0)) { 1825 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1826 1827 if (fn) { 1828 return fn(cpu, spapr, opcode, args); 1829 } 1830 } else if ((opcode >= KVMPPC_HCALL_BASE) && 1831 (opcode <= KVMPPC_HCALL_MAX)) { 1832 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1833 1834 if (fn) { 1835 return fn(cpu, spapr, opcode, args); 1836 } 1837 } 1838 1839 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 1840 opcode); 1841 return H_FUNCTION; 1842 } 1843 1844 static void hypercall_register_types(void) 1845 { 1846 /* hcall-pft */ 1847 spapr_register_hypercall(H_ENTER, h_enter); 1848 spapr_register_hypercall(H_REMOVE, h_remove); 1849 spapr_register_hypercall(H_PROTECT, h_protect); 1850 spapr_register_hypercall(H_READ, h_read); 1851 1852 /* hcall-bulk */ 1853 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); 1854 1855 /* hcall-hpt-resize */ 1856 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 1857 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 1858 1859 /* hcall-splpar */ 1860 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 1861 spapr_register_hypercall(H_CEDE, h_cede); 1862 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 1863 1864 /* processor register resource access h-calls */ 1865 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 1866 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 1867 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 1868 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 1869 spapr_register_hypercall(H_SET_MODE, h_set_mode); 1870 1871 /* In Memory Table MMU h-calls */ 1872 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 1873 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 1874 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 1875 1876 /* hcall-get-cpu-characteristics */ 1877 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, 1878 h_get_cpu_characteristics); 1879 1880 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 1881 * here between the "CI" and the "CACHE" variants, they will use whatever 1882 * mapping attributes qemu is using. When using KVM, the kernel will 1883 * enforce the attributes more strongly 1884 */ 1885 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 1886 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 1887 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 1888 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 1889 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 1890 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 1891 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 1892 1893 /* qemu/KVM-PPC specific hcalls */ 1894 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 1895 1896 /* ibm,client-architecture-support support */ 1897 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 1898 1899 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); 1900 1901 /* Virtual Processor Home Node */ 1902 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, 1903 h_home_node_associativity); 1904 } 1905 1906 type_init(hypercall_register_types) 1907