xref: /qemu/hw/ppc/spapr_hcall.c (revision 36778660d7fd0748a6129916e47ecedd67bdb758)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "cpu.h"
7 #include "exec/exec-all.h"
8 #include "helper_regs.h"
9 #include "hw/ppc/spapr.h"
10 #include "mmu-hash64.h"
11 #include "cpu-models.h"
12 #include "trace.h"
13 #include "kvm_ppc.h"
14 #include "hw/ppc/spapr_ovec.h"
15 
16 struct SPRSyncState {
17     int spr;
18     target_ulong value;
19     target_ulong mask;
20 };
21 
22 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
23 {
24     struct SPRSyncState *s = arg.host_ptr;
25     PowerPCCPU *cpu = POWERPC_CPU(cs);
26     CPUPPCState *env = &cpu->env;
27 
28     cpu_synchronize_state(cs);
29     env->spr[s->spr] &= ~s->mask;
30     env->spr[s->spr] |= s->value;
31 }
32 
33 static void set_spr(CPUState *cs, int spr, target_ulong value,
34                     target_ulong mask)
35 {
36     struct SPRSyncState s = {
37         .spr = spr,
38         .value = value,
39         .mask = mask
40     };
41     run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
42 }
43 
44 static bool has_spr(PowerPCCPU *cpu, int spr)
45 {
46     /* We can test whether the SPR is defined by checking for a valid name */
47     return cpu->env.spr_cb[spr].name != NULL;
48 }
49 
50 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
51 {
52     /*
53      * hash value/pteg group index is normalized by HPT mask
54      */
55     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
56         return false;
57     }
58     return true;
59 }
60 
61 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
62 {
63     MachineState *machine = MACHINE(spapr);
64     MemoryHotplugState *hpms = &spapr->hotplug_memory;
65 
66     if (addr < machine->ram_size) {
67         return true;
68     }
69     if ((addr >= hpms->base)
70         && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
71         return true;
72     }
73 
74     return false;
75 }
76 
77 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
78                             target_ulong opcode, target_ulong *args)
79 {
80     target_ulong flags = args[0];
81     target_ulong ptex = args[1];
82     target_ulong pteh = args[2];
83     target_ulong ptel = args[3];
84     unsigned apshift;
85     target_ulong raddr;
86     target_ulong slot;
87     const ppc_hash_pte64_t *hptes;
88 
89     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
90     if (!apshift) {
91         /* Bad page size encoding */
92         return H_PARAMETER;
93     }
94 
95     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
96 
97     if (is_ram_address(spapr, raddr)) {
98         /* Regular RAM - should have WIMG=0010 */
99         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
100             return H_PARAMETER;
101         }
102     } else {
103         target_ulong wimg_flags;
104         /* Looks like an IO address */
105         /* FIXME: What WIMG combinations could be sensible for IO?
106          * For now we allow WIMG=010x, but are there others? */
107         /* FIXME: Should we check against registered IO addresses? */
108         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
109 
110         if (wimg_flags != HPTE64_R_I &&
111             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
112             return H_PARAMETER;
113         }
114     }
115 
116     pteh &= ~0x60ULL;
117 
118     if (!valid_ptex(cpu, ptex)) {
119         return H_PARAMETER;
120     }
121 
122     slot = ptex & 7ULL;
123     ptex = ptex & ~7ULL;
124 
125     if (likely((flags & H_EXACT) == 0)) {
126         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
127         for (slot = 0; slot < 8; slot++) {
128             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
129                 break;
130             }
131         }
132         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
133         if (slot == 8) {
134             return H_PTEG_FULL;
135         }
136     } else {
137         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
138         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
139             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
140             return H_PTEG_FULL;
141         }
142         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
143     }
144 
145     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
146 
147     args[0] = ptex + slot;
148     return H_SUCCESS;
149 }
150 
151 typedef enum {
152     REMOVE_SUCCESS = 0,
153     REMOVE_NOT_FOUND = 1,
154     REMOVE_PARM = 2,
155     REMOVE_HW = 3,
156 } RemoveResult;
157 
158 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
159                                 target_ulong avpn,
160                                 target_ulong flags,
161                                 target_ulong *vp, target_ulong *rp)
162 {
163     const ppc_hash_pte64_t *hptes;
164     target_ulong v, r;
165 
166     if (!valid_ptex(cpu, ptex)) {
167         return REMOVE_PARM;
168     }
169 
170     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
171     v = ppc_hash64_hpte0(cpu, hptes, 0);
172     r = ppc_hash64_hpte1(cpu, hptes, 0);
173     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
174 
175     if ((v & HPTE64_V_VALID) == 0 ||
176         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
177         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
178         return REMOVE_NOT_FOUND;
179     }
180     *vp = v;
181     *rp = r;
182     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
183     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
184     return REMOVE_SUCCESS;
185 }
186 
187 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
188                              target_ulong opcode, target_ulong *args)
189 {
190     CPUPPCState *env = &cpu->env;
191     target_ulong flags = args[0];
192     target_ulong ptex = args[1];
193     target_ulong avpn = args[2];
194     RemoveResult ret;
195 
196     ret = remove_hpte(cpu, ptex, avpn, flags,
197                       &args[0], &args[1]);
198 
199     switch (ret) {
200     case REMOVE_SUCCESS:
201         check_tlb_flush(env, true);
202         return H_SUCCESS;
203 
204     case REMOVE_NOT_FOUND:
205         return H_NOT_FOUND;
206 
207     case REMOVE_PARM:
208         return H_PARAMETER;
209 
210     case REMOVE_HW:
211         return H_HARDWARE;
212     }
213 
214     g_assert_not_reached();
215 }
216 
217 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
218 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
219 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
220 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
221 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
222 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
223 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
224 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
225 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
226 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
227 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
228 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
229 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
230 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
231 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
232 
233 #define H_BULK_REMOVE_MAX_BATCH        4
234 
235 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
236                                   target_ulong opcode, target_ulong *args)
237 {
238     CPUPPCState *env = &cpu->env;
239     int i;
240     target_ulong rc = H_SUCCESS;
241 
242     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
243         target_ulong *tsh = &args[i*2];
244         target_ulong tsl = args[i*2 + 1];
245         target_ulong v, r, ret;
246 
247         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
248             break;
249         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
250             return H_PARAMETER;
251         }
252 
253         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
254         *tsh |= H_BULK_REMOVE_RESPONSE;
255 
256         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
257             *tsh |= H_BULK_REMOVE_PARM;
258             return H_PARAMETER;
259         }
260 
261         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
262                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
263                           &v, &r);
264 
265         *tsh |= ret << 60;
266 
267         switch (ret) {
268         case REMOVE_SUCCESS:
269             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
270             break;
271 
272         case REMOVE_PARM:
273             rc = H_PARAMETER;
274             goto exit;
275 
276         case REMOVE_HW:
277             rc = H_HARDWARE;
278             goto exit;
279         }
280     }
281  exit:
282     check_tlb_flush(env, true);
283 
284     return rc;
285 }
286 
287 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
288                               target_ulong opcode, target_ulong *args)
289 {
290     CPUPPCState *env = &cpu->env;
291     target_ulong flags = args[0];
292     target_ulong ptex = args[1];
293     target_ulong avpn = args[2];
294     const ppc_hash_pte64_t *hptes;
295     target_ulong v, r;
296 
297     if (!valid_ptex(cpu, ptex)) {
298         return H_PARAMETER;
299     }
300 
301     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
302     v = ppc_hash64_hpte0(cpu, hptes, 0);
303     r = ppc_hash64_hpte1(cpu, hptes, 0);
304     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
305 
306     if ((v & HPTE64_V_VALID) == 0 ||
307         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
308         return H_NOT_FOUND;
309     }
310 
311     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
312            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
313     r |= (flags << 55) & HPTE64_R_PP0;
314     r |= (flags << 48) & HPTE64_R_KEY_HI;
315     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
316     ppc_hash64_store_hpte(cpu, ptex,
317                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
318     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
319     /* Flush the tlb */
320     check_tlb_flush(env, true);
321     /* Don't need a memory barrier, due to qemu's global lock */
322     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
323     return H_SUCCESS;
324 }
325 
326 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
327                            target_ulong opcode, target_ulong *args)
328 {
329     CPUPPCState *env = &cpu->env;
330     target_ulong flags = args[0];
331     target_ulong ptex = args[1];
332     uint8_t *hpte;
333     int i, ridx, n_entries = 1;
334 
335     if (!valid_ptex(cpu, ptex)) {
336         return H_PARAMETER;
337     }
338 
339     if (flags & H_READ_4) {
340         /* Clear the two low order bits */
341         ptex &= ~(3ULL);
342         n_entries = 4;
343     }
344 
345     hpte = env->external_htab + (ptex * HASH_PTE_SIZE_64);
346 
347     for (i = 0, ridx = 0; i < n_entries; i++) {
348         args[ridx++] = ldq_p(hpte);
349         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
350         hpte += HASH_PTE_SIZE_64;
351     }
352 
353     return H_SUCCESS;
354 }
355 
356 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
357                                 target_ulong opcode, target_ulong *args)
358 {
359     cpu_synchronize_state(CPU(cpu));
360     cpu->env.spr[SPR_SPRG0] = args[0];
361 
362     return H_SUCCESS;
363 }
364 
365 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
366                                target_ulong opcode, target_ulong *args)
367 {
368     if (!has_spr(cpu, SPR_DABR)) {
369         return H_HARDWARE;              /* DABR register not available */
370     }
371     cpu_synchronize_state(CPU(cpu));
372 
373     if (has_spr(cpu, SPR_DABRX)) {
374         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
375     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
376         return H_RESERVED_DABR;
377     }
378 
379     cpu->env.spr[SPR_DABR] = args[0];
380     return H_SUCCESS;
381 }
382 
383 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
384                                 target_ulong opcode, target_ulong *args)
385 {
386     target_ulong dabrx = args[1];
387 
388     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
389         return H_HARDWARE;
390     }
391 
392     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
393         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
394         return H_PARAMETER;
395     }
396 
397     cpu_synchronize_state(CPU(cpu));
398     cpu->env.spr[SPR_DABRX] = dabrx;
399     cpu->env.spr[SPR_DABR] = args[0];
400 
401     return H_SUCCESS;
402 }
403 
404 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
405                                 target_ulong opcode, target_ulong *args)
406 {
407     target_ulong flags = args[0];
408     hwaddr dst = args[1];
409     hwaddr src = args[2];
410     hwaddr len = TARGET_PAGE_SIZE;
411     uint8_t *pdst, *psrc;
412     target_long ret = H_SUCCESS;
413 
414     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
415                   | H_COPY_PAGE | H_ZERO_PAGE)) {
416         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
417                       flags);
418         return H_PARAMETER;
419     }
420 
421     /* Map-in destination */
422     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
423         return H_PARAMETER;
424     }
425     pdst = cpu_physical_memory_map(dst, &len, 1);
426     if (!pdst || len != TARGET_PAGE_SIZE) {
427         return H_PARAMETER;
428     }
429 
430     if (flags & H_COPY_PAGE) {
431         /* Map-in source, copy to destination, and unmap source again */
432         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
433             ret = H_PARAMETER;
434             goto unmap_out;
435         }
436         psrc = cpu_physical_memory_map(src, &len, 0);
437         if (!psrc || len != TARGET_PAGE_SIZE) {
438             ret = H_PARAMETER;
439             goto unmap_out;
440         }
441         memcpy(pdst, psrc, len);
442         cpu_physical_memory_unmap(psrc, len, 0, len);
443     } else if (flags & H_ZERO_PAGE) {
444         memset(pdst, 0, len);          /* Just clear the destination page */
445     }
446 
447     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
448         kvmppc_dcbst_range(cpu, pdst, len);
449     }
450     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
451         if (kvm_enabled()) {
452             kvmppc_icbi_range(cpu, pdst, len);
453         } else {
454             tb_flush(CPU(cpu));
455         }
456     }
457 
458 unmap_out:
459     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
460     return ret;
461 }
462 
463 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
464 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
465 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
466 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
467 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
468 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
469 
470 #define VPA_MIN_SIZE           640
471 #define VPA_SIZE_OFFSET        0x4
472 #define VPA_SHARED_PROC_OFFSET 0x9
473 #define VPA_SHARED_PROC_VAL    0x2
474 
475 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
476 {
477     CPUState *cs = CPU(ppc_env_get_cpu(env));
478     uint16_t size;
479     uint8_t tmp;
480 
481     if (vpa == 0) {
482         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
483         return H_HARDWARE;
484     }
485 
486     if (vpa % env->dcache_line_size) {
487         return H_PARAMETER;
488     }
489     /* FIXME: bounds check the address */
490 
491     size = lduw_be_phys(cs->as, vpa + 0x4);
492 
493     if (size < VPA_MIN_SIZE) {
494         return H_PARAMETER;
495     }
496 
497     /* VPA is not allowed to cross a page boundary */
498     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
499         return H_PARAMETER;
500     }
501 
502     env->vpa_addr = vpa;
503 
504     tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
505     tmp |= VPA_SHARED_PROC_VAL;
506     stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
507 
508     return H_SUCCESS;
509 }
510 
511 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
512 {
513     if (env->slb_shadow_addr) {
514         return H_RESOURCE;
515     }
516 
517     if (env->dtl_addr) {
518         return H_RESOURCE;
519     }
520 
521     env->vpa_addr = 0;
522     return H_SUCCESS;
523 }
524 
525 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
526 {
527     CPUState *cs = CPU(ppc_env_get_cpu(env));
528     uint32_t size;
529 
530     if (addr == 0) {
531         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
532         return H_HARDWARE;
533     }
534 
535     size = ldl_be_phys(cs->as, addr + 0x4);
536     if (size < 0x8) {
537         return H_PARAMETER;
538     }
539 
540     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
541         return H_PARAMETER;
542     }
543 
544     if (!env->vpa_addr) {
545         return H_RESOURCE;
546     }
547 
548     env->slb_shadow_addr = addr;
549     env->slb_shadow_size = size;
550 
551     return H_SUCCESS;
552 }
553 
554 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
555 {
556     env->slb_shadow_addr = 0;
557     env->slb_shadow_size = 0;
558     return H_SUCCESS;
559 }
560 
561 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
562 {
563     CPUState *cs = CPU(ppc_env_get_cpu(env));
564     uint32_t size;
565 
566     if (addr == 0) {
567         hcall_dprintf("Can't cope with DTL at logical 0\n");
568         return H_HARDWARE;
569     }
570 
571     size = ldl_be_phys(cs->as, addr + 0x4);
572 
573     if (size < 48) {
574         return H_PARAMETER;
575     }
576 
577     if (!env->vpa_addr) {
578         return H_RESOURCE;
579     }
580 
581     env->dtl_addr = addr;
582     env->dtl_size = size;
583 
584     return H_SUCCESS;
585 }
586 
587 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
588 {
589     env->dtl_addr = 0;
590     env->dtl_size = 0;
591 
592     return H_SUCCESS;
593 }
594 
595 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
596                                    target_ulong opcode, target_ulong *args)
597 {
598     target_ulong flags = args[0];
599     target_ulong procno = args[1];
600     target_ulong vpa = args[2];
601     target_ulong ret = H_PARAMETER;
602     CPUPPCState *tenv;
603     PowerPCCPU *tcpu;
604 
605     tcpu = ppc_get_vcpu_by_dt_id(procno);
606     if (!tcpu) {
607         return H_PARAMETER;
608     }
609     tenv = &tcpu->env;
610 
611     switch (flags) {
612     case FLAGS_REGISTER_VPA:
613         ret = register_vpa(tenv, vpa);
614         break;
615 
616     case FLAGS_DEREGISTER_VPA:
617         ret = deregister_vpa(tenv, vpa);
618         break;
619 
620     case FLAGS_REGISTER_SLBSHADOW:
621         ret = register_slb_shadow(tenv, vpa);
622         break;
623 
624     case FLAGS_DEREGISTER_SLBSHADOW:
625         ret = deregister_slb_shadow(tenv, vpa);
626         break;
627 
628     case FLAGS_REGISTER_DTL:
629         ret = register_dtl(tenv, vpa);
630         break;
631 
632     case FLAGS_DEREGISTER_DTL:
633         ret = deregister_dtl(tenv, vpa);
634         break;
635     }
636 
637     return ret;
638 }
639 
640 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
641                            target_ulong opcode, target_ulong *args)
642 {
643     CPUPPCState *env = &cpu->env;
644     CPUState *cs = CPU(cpu);
645 
646     env->msr |= (1ULL << MSR_EE);
647     hreg_compute_hflags(env);
648     if (!cpu_has_work(cs)) {
649         cs->halted = 1;
650         cs->exception_index = EXCP_HLT;
651         cs->exit_request = 1;
652     }
653     return H_SUCCESS;
654 }
655 
656 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
657                            target_ulong opcode, target_ulong *args)
658 {
659     target_ulong rtas_r3 = args[0];
660     uint32_t token = rtas_ld(rtas_r3, 0);
661     uint32_t nargs = rtas_ld(rtas_r3, 1);
662     uint32_t nret = rtas_ld(rtas_r3, 2);
663 
664     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
665                            nret, rtas_r3 + 12 + 4*nargs);
666 }
667 
668 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
669                                    target_ulong opcode, target_ulong *args)
670 {
671     CPUState *cs = CPU(cpu);
672     target_ulong size = args[0];
673     target_ulong addr = args[1];
674 
675     switch (size) {
676     case 1:
677         args[0] = ldub_phys(cs->as, addr);
678         return H_SUCCESS;
679     case 2:
680         args[0] = lduw_phys(cs->as, addr);
681         return H_SUCCESS;
682     case 4:
683         args[0] = ldl_phys(cs->as, addr);
684         return H_SUCCESS;
685     case 8:
686         args[0] = ldq_phys(cs->as, addr);
687         return H_SUCCESS;
688     }
689     return H_PARAMETER;
690 }
691 
692 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
693                                     target_ulong opcode, target_ulong *args)
694 {
695     CPUState *cs = CPU(cpu);
696 
697     target_ulong size = args[0];
698     target_ulong addr = args[1];
699     target_ulong val  = args[2];
700 
701     switch (size) {
702     case 1:
703         stb_phys(cs->as, addr, val);
704         return H_SUCCESS;
705     case 2:
706         stw_phys(cs->as, addr, val);
707         return H_SUCCESS;
708     case 4:
709         stl_phys(cs->as, addr, val);
710         return H_SUCCESS;
711     case 8:
712         stq_phys(cs->as, addr, val);
713         return H_SUCCESS;
714     }
715     return H_PARAMETER;
716 }
717 
718 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
719                                     target_ulong opcode, target_ulong *args)
720 {
721     CPUState *cs = CPU(cpu);
722 
723     target_ulong dst   = args[0]; /* Destination address */
724     target_ulong src   = args[1]; /* Source address */
725     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
726     target_ulong count = args[3]; /* Element count */
727     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
728     uint64_t tmp;
729     unsigned int mask = (1 << esize) - 1;
730     int step = 1 << esize;
731 
732     if (count > 0x80000000) {
733         return H_PARAMETER;
734     }
735 
736     if ((dst & mask) || (src & mask) || (op > 1)) {
737         return H_PARAMETER;
738     }
739 
740     if (dst >= src && dst < (src + (count << esize))) {
741             dst = dst + ((count - 1) << esize);
742             src = src + ((count - 1) << esize);
743             step = -step;
744     }
745 
746     while (count--) {
747         switch (esize) {
748         case 0:
749             tmp = ldub_phys(cs->as, src);
750             break;
751         case 1:
752             tmp = lduw_phys(cs->as, src);
753             break;
754         case 2:
755             tmp = ldl_phys(cs->as, src);
756             break;
757         case 3:
758             tmp = ldq_phys(cs->as, src);
759             break;
760         default:
761             return H_PARAMETER;
762         }
763         if (op == 1) {
764             tmp = ~tmp;
765         }
766         switch (esize) {
767         case 0:
768             stb_phys(cs->as, dst, tmp);
769             break;
770         case 1:
771             stw_phys(cs->as, dst, tmp);
772             break;
773         case 2:
774             stl_phys(cs->as, dst, tmp);
775             break;
776         case 3:
777             stq_phys(cs->as, dst, tmp);
778             break;
779         }
780         dst = dst + step;
781         src = src + step;
782     }
783 
784     return H_SUCCESS;
785 }
786 
787 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
788                                    target_ulong opcode, target_ulong *args)
789 {
790     /* Nothing to do on emulation, KVM will trap this in the kernel */
791     return H_SUCCESS;
792 }
793 
794 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
795                                    target_ulong opcode, target_ulong *args)
796 {
797     /* Nothing to do on emulation, KVM will trap this in the kernel */
798     return H_SUCCESS;
799 }
800 
801 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
802                                            target_ulong mflags,
803                                            target_ulong value1,
804                                            target_ulong value2)
805 {
806     CPUState *cs;
807 
808     if (value1) {
809         return H_P3;
810     }
811     if (value2) {
812         return H_P4;
813     }
814 
815     switch (mflags) {
816     case H_SET_MODE_ENDIAN_BIG:
817         CPU_FOREACH(cs) {
818             set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
819         }
820         spapr_pci_switch_vga(true);
821         return H_SUCCESS;
822 
823     case H_SET_MODE_ENDIAN_LITTLE:
824         CPU_FOREACH(cs) {
825             set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
826         }
827         spapr_pci_switch_vga(false);
828         return H_SUCCESS;
829     }
830 
831     return H_UNSUPPORTED_FLAG;
832 }
833 
834 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
835                                                         target_ulong mflags,
836                                                         target_ulong value1,
837                                                         target_ulong value2)
838 {
839     CPUState *cs;
840     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
841 
842     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
843         return H_P2;
844     }
845     if (value1) {
846         return H_P3;
847     }
848     if (value2) {
849         return H_P4;
850     }
851 
852     if (mflags == AIL_RESERVED) {
853         return H_UNSUPPORTED_FLAG;
854     }
855 
856     CPU_FOREACH(cs) {
857         set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
858     }
859 
860     return H_SUCCESS;
861 }
862 
863 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
864                                target_ulong opcode, target_ulong *args)
865 {
866     target_ulong resource = args[1];
867     target_ulong ret = H_P2;
868 
869     switch (resource) {
870     case H_SET_MODE_RESOURCE_LE:
871         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
872         break;
873     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
874         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
875                                                   args[2], args[3]);
876         break;
877     }
878 
879     return ret;
880 }
881 
882 #define H_SIGNAL_SYS_RESET_ALL         -1
883 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
884 
885 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
886                                        sPAPRMachineState *spapr,
887                                        target_ulong opcode, target_ulong *args)
888 {
889     target_long target = args[0];
890     CPUState *cs;
891 
892     if (target < 0) {
893         /* Broadcast */
894         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
895             return H_PARAMETER;
896         }
897 
898         CPU_FOREACH(cs) {
899             PowerPCCPU *c = POWERPC_CPU(cs);
900 
901             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
902                 if (c == cpu) {
903                     continue;
904                 }
905             }
906             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
907         }
908         return H_SUCCESS;
909 
910     } else {
911         /* Unicast */
912         CPU_FOREACH(cs) {
913             if (cpu->cpu_dt_id == target) {
914                 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
915                 return H_SUCCESS;
916             }
917         }
918         return H_PARAMETER;
919     }
920 }
921 
922 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
923                                                   sPAPRMachineState *spapr,
924                                                   target_ulong opcode,
925                                                   target_ulong *args)
926 {
927     target_ulong list = ppc64_phys_to_real(args[0]);
928     target_ulong ov_table;
929     bool explicit_match = false; /* Matched the CPU's real PVR */
930     uint32_t max_compat = cpu->max_compat;
931     uint32_t best_compat = 0;
932     int i;
933     sPAPROptionVector *ov5_guest, *ov5_cas_old, *ov5_updates;
934 
935     /*
936      * We scan the supplied table of PVRs looking for two things
937      *   1. Is our real CPU PVR in the list?
938      *   2. What's the "best" listed logical PVR
939      */
940     for (i = 0; i < 512; ++i) {
941         uint32_t pvr, pvr_mask;
942 
943         pvr_mask = ldl_be_phys(&address_space_memory, list);
944         pvr = ldl_be_phys(&address_space_memory, list + 4);
945         list += 8;
946 
947         if (~pvr_mask & pvr) {
948             break; /* Terminator record */
949         }
950 
951         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
952             explicit_match = true;
953         } else {
954             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
955                 best_compat = pvr;
956             }
957         }
958     }
959 
960     if ((best_compat == 0) && (!explicit_match || max_compat)) {
961         /* We couldn't find a suitable compatibility mode, and either
962          * the guest doesn't support "raw" mode for this CPU, or raw
963          * mode is disabled because a maximum compat mode is set */
964         return H_HARDWARE;
965     }
966 
967     /* Parsing finished */
968     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
969 
970     /* Update CPUs */
971     if (cpu->compat_pvr != best_compat) {
972         Error *local_err = NULL;
973 
974         ppc_set_compat_all(best_compat, &local_err);
975         if (local_err) {
976             error_report_err(local_err);
977             return H_HARDWARE;
978         }
979     }
980 
981     /* For the future use: here @ov_table points to the first option vector */
982     ov_table = list;
983 
984     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
985 
986     /* NOTE: there are actually a number of ov5 bits where input from the
987      * guest is always zero, and the platform/QEMU enables them independently
988      * of guest input. To model these properly we'd want some sort of mask,
989      * but since they only currently apply to memory migration as defined
990      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
991      * to worry about this for now.
992      */
993     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
994     /* full range of negotiated ov5 capabilities */
995     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
996     spapr_ovec_cleanup(ov5_guest);
997     /* capabilities that have been added since CAS-generated guest reset.
998      * if capabilities have since been removed, generate another reset
999      */
1000     ov5_updates = spapr_ovec_new();
1001     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1002                                         ov5_cas_old, spapr->ov5_cas);
1003 
1004     if (!spapr->cas_reboot) {
1005         spapr->cas_reboot =
1006             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1007                                           ov5_updates) != 0);
1008     }
1009     spapr_ovec_cleanup(ov5_updates);
1010 
1011     if (spapr->cas_reboot) {
1012         qemu_system_reset_request();
1013     }
1014 
1015     return H_SUCCESS;
1016 }
1017 
1018 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1019 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1020 
1021 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1022 {
1023     spapr_hcall_fn *slot;
1024 
1025     if (opcode <= MAX_HCALL_OPCODE) {
1026         assert((opcode & 0x3) == 0);
1027 
1028         slot = &papr_hypercall_table[opcode / 4];
1029     } else {
1030         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1031 
1032         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1033     }
1034 
1035     assert(!(*slot));
1036     *slot = fn;
1037 }
1038 
1039 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1040                              target_ulong *args)
1041 {
1042     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1043 
1044     if ((opcode <= MAX_HCALL_OPCODE)
1045         && ((opcode & 0x3) == 0)) {
1046         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1047 
1048         if (fn) {
1049             return fn(cpu, spapr, opcode, args);
1050         }
1051     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1052                (opcode <= KVMPPC_HCALL_MAX)) {
1053         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1054 
1055         if (fn) {
1056             return fn(cpu, spapr, opcode, args);
1057         }
1058     }
1059 
1060     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1061                   opcode);
1062     return H_FUNCTION;
1063 }
1064 
1065 static void hypercall_register_types(void)
1066 {
1067     /* hcall-pft */
1068     spapr_register_hypercall(H_ENTER, h_enter);
1069     spapr_register_hypercall(H_REMOVE, h_remove);
1070     spapr_register_hypercall(H_PROTECT, h_protect);
1071     spapr_register_hypercall(H_READ, h_read);
1072 
1073     /* hcall-bulk */
1074     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1075 
1076     /* hcall-splpar */
1077     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1078     spapr_register_hypercall(H_CEDE, h_cede);
1079     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1080 
1081     /* processor register resource access h-calls */
1082     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1083     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1084     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1085     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1086     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1087 
1088     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1089      * here between the "CI" and the "CACHE" variants, they will use whatever
1090      * mapping attributes qemu is using. When using KVM, the kernel will
1091      * enforce the attributes more strongly
1092      */
1093     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1094     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1095     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1096     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1097     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1098     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1099     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1100 
1101     /* qemu/KVM-PPC specific hcalls */
1102     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1103 
1104     /* ibm,client-architecture-support support */
1105     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1106 }
1107 
1108 type_init(hypercall_register_types)
1109